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Interfacing s-wave superconductors and quantum spin Hall edges produces time-reversal-invariant topological
superconductivity of a type that can not arise in strictly one-dimensional systems. With the aim of
establishing sharp fingerprints of this phase, we use renormalization-group methods to extract universal transport
characteristics of superconductor/quantum spin Hall heterostructures where the native edge states serve as leads.
We determine scaling forms for the conductance through a grounded superconductor and show that the results
depend sensitively on the interaction strength in the leads, the size of the superconducting region, and the presence
or absence of time-reversal-breaking perturbations. We also study transport across a floating superconducting
island isolated by magnetic barriers. Here, we predict e-periodic Coulomb-blockade peaks, as recently observed
in nanowire devices [S. M. Albrecht et al., Nature (London) 531, 206 (2016)], with the added feature that the
island can support fractional charge tunable via the relative orientation of the barrier magnetizations. As an
interesting corollary, when the magnetic barriers arise from strong interactions at the edge that spontaneously
break time-reversal symmetry, the Coulomb-blockade periodicity changes from e to e/2. These findings suggest
several future experiments that probe unique characteristics of topological superconductivity at the quantum spin

Hall edge.
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I. INTRODUCTION

One-dimensional (1D) topological superconductors [1-6]
present great opportunities both for new physics and longer-
term fault-tolerant quantum computing applications [7,8].
Quantum spin Hall (QSH) systems offer a rather unique
platform [9]: coupling the helical edge states to an s-wave
superconductor naturally generates time-reversal-invariant
topological superconductivity [9] provided the proximitized
edge is sufficiently long and the adjacent bulk is depleted
of carriers. On general grounds, the topological phase created
under these conditions cannot exist in strictly 1D time-reversal-
symmetric systems (as created, e.g., in blueprints from
Refs. [10-13])." Time-reversal symmetry endows topological
superconductivity at the QSH edge with novel and practically
useful characteristics, notably resilience [14] against nonmag-
netic disorder,? a comparatively large spectral gap [14], and the

'A similar topological phase in strict 1D would carry an unpaired
Majorana zero mode at each boundary, necessitating broken time-
reversal symmetry. QSH systems avoid this obstruction since the
edge states always form a closed loop in space. Qualitatively
different time-reversal topological superconductors can, however,
appear in strictly 1D systems. One example is the Kitaev chain with
a time-reversal symmetry 7 that squares to +1; alternatively, strict
1D topological superconductors can enjoy a 72 = —1 symmetry and
support Kramers pairs of Majorana zero modes at each end (see, e.g.,
Ref. [72]).

’Randomness in the tunneling between the edge and parent
superconductor can still reduce the gap compared to its ideal value;
see Ref. [73].

2469-9950/2016/94(16)/165113(16)

165113-1

possibility of germinating exotic generalizations of Majorana
zero modes known as “parafermions” [15-17].

Encouraging experimental progress has recently tran-
spired in both HgTe [18,19] and InAs/GaSb [20,21]
QSH/superconductor hybrids [22-27]. Strong superconduct-
ing proximity effects are now achievable in these materials.
Furthermore, unusual signatures in ac Josephson measure-
ments [27] (similar to Ref. [28]) have been interpreted as
the “fractional Josephson effect” [1] that occurs uniquely in
topological superconductors. At this point it seems worthwhile
to pursue complementary conductance probes reminiscent of
those that have been widely utilized in related 1D platforms
to detect Majorana-zero-mode signatures [29-37]. To this
end, the principal goals of this paper are to (1) identify
universal transport fingerprints of topological superconduc-
tivity in QSH architectures, (2) propose relatively simple
control experiments that provide sharp contrasts with trivial
superconductivity, and (3) highlight the special role played by
both interactions and time-reversal symmetry, which enrich
the physics in interesting ways.

We apply renormalization-group techniques in two closely
related setups to predict transport behavior at low energies,
where the physics becomes largely insensitive to microscopic
details. The first setup, shown in Fig. 1, contains a grounded
superconductor that proximitizes an edge segment of length
L. We probe the paired region by sending charge through the
adjacent gapless QSH edge states, modeled as Luttinger liquids
that capture electron-electron interaction effects (see Ref. [38]
for a free-fermion treatment). This setup is an edge counterpart
to the nanowire experiments from Refs. [30-35,37] that
identify Majorana modes through zero-bias anomalies. As in
nanowires, when L is much longer than the induced coherence
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FIG. 1. Quantum spin Hall setup proximitized by a ground
superconductor that gaps out the helical edge states in a region of
length L. The induced superconductivity is probed by biasing one
adjacent gapless edge state with a voltage V, and then measuring
the currents Isc flowing into the parent superconductor and I,
transmitted across it. We predict universal forms for the corresponding
conductances that depend on the interaction strength for the gapless
edges, the size of the superconducting region relative to the induced
coherence length &, and the presence or absence of time-reversal
symmetry.

length & (so that the proximitized edge is in a meaningful sense
topological) Andreev reflections dominate the low-energy
transport leading to the familiar quantized zero-bias conduc-
tance [38—44]. This conclusion persists over a broad range of
interaction strength, including the experimentally relevant case
of weak repulsion, and holds independent of whether time-
reversal symmetry 7 is preserved or broken explicitly, e.g., by
a weak magnetic field. Time-reversal symmetry does, however,
modify the allowed scattering processes and thus impacts both
universal corrections to the quantized conductance and the
critical interaction strength at which Andreev processes freeze
out in favor of normal reflection.

In nanowires, one can destroy the topological phase to
contrast with the nontrivial behavior above simply by tweaking
an external magnetic field or the electron density. Similar
methods can be adapted also to the QSH edge but are much
less straightforward (a consequence of the “naturalness” of
the topological phase in this setting). For an alternative, more
accessible control experiment we explore a proximitized edge
that is simply too short to sustain topological superconductiv-
ity, i.e., L < &. Here, interactions and time-reversal symmetry
yield more striking transport consequences. Reference [38]
showed that zero-bias conductance in the free-fermion limit
is nonuniversal. In sharp contrast, arbitrarily weak repulsive
interactions restore universality in a manner sensitively depen-
dent on time-reversal symmetry: When 7 is present, electrons
at low energies perfectly transmit across the impuritylike
superconducting region, behavior generically absent in the
analogous nanowire setup, whereas with broken 7 they
perfectly backscatter at the interface. These properties underlie
nontrivial transport predictions, summarized in Fig. 4, that
clearly distinguish trivial and topological superconductivity.

In the second setup that we explore, the edge is proximitized
by a floating superconductor, and magnetized regions on
each end define an island with charging energy; see Fig. 5.
Here, we obtain an edge counterpart to recent nanowire
experiments from Albrecht e al. [29] that reported unusual
Coulomb-blockade features (specifically e-periodic charging
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spectra) that originate from Majorana modes [45]. We show
that when ferromagnetic barriers create the island in our
QSH device, anomalous e-periodic charging also arises, but
with an interesting twist: one can tune the offset charge to
fractional values by controlling the relative orientation of
the ferromagnets (similar to the nonsuperconducting setup
studied in Ref. [46]). Even more interestingly, when the barrier
magnetizations arise from interaction-induced spontaneous 7°
breaking, the charge-addition periodicity changes from e to
e/2. The “fractional Coulomb blockade” in the latter case can
be viewed as a manifestation of Z4 parafermion modes in the
QSH edge [16,17]. By utilizing a mapping to earlier work by
Kane and Fisher [47], we also deduce the asymptotic boundary
conditions imposed on the adjacent QSH edge by the island as
a function of interaction strength.

The remainder of the paper proceeds as follows. Sections II
through V develop the theory for the grounded-superconductor
setup; in particular, Sec. II reviews the bosonized formulation
that we use throughout, Secs. III and IV, respectively,
analyze the “long”- and ““short”-superconductor regimes, and
Sec. V extracts universal scaling forms for transport. We then
discuss the floating-superconductor case in Sec. VI and finally
conclude with a summary and outlook in Sec. VII.

II. GROUNDED-SUPERCONDUCTOR SETUP

We start by discussing the gapless regions of the system
that will serve as a lead for injecting charge into the grounded-
superconducting edge segment from Fig. 1. Let g/ (x)
denote right-/left-moving chiral fields describing the helical
QSH edge modes at position x along the boundary. The edge
Hamiltonian, including short-range interactions H;,, can be
written in these variables as

Hioa = [ dxtwh(-iva, — v+ ¥} v, — we]
+Hint, (1)

where v is the noninteracting edge velocity and p is the
chemical potential. Unless otherwise stated, we assume p # 0
so that the Fermi momenta +kp are nonzero. This property
simplifies the structure of the system’s effective low-energy
theory and guarantees stability of the gapless modes even with
strong interactions.?

To efficiently treat interactions in the leads we will exploit
a bosonized representation, decomposing g, through

‘(pR/L ~ eiik,_.xei((pzl:Q) , (2)

where the bosonic fields ¢ and 0 satisfy the commutation rela-
tion [¢(x),0(x")] = i ®(x — x'). The edge electron density is
then p = 0,0/m; for later use we note that commutation with
@ implies that ¢/™¢ increments the electric charge by m units.

