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Frustrated topological symmetry breaking: Geometrical frustration and anyon condensation
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We study the phase diagram of a topological string-net-type lattice model in the presence of geometrically
frustrated interactions. These interactions drive several phase transitions that reduce the topological order, leading
to a rich phase diagram including both Abelian (Z2) and non-Abelian (Ising × Ising ) topologically ordered
phases, as well as phases with broken translational symmetry. Interestingly, one of these phases simultaneously
exhibits (Abelian) topological order and long-ranged order due to translational symmetry breaking, with nontrivial
interactions between excitations in the topological order and defects in the long-ranged order. We introduce a
variety of effective models, valid along certain lines in the phase diagram, which can be used to characterize both
topological and symmetry-breaking order in these phases and in many cases allow us to characterize the phase
transitions that separate them. We use exact diagonalization and high-order series expansion to study areas of the
phase diagram where these models break down and to approximate the location of the phase boundaries.
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I. INTRODUCTION

In recent years, topological order has gained increasing
interest, motivated in large part by potential applications
in quantum computation [1–4]. These applications rely on
the fact that the entanglement between certain states in a
topologically ordered system is genuinely nonlocal and thus
cannot be disturbed by local perturbations [2], which constitute
the main obstacle for a successful realization of a quantum
computer.

This nonlocality is also entrenched in the characteristics
that identify phases as topologically ordered. These phases
are characterized by intrinsically nonlocal properties such
as the (finite) ground-state degeneracy on a torus, fractional
excitations with nontrivial mutual statistics [5], and patterns
of long-ranged entanglement [6,7]. In particular, there is by
definition no local order parameter that can be used to identify a
topologically ordered phase. Among other things, this implies
that the usual Landau-Ginzburg machinery for understanding
phase diagrams and second-order critical points does not
directly apply in these systems.

It has been known for some time that transitions between
phases without a local order parameter can exist [8]. In the
case of Z2 topological order [2], the phase diagram has
been extensively studied [9–15]. Additionally, Refs. [16–
18] developed a mathematical framework identifying which
topological orders can be related by condensing bosonic (albeit
possibly non-Abelian) excitations. Examples of these more
exotic transitions have been identified both in quantum Hall
bilayers [19–21] and in a family of lattice models [22–27].

One key difference between studying the phase diagrams
of topological lattice models, relative to continuum systems,
is the possibility of frustration. More specifically, beginning
with an exactly solvable lattice Hamiltonian (see, for example,
Refs. [2,3,28]) that realizes a particular topological phase,
with the appropriate lattice geometry one can typically add
a perturbing Hamiltonian which on its own has an extensive
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ground state degeneracy. This can lead to frustrated transitions
in which the topological order is lost or reduced at a transition
in which the system orders “by disorder.” This intriguing
possibility has been studied in the context of Z2 spin liquids
[29,30] and dimer models [31–34] but has received relatively
little attention in the context of more complex topological
orders. (See, however, Refs. [35–37]).

The present paper focuses on shedding light on this
interplay of geometric frustration and topological order.
Specifically, we introduce a model which contains both a
phase with non-Abelian (Ising-like) anyons, and phases with
Z2 or trivial topological order. We show that both Z2 and
trivial topological orders can arise in conjunction with broken
translational symmetry resulting from frustration. In the
frustrated Z2 topologically ordered phase, we show that some
excitations of the parent topological theory become confined
and correspond to defects in the long-ranged translation-
breaking order, while others remain deconfined and comprise
the topological quasiparticles of the new phase.

In addition to elucidating the mechanism allowing topo-
logical order and symmetry breaking to coexist, we give a
comprehensive description of the phase diagram of our model
for both frustrated and unfrustrated perturbations away from
the non-Abelian regime. For each of the phases realized we
provide an effective Hamiltonian whose ground state(s) can
be determined exactly, allowing us to analytically identify
the corresponding topological orders and symmetry breaking
patterns. We complement this analysis with a numerical
determination of the various phase boundaries, obtained
through a combination of exact diagonalization and high-order
perturbation theory.

The remainder of this paper is structured as follows. We
present the details of the lattice model in Sec. II. In Sec. III,
we give an overview of the model’s phase diagram, together
with the methods used to obtain it. The details of the various
phases are discussed in the remaining sections. First, in
Sec. IV, we describe in depth the frustrated Z2 topological
phase. Our approach also describes a Z2 unfrustrated phase
and allows us to identify the transitions between both frus-
trated and unfrustrated Z2 phases and the parent doubled
Ising topological order. In Sec. V, we discuss the various
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nontopological phases, which can be obtained from the Z2

phases by tuning an additional parameter. A third Z2 topo-
logical phase, which arises through a fundamentally different
mechanism than the other two, is presented in Sec. VI. We
conclude with a discussion of the transitions not connected to
the Ising-anyon phase in Sec. VII.

