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Fractionalized Fermi liquid in a Kondo-Heisenberg model
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The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic
state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron
density. I use a nonperturbative approach where the strongest interactions are taken into account by means of
exact solution, and corrections are controllable. In agreement with the general requirements formulated by T.
Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)], the resulting metallic state represents a fractionalized Fermi
liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations. The system
undergoes a phase transition to an ordered phase (charge density wave or superconducting), at the transition
temperature which is parametrically small in comparison to the quasiparticle Fermi energy.
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I. INTRODUCTION

There is a compelling experimental evidence that in the so-
called underdoped regime of the cuprate materials the volume
of the quasiparticle Fermi surface (FS) is not proportional to
the number of electrons [1–6]. Below a certain temperature, an
arc-like FS is seen only in the nodal regions and the antinodal
ones are gapped (the pseudogap phenomenon). It is likely
that such arcs are part of closed Fermi pockets with unevenly
distributed spectral weight [7].

Attempts to explain this phenomenon arising as a result of
FS reconstruction caused by a broken translational symmetry
(see, for example, Ref. [8]) are not satisfactory. The most
obvious symmetry breaking mechanism would be charge
density wave (CDW) formation, however, the CDW occupies
only a small part of the phase diagram where the pseudogap
is observed [9,10]. The measurements of the Hall coefficient
also indicate that the pseudogap and the CDW are different
phenomena [6]. The fact that the wave vectors of the CDW
connect the tips of the Fermi arcs [11] also points to the
conclusion that the CDW emerges from the pre-existing
pseudogap state. These facts point to the existence of a
peculiar metallic state with a small FS (herein, the SFS
state).

These experimental facts pose a fundamental problem
about status and validity of the Luttinger theorem. Do they
point towards its violation or just to our misunderstanding
of this fundamental theorem? According to Refs. [12–15]
it is the latter since in reality Luttiger theorem (LT) relates
the total particle density not to the volume enclosed by the
Fermi surface, but to the volume enclosed by the surface in
momentum space where the single electron Green’s function
at zero frequency G(ω = 0,k) changes sign. This allows
both poles (the FS) and zeros of the Green’s function to
contribute to LT. The classic illustration of this thesis, given
in Ref. [12], is the Green’s function of a BCS superconductor
where translational symmetry is unbroken:

G(ω,k) = ω + ε(k)

ω2 − ε(k)2 − �2
. (1)

The Bogolyubov quasiparticles do not have a FS; however,
G(0,k) changes sign exactly at ε(k) = 0 and LT is fulfilled
solely through the zeros of the Green’s function. These

considerations, together with Ref. [16], laid the foundation
for the phenomenological electron Green’s function suggested
for the pseudogap state of the cuprates by Rice and co-workers
(the YRZ Green’s function) [17] which has turned out to be
very successful in explaining various experiments (see, for
instance, Refs. [3,18,19]).

Unfortunately, the surface of zeros of the Green’s function
is not observable and hence cannot serve as a test for SFS.
However, Oshikawa has given a different perspective on LT
by reformulating it in a form where the electron density
is related to the Friedel oscillations which may exist even
without a FS [20]. The validity of Oshikawa’s theorem and
its consistency with the traditional version of LT has been
demonstrated for one-dimensional (1D) strongly correlated
models [14,21,22] including those where the FS is altogether
absent. The electron density reveals itself in the wave vector
of the CDW, as suggested in Ref. [20], as well as in the zeros
of G(0,±kF ) [22].

For dimensions D > 1 it was suggested on the basis of the
Oshikawa’s theorem that the existence of SFS metal requires
a topologically nontrivial ground state and fractionalized
excitations (for instance, electrically neutral spin S = 1/2
ones) [23]. This is a very interesting idea though attempts
to demonstrate the existence of SFS in microscopical models
(see, for example [24,25], where it is called FL*) have
relied on gauge theory approaches which involve too many
uncontrollable steps.

In this paper I present a nonperturbative controllable
solution of a strongly correlated model in D > 1 which
satisfies LT in both of the formulations outlined above. It
has a topologically nontrivial ground state, fractionalized
excitations, and a SFS of sharp quasiparticles, alongside a
few other remarkable properties similar to those observed in
the underdoped cuprates. The model describes an array of
ladders with one leg being a spin S = 1/2 Heisenberg chain
and the other filled by a weakly interacting Fermi gas. There
is a direct tunneling between electronic chains of different
ladders. The system undergoes a phase transition to an ordered
phase (CDW or superconducting), but in D > 2 the transition
temperature Tc is parametrically small in comparison to the
quasiparticle Fermi energy εF,qp. The latter fact allows one to
formally consider the limit Tc/εF,qp → 0 to make sense of the
discussion of LT.
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II. THE CORE MODEL: THE KONDO-HEISENBERG
(KH) CHAIN