3For example, a two-particle backscattering term ww; WL YL
(suitably regularized) can open a gap for strong repulsive interactions
when p = 0, but is benign at u # 0. Indeed, from Eq. (2) one sees
that in the former case such a term bosonizes to cos(46) but oscillates
spatially in the latter.
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Bosonizing yields an effective low-energy Hamiltonian

Hicad = — / dx [g(axgo)z + 1@9)2]. 3)
2 g

The Luttinger parameter g quantifies the interaction strength:
g =1 denotes the noninteracting limit while g < 1 and
g > 1, respectively, correspond to repulsive and attractive
interactions. We will be most interested in g < 1 since this
regime is likely the most relevant for experiments.

Suppose now that a proximate superconductor generates
a pairing gap at the edge between x = 0 and L; see Fig. 1.
We assume that the induced gap is larger than any other
relevant energy scale in the problem (e.g., temperature 7,
bias voltage V, possible Zeeman energies, etc.). In this case,
the superconducting region (i) modifies the Hamiltonian for
the adjacent gapless modes with generic symmetry-allowed
terms and (ii) in the asymptotic low-energy limit imposes
certain boundary conditions on the leads that define boundary
fixed points in renormalization-group language [48]. The full
effective low-energy Hamiltonian thus reads

H = Hlead + HBa (4)

where Hp encodes perturbations involving fields at x = 0 and
L. In the limit L/& > 1, cross couplings between opposite
ends of the grounded superconductor can be neglected, and
Hp only includes local terms at each boundary separately.
However, with L/& < 1 additional terms that transfer charge
across the “short” superconductor are present. As we will see,
these terms qualitatively change the physics compared to the
“long”-superconductor case.

Apart from the size of the superconductor, time-reversal
symmetry 7 also plays a central role throughout this paper.
Under 7 the fermions transform according to

TRl =Y, TIYLl = —Vr. &)

Using Eq. (2), and recalling antiunitarity, the bosonized fields
in turn transform via

Tlel=—¢—m/2, T[0]1=0+n/2. 6)

Perturbations in Hp, permissible boundary conditions, and
their stability all depend sensitively on whether the system pre-
serves 7 . In the following sections we will separately analyze
the cases with and without time-reversal symmetry, both in the
long- and short-superconductor limits. We will specifically use
renormalization-group methods developed in Refs. [43,47-50]
to explore the stability of boundary conditions (i.e., fixed
points) as a function of the Luttinger parameter g, and deduce
the corresponding universal transport characteristics for the
QSH/superconductor device. Similar approaches have been
used to study topological superconductivity in a variety of
contexts [43,51-56].

III. LONG-SUPERCONDUCTOR LIMIT L >» &

This section explores the case where the grounded super-
conducting region of the QSH edge is much longer than the
induced coherence length. The left and right interfaces then
essentially decouple, so in this section we focus only on the left
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boundary at x = 0 for simplicity.* We note for later reference,
however, that in the case of a floating superconductor charging
effects can result in a coupling between the left and right
interfaces via nontrivial domain-wall modes even in the limit
L > &. This scenario is discussed in Sec. VI.

A. Fixed-point boundary actions

The long-superconductor limit admits two natural types of
boundary conditions in the asymptotic low-energy limit: an
electron impinging on the superconductor from the adjacent
gapless lead can, with unit probability, backscatter either as a
hole (perfect Andreev reflection) or an electron (perfect normal
reflection).

With perfect Andreev reflection the boundary condition for
the fermionic fields takes the form {¥g(x = 0) = eiat//Z(x =
0), which implies that the bosonized field ¢(x = 0) is pinned
such that €%¢*=9 = ¢/ Note that time-reversal symmetry,
when present, fixes o« = £ /2. For assessing the stability of
the fixed point defined by this boundary condition, it proves
very useful to integrate out all fields away from x = 0 to
obtain an effective theory for the remaining fluctuating field
at the interface, ® = 6(x = 0) [47,49]. This procedure yields
the perfect-Andreev-reflection fixed-point action [43]

/ do o, .
SAl®@] = | — —10,|° (Andreev fixed point). (7)
2w 2mg

Since Yk and ¥, form Kramers partners, perfect normal
reflection necessitates either explicit 7 breaking, e.g., through
an applied magnetic field, or spontaneous 7 breaking gener-
ated by interactions [57,58]. Perfect normal reflection imposes
the boundary condition yg(x = 0) = e, (x = 0) for some
arbitrary phase «'. It follows that the bosonized field 8(x = 0)
is pinned, leaving & = ¢(x = 0) as the fluctuating variable at
the interface. Once integrating out the gapless modes away
from the interface, we similarly obtain the fixed-point action
describing perfect normal reflection

do g|o|

Sn[®] =f——|<l>m|2

(normal fixed point). (8)
2w 27w

We next analyze the stability of these two fixed-point
actions in the case where time-reversal symmetry is present
in the microscopic Hamiltonian and then broken explicitly.
We will refer to the former as the time-reversal-symmetric
case, although we stress that perfect normal reflection can still
occur in that regime via spontaneous 7 breaking.

B. Time-reversal-symmetric case
1. Stability of Andreev fixed point

Suppose that the system begins at the perfect-Andreev-
reflection fixed point described by Eq. (7). When the
Hamiltonian preserves time-reversal symmetry, the leading

“Tunneling across the superconductor remains small even when
such processes are relevant in the renormalization-group sense,
provided the flow is cut off by a small but finite temperature or
voltage.
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perturbation to the fixed-point action arises from two-particle
backscattering generated at the superconductor interface:

Mavs(W) 19,0 ) Wri Yk + Hac.) ~ Aapscos (40).  (9)

(Such a term is symmetry allowed even for an edge chemical
potential i # 0 due to broken translation invariance at the
boundary.) The coupling X,y flows under renormalization
according to

dAaps
dl

with [ a logarithmic rescaling factor. In the parentheses, the
factor of unity appears because our boundary problem cor-
responds to zero spatial dimensions and one imaginary-time
dimension, while 8g is the scaling dimension of the cos(4®)
perturbation. We thus see that two-particle backscattering
destabilizes the Andreev fixed point only for very strong
repulsive interactions with g < % Since this perturbation
promotes normal reflection and favors pinning ®, it is natural
to anticipate that for any g < é the system flows to the perfect-
normal-reflection fixed point, thereby breaking time-reversal

symmetry spontaneously.

= (1 — 828)A2s, (10)

2. Stability of normal fixed point

Imagine now that, due to spontaneous 7 breaking, the
system instead begins at the normal-reflection fixed point
described by Eq. (8). For consistency with our results above,
we expect that this fixed point is stable for g < é, and
further that for any g > % a physical perturbation drives a
flow back to the Andreev fixed point. Because ® is pinned
due to normal-reflection boundary conditions, perturbations
at the normal fixed point should take the bosonized form
Xi cos(k® + &) for some phases §;. These couplings flow

according to

dhy K-

— = 1= = )X 11)
dl 2g

and are relevant for g > K2 /2. What, then, are the physical
values of k?

A naive guess for the leading perturbation to the action is a
local pairing term generated at the superconductor interface

Yr + Hee. ~ sin 2d), (12)

which corresponds to k =2 above. This process indeed
promotes Andreev reflection but becomes relevant only for
strong attractive interactions with g > 2.

Curiously, a perturbation with k = %, which we hereafter

denote by
P
Apf COS <E — 8), (13)

is necessary to destabilize the normal fixed point for any
g > % A duality transformation hints that this is indeed the
correct perturbation to exploit here since the Ay term at
the normal-reflection fixed point is dual to the two-particle
backscattering term cos(4®) at the Andreev fixed point. The
analysis closely follows Ref. [43], so we relegate details to
Appendix A. On the other hand, no local combination of
fermion fields v/, acting at the interface generates Eq. (13),
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FIG. 2. Variation of Fig. 1 that generates perfect-normal-
reflection boundary conditions without explicitly breaking time-
reversal symmetry. The gapless edge on the left side and the supercon-
ductor are now bridged by a region of length § L in which two-particle
backscattering [i.e., cos(40)] violates time-reversal spontaneously,
thus naturally allowing perfect normal reflection. The domain wall
separating the magnetic and superconducting regions binds a Z4
parafermion zero mode « [16,17]. As §L shrinks, hybridization
between the gapless edge and the zero mode allows resonant transfer
of e/2 charges [see Eq. (13)]; for the long-superconductor case with
g > é such a perturbation destabilizes the perfect-normal-reflection
fixed point and restores perfect Andreev reflection at low energies.

so at first glance this term seems unphysical (it changes
the charge in the gapless edge by 4¢/2). Interestingly, such
fractional charge transfers can nevertheless become possible
in strongly interacting QSH edge systems [59]. The physical
picture here is that the A, term arises not simply from ordinary
electron degrees of freedom, but rather from hybridization
between the lead and an additional parafermion zero mode
that appears dynamically at the interface when interactions are
strong.