II. MODEL

To explore the interplay between topological order and
geometrical frustration, our starting point is an exactly solv-
able Levin-Wen type Hamiltonian [28] HSN, which realizes
the Ising × Ising (or doubled Ising) topological order. This
topological order describes a bilayer system, in which the two
layers have topological orders with opposite chiralities. We
describe the form of HSN in Sec. II A 1.

To the solvable Hamiltonian HSN, we will add a second term
which we call V . Terms in V commute with each other, but
not with HSN. Hence by adjusting the associated couplings, we
can drive the system from the doubled Ising phase realized by
HSN into a variety of other phases with various combinations
of symmetry-breaking and topological order. As we will
see, studying a lattice model significantly enriches the phase
diagram, producing a number of frustrated phases which are
not natural in a continuum setting (as would be appropriate
for the superconducting bilayer mentioned above). We shall
introduce the precise form of V in Sec. II B.

The phase diagram of the resulting perturbed string-net
Hamiltonian

H = HSN + V (1)

is discussed in Sec. III.

A. The topological Hamiltonian

1. The Ising string-net model

We study a string-net model [28] on the honeycomb
lattice. The version studied here is based on the Ising CFT
(see Ref. [38]) and as described below contains excitations
which are either hardcore bosons or non-Abelian anyons. This
model has been discussed at length in the literature (e.g., in
Refs. [25,28]), so we will constrain ourselves here to the facts
relevant to this work, whereas technical details can be found
in Appendix A.

The Hilbert space in our model consists of three possible
states for each edge of the honeycomb lattice, which we label
1, σ , and ψ . We impose the constraint that at each vertex of
the lattice we have one of the configurations depicted in Fig. 1.
In particular, edges with the label σ always form closed loops,
and chains of ψ-labeled edges must either form closed loops
or terminate at a vertex with two σ edges.

1 1
1

σ σ
1

σ σ
ψ

ψ ψ
1

FIG. 1. Vertex constraints for the Hilbert space. States in the
constrained Hilbert space must be in one of the configurations shown
here (up to rotations) at each vertex.

Imposing the above constraints differs from the original
construction of Levin and Wen [28], which allows violations
of these constraints at finite energy cost εv . This introduces
additional types of quasiparticles not present in our model.
However, this technical difference will not affect the spectrum
of our model at energies below εv anywhere in the phase
diagram and does not affect our conclusions about the phase
diagram or criticality.

In the constrained Hilbert space, the Levin-Wen (or string
net) Hamiltonian HSN is given by

HSN =−Jp

∑
p

Bp = −Jp

4

∑
p

(
B1

p +
√

2Bσ
p + Bψ

p

)
, (2)

where the operators B s
p induce fluctuations between different

string-net states by “raising” the labels of the links around the
plaquette p by the label s. More specifically, B s

p acts via

B s
p =

∏
v∈p

φ(v)
∏
e∈p

S s
e , (3)

where the coefficients φ(v) (given in Appendix B) depend on
the configuration at the vertex v of the initial and final state.
The operators S s

e acting on the label of edge e are given in the
basis {|1〉e,|σ 〉e,|ψ〉e} by

S1
e =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, Sσ

e =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠,

Sψ
e =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠. (4)

The coefficients φ(v) are chosen such that the operators B s
p

annihilate states not fulfilling the constraints shown in Fig. 1
and commute among themselves, which ensures the exact
solvability of the model.

The coefficients of the B s
p in Eq. (2) are chosen such that Bp

is a projector. For Jp > 0, which shall be assumed throughout
this paper, ground states |�0〉 of HSN fulfill Bp|�0〉 = +1|�0〉
for all plaquettes p.

The topological order of the resulting gapped phase is
characterized by two physical properties: (1) the topological
ground state degeneracy and (2) the mutual statistics of its
low-energy pointlike excitations. The topological ground state
degeneracy results from the fact that if there are noncon-
tractible loops in the space in which the lattice is embedded,
it is possible to construct loop operators that commute with
the Hamiltonian and measure additional conserved quantum
numbers, leading to multiple physically distinct ground states.
A closely related set of open string operators, which commute
with the Hamiltonian everywhere except at their endpoints, can
be used to generate quasiparticles and determine their mutual
statistics [2,28].