A single KH chain consists of an antiferromagnetic spin
S = 1/2 Heisenberg chain (HC) coupled to a one-dimensional
electron gas (1DEG) via an antiferromagnetic exchange
interaction:

H =
∑

k

ε(k)ψ+
kσψkσ + JK

2

∑
k,q

ψ+
k+q,ασ αβψk,βSq

+ JH

∑
n

SnSn+1, (2)

where ψ+,ψ are creation and annihilation operators of the
1DEG, σa are the Pauli matrices, Sn is the spin S = 1/2
operator on site n, and Sq is its Fourier transform. It is
assumed that JK � JH and the 1DEG is far from half filling,
|2kF a0 − π | ∼ 1. Under these assumptions one can formulate
the low energy description of (2), taking into account that the
backscattering processes between excitations in the HC and
the 1DEG are suppressed by the incommensurability of the
1DEG. The effective theory is valid for energies much smaller
than both the Fermi energy εF and the Heisenberg exchange
interaction JH . The model (2) is integrable [21], and I will use
the exact solution as a springboard for a controllable approach
to the model of an array of KH chains in dimension D > 1.

I start with the linearization of the spectrum of the 1DEG:
ε(k) ≈ ±vF (k ∓ kF ) and ψ(x) = e−ikF xR(x) + eikF xL(x). To
take advantage of the SU(2)charge × SU(2)spin symmetry of
the model I will express the low energy Hamiltonian in
terms of generators of the SU1(2) Kac-Moody algebra
(non-Abelian bosonization, see Appendix A and Ref. [26]).
These are the spin (Fa) and charge (I a) current opera-
tors of the 1DEG Fa

R = 1
2R+σaR,F a

L = 1
2L+σaL and I z

R =
R+

σ Rσ , I+
R = R+

↑ R+
↓ , I−

R = R↓R↑ (with similar for I a
L with

R → L) and jR,jL of the HC. Currents of different type and
chirality commute. In the continuum limit we have

Sn = [jR(x) + jL(x)] + (−1)nNs(x) + . . . , x = na0, (3)

where the dots stand for less relevant operators, a0 is the lattice
distance, and Ns(x) is the staggered magnetization operator
defined in Appendix A. Likewise, the spin density of the 1DEG
is

1
2ψ+σψ(x) = FR + FL + [e2ikF x�cdw + H.c.] + ..., (4)

where �cdw operator is defined in Appendix A. Substituting (3)
and (4) into (2) we find that since 2kF 	= π/a0, the oscillatory
terms in (3) and (4) drop out and the final result contains
only the spin currents: JK (FR + FL)(jL + jR). Moreover, the
relevant part contains only products of the currents of different
chirality; the marginal interaction Vmarg = JK (FRjR + FLjL)
can be dropped as the first approximation. The resulting
Hamiltonian is

Heff = Hcharge + H(Rl)
s + H(Lr)

s (5)

Hcharge = 2πvF

3
(: IRIR : + : ILIL :) (6)

FIG. 1. The dispersion of the solitons in the KH chain (9). e =
E/�, q = kx(vH vF )1/2/�, and vF /vH = 1/4.

H(Rl)
s = 2πvF

3
: FRFR : +2πvH

3
: jLjL : +JKFRjL (7)

H(Lr)
s = 2πvF

3
: FLFL : +2πvH

3
: jRjR : +JKFLjR. (8)

Here vF ,vH = πJH/2 are the Fermi velocity of the 1DEG and
the spinon velocity of the HC, respectively. The double dots
denote normal ordering. The model (5) was studied in Ref. [21]
and then in Ref. [27]. Its most remarkable features are (i) the
decoupling of the spin sector into two independent sectors with
different parity leading to (ii) the emergent high SU(2)charge ×
SU(2)spin × SU(2)spin symmetry. The latter feature explains a
high degeneracy of the order parameter manifold.

The charge sector (6) is critical, the spectrum is linear:
ω = vF |k|. The spin sector is described by integrable model (7)
and (8); at JK > 0 their spectrum consists of gapped spin 1/2
excitations (spinons) [28] with dispersion relations E(k)Lr =
E(−k)Rl = E(k) (see Fig. 1),

E(k) = k(vH − vF )/2 +
√

k2(vF + vH )2/4 + �2, (9)

where � = C
√

JKJH exp[−π (vF + vH )/JK ], with C being a
nonuniversal numerical factor.