To see this, suppose that we access the normal fixed
point using the modified (but isosymmetric) edge geometry
of Fig. 2. Here, an extended region of length §L with
a relevant cos(46) two-particle backscattering term bridges
the superconductor and the gapless edge states. [Relevance
requires that the chemical potential p for the §L segment
vanishes, though elsewhere we still assume # 0. Note that
taking finite §L and tuning p in this fashion are convenient
but not strictly required for the emergence of normal reflecting
boundary conditions; the purely local perturbation in Eq. (9)
suffices with strong interactions as we found previously.]
It is useful to define a local magnetization order parameter
M = 1//2 Yr + H.c. ~ cos (20) that is odd under time reversal
[recall Eq. (6)]. Upon pinning of 6 by cos(46), the intervening
region takes on one of two nonzero values for (M), breaking
7T spontaneously as we assumed above. Since the two
magnetizations yield identical energies, the gapped domains
collectively host a larger ground-state degeneracy compared to
the usual ferromagnet-superconductor configurations studied
earlier by Fu and Kane [9]. In the latter case, Majorana zero
modes, which can absorb electrons with no energy cost, bind
to domain walls between pairing and magnetically gapped
regions. The additional degeneracy in our setup promotes the
Majoranas to more exotic Z, parafermion zero modes that can
similarly absorb fractional e/2 charges without energy penalty,
at least when 8L is sufficiently long [16,17,60].

As the width §L shrinks towards zero, coupling to the
parafermion zero mode allows charge e/2 excitations to
resonantly tunnel between the gapless edge and the adjacent
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‘Long’ superconductor ‘Short’ superconductor
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FIG. 3. Phase diagrams of the grounded superconductor/helical
edge setup as a function of the Luttinger parameter g. Even for
weak repulsive interactions expected to be relevant for experiment
(g slightly smaller than one), three stable boundary fixed points are
accessible depending on the size of the superconductor and whether
time reversal 7 is preserved or broken explicitly. Each fixed point
yields distinct, universal values for the conductance G, across the
superconductor and Gsc through the superconductor in the zero-bias,
zero-temperature limit. Specifically, the Andreev-reflection, normal-
reflection, and normal-transmission fixed points, respectively, give
(G;,Gsc) = (0,2¢/ h), (0,0), and (¢*/ h,0).

domain wall.> Appendix B shows that such processes generate
precisely the term in Eq. (13) that destabilizes the normal-
reflection fixed point for g > % This instability drives a flow
back to the Andreev fixed point where @, which in this
modified setup lives at the left boundary of the cos(40) region,
is instead fixed. [The derivation in the Appendix shows that
the shift § in Eq. (13) is actually an operator that transforms
nontrivially under 7, although the scaling dimension for
Apt is unaffected. This is actually essential for obtaining a
T -invariant term as is evident from Eq. (6).] Thus, our analyses
of the normal and Andreev fixed points cleanly gel with one

another, leading to the phase diagram shown in Fig. 3(a).

C. Explicit time-reversal-broken case

When time-reversal symmetry is broken explicitly (e.g.,
by a weak external magnetic field), our edge problem
maps precisely onto a strictly one-dimensional Luttinger liq-
uid/topological superconductor junction explored in Ref. [43].
We will, however, briefly highlight the main results to
emphasize the new features of the 7 -invariant case discussed
in the previous subsection.

1. Stability of Andreev fixed point
With explicit 7 breaking, the leading perturbation to the
Andreev fixed point corresponds to ordinary single-particle
backscattering at the interface with the superconductor:

Mibs(W) Wk + Hic.) ~ Apps cOS(20). (14)

SAt the other boundary of the superconductor another cos(46)
region could appear which would localize the partner zero mode. In
that case e/2 quasiparticles can resonantly tunnel (via the gapless
edge) between either domain wall. To avoid the accompanying
hybridization splitting one could add a ferromagnetic insulator to the
edge outside of the region bounded by the normal leads containing
the superconductor.
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The coupling constant Aps renormalizes according to

d A ps
dl

and thus generates a flow to the normal fixed point for
g < % Compared to the 7 -invariant case, the Andreev fixed
point is stable over a more restricted range of interactions
simply because lower-order backscattering processes are now
available.

= (1 —28)A1bs (15)

2. Stability of normal fixed point

For consistency, we expect a stable perfect-normal-
reflection fixed point now only at g < % Perturbations to this
fixed point once again take the form i cos(kd + 8;), with
flow equations given in Eq. (11). In this case, the k = 1 term,
which we will denote Ay cos(® + &), represents the physical
process that becomes relevant and drives a flow back to the
Andreev fixed point for g > %

Notice, however, that the Xiy; perturbation changes the
electron number in the gapless edge by +1, whereas one might
naively expect the adjacent gapped superconductor to absorb
only Cooper pairs at low energies. One can see why this term
is indeed physically admissible by accessing the normal fixed
point using the geometry of Fig. 2 where a region gapped by
cos(460) separates the gapless and superconducting parts of the
edge. Because time-reversal symmetry is now broken explic-
itly, a cos(26) term will generically appear as well, lifting the
degeneracy between the two magnetization values that would
otherwise be chosen spontaneously in the intervening edge
segment. This degeneracy lifting correspondingly demotes
the Z4 parafermion zero mode trapped at the domain wall
to a Majorana zero mode as in the usual Fu-Kane setup [9].
Hybridization with the Majorana zero mode allows the gapless
edge to coherently transfer single electrons to the domain wall,
thereby generating the Ay term invoked above. Thus, here too
the Andreev and normal fixed point analyses agree, yielding
the phase diagram in Fig. 3(b).

Table I summarizes the long-superconductor results for the
7T -invariant and 7 -broken cases. We see that the main effect
of time-reversal symmetry is to forbid elastic single-electron
backscattering at the interface, thus extending the stability
window of the Andreev fixed point down to much stronger
repulsive interaction strengths. Next, we turn to the short-
superconductor limit, where time-reversal symmetry plays a
more prominent role even for a weakly interacting edge.

TABLE 1. Summary of fixed-point actions and their leading
perturbations in the long-superconductor limit. We denote the actions
describing perfect-normal-reflection and perfect-Andreev-reflection
boundary conditions as Sy and S,, respectively. Each fixed point is
stable when the scaling dimensions (right column) of the correspond-
ing perturbations are larger than one.

Symmetry Action Perturbation Dim

7 invariant Sa Two-particle backscattering 8g
Sy Z4 parafermion hybridization 1/(8g)

7T broken Sa One-electron backscattering 2g
Sy Majorana hybridization 1/(2¢)

165113-5



AASEN, LEE, KARZIG, AND ALICEA

IV. SHORT-SUPERCONDUCTOR LIMIT L < &
A. Fixed-point boundary actions

When the length L of the pairing-gapped edge segment
in Fig. 1 is comparable to the induced coherence length, the
superconductor mimics a quantum impurity that can mediate
transport between the adjacent gapless leads on either side.
Thus, here it is essential to keep track of both interfaces
simultaneously. We proceed as above, identifying boundary
fixed-point actions and then exploring their stability to physical
perturbations. Let ®,®; denote the bosonized fields ¢,6 at
the left superconductor interface, with ®,,®, denoting the
boundary fields at the right interface. We will specifically study
the stability of three natural types of boundary conditions:

(i) Perfect Andreev reflection at each interface separately,
described by the boundary action

Saea = SalO1] + Sa[O,]. (16)

(i) Perfect normal reflection at each interface separately,
where the superconductor effectively “cuts” the edge at low
energies. This fixed point is described by

Snven = SN[P1] + Sn[P2]. a7

These first two cases straightforwardly generalize the fixed-
point theories defined in Egs. (7) and (8).

(iii) Perfect normal transmission, wherein incident elec-
trons tunnel past the superconductor with unit probability.
Here, the superconducting “impurity” becomes invisible at
low energies, so that the boundary fields match on both
sides: ®; =P, = and O, =0, =0O.° Integrating out
fields away from the boundary yields the normal-transmission
fixed-point action

Sr[®.0] = / ol go,r 500D, a8)
2r w

Other boundary conditions are also possible, most notably
perfect crossed Andreev reflection, wherein an incident elec-
tron from one end of the superconductor transmits with unit
probability as a hole in the other. Reference [53] showed that
this boundary condition can be stable in a related interacting
system that supports a Kramers pair of Majorana zero modes;’
a chiral analog can also appear when quantum Hall edge states
serve as a lead [61-63]. As discussed in Appendix C, however,
our setup is unlikely to realize such a fixed point in practice;
thus, for the remainder of this section we focus only on cases
(1)—(iii) above.

B. Time-reversal-symmetric case
1. Stability of Andreev ® Andreey fixed point

Consider first the fixed point characterizing perfect Andreev
reflection at each interface. With time-reversal present in the

Technically, time-reversal symmetry allows for a more general
boundary condition with ®; = ©, + « for arbitrary real . We simply
set o = O since this parameter does not play a role in our analysis.