To understand the topological ground-state degeneracy of
our string-net Hamiltonian, let us detail the loop operators
W

(α,β)
Ci

. We will restrict our discussion to the torus (i.e.,
to lattices with periodic boundary conditions), which is the
simplest spatial topology with noncontractible loops. On the
torus there are two inequivalent noncontractible closed loops,
C1 and C2. The loop operators are defined similarly to the
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operators B s
p by

W
(α,β)
Ci

=
∏
v∈Ci

ω(v)
∏
e∈Ci

Sα
e Sβ

e , (5)

with α,β ∈ {1,σ ,ψ}. The coefficients ω(v), given in Ap-
pendix C, depend on the initial and final configuration of the
edge labels of the vertices v crossed by Ci . From the full set
of loop operators, one can choose the mutually commuting set
{W (α,β)

C1
} with α,β ∈ {1,σ ,ψ} to characterize the nine distinct

ground states through their possible eigenvalues. The operators
{W (α,β)

C2
}, which commute with HSN but not with {W (α,β)

C1
}, alter

these eigenvalues and thus map between the different ground
states. Details are given in Appendix C.

The elementary excitations of HSN correspond to plaquettes
on which Bp has eigenvalue 0. Because the Hamiltonian is
comprised of commuting projectors, the eigenvalue of Bp on
each plaquette is conserved, and these excitations are static and
noninteracting. As described in Refs. [25,28], in the absence
of violations of the vertex constraints there are two types of
plaquette excitations. The first, which we call a ψ flux, is a
hardcore boson. The other excitation, which we call a σ flux,
is a non-Abelian boson.

In terms of the Ising × Ising topological order, these
excitations can be understood as follows. Topologically, the
Ising CFT is very similar to a chiral px + ipy topological
superconductor: It contains two types of anyons, a fermion ψ ,
and a non-Abelian anyon σ . Analogous to the vortices of the
px + ipy superconductor, each pair of σ anyons can have even
or odd fermion parity. In the bilayer Ising × Ising system, the
ψ flux corresponds to a bound state of one fermion excitation
in each layer, and the σ flux corresponds to a bound state of one
σ anyon in each layer. The σ fluxes are non-Abelian anyons in
the sense that braiding can change the internal (fermion parity)
state of each bound pair. Chiral excitations, which live on only
one layer of the bilayer system, are not present in our model
due to the Hilbert space constraint.

In the lattice model, these excitations are pair-created
by open string operators defined on curves C1,2 connecting
plaquettes p1 and p2. Away from their endpoints, open string
operators are defined in the same way as the loop operators (5)
and can be chosen to commute with the vertex constraint (but
not Bp) at their endpoints. Specifically, ψ fluxes are created

in pairs by open strings W
(ψ,ψ)
C1,2

, which obey (W (ψ,ψ)
C1,2

)
2 = 1.

σ fluxes are pair-created by open strings W
(σ ,σ )
C1,2

. These
excitations are non-Abelian, as evidenced by the fact that
W

(σ ,σ )
C1,2

= 1 + W
(ψ,ψ)
C1,2

: creating σ fluxes twice on the same
pair of plaquettes can lead to no flux, or to a pair of ψ fluxes.

For our purposes, it is important that both excitations are
bosons in the sense of Ref. [18], i.e., both types of excitations
can be condensed, leading to various (possibly second order)
phase transitions out of the doubled Ising phase.

2. Topological properties of Z2 phases

The phase diagram studied here also includes phases with
topological order that is distinct from that of the string net
discussed in Sec. II A. As we show below, all of these
phases have Z2 topological order—i.e, that of an Ising gauge
theory, or equivalently of the Toric code [2,39]. In these Z2

phases, there are three nontrivial loop operators for each
noncontractible curve, which we will call W e, W m, and
W ε = W eW m, which can be shown to imply a fourfold ground
state degeneracy on the torus. The corresponding open strings
produce quasiparticle pairs in the unconstrained Hilbert space
which are hard-core bosons (e and m) or spinless fermions (ε).

B. The nontopological Hamiltonian V

The second key element of our model is the term V , which
will allow us to tune the system out of the doubled Ising
phase by condensing appropriate combinations of the two flux
excitations described above. We take

V = −J σ
e

2

∑
e

(
n1

e − nψ
e

) + J
ψ
e

2

∑
e

nσ
e , (6)

where the operators nα
e measures whether the edge e carries the

label α, i.e., nα
e |β〉 = δα,β |β〉. The combination of operators

nα
e in Eq. (6) is chosen such that the term proportional

to J α
e introduces dynamics and pair-creation/annihilation of

excitations of α fluxes [25]. The Hamiltonian V consists of
commuting projectors, which in combination with the vertex
constraints gives rise to either polarized or frustrated phases
[25,36]; for this reason we will sometimes refer to V as the
nontopological Hamiltonian. Special cases of this form have
been studied, e.g., in Refs. [23,25,36]. We will describe these
different polarized and frustrated phases, which are relevant to
understanding the phase diagram of the full Hamiltonian (1),
in the following sections.