As is clear from (7) and (8), the spinon gaps are generated by
pairing of spinons of a given chirality from the 1DEG with their
partners of opposite chirality from the HC. Such entanglement
of chiral modes makes the ground state topologically nontrivial
(Appendix B). Since the spinons from the 1DEG do not pair to
each other, there are no order parameters (OPs) formed solely
from the electronic operators [29]. Instead, there are composite
OPs whose correlation functions have a power law decay:

Ocdw = ψ+(x)
[
(SxSx+a0 )Î + i(σSx)

]
ψ(x)ei(π/a0+2kF )x

Osc = i(−1)x/a0ψ(x)σy
[
(SxSx+a0 )Î + i(σSx)

]
ψ(x), (10)

where Î is a unit matrix. OP (10) displays Friedel oscillations
with the wave vector Q = π/a0 + 2kF which includes both
localized and band electrons in agreement with Ref. [20].
These OPs can be conveniently written in the matrix form:

Ô =
(Ocdw O+

sc

−Osc O+
cdw

)
= Aĝ, (11)

where A ∼ � is an amplitude and g is the matrix field
of the SU1(2) Wess-Zumino-Witten-Novikov model (6) (see
Appendix A for details).
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Correlation functions

To proceed we will need explicit expressions for some
correlation functions of the KH model. They are fixed largely
by symmetry considerations, with a minimal knowledge of the
spectrum and the operator structure of the theory, as was done
in Refs. [14,22].

The corresponding calculations are more easily done with
the use of Abelian bosonization as explained in Appendix A.
Such bosonization is possible due to the unique property of
the SU1(2) WZNW model, namely due to its equivalence to
the theory of free massless bosons (A3) and the fact that
both the fermion operators (A5) and primary fields of the
Heisenberg chain can be factorized into products of chiral
operators (A6). Such factorization does not generally occur in
conformal theories. According to (A5) and (A7) the single
particle Green’s function factorizes into a product of two
independent functions determined by the charge and the spin
sector, respectively. Thus for the right movers we have:

GRR = 〈〈zc
−(τ,x)[zc

−]+(0,0)〉〉〈〈zs
σ (τ,x)

[
zs
σ

]+
(0,0)

〉〉
, (12)

with a similar expression for the left movers with z substituted
for z̄. The latter operators are chiral and can be expressed in
terms of bosonic exponents (A6). Likewise, for the staggered
magnetizations of the Heisenberg chain we have

〈〈N(τ,x)N(0,0)〉〉 = 〈〈zH (τ,x)[zH (0,0)]+〉〉
× 〈〈z̄H (τ,x)[z̄H (0,0)]+〉〉. (13)

Since the charge sector is described by the Gaussian nonin-
teracting theory (A3), the corresponding correlator in (12) is
easy to calculate:

〈〈zc
−(τ,x)[zc

−]+(0,0)〉〉 ∼ (vF τ − ix)−1/2. (14)

The next problem is to calculate the correlators of the spin
components which enter in (12) and (13). As was explained in
Refs. [14,30], most of the spectral weight in these correlators
comes from the processes with an emission of a single massive
spinon. Therefore it is sufficient to calculate just one matrix
element. This was done using the Lorentz symmetry consider-
ations [14]. Such considerations are directly applicable for the
case vH = vF , but the general situation can be continuously
deformed into the Lorentz invariant one.

I will use the relativistic parametrization of the spec-
trum (9):

p = [�/(vF + vH )] sinh θ, (15)

ERl(θ ) = �(vF eθ + vH e−θ )/(vF + vH ),

ErL(θ ) = �(vH eθ + vF e−θ )/(vF + vH ),
(16)

ElR(θ ) = ERl(−θ ), ELr (θ ) = ErL(−θ ),

where parameter θ is called rapidity. Lorentz transformation
corresponds to a shift of rapidities of all particles by the
same amount. Since zσ ,z̄σ have Lorentz spins 1/4 and −1/4
respectively, their matrix elements between the vacuum and a
state with a single soliton with rapidity θ are determined by

the Lorentz invariance and are given by

〈θ,−σ [|zσ (0,0)]+|0〉 = Z
1/2
0 eθ/4, 〈θ,σ |[z̄σ (0,0)]+|0〉

= Z
1/2
0 e−θ/4, (17)

where Z0 is a nonuniversal prefactor.
The difference between the matrix elements of the Heisen-

berg and the 1DEG spinon operators is in their coordinate
dependence. For instance, we have

〈θ, − σ |[zs
σ (τ,x)

]+|0〉 = Z
1/2
0 eθ/4 exp[−τELr (θ ) − ixp(θ )],

〈θ, − σ |[zH
σ (τ,x)

]+|0〉 = Z
1/2
0 eθ/4 exp[−τElr (θ ) − ixp(θ )].