"For an interesting discussion of the noninteracting limit of that
setup, see Ref. [74]. Crossed Andreev reflection in a QSH system
was also studied at the free-fermion level in Ref. [75].
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microscopic Hamiltonian, the lowest-order allowed pertur-
bation acting at a given boundary [cos(4®; ;)] arises from
two-particle backscattering, which we saw earlier requires
very strong repulsive interactions to become relevant. The
short-superconductor limit, however, additionally permits a
T -invariant term that couples the two boundaries

A cos(®) — @y + x) (19)

for some nonuniversal phase x, and is more effective at
destabilizing the Andreev boundary conditions. Microscopi-
cally, tunneling of electrons across the superconductor (e.g.,
W;Tgl Yro + lﬂzl V12 4+ H.c.) generates precisely such a term.?
Under renormalization, we have

dXr,

= 1 =g, (20)
indicating that with arbitrarily weak repulsive interactions (i.e.,
at any g < 1) A, is relevant and destabilizes the independent
Andreev boundary conditions. Since perfect normal transmis-
sion is a natural candidate fixed point for the system to then
flow towards, we next turn to the stability of that boundary
condition.

2. Stability of normal-transmission fixed point

Starting from the perfect normal-transmission fixed point,
one can always add a boundary perturbation A4 sin(2®).
This term encodes Andreev-reflection processes at either
superconductor boundary; cf. Eq. (12). The coupling flows

via

dha 1

— =[1-==)ra. 21)
dl g

[Notice that the flow equation differs from that quoted earlier
for Eq. (12) because we are now using a different fixed-point
action. Compare Egs. (8) and (18).] With attractive interactions
g > 1, A, is relevant and naturally drives a flow back to the
Andreev @ Andreev fixed point, which we saw above is stable
in that parameter regime.

The normal-transmission fixed point is also unstable
for strong repulsive interactions. Two-particle backscattering
Aaps €0s(40®) now flows according to

d)tzbs
dl
For g < i this coupling is relevant and breaks 7 sponta-
neously. The edge is then effectively sliced in two, and the
system flows to the normal @ normal fixed point.

= (1 —4g)A2s. (22)

3. Stability of normal & normal fixed point

Consider next a straightforward generalization of Fig. 2
in which we add a narrow region with a relevant cos(46)
term to each end of the short superconductor. Time reversal
is then broken spontaneously at the two boundaries, allowing
us to enter the normal @ normal fixed point without explicitly

8This identification is not unique since upon using the Andreev
boundary condition Yz ~ wz, other microscopic processes can also
give rise to the same bosonized perturbation o< cos(®; — ®, + x).
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TABLE II. Summary of fixed-point actions and their leading
perturbations in the short-superconductor limit. Here, Siga and
Syen, respectively, describe perfect normal reflection and perfect
Andreev reflection at each interface separately, while Sy describes
perfect normal transmission across the superconductor. Stability
requires that the scaling dimensions (right column) of the lead-
ing perturbations exceed one. Notice that with explicitly broken
time-reversal symmetry, the stability window for perfect normal
transmission disappears completely.

Symmetry Action Perturbation Dim
T invariant Sisa Electron tunneling g
St Andreev reflection 1/g
Two-particle backscattering 4g
Sven e/2 tunneling 1/(4g)
T broken Siwa Electron tunneling g
St Andreev reflection 1/g
One-electron backscattering g
Sven Electron tunneling 1/g

violating 7 . The most relevant term with which we can perturb
this fixed point is

o — D,
Aej2 COS — ) (23)

This term (i) transfers charge e/2 across the superconductor,
(i) is gauge invariant and can be written in terms of
currents [i.e., ¢/ (®2=®)/2 = ¢i %] and (iii) reverses the
spontaneously chosen magnetization in the cos(46) regions’
and hence keeps the system within the low-energy subspace of
interest. Equation (23) thus constitutes a physically admissible
perturbation that favors “resewing” the edge back together.
Under renormalization we have

dhep _ ;L e (24)
di 4g

Consequently, for g > 1/4 A./» isrelevant and generates a flow
back to the perfect normal-transmission fixed point.

Note that in Sec. III B 2 we saw that hybridization between
the gapless edge and a Z4 parafermion zero mode destabilized
perfect-normal-reflection boundary conditions at g > % One
might initially expect such a perturbation to be operative also
at the normal @ normal fixed point studied here, but that is not
so: zero modes have no integrity in the short-superconductor
limit since they will generically couple with their partner at
the neighboring domain wall. Thus, Eq. (23) indeed represents
the leading perturbation available.

Once again, our stability analyses for the different fixed
points are perfectly consistent as summarized in the upper
rows of Table II; Fig. 3(c) depicts the resulting phase diagram.

9The magnetizations in the left and right regions are not independent
since we are working with a short superconductor. This point closely
relates to the absence of Z,4 parafermion zero modes discussed below.
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C. Explicit time-reversal-broken case
1. Stability of Andreev & Andreev fixed point

Breaking time-reversal symmetry explicitly does not alter
the Andreev @ Andreev fixed point’s stability window. There
are no physical perturbations with scaling dimension smaller
than that of single-electron tunneling across the superconduc-
tor, regardless of the presence of 7, and so this fixed point
continues to be stabilized by attractive interactions (g > 1)
and destabilized by repulsion (g < 1).

2. Stability of normal-transmission fixed point

Stability of the normal-transmission fixed point, by con-
trast, is obliterated by explicit 7 breaking. We previously saw
that local Andreev reflection processes destabilize the fixed
point for g > 1. But, now single-electron backscattering at
each superconductor interface is also permitted. In bosonized
form, the perturbation reads as Ajps cos(2®), which carries
scaling dimension g and becomes relevant forany g < 1. Thus,
the extended window of perfect normal transmission arising
in the 7 -invariant case indeed disappears.

3. Stability of normal & normal fixed point

The demise of stable normal-transmission boundary con-
ditions is accompanied by an enhanced stability window for
the normal @ normal fixed point. Let us again access the latter
fixed point by magnetizing a portion of the edge on both sides
of the superconductor (recall Fig. 2). Crucially, with explicit
7T breaking the magnetization is no longer spontaneously
chosen. Equation (23) thus does not constitute a legitimate
low-energy perturbation; that operator flips the magnetization
from its preferred orientation and places the system into a high-
energy configuration. In this case, the leading perturbations
are instead ordinary electron tunneling A, cos(®; — ®,) and
crossed Andreev reflection Acagr cos(®; + @,). Both terms
become relevant only at g > 1, so that the normal & normal
fixed point is now stable for any g < 1.

Our results for the setup with explicit 7 breaking are sum-
marized in Table II. Figure 3(d) shows the corresponding phase
diagram, which departs dramatically from the 7 -invariant case
in Fig. 3(c). For perspective on these findings, note that the
broken-7", short-superconductor setup closely resembles the
single-channel Luttinger liquid with a point impurity studied
in classic work by Kane and Fisher [49]. In the latter problem,
the (nonsuperconducting) impurity cuts the Luttinger liquid
in two at low energies for g < 1 (just as in our problem)
but renormalizes to zero for g > 1, generating perfect normal
transmission. When the impurity superconducts, however,
attractive interactions instead give way to perfect Andreev
reflection over the entire interval g > 1 as found above.

V. UNIVERSAL CONDUCTANCE PROPERTIES

Having mapped out the phase diagrams, we are now in
position to extract transport predictions for our quantum
spin Hall system proximitized by a grounded superconductor.
We are specifically interested in the low-temperature voltage
dependencies of the conductances Ggc = Isc/V and G, =
I;/ V;here, V is the bias voltage while Isc and I}, respectively,
denote the currents collected through the superconductor, and
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from the gapless edge just past it (see Fig. 1). When analyzing
these quantities we will assume that conduction between the
two normal leads in Fig. 1 arises predominantly across the
superconductor, and not through the complementary ungapped
part of the QSH edge; i.e., electrons do not take the “long way
around”. This assumption is justified provided the latter paths
are much longer than the inelastic scattering length, which
should not be difficult to satisfy in practice.

We will also restrict our attention to edges with weak
repulsive interactions, i.e., g slightly smaller than 1, since
this regime is expected to be most experimentally relevant.
The phase diagrams in Fig. 3 show that three types of
boundary conditions can be stable, depending on the size of
the superconducting region and whether time reversal is intact:
perfect Andreev reflection, perfect normal reflection, and
perfect normal transmission. In the extreme limit V. — 0 (and
with temperature 7 — 0) one can immediately deduce the
conductances simply from the boundary conditions imposed
asymptotically. For the long-superconductor case, we have

2

Gsc = 2%, G, =0 (long SC,V — 0), (25)
independent of the presence or absence of 7 symmetry. The
factor of 2 in Gs¢ appears because each incident electron from
the gapless edge Andreev reflects and injects a Cooper pair
into the superconductor with unit probability.!® For a short
superconductor with time-reversal symmetry, stable perfect
normal transmission instead yields

2
Gse =0, G, = % (T -invariant short SC,V — 0).  (26)

And, finally, for a short superconductor with explicitly broken
T, perfect normal reflection sets in so that

Gsc =0, G, = 0 (7 -broken short SC,V — 0). 27)

In what follows, we will obtain corrections to Egs. (25)
through (27) at low (and sometimes intermediate) bias voltages
to predict precisely how the conductances approach these
fixed-point values as V decreases towards zero. These correc-
tions arise predominantly from the leading perturbation at the
respective fixed points,'' and may be calculated using Keldysh
formalism (for recent applications in a related context, see
Refs. [64,65]). We will alternatively use scaling arguments to
deduce universal power-law corrections in each case, as done,
e.g., in Refs. [43,47-50].