III. THE PHASE DIAGRAM: OVERVIEW AND METHODS

In this section, we give an overview of the various gapped
phases of the perturbed Ising string-net model (1), together
with the numerical methods used to determine the phase
boundaries.

A. The phase diagram

The phase diagram is shown in Fig. 2. It consists of eight
phases, each distinguished from its neighbor by differing
topological orders and/or patterns of translational symmetry
breaking. At the center of the phase diagram (for |J σ

e | and
|Jψ

e | small, i.e., at point I), we find the doubled Ising phase
described in Sec. II A. For small |J σ

e | but large |Jψ
e | we find two

phases withZ2 topological order: around point A the frustrated
or “antiferromagnetic” Z2 phase denoted by AF − Z2, which
also exhibits three-sublattice translation breaking, and around
point Z the unfrustrated or ferromagnetic phase denoted byZ2,
which does not. In both phases the topological order is due to
fluctuating ψ-edge labels, whereas σ labels are largely absent
in the ferromagnetic phase and are numerous but ordered in
the antiferromagnetic phase.

Increasing |J σ
e | in either Z2 topological phase destroys

the topological order, by either favoring or disfavoring ψ

edges. For J
ψ
e > 0 this leads to either a “trivial” phase, whose

ground state is adiabatically connected to a product state with
nσ

e = n
ψ
e = 0 (realized at point T in the phase diagram), or a

frustrated phase labeled by plaqψ with threefold translational
symmetry breaking due to long-ranged order in the pattern of
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FIG. 2. The phase diagram of the perturbed Ising string net as a
function of the ratios of the nontopological couplings J σ

e , J ψ
e over

the topological coupling Jp. We find topologically-ordered phases
like the Ising and the various Z2 phases, a trivial phase, as well as
phases described in terms of effective dimer models [either columnar
(col) or plaquette-type (plaq) of order [32]]. The phase boundary
of the Ising string-net phase (solid line) has been obtained by series
expansion techniques. The location of the other phase transitions have
been extracted from exact diagonalization (dots). The dashed lines
are guide for the eye. The different limits, denoted by the blue dots,
are described in the main text. The dotted blue (orange) lines show
the location of the phase transitions out of the Z2 (Z′

2 )phase for the
effective model derived in Sec. V A (Sec. VI).

ψ labels. This order is described by the “plaquette” phase
of an appropriate quantum dimer model [32,40], realized
at point P. For J

ψ
e < 0 the disappearance of topological

order in the antiferromagnetic phase coincides with a change
in the long-ranged order, from a “plaquette”-type order of
σ edges in the AF − Z2 phase, to a “columnar” order in
phases col1 and colψ . (We elaborate on the details of these
two ordering patterns in Secs. IV and V below). Finally for
−J

ψ
e ≈ J σ

e � Jp, we find a second phase with Z2 topological
order and no translational symmetry breaking. We label this
phase byZ′

2. Unlike in the ferromagneticZ2 topological phase,
where σ labels are sparse and the topological order can be
attributed to extended ψ loops, in this region ψ labels are
sparse and the Z′

2 topological order arises due to extended σ

loops.
Also indicated in Fig. 2 are certain phase boundaries

across which we can identify the universality class of the
phase transition. The lines d-e-f (b-a-g), separating the (un-
)frustrated topological phases, respectively, from the doubled
Ising phase, can be shown to be exactly in the universality
class of the 2D triangular lattice quantum Ising model with
(un-)frustrated interactions. These transitions are therefore of
the 3D-XY (3D Ising) type. As is well known, the same

applies to the two transitions out of the ferromagnetic Z2

topological phase: The line Z-b separating the trivial and the
Z2 phase represents transitions in the 3D Ising universality
class [9–11,15,41], while the line Z-g separating the plaqψ is
3D-XY [42,43]. We speculate on the nature of some of the
remaining transitions in Sec. VII.

In the following sections, for each phase identified in Fig. 2
we derive an effective Hamiltonian, valid along a certain
line within this phase, which we can show explicitly has the
symmetry breaking and/or topological order described here.
These effective models also allow us to identify the phase
transitions described in the preceding paragraph.