(18)

Substituting these matrix elements into the Lehmann expan-
sion for the correlation functions (12) and (13) and using (14)
we arrive at the following expressions. The single electron
Green’s functions are similar to the ones in the Hubbard
model and in the model of the 1DEG with attractive inter-
action [14,31]. For small |k| � kF we have G(ω,k ± kF ) =
GRR,LL(ω,k), GRR(ω,k) = GLL(ω,−k),

GRR(ω,k) = Z0

ω − vF k

[
�√

−(ω − vF k)(ω + vH k) + �2
− 1

]

+ . . . , (19)

where the dots stand for terms with emission of more than one
spinon and Z0 is a nonuniversal numerical factor. At ω = 0
the Green’s function changes sign by going through zero at
wave vectors ±kF . Since the Green’s function for the localized
electrons has zeros at ±π/2a0, the total volume inside of the
surface of zeros is π/a0 + 2kF in a full agreement with LT.

Due to the decoupling of the spin sector (7, 8) the correlators
of the staggered parts of the magnetizations are products
of the spinon Green’s functions. The dynamical magnetic
susceptibilities have the following form:

〈〈N(τ,x)N(0,0)〉〉 = ZN

π

√
v2

Hτ 2 + x2
exp{−�[(τ +ix/vH )

× (τ − ix/vF )]1/2} exp{−�[(τ − ix/vH )

× (τ + ix/vF )]1/2},
〈〈s(τ,x)s(0,0)〉〉 = Ze cos(2kF x)

kF

√
v2

F τ 2 + x2
〈〈N(τ,x)N(0,0)〉〉, (20)

where ZN,Ze are nonuniversal numerical factors. In the
frequency-momentum space the susceptibility of the local
spins (20) displays a strong continuum centered at k =
±π/a0, and the susceptibility of the 1DEG (20) displays a
weaker continuum around ±2kF . At vH = vF = v the Fourier
transform of (20) is

χ1D = ZN√
4�2 + (vkx)2 − ω2

. (21)

III. COUPLING THE LADDERS

The goal of this paper is to construct a workable model in
D > 1 which would display SFS with robust quasiparticles. I
consider an array of KH chains coupled together by a direct
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FIG. 2. The plot of the quasiparticle weight near kx = kF for
t0(vH /vF )1/2/� = 5 and vF /vH = 0.1. The vertical axis is kyb, the
horizontal is q = (kx − kF )(vH vF )1/2/�. The picture for kx < 0 is
the mirror image of this one.

tunneling between the 1DEGs and an exchange between the
HCs. For simplicity I consider only the nearest neighbor
interactions and take into account the most relevant part of
the exchange interaction:

Htunn = t
∑

y

∫
dx(ψ+

y (x)ψy+1(x) + H.c.), (22)

Hex =
∑

y

J̃

∫
dxNy(x)Ny+1(x). (23)

The exchange integral J̃ is a sum of the antiferromagnetic
superexchange between the HCs and the ferromagnetic one
generated in the second order in the interchain tunneling
J̃ferro ∼ −J 2

Kt2/W 3. Hence J̃ can have any sign and magnitude
and hence is an independent parameter. This fact constitutes a
distinct feature of the model.

In the random phase approximation (RPA) tunneling (22)
modifies the electron Green’s function:

G(ω,k) = [
G−1

1D(ω,kx) − t(k)
]−1

, (24)

where k = (kx,ky), G1D is given by (19) and t(k) is
the Fourier transform of the interchain hopping amplitude.
Since G1D(ω) has a strong singularity at the threshold of
the spinon-holon continuum, the interchain tunneling leads
to the creation of holon-spinon bound states (quasiparti-
cles) [14]. The quasiparticle (QP) branch splits from the
continuum and once the tunneling amplitude exceeds the
critical level |t(ky)| > 3.33�(vF /vH )1/2 electron and hole
Fermi pockets appear as in Fig. 2 [32]. The QP FS is
defined by t̃ cos(kyb) = ±q[1 − (q2 + 1)−1/2]−1 with q =
k(vF vH )1/2/�, t̃ = 2t(vH/vF )1/2/�. The QP residue changes
around the FS:

Z(q)/Z0 = (1 − (1 + q2)−1/2){
1 + q2

2

(
vF

vH
− 1

)
(q2 + 1)−1[(q2 + 1)1/2 − 1]−1

} .

FIG. 3. The quasiparticle residue Z as a function of q =
kx(vH vF )1/2/� for (from top to bottom) vF /vH = 3,1,0.1.

For vF < vH the change of the QP spectral weight is significant
(see Figs. 2 and 3) and the pockets may look like arcs.