A. Long-superconductor limit

In the long-superconductor limit, G, remains zero to
an excellent approximation over an extended range of bias
voltages. Thus, we simply focus on finite-voltage corrections

10The presence of Fermi-liquid leads that inject charge into the edge
states yields a conductance of 2e?/ h rather than the intrinsic value
for a Luttinger liquid, for which an additional factor of g appears (see
Refs. [76,77]).

"' At intermediate voltages, subleading perturbations will generally
produce additional corrections, but we assume that these are small
for simplicity.
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to Gsc. We saw in Sec. III that the leading perturbation to the
Andreev fixed point that encodes normal reflection, thereby
suppressing Ggc, is two-particle backscattering

SHT = Agps cos (40) (28)

when time reversal is present and single-electron backscatter-
ing

SHyo.7 = Aqps cOS(20). 29)

otherwise. The flow equations in Egs. (10) and (15) determine
the renormalized couplings A, (with a = 2bs or 1bs) at an
energy scale E. Writing the logarithmic rescaling factor as
! =1In(A/FE), with A a cutoff of order the induced pairing gap
for the superconducting region, one finds

ra(E) = MOE/N)A, (30)

Here, 1) is the bare value of the coupling while A, is the
scaling dimension for the corresponding operator.

The leading correction §Ggc to the conductance coming
from the above perturbations arises at second order in the
couplings. Setting the energy scale E equal to the bias voltage
V at which we probe the system therefore yields §Ggc o
V2Aa=1 and hence scaling forms'?

221 — (V/ Vo)D), T invariant

2¢2 202g—1) (31)
F[1 = (V/Vis)®*~ 7], T broken.

Gsc(V) ~ {

On the right side, Vy,s and Vjus are nonuniversal voltage
scales determined by the bare amplitude for the associated
backscattering processes. The conductance corrections in
Eq. (31) apply in the small-voltage regime, i.e., V < Vaps/1ps-

Evidently breaking time-reversal symmetry yields only
quantitative effects on the conductance in the long-
superconductor limit. Most notably, for the weak repulsive
interactions assumed in this section, the voltage exponent for
the 7 -invariant case is quite large, reflecting strong irrelevance
of two-particle backscattering at the Andreev fixed point.
Figures 4(a) and 4(b) sketch Ggc for the 7 -invariant and
T -broken settings.

B. Short-superconductor limit

By contrast, for a short superconductor explicitly breaking
7T modifies the conductance more drastically. Thus, it will
be useful to separately treat the cases with and without time-
reversal symmetry.

1. Time-reversal-symmetric case

Imagine beginning from a long 7 -invariant superconduc-
tor with L > & and then shrinking L towards the short-
superconductor limit. In this thought experiment the system
initially exhibits Andreev boundary conditions at each inter-
face, but begins to develop a perturbation

SH = A cos(®; — Oy + x) (32)

12Exactly the same logic allows one to deduce temperature de-
pendence at zero-bias voltage instead of voltage dependence at zero
temperature; for the former case, one simply swaps V — T in the
power laws obtained here and below.
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FIG. 4. Conductance versus bias voltage V for the grounded-superconductor setup in Fig. 1, assuming moderate repulsive interactions in
the edge-state leads. In all panels, V is smaller than the induced superconducting gap. Red and blue curves illustrate qualitative trends in the
conductances Gsc and G,. Dashed lines are universal power laws, shown for g = 0.7, describing the approach to quantized values as V — 0
(intermediate-voltage power laws described in the text are suppressed for simplicity). (a), (b) Tunneling into a long superconductor yields
perfect Andreev reflection and Gsc = 2¢%/ h asymptotically, with stronger power-law corrections when time-reversal symmetry 7 is broken.
(c) For a short, 7 -invariant superconductor perfect normal transmission sets in so that Gsc = 0 and G, = e/ h at low energies. (d) Breaking 7
instead yields perfect normal reflection and hence vanishing conductances as V. — (. The nonmonotonic G, is especially noteworthy, indicating
that here the system samples all three fixed points as the voltage is reduced.

that tunnels electrons directly past the superconductor. Such
events clearly promote nonzero G, and suppress Gsc. We
will assume that the bare coupling A, is weak compared to
the induced Cooper-pairing gap. At intermediate energies
(e.g., when probing the system at voltages that are large
compared to A, but still small relative to the pairing gap) the
system then to a good approximation begins at the Andreev
@ Andreev fixed point, perturbed by Eq. (32). Since the
perturbation is relevant, A, asymptotically generates perfect-
normal-transmission boundary conditions at the lowest-energy
scales, yielding completely different conductances. We are
interested in predicting universal transport characteristics in
both the intermediate- and low-voltage regimes as defined
here.

Viewing A, as a perturbation to the Andreev ¢ Andreev
fixed point, the renormalized coupling at energy scale E takes
the form of Eq. (30) with scaling dimension A; = g. Since the
conductance corrections are again proportional to the coupling
squared, we obtain the intermediate-voltage scaling relations

2¢? _
Gsc(V) = —[1 — (V;/ V)X178)]
h (intermediate V). (33)

62
Gi(V) = z(Vt/V)z(l’g)

These relations apply when V > V, with some nonuniversal
V; determined by the bare coupling strength A,.

To attack the low-voltage regime, we sit at the perfect-
normal-transmission fixed point and perturb with a local
Andreev-reflection term

8H = kycos(2P) (34)

that contributes a nonzero Gsc and suppresses G, below 2/ h.
(In Sec. IVB 2, we also considered perturbing the normal-
transmission fixed point with two-particle backscattering, but
we neglect such processes here since they are much more
irrelevant compared to A 4.) The cos(2®) perturbation exhibits

scaling dimension g~'; we therefore get

2¢% g1
Gsc(V) = —(V/ V)¢ —D
,h (low V)

. (35)
Gi(V) = ——[1 = (V/Vaye ]

in the low-voltage regime V « V4, where V4 follows from
the bare coupling A 4.

Equations (33) and (35) spotlight the nontrivial impact
that even weak repulsive interactions have on transport in
the short-superconductor case. Indeed, if we fine tune to the
noninteracting limit g = 1, the voltage dependence drops out
of these expressions; the power-law forms should then be
replaced by nonuniversal, constant conductance corrections
as found in the free-fermion treatment from Ref. [38]. The
nonuniversality at g = 1 is symptomatic of the fact that the
free-fermion problem sits at the phase boundary between
two different stable boundary conditions; recall Fig. 3(c). As
a corollary, with weak repulsive interactions the nontrivial
power-law corrections in Eqs. (33) and (35) turn on rapidly
as the voltage changes, contrary to the long superconductor
where the voltage corrections in Eq. (31) come with much
larger exponents for g slightly below 1. Figure 4(c) sketches the
predicted conductances Gsc and G, for the short, 7 -invariant
superconductor setup.
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2. Time-reversal-broken case

Breaking time reversal generates single-electron backscat-
tering events that destabilize the normal-transmission fixed
point in favor of perfect normal reflection at each end of
the superconductor. We will assume that the backscattering
amplitude Ay, is weak compared to the bare tunneling strength
A, which can always be arranged in practice (e.g., by using
weak magnetic fields). In this case, the system remains well
described by the perfect-normal-transmission fixed point over
an extended energy (and voltage Vs < V <« V;) window,
with normal reflection kicking in only at the lowest-energy
scales V' < Vips. Following the preceding analysis, we will
explore how the conductances evolve as the system initially
flows away from the normal-transmission fixed point, and then
upon approaching the stable normal @ normal fixed point.

At the normal-transmission fixed point, the single-electron
backscattering perturbation reads

SH = Xps cos(20) (36)

and carries a scaling dimension of g. The correspondingly
reduced conductance G, thus scales according to

_e 2197 -
G, = z[l — (Vins/ V) ] (intermediate V)  (37)

over the intermediate voltage range V; > V > V.

Finally, for the smallest voltages we sit at the stable
normal @ normal fixed point and add the leading irrelevant
perturbations, which encode electron tunneling across the
superconductor and crossed-Andreev reflection

S§H = A, cos(P; — D)) + Acar cos(D; + D,). (38)

These two operators possess the same scaling dimension g~!.

While only Acar contributes to Ggc, both terms nontrivially
influence the transmitted current I, and hence G;. Thus, we
obtain
2
Gsc(V) = Zi(V/ Vear)?@ b
2l dow V), (39)
Gi(V) = - (V/ Ve D

for V. < Vcar, Vi, Where Veagr is set by the bare value of Acar
while V is a function of both couplings in Eq. (38).

Putting these results together, we find that the conductances
for a short superconductor with weakly broken 7 evolve
nontrivially with voltage as shown in Fig. 4(d). The nonmono-
tonic voltage dependence of G, is particularly striking; this
interesting feature highlights the starkly different sensitivity to
time-reversal-symmetry breaking for setups featuring a long
superconductor that realizes a bona fide topological phase and
a short quantum-dot-like superconductor that is in no sense
topological.

VI. FLOATING SUPERCONDUCTOR WITH
CHARGING ENERGY

Next, we explore transport in a QSH device proximitized
by a floating, rather than grounded, superconductor. Figure 5
depicts the specific setup of interest (for studies of related
systems, see Refs. [29,45,66—68]). Weak links on each side of
the Cooper-paired QSH edge modes define a superconducting
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gc Iy

FIG. 5. Quantum spin Hall system proximitized by a floating
superconductor. Magnetized regions on each end define a supercon-
ducting island with charging energy; the gate voltage V, tunes the
island charge. The magnetized regions are created via adjacent ferro-
magnetic insulators (which explicitly violate time-reversal symmetry)
or two-particle backscattering at the edge (which breaks time-reversal
spontaneously).

island with finite charging energy Ec. We consider the cases
where the weak links are generated by (i) ferromagnetic
regions [cos(26) terms] that break 7 explicitly and (ii) relevant
two-particle backscattering [cos(40) terms] that breaks 7
spontaneously. To single out charging over finite-size effects,
throughout this section we assume that the superconducting
region is much longer than the induced coherence length
(L > £&). In the absence of charging energy, the system then
supports zero modes that encode robust ground-state degen-
eracies. Turning on Ec generically lifts these degeneracies,
although imprints of the zero modes appear through nontrivial
Coulomb-blockade behavior that can be probed by sending
current across the island via the adjacent gapless edge states
in Fig. 5. We will quantify this behavior by first exploring the
superconducting island’s ground-state charge configurations,
which already reveals interesting physics, and then studying
fixed points that describe the device’s universal transport
characteristics.

A. Charging patterns

We phenomenologically incorporate Coulomb interactions
on the superconducting island by adding a charge-dependent
energy shift of E¢ (i — no)*. Here, 7 counts the total number
of electrons on the island (arising both from the paired
edge region and parent superconductor) while ng(V,) is a
gate-tunable offset. We are interested in quantifying how the
total charge in the island’s ground state varies upon sweeping
the gate voltage V,. As a baseline, recall that a conventional
superconducting dot with a large pairing gap A exhibits 2e
charge-addition periodicity, i.e., varying V, successively adds
pairs of electrons to the ground state since single electrons pay
an additional energy A. Our QSH setup, by contrast, yields a
richer charge-addition pattern.

Let us begin with the explicit 7 -broken case where
ferromagnets bordering the superconductor polarize along the
same direction; see Fig. 6(a), left side. The right side of
Fig. 6(a) sketches the low-lying energies versus gate voltage,
with each parabola representing a different integer electron
number (...,n — 1,n,n + 1, ...) for the island. Note the lack
of offset for even- versus odd-charge parabolas: the latter
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(c) Spontaneous 7-breaking

FIG. 6. Left: superconducting island bordered by (a) [(b)] fer-
romagnetic regions with parallel (antiparallel) magnetizations and
(c) regions with spontaneously broken time-reversal symmetry driven
by interactions. Right: corresponding low-lying energy levels versus
gate voltage V, for different island charge states. Parabolas are labeled
by the total electron number, where 7 is an integer. When time-reversal
symmetry is explicitly broken [cases (a) and (b)] sweeping V, adds
electrons one at a time to the island, with an interesting half-integer
offset in the case of antiparallel magnetizations. With spontaneously
broken time-reversal symmetry [case (c)] charges are instead added in
e/2increments. These unusual e and e /2 charge-addition periodicities
are remnants of Majorana and parafermion zero modes present when
the superconductor is grounded.

states no longer incur a pairing-energy penalty, manifesting
the Majorana zero modes present when the superconductor
is grounded. Sweeping V, thus clearly adds electrons to the
ground state one at a time (rather than in pairs) as first predicted
in important work by Fu [45].

It is useful to recover this conclusion in bosonized lan-
guage. Both ferromagnets generate an identical perturbation
Apm cos(20) that locally gaps the edge by pinning 6 to a
minimum of the cosine. The difference between the pinned
values across the superconductor is Af = g for some integer
q. Physically, g is the charge on the intervening edge segment,
which is conserved mod 2, since A0 = [ 3.0 =7 [ p (pis
the edge density). States with ¢ even and odd, respectively,
carry even and odd total island charge, and are distinguished
energetically by charging energy but no other terms in the
Hamiltonian. This analysis is consistent with the energies
sketched in Fig. 6(a).

Suppose that we now rotate the ferromagnet on the right
such that its magnetization orients antiparallel to that on the
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left, producing the configuration in Fig. 6(b). The gap-opening
perturbation under the right ferromagnet then acquires an
overall minus sign and reads as —Apgy cos(20) (one way to
see this is to recall that time reversal sends 6 — 6 + 7/2).
We thus obtain A§ = g with half-integer g. In other words,
the magnetization reversal pumps an e/2 fractional charge
onto the island [46], yielding the shifted energy curves in
Fig. 6(b) that are labeled by half-integer electron numbers
(...,n—1/2,n4+1/2,...) for the island. Sweeping the gate
voltage again adds electrons one at time to the ground state,
which however now possesses a nontrivial fractional offset
charge.'?

Reference [46] in fact predicted identical charging patterns,
including the fractional offset for antiparallel magnetizations,
for a nonsuperconducting island created by ferromagnetic
domains. Cooper pairing elevates the gap within each charge
sector from ~1/L to of order the pairing energy but does not
alter the charging periodicity, a nontrivial property that sharply
distinguishes the system from a conventional superconducting
dot.

Replacing the ferromagnets by spontaneously magnetized
regions [see Fig. 6(c)] allows the system to access both the
integer and half-integer charge sectors simultaneously. In this
setup, the superconducting island is created by gap-opening
perturbations Ayps cos(46) that result in A6 = wq, where ¢
can be either integer or half-integer. The energies versus gate
voltage thus appear as shown in Fig. 6(c), implying e/2 charge-
addition periodicity for an island with spontaneously broken
time-reversal symmetry. This result reflects the parafermion
zero modes that appear with a grounded superconductor,
and can be readily understood from Figs. 6(a) and 6(b):
On sweeping the gate voltage, the weak links can now flip
their magnetizations dynamically to minimize charging energy
since the “up” and “down” orientations are on equal footing.
By contrast, the edge magnetizations in Figs. 6(a) and 6(b)
are slaved to the adjacent ferromagnets and thus cannot flip
without paying a large energy, thereby halving the number of
accessible charge states.

The charging patterns identified above are essential for
understanding conduction across the superconducting island,
which we study in the remainder of this section. For a
given setup (i.e., explicit versus spontaneous time-reversal
breaking) there are two cases to consider: “off-resonant”
transport corresponding to generic gate voltages that yield a
unique lowest-energy charge configuration for the island, and
“on-resonant” transport where degeneracies arise because V,
is fine tuned to a crossing between adjacent parabolas in Fig. 6.
The analysis is simplified by the absence of Andreev processes,
which are frozen out because the parent superconductor can
no longer absorb Cooper pairs with impunity. Thus, the
only physical fixed points describe perfect normal reflection
at each end of the island and perfect normal transmission
(perfect Andreev reflection would lead to a constant rate
of accumulating or depleting Cooper pairs in the floating
superconductor). To stay within the picture of a well-defined

13This offset charge need not be half-integer, and instead varies con-
tinuously upon changing the relative orientation of the ferromagnets’
magnetizations, as in Ref. [46].
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island, we will start at the normal @ normal fixed point and
study its stability towards transmitting perturbations. Since
there are only two available fixed points, it is reasonable
to assume that the system flows towards perfect normal
transmission once normal reflection becomes unstable.

B. Island with explicitly broken time-reversal symmetry

In the absence of interactions outside of the island, tunnel-
ing across a superconducting island defined by ferromagnetic
barriers was first studied by Fu [45]. The physics is essentially
described by a single-level quantum dot (f) with energy &
coupled to the left and right QSH edge modes with strength #;
and t,:

H = Hiaa + 6f f + (0] — iy f +Hel  (40)

Here, v, » denote gapless edge fields evaluated at the left/right
side of the island while the dot level crudely models the
lowest two charge states of the island [e.g., f1f =0 and 1
represent charge states n and n 4 1 in Fig. 6(a) with ¢ their
energy difference at a particular gate voltage]. Note that this
Hamiltonian holds independent of any offset charge in the
island’s ground state; the following discussion thus applies to
both the parallel and antiparallel magnetizations displayed in
Figs. 6(a) and 6(b).