A. Corrections to the RPA and the stability of the QPs

One may wonder whether the quasiparticles are robust
against corrections to RPA. In the previous works on the
coupled chain arrays [14,33], we developed a formal scheme to
take into account corrections to RPA. It was demonstrated that
dangerous corrections originate from three kinds of physical
processes. First, there are processes which generate a coupling
between staggered magnetizations of different chains (23).
Second, there is a coupling between composite OPs generated
in higher orders of perturbation theory in the interchain
hopping and exchange interactions. Both types of processes
can lead to ordering and translational symmetry breaking. This
in turn will cause a reconstruction of the FS. The third type
of dangerous corrections is related to interactions between the
quasiparticles and the gapless collective modes.

Let us consider the first process. The SFS quasiparticles are
robust against the onset of magnetic order if |J̃ | < � so that
the magnetic ordering with a subsequent FS reconstruction is
prevented. As was demonstrated in the previous subsection in
the present model J̃ /� is an independent parameter and there-
fore such a regime of stability can be easily accommodated.
The interchain interaction is suppressed due to the peculiar
nature of the KH chain ground state, where the right- and
left-moving electron degrees of freedom of the given chain are
virtually decoupled and the spinon modes of the 1DEG have
their pairing partners on the Heisenberg chains. So we do not
need to worry about the magnetic order.

Now let us address the corrections to RPA related to the
coupling between the composite OPs. This coupling is also
parametrically small because a coupling of the composite OPs
necessarily includes the spin operators from the Heisenberg
chains and, as soon as there is no coupling between the
localized spins, the OPs do not couple either. The coupling
appears only if there are interactions between the spins from
different chains or there is an external field applied to one
of the Heisenberg chain order parameters. This issue will be
addressed in more detail in the following section.

As I have mentioned above, one has to watch for yet
another kind of potentially dangerous corrections, namely the
interactions between the quasiparticles mediated by the gapless
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collective modes. Indeed, the Fermi surfaces of particles and
holes on (2 ) are nested and hence can be gapped. However, the
coupling in the present case is weak because the wave vectors
of the COPs do not connect these Fermi surfaces.

So we can conclude that there is a temperature range
below the quasiparticle chemical potential where the RPA is
qualitatively robust. This temperature range can be made as
wide as one wishes by varying parameters of the model. One
can make corrections to RPA numerically small by making the
interchain hopping long range, as was done in Refs. [14,33],
but I consider this as unnecessary pedantry.

B. Collective excitations

In a contrast to coupled S = 1/2 HCs where the spinons
undergo confinement [34], the fractionalized excitations of the
KH spin liquid are robust against the interchain exchange (23).
The spinons of the KH model are gapped and the interac-
tion (23) creates their bound states in the gap, with the spinons
surviving as the incoherent continuum. This can be seen in the
dynamical susceptibilities:

χ (ω,kx + π/a0,ky) = {[χ1D(ω,kx)]−1 − 2J̃ cos kyb}−1,

(25)

where b is the lattice distance in the transverse direction and
the one-dimensional susceptibility χ1D at vH = vF = v is
given by (21). The poles of (25) give the spectrum of the
coherent spin S = 1 bound states: E2 = (vkx)2 + (2�)2 −
[2J̃ZN cos(kyb)]2. The spectrum remains gapped and the
ground state translationally invariant as soon as |J̃ | < �. Oth-
erwise the magnetic excitations condense and a commensurate
spin density wave (SDW) order emerges. Its wave vector is
either (π/a0,π/b) (J̃ > 0) or (π/a0,0) (J̃ < 0).

IV. ORDERING AND THE PHASE DIAGRAM

The main aim of this paper is to demonstrate a possibility
of existence of the SFS metallic state as a degenerate Fermi
liquid. In this context the problem of order is a peripheral issue
and will be addressed briefly. The main point is to demonstrate
that the transition temperature is an independent parameter not
related to the quasiparticle Fermi energy.

In contrast to the SDW instability the model admits types
of order which occur for any interaction strength. They are
driven by the coupling of the critical collective charge modes
through a coupling of OPs (10) and (11). The corresponding
operator is the primary field of the SU1(2) Wess-Zumino-
Novikov-Witten (WZNW) model (6). It is 2 × 2 matrix g

which elements include the CDW and s-wave superconducting
order parameters (11). Due to their composite nature such a
coupling also requires coupling the staggered magnetizations
of the HCs, and one needs the exchange interaction (23) to
facilitate it. Alternatively, one can apply an external periodic
potential along the HC which couples to the dimerization
operator: V = ε

∑
n(−1)n(SnSn+1). Such potential is naturally

present in a 3D layered array of crisscrossed chains like the
one existing in La1.875Ba0.125CuO4 [35]. In this situation the
dimerization would strengthen the coupling between the OPs
within the layers, but the interlayer coupling would not be

possible [36] so that the ordering will be purely 2D, like the
one observed in Ref. [35].