In the off-resonant case (¢ # 0), the single level can be
integrated out yielding an effective coupling that tunnels an
electron between the left and right leads, N% cos(d; — dy)
in bosonized language. The discussion then becomes similar
to that of Sec. IV C 3. Moreover, due to the absence of Andreev
processes, the solution of this problem is well known in the lit-
erature of 1D systems [47]. For repulsive interactions g < 1 the
normal @ normal fixed point is stable while for g > 1 the sys-
tem flows to perfect transmission as summarized in Fig. 7(b).

On resonance (¢ = 0), the system is best described by a
Coulomb gas model [47,50] with charges e hopping from
the left and right leads on and off the island. For symmetric
couplings #; = 1,, these resonant hoppings lead to perfect
normal transmission for attractive or not-too-strong repulsive

Off resonance On resonance
@ Normal Normal © Normal Normal
Spontaneous ref. trans. ref. trans.
7-breaking | e el > | e >
1/4 9 1/8 g
o (b) Normal Normal | (@ Normal Normal
Explicit ref. trans. ref. trans.
T-breaking —t--> ———hecnnanana >
1 g 12 g

FIG. 7. Phase diagrams for the floating-superconducting setup
(Fig. 5) as a function of the Luttinger parameter g in the adjacent
gapless helical edges. (The on-resonance column corresponds to
symmetric barriers.) Since charging energy freezes out Andreev pro-
cesses, the only available fixed points are perfect normal transmission
and perfect normal reflection that, respectively, yield conductances
G, = ¢€*/h and 0. The off-resonance cases [(a) and (b)] arise for
generic gate voltages V, at which adding charge to the floating
superconductor costs finite charging energy. Fine tuning V, to
degeneracies between different charge states, i.e., crossings between
parabolas in Fig. 6, produces the on-resonance cases [(c) and (d)].
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interactions g > % and perfect normal reflection at g < % [see

Fig. 7(d)]. Perfect transmission in the former regime has been
referred to as electron teleportation [45] because the effect is
facilitated by Majorana modes that provide a single nonlocal
fermionic level even for long islands with L > £. Note,
however, that with repulsively interacting leads (g < 1) perfect
transmission only happens for symmetric couplings #; = 1,.
For asymmetric couplings, one recovers the off-resonant phase
diagram [47] and therefore perfect normal reflection for any
g <1

In summary, with sufficiently weak repulsive interactions
in the leads, sweeping the gate voltage on an island de-
fined by symmetric ferromagnetic barriers yields e-periodic
Coulomb-blockade peaks with zero-bias conductance G, that
asymptotically approaches e¢?/h on resonance and vanishes
in-between peaks.

C. Island with spontaneously broken time-reversal symmetry

The preceding arguments underlying Coulomb-blockade
physics apply similarly to a superconducting island with weak
links that spontaneously break 7 symmetry. Interestingly,
however, transport in this case is mediated by transfer of
fractional charges across the island. By inspecting Fig. 6(c)
we indeed see that the energetically cheapest way to pass
current between the leads (at any gate voltage) involves
incrementing the island charge by e/2. Off resonance, such
processes can be treated perturbatively and yield an effective
coupling ~ cos (@) of the same form that promotes normal
transmission for the grounded short-superconductor setup [see
Eq. (23)]. Thus, in the off-resonant regime the main effect
of charging energy is to couple the leads via the nonlocal
parafermion modes on the island. The critical interaction
strength at which the normal-reflection fixed point becomes
unstable towards perfect transmission can be read off from
Sec. IVB3 and is given by g = 41—1; Fig. 7(b) illustrates the
phase diagram.

The g = % phase boundary can alternatively be obtained
from a straightforward generalization of Kane and Fisher’s
analysis [47] of an off-resonant quantum dot in a Luttinger
liquid. The latter can also be described by a Coulomb gas
model (slightly different form that of the resonant case) where
charges hop from the left to the right lead. In the presence of
parafermions, these charges have a value ke with k = % The
Coulomb gas model is expressed in terms of logarithmically
interacting charges with an interaction strength proportional to
1/g. We can therefore deduce the phase diagram for general
k by using the k = 1 result and renormalizing g — g/k> (the
interaction is quadratic in the charges). Since for k =1 the
phase boundary occurs at g = 1, halving the charge yields
g= J—‘ as found above.

By the same argument, we can also immediately deduce
the on-resonance phase diagram with symmetric barriers from
the results of Kane and Fisher [47]. The phase boundary shifts
tog = % in the case of resonant electron tunneling, implying
a phase boundary of g = é in our setup with resonant e/2
tunneling; see Fig. 7(c). With asymmetric barriers, the system
again follows the off-resonant phase diagram [47].

The results for an island created by spontaneous 7 breaking
differ quite dramatically from the ferromagnetic-barrier setup
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discussed in the previous subsection. Notably, the enhanced
stability window for perfect normal transmission implies
that the conductance G, asymptotically approaches e*/h for
arbitrary gate voltages whenever g > %, which includes the
most experimentally relevant case of weak interactions in the
edge-state leads. Anomalous e/2-periodic Coulomb-blockade
peaks are visible (again asymptotically) only in the restricted
window % <g< i within which normal reflection is stable
off resonance but unstable on resonance. Nevertheless, we
expect that even with a weakly interacting lead, the finite-
temperature/voltage conductance reveals signatures of e/2
charging physics since the corrections to the quantized conduc-
tance will differ on and off resonance. It would be interesting
in future work to quantify the gate-voltage dependence of the
conductance in this case.

D. Comparison to the grounded-superconductor case

Comparing Fig. 3 with Fig. 7 reveals striking similarities
between the phase diagrams of the floating- and grounded-
superconductor setups. Specifically, the phase boundary of the
normal-reflecting region of the long- (short-) grounded super-
conductor coincides with that of the resonant (off-resonant)
floating superconductor. This agreement is actually rather
natural: A hybridization-split zero mode in a short-grounded
superconductor acts as a finite-energy off-resonant level (and
vice versa, as the off-resonant level introduces an effective
tunneling between the ends of the superconductor). The
long-grounded superconductor case can be seen as resonant
(Andreev) tunneling from the wire back to itself via a single
zero mode. Particle-hole symmetry then ensures that the tunnel
couplings of particles and holes in the wire to the zero mode are
exactly the same, thus guaranteeing resonant tunneling [40].

In light of this similarity, one might wonder how the
local resonant (Andreev) tunneling and the nonlocal resonant
(normal) tunneling regimes connect in the limit Ec — 0.
Interestingly, the two-terminal conductance is /4 in both
regimes [69]. In the Andreev tunneling regime, this result
follows from adding the independent resistances (2¢%/h)~!
at both sides of the (long) wire. The crucial effect of charging
energy is therefore to provide coherence for the resonant tun-
neling through the superconductor [69]. One should, however,
note that this coherence will be lost for temperatures 7 >
E¢ (where multiple levels contribute). Since E¢c o« 1/L, the
“teleportation” is therefore reminiscent of resonant tunneling
through a quantum dot made out of a normal 1D wire, where
the level spacing (ox1/L) gives a similar condition for the
temperature.

VII. CONCLUSIONS

In this paper, we explored the transport characteristics
of QSH architectures that support time-reversal-invariant
topological superconductivity with no analog in purely 1D
systems. Our analysis accordingly uncovered numerous sharp
distinctions from analogous nanowire-based devices with
explicitly broken 7

(1) For the long-grounded-superconductor (L > &) setup,
7T symmetry restricts the allowed backscattering processes and
thus further promotes Andreev reflection relative to strict 1D
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geometries. Universal power-law corrections to the quantized
zero-bias conductance are suppressed significantly; moreover,
the perfect-Andreev-reflection fixed point remains stable down
to much stronger repulsive interactions in the leads: the critical
value becomes g = % instead of %

(i) At g < é, time-reversal symmetry is broken sponta-
neously, yielding perfect normal reflection at low energies.
Qualitative differences from nanowires nevertheless persist. In
particular, this strongly interacting regime is most profitably
viewed in terms of hybridization between the edge states and a
dynamically generated parafermion zero mode. As a technical
aside, we note that without this viewpoint, the consistency
between the flows at the normal and Andreev fixed points
becomes greatly obscured.

(iii)  Without interactions, the  short-grounded-
superconductor (L < &) setup exhibits nonuniversal transport;
in renormalization-group language the system sits at the
boundary between two stable fixed points. Arbitrarily weak
repulsive interactions drive a flow to a fixed point characterized
by perfect transmission across the short superconductor. The
stability of perfect normal transmission arises from the
backscattering restriction imposed by 7 symmetry, and is
destroyed in favor of normal reflection only with strong
interactions (g < %). By contrast, for a nanowire stable
perfect transmission is absent entirely, as the superconductor
instead “cuts” the wire for any g < 1.

(iv) Upon explicitly breaking 7 perfect transmission sim-
ilarly disappears for the QSH edge. The exquisite sensitivity
to 7 -breaking perturbations underlies nontrivial transport
predictions summarized in Figs. 4(c) and 4(d). Weak 7
breaking thereby provides a handy experimental knob for
contrasting to the bona fide topological long-superconductor
limit where Andreev reflection tends to dominate with or
without 77; cf. Figs. 4(a) and 4(b).