The effective Ginzburg-Landau action for the collective
modes is written in terms of the SU(2) matrix field g (11). The
partition function is the path integral Z = ∫

Dg exp(−S) with
action

S =
∑

y

[
W [gy] − J

∫ 1/T

0
dτ

×
∫

dxTr(σ zgyσ
zg+

y+1 + H.c.)

]
, (26)

where W [g] is the SU1(2) WZNW action whose explicit form
is given in Appendix A and the estimate J ∼ J̃ (t/�)2 is
derived in Appendix C. In the Hamiltonian formulation W [g]
corresponds to (6). Notice that the sign of J coincides with
the sign of the exchange interaction.

Since the σ zgσ z matrix also belongs to the SU(2) group, on
a bipartite lattice with nearest neighbor interactions action (26)
possesses the global SU(2) symmetry. The transformation
σ zgσ z → g changes sign of the superconducting (SC) order
parameter on one sublattice. Since the scaling dimension of
g is 1/2, the interchain coupling is strongly relevant and the
mean field transition temperature is T MF

c ∼ |J |. This estimate
also gives the maximal possible value for the zero temperature
stiffness.

Due to the non-Abelian symmetry of the action in D = 2 the
increased fluctuations shift the transition to T = 0. In a quasi
2D array of parallel chains the transition is shifted back to finite
Tc < T MF

c , but the degeneracy between the superconductivity
and CDW will manifest itself as enhanced fluctuations at Tc <

T < T MF
c [37]. T MF

c increases with J̃ , becoming larger with
the approach to the magnetic quantum critical point. Since in
the current model J̃ is an independent parameter the energy
scale associated with the ordering does not compete with Fermi
energy of the QPs.

Depending on the sign of J̃ the OP manifold includes
either a (2kF ,π/b) composite CDW and a (π/a0,0) composite
SC (J̃ < 0) or a (2kF ,0) CDW and the (π/a0,π/b) SC.
The degeneracy between these OPs can be lifted by, for
example, forward scattering interactions in the 1DEG which
violate the particle-hole SU(2) symmetry in the charge sector.
The coupling J can be further increased by application
of an external potential which couples to the staggered
energy density γ (−1)n(SnSn+1). Then the fusion of interchain
tunneling operators (22)

t[ψ+
y (x)ψy+1(x) + H.c.] = t(R+

y Ry+1 + L+
y Ly+1 + H.c.)

(27)

contributes δJ ∼ t2γ 2/�3.

V. CONCLUSIONS

In accordance with the main aim of this paper the results
for the KH array demonstrate a possibility of a SFS state.
They also conform to the earlier theoretical ideas [23]: The
model has a topologically nontrivial ground state and gapped
fractionalized spin excitations. As an additional bonus the
results display many features associated with the underdoped
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cuprates giving rise to a hope that the underlying physics is
the same. Indeed, the normal state of the model has a SFS
with an unevenly distributed spectral weight and the volume
not related to the electron density. The phase diagram contains
superconducting and CDW orders and a magnetic QCP. The
ordering is preceded by strong fluctuations, and since it is not
driven by quasiparticles, one should expect a small stiffness.
Moreover, the stiffness is unrelated to the particle density as
was recently emphasized in the experiments [38]. Due to the
staggered nature of the OPs, the coupling between OPs in
perpendicular chains is greatly weakened, which provides a
mechanism for the effective dimensional reduction observed in
arrays of crisscrossed chains [36]. Once the order is established
the Fermi pockets become gapped due to the proximity effect.

Besides these general properties which persist throughout
the entire parameter range of the model, there are those which
emerge for particular parameter values. For instance, when
the bare quasiparticles are slower than the spinons vF � vH

the QP spectral weight changes significantly along the FS
which may create an impression of ‘Fermi arcs.” The small
FS state is unstable against ordering, but since the KH chain
possesses a rich set of OPs, the nature of the order can vary
depending on secondary interactions. Thus in the presence of
a staggered scalar potential, which emerges naturally in the
layered configuration of crossed KH chains (as in the striped
LaBaCuO [36]), there will be a competition between CDW
and SC order.
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APPENDIX A: BOSONIZATION

Below I describe the most important properties of the
SU1(2) Wess-Zumino-Novikov-Witten (WZNW) model and
its relation to the S = 1/2 Heisenberg chain and 1DEG. This
model can be expressed as a model of free bosons [see (A3)
below] and also in the form used in the main text. The latter one
expresses the Hamiltonian in terms of the current operators.
The currents of the same chirality and type satisfy the SU1(2)
Kac-Moody algebra:

[
ja
R(x),j b

R(x ′)
] = iεabcj c

R(x)δ(x − x ′) + i

4π
δabδ

′(x − x ′),

(A1)

with the same commutation relations for the left currents ja
L.

The electron spin FR = 1
2R+σR, FL = 1

2L+σL and charge
currents I satisfy the same algebra.

Besides the Hamiltonian representation used in the main
text, the WZNW model admits the Lagrangian representation.

In particular, the SU1(2) WZNW action is given by

W [g] = 1

16π

∫
dτdxTr(∂μg+∂μg)

− i

24π

∫ ∞

0
dξ

∫
dτdxεαβγ Tr(g+∂αgg+∂βgg+∂γ g).

(A2)

The advantage of using the WZNW representation is that
it makes the SU(2) symmetry manifest. However, for many
practical calculations it is convenient to use the Abelian
bosonization. This is possible since the SU1 Kac-Moody
algebra admits an Abelian representation. The corresponding
Hamiltonian [for instance, (6)] can be written as the Hamilto-
nian of free bosons:

Hcharge = vF

2
[(∂x�c)2 + (∂x�c)2], (A3)

where field �c and its dual field �c satisfy the standard
commutation relations [�c(x),∂x�c(x ′)] = iδ(x − x ′). Like-
wise the Hamiltonians for the spin sector of 1DEG and the
S = 1/2 Heisenberg chain can be written in the same Gaussian
form with bosonic fields �s,�s and �H,�H , respectively. The
SU(2) symmetry imposed on the Gaussian model manifests
itself in the selection of the operators constituting the operator
basis of the theory (see below).

Model (A3) is critical; the excitation spectrum is linear.
Hence its Hilbert space factorizes into holomorphic and
antiholomorphic parts. This agrees with the fact that the
WZNW Hamiltonian can be written as a sum of commuting
parts containing currents of different chirality. In fact, the
Gaussian model (A3) has a unique property among the critical
models: Its primary fields can be factorized into a product of
holomorphic and antiholomorphic parts containing exponents
of holomorphic ϕa and antiholomorphic ϕ̄a (a = c,s,H ) parts
of the bosonic fields

ϕ = (� + �)/2, ϕ̄ = (� − �)/2. (A4)

For instance, the bosonization rules for the fermion opera-
tors are

Rσ = ξσ√
2πa0

e−i
√

2π (ϕc+σϕs ), Lσ = ξσ√
2πa0

ei
√

2π (ϕ̄c+σ ϕ̄s ),

(A5)

where ξσ are Klein factors {ξσ ,ξσ ′ } = 2δσσ ′ .
As I have mentioned above, the SU(2) symmetry manifests

itself in the selection of the operators. The operator basis
contains only derivatives of fields ϕ,ϕ̄ and integer powers of
the exponents

zσ = (2πa0)−1/4 exp[iσ
√

2πϕ],

z̄σ = (2πa0)−1/4 exp[−iσ
√

2πϕ̄], σ = ±1. (A6)

zσ = z+
−σ .

The chiral fields za
σ ,z̄a

σ have conformal dimensions (1/4,0),
(0,1/4), respectively, and can be considered as the holon
and the spinon operators of the 1DEG (a = c,s) and the
spinon operators of the Heisenberg chain (a = H ). According
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to (A5) the annihilation operators of the right- and left-moving
electrons can be written as

Rσ = ξσ

(
zc
−zs

σ

)
, Lσ = ξσ

(
z̄c
−z̄s

σ

)
. (A7)

The operator �cdw = R+
σ Lσ = (z̄c

+zc
−)(z̄s

−σ zs
σ ).

The S = 1/2 Heisenberg model also possesses an approxi-
mate symmetry between correlation functions of the staggered
components of the energy density and the magnetization
operators such that they can be united in a single SU(2) matrix
field

Ĝ(x) = (−1)n[a(SnSn+1) + ib(σSn)], x = a0n, (A8)

where a,b are nonuniversal amplitudes. The symmetry is
not perfect due to the marginally irrelevant current-current
interaction. This field is the spin 1/2 primary field of the
SU1(2) WZNW model. It can be factorized:

Gσσ ′ = 1√
2

eiπ(1−σσ ′)/4zH
σ [ ¯zH

σ ′]+. (A9)

Models (7) and (8) have their own OPs with nonzero
vacuum expectation values.