(v) Creating a floating superconducting island with charg-
ing energy at the QSH edge requires breaking 7 -either
explicitly or spontaneously via strong interactions to isolate
the paired region. Both methods offer interesting extensions
to Coulomb-blockade physics in nanowire counterparts. With
explicit 7 breaking it becomes possible to trap a fractional
offset charge on the island by twisting the relative orientation
of the barrier magnetizations. Spontaneous 7 breaking allows
the fractional offset charge to switch dynamically, leading
to a novel e/2-periodic charging pattern for the island that
originates from parafermion modes.

It is worth emphasizing that all of the above results require
proximitized helical QSH edge modes. Notably, “accidental”
edge states such as those identified in Ref. [70] would yield
only trivial superconductivity under similar conditions and
thus exhibit entirely different behavior. Testing our predictions
for the grounded-superconductor setups appears particularly
accessible for experiments given the minimal ingredients
required: a QSH system with an inert bulk, superconducting
proximity effect, and weak magnetic fields. Verifying even the
qualitative trends that we identified would provide valuable
insight into the unique brand of topological superconductivity
possible in this setting, and perhaps also provide further
evidence for the helical nature of the edge modes themselves.
Pursuing islands with charging energy appears more challeng-
ing due to the requirement of introducing magnetic barriers.
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Devising practical alternative realizations for such fractional
Coulomb-blockade physics poses an interesting challenge for
future research.
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APPENDIX A: DUALITY FOR
PERFECT-ANDREEV-REFLECTION FIXED POINT
PERTURBED BY TWO-PARTICLE BACKSCATTERING

In this appendix, we apply a duality transformation to
understand the boundary fixed points and perturbations for
a strongly interacting gapless edge that impinges on a “long”
superconductor. We begin with the partition function at the
perfect-Andreev-reflection fixed point perturbed by cos (40),

7 = /D@ e—SA[(~)]+2A2bsfdr cos (40) (A1)
with Aps positive for concreteness (the prefactor of 2 is inserted
for convenience). As discussed in Sec. III B 1, Ay, is relevant
forg < 1 Wwhich we assume here, and destabilizes the Andreev
boundary conditions. Duality provides a useful viewpoint on
the system’s fate under renormalization.

We first employ the Villain approximation for the cosine

ez)\zbs cos40 N 62)%5 § e—kZb5(4®—27Tn)2 , (A2)

n(t)eZ

and then introduce a Hubbard-Stratonovitch field p(t) to
decouple the quadratic term

e—xzbs(4(~)—2nn)2 — /D,o e—fdr[pz/kzbs+2i,o(4(~)—2nn)]. (A3)

Putting these together and discarding unimportant constants,
we obtain

7 = /D@ Dp Z e*SA[@]7([dr[pz/kzbs+2ip(4®72rm)]. (A4)
n(t)eZ

Next, we write p = 9, ®/(87); the p® term in the above
action then implies that ®/m is conjugate to ®. In these
variables, the partition function becomes

Z:/D@D(D Z

n(r)eZ

e—SA[(-)]—f dr[ﬁ(%)ﬂ—i%@(—)—%m)]

X (A5)

Summing over n(7) restricts ®(7) to integer multiples of 4.
We enforce this constraint “softly” by adding a —v cos ($/2)
term to the action, with v > 0 so that ®(7) € 4 Z is favored
energetically. Integrating out ® then yields a partition function
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expressed solely in terms of &:

2= [ Do A G o,

(A6)

The (3, ®)? piece is irrelevant compared to the ||| ®,,|* term
and thus may be safely discarded when exploring low-energy
behavior. We thus obtain the desired form for the partition
function,

Z= / DO ¢S (A7)

expressed in terms of the dual action

o / doglol . f
dwal = | 575 |Pol”—v [ dr cos(®/2).  (A8)
2w 2m

The first term exactly reproduces the perfect-normal-
reflection fixed-point action [recall Eq. (8)], while the second
is the dual counterpart of the cos(4®) perturbation that
destabilizes the Andreev boundary conditions when g < %.
Since cos(®/2) is irrelevant over that same range of g,
the duality analysis strongly hints that the system flows
to the stable normal-reflection fixed point with the v term
comprising the leading perturbation. The following appendix
further substantiates this conclusion by deriving the cos(®/2)
perturbation from a more microscopic treatment.

APPENDIX B: PARAFERMION-ZERO-MODE
HYBRIDIZATION

We now revisit the geometry in Fig. 2 that supports
adjacent domains gapped by two-particle backscattering [i.e.,
cos(460)] and superconductivity [i.e., sin(2¢)]. These regions,
respectively, favor pinning 6 = mwis/2 and ¢ = w (A, + %),
where 7,7y are integer-valued operators that distinguish
different minima of the cosine and sine potentials. Equation
(6) implies that time-reversal transforms these operators as

Tlhgl =he +1, Tli,l = —n, — 1. (B1)

Crucially, the commutation relations between ¢ and 6 in turn
yield the nontrivial commutator [A,,ng] = 2i/m; thus, the
integer operators can not take on well-defined eigenvalues
simultaneously. In a basis where 7, is diagonal, 7y fluctuates
and vice versa.

One can define a Z4 parafermion-zero-mode operator
[16,17]

o = ei(ﬂ/2)(ﬁ¢+fle), (B2)

that cycles between adjacent minima of the potentials. Mi-
croscopically, Eq. (B2) emerges upon projecting e'¢/2+9),
evaluated in the domain wall, into the low-energy sector
for the adjacent gapped regions. It is worth emphasizing
that o by itself is not a physical, gauge-invariant operator.
Physical perturbations involving o do, however, arise from
hybridization between the adjacent gapless edge and the
domain wall. In particular, consider the operator

O = e ®2*9 4 He., (B3)

where ©,0 continue to label bosonized fields ¢,0 acting
at the boundary of the gapless region. Equation (B3) can
be expressed solely in terms of currents and densities
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[ie., O xé fx(a“”/”a*e)] and thus constitutes a valid local
boundary perturbation that may be added to the Hamiltonian,
at least when the intervening gapped domain is sufficiently
small. Moreover, since ® abuts the two-particle-backscattering
region, we can replace ® — m7iy/2, leaving

2

The above operator has precisely the form of the perturbation
in Eq. (13), which we now see indeed arises from hybridization
with the parafermion zero mode as claimed in the main text. It
is also now apparent that such a perturbation preserves time-
reversal symmetry as required; see Eqgs. (6) and (B1). This
important property is not obvious in Eq. (13) but becomes
manifest in the explicit derivation presented here.

0]
O — cos (E - zﬁ(p). (B4)

APPENDIX C: PERFECT-CROSSED-
ANDREEV-REFLECTION FIXED POINT FOR THE
SHORT-SUPERCONDUCTOR SETUP

Perfect crossed Andreev reflection represents a boundary
condition for which an incoming electron from one side
of the superconductor in Fig. 1 converts into a co-moving
hole at the other end. Let yrg/r; ~ €/®1*®V denote fermions
at the left superconductor interface, and Vg;zo ~ €'(®2%92)
denote fermions at the right interface. Perfect crossed Andreev
reflection implies the relations ¥g; = W;ez and Y = WZz,
which are clearly compatible with time-reversal symmetry,
if present. (More generally, the electron and hole operators
could differ by phase factors, which we ignore for simplicity.)
In terms of bosonized fields we get

b =—-D =, O =-0,=0. (C1)
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Integrating out fields away from the boundary yields the
crossed-Andreev-reflection fixed-point action

do o] i
scA[cl>,®1=/2——(g|<bw|2+g Ne.R). (€
T T

whose form is identical to Eq. (18).

Consider the time-reversal-invariant situation. Starting
from either the Andreev & Andreev or normal @ normal fixed
points, which symmetry-preserving terms favor a flow toward
perfect crossed Andreev reflection? According to Eq. (C1)
such perturbations should favor pinning the sum ®; + ©; or
®; + P,. At the Andreev @ Andreev fixed point, the leading
T -preserving term that does this is occos [2(© + ©;)]; recall
Eq. (6). Crucially, this perturbation is less relevant than A,
defined in Eq. (19), which drives a flow toward perfect normal
transmission. The leading perturbation at the normal & normal
fixed point that would favor perfect crossed Andreev reflection
is ocsin (@ + ®,), which is again less relevant than the A,/
term in Eq. (23) that favors perfect normal transmission. Thus,
in both cases the onset of perfect crossed Andreev reflection
seems highly unlikely.

If we explicitly break time-reversal symmetry, then the
perfect-crossed-Andreev-reflection fixed point is in any case
unstable for arbitrary g # 1, just as for perfect normal
transmission, since the actions (and the leading physical
perturbations) take exactly the same form. (Note that the
marginal noninteracting g = 1 case behaves quite differently.
There, the low-energy processes are dominated by normal
transmission and crossed-Andreev reflection [71].) Thus, we
are justified in considering only the limited set of fixed points
discussed in Sec. I'V.
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