〈OrL〉 =
∑

σ

〈
zs
σ [ ¯zH

σ ]+
〉
, 〈OlR〉 =

∑
σ

〈[
z̄s
σ

]+
zH
σ

〉
. (A10)

They form the amplitude of the composite OPs (11):

A = 〈OrL〉〈O+
lR〉 (A11)

and are nonlocal in terms of both the 1DEG fermions and
the local spins (hereafter I’ll call them NOPs, with N for
“nonlocal”). Since the scaling dimension of these NOPs is
equal to 1/2, their vacuum expectation value ∼�1/2. To get a
better understanding of NOPs, I will rewrite models (7) and (8)
using Abelian bosonization. For simplicity I consider the case
vH = vF = 1; these modes are equivalent to the sine Gordon
model with the Lagrangian:

L =
∫

dx

[
(1 + JK/π )

2
(∂μ�)2 − JK

πa0
cos(

√
8π�)

]
, (A12)

where � = ϕs + ϕ̄H for (7) or ϕH + ϕ̄s for (8). The
NOPs (A10) correspond to 〈cos(

√
2π�)〉. In the ground state

this vacuum average may have any sign. Since only the
product (A11) enters into observable quantities, the ground
state degeneracy is 2. This corresponds to the ground state
degeneracy of the spin S = 1/2 antiferromagnetic chain.

APPENDIX B: TOPOLOGICAL PHASE TRANSITION

To make sure that the ground state of model (5) is topo-
logically nontrivial, I will add to the Hamiltonian competing
marginally relevant interaction:

Vcomp = g0(FRFL + jRjL), g0 > 0. (B1)

This interaction is generated by a pointlike attraction in
1DEG and by the second neighbor exchange Jnnn > 0.24J

in the Heisenberg chain. At JK = 0 we get two separate
Hamiltonians with gapped spectrum, one for 1DEG and
another for the Heisenberg chain. The ground states are
topologically trivial. Now I will consider the case when both
g0 and JK are nonzero and demonstrate that when g0 increases
from zero to some critical value, the system goes through the

Ising QCP. For simplicity I consider the case vF = vH = v

when the criticality is achieved at g0 = JK .
Combining the interaction in Eqs. (7) and (8) with (B1) and

using the identities [39]

ja
R + Fa

R = i

2
εabcrbrc, j a

R − Fa
R = ir0ra, (B2)

where r0,ra (a = 1,2,3) are right-moving Majorana fermions,
and similar identities for the currents of the left chirality, we
rewrite the Hamiltonian in the spin sector as

Hs = iv

2

3∑
a=0

(la∂xla − ra∂xra)

+ 1

2
(JK + g0)

3∑
a>b=1

(rala)(rblb)

+ 1

2
(g0 − JK )(r0l0)

3∑
a=1

(rala). (B3)

Model (B3) is integrable [40,41]. The marginal interactions
always generate mass gaps, but their mutual signs depend on
the sign of JK − g0. The critical point occurs at JK = g0; at
this point the singlet (the zeroth) Majorana fermion decouples
from the rest and becomes massless. This is the Ising critical
point. At JK > g0 the sign of the mass of the zeroth fermion
is opposite that of the masses of the other three, and this
corresponds to a topologically nontrivial ground state. In the
inhomogeneous configuration when the phases with different
sign of JK − g0 touch each other, one should expect to find a
zero energy Majorana mode located at the boundary.

APPENDIX C: THE EFFECTIVE INTERACTIONS

The interchain interaction between the OPs on sites 1 and
2 is generated by the fusion

U12 = J̃

∫
d2x2d2x3 t̂12(1)t̂12(2)N1(3)N2(3) (C1)

where t̂12 is the tunneling operator (22). On small energies the
integrand becomes

t2J̃ {[L+
1α(1)N1(3)R+

1β(2)]y[R2β(2)N2(3)L2α(1)]y+1

− [L+
1α(1)N1(3)R1β(2)]y[R+

2β(2)N2(3)L2α(1)]y+1}, (C2)

where the numbers are shorthand for the coordinates (τi,xi)
(i = 1,2,3). The sign difference between the two terms
in (C2) is responsible for the appearance of σ z in Eq. (26).
Substituting (A7), (A6), and (A9) into (26) and using the fact
that 〈〈

zs
σ (τ,x)

[
z̄H
σ

]+
(0,0)

〉〉
= C�1/2K0(�[(τ − ix/vF )(τ + ix/vH )]1/2)

≡ F(r), (C3)

we obtain for J the following estimate:

J ∼ J̃ t2�2
∫

d2x2d2x3[F(r13)F(r23)]2 ∼ J̃ (t/�)2 (C4)

cited in the main text.
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