B. Methods

To support our theoretical analysis we also present nu-
merical results, which we use both to estimate the location
of the phase boundaries shown in Fig. 2, and to verify that
the phases described above are the complete set of phases
of our model. We employ two complementary approaches:
high-order series expansion and exact diagonalization. The
phase boundary of the Ising × Ising -phase as well as for the
Z2 phase in the effective model (9) is obtained by determining
the approximate parameter value at which the low-energy gap
closes. The gap for the different excitations has been obtained
by means of perturbative continuous transformations (pCUT)
[44] and extrapolated by dlog-Padé approximants [45] in the
same fashion as used, e.g., in Refs. [26,35]. The leading-order
expressions can be found in Appendix F. We complement these
perturbative results with exact diagonalization (ED) distin-
guishing for the relevant translation-symmetry and topological
sectors on systems with up to ≈2 × 108 states. We determine
the location of a phase boundary by identifying divergences
developing in the second derivative of the ground-state energy.
Since for finite systems ∂2e0 will show a developing divergence
for either first or second order phase transitions, this allows
us to infer the location, but not necessarily the order, of the
transition.

The two approaches are both limited in the degree to which
they can accurately describe our system. These limitations
are, in a sense, complementary: Whereas the perturbative
expansions are valid in the thermodynamic limit, but limited
by the finite order of the expansion, exact diagonalization is
nonperturbative but limited by finite-size effects. Here our
ED results treat only systems up to 13 plaquettes for the full
model (1), so that the finite-size effects can be substantial, and
can result in significant differences between the actual phase
boundaries and those obtained here. This is particularly true in
the frustrated phases, as we discuss in Appendix H. As a rough
benchmark for the accuracy of these two methods, we present
results for the PZT line, in which our model is simply the Toric
code in an appropriate magnetic field, in Appendix G.

IV. THE TOPOLOGICAL LINE A-I-Z

We begin by considering the line A-I-Z in Fig. 2, where
J σ

e = 0. We call this the topological line, as all phases arising
here have topological order of the Ising × Ising or Z2 type.
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Along this line, the Hamiltonian has the form

H AIZ = HSN + J
ψ
e

2

∑
e

nσ
e . (7)

As we will show, the model (7) has three gapped phases. For
J

ψ
e = 0 we recover the (gapped) Ising string-net Hamiltonian;

hence for small |Jψ
e | the system realizes a phase with doubled

Ising topological order. For large positive (negative) J
ψ
e , σ

labels on the edges are energetically disfavored (favored)
compared to the other two labels. This leads to two additional
gapped phases, both of which haveZ2 topological order result-
ing from the fluctuating ψ-edge labels. However, these phases
are fundamentally different: for J

ψ
e � Jp the low-energy

properties are captured by a standard Z2 (or Toric-code type)
lattice model for J

ψ
e � Jp is frustrated and spontaneously

breaks lattice translation symmetry. This phase, in which
topological order and spontaneous symmetry breaking coexist,
is one of our model’s most striking features.

Our objective here is to clarify the nature of the phases
for large, negative J

ψ
e . However, for pedagogical reasons, we

also review the case of positive J
ψ
e to highlight similarities

and differences between the two regimes. This review largely
follows the treatment of Refs. [24,25], which studied the phase
diagram of (7) for J

ψ
e > 0 in detail.

A. Effective low-energy model for the A-I-Z line

To obtain a more quantitative description of the two
transitions along the line J σ

e = 0, we follow Ref. [25] and
introduce an effective Hamiltonian H AIZ

eff which faithfully
reproduces H AIZ when acting on states with no σ fluxes. Since
σ fluxes are gapped and conserved under the Hamiltonian (7),
this effective model allows us to confirm the presence and
nature of the phase transitions. We will then reintroduce the σ

fluxes in order to study the resulting gapped phases, labeled
by Z2 and AF − Z2 in Fig. 2, in the limit of |Jψ

e | � Jp.
The effective model of Ref. [25] follows from the fact that,

if we neglect the static and gapped σ excitations, the only
remaining degrees of freedom are the ψ excitations, which are
(hardcore) bosons. We can therefore introduce a dual pseudo-
spin- 1

2 variable on each plaquette p, where |↑〉p (|↓〉p) denotes
the absence (presence) of a ψ excitation. In the absence of σ

fluxes, the Hamiltonian (7) in the dual pseudo-spin basis is
exactly the transverse field Ising model on the dual triangular
lattice [9]:

H AIZ
eff = −Jp

2

∑
p

(
1 + τ z

p

) − J
ψ
e

4

∑
〈p,p′〉

(
1 + τ x

pτ x
p′

)
, (8)

where τ z
p,τ x

p are Pauli matrices acting on the plaquette
pseudospins, and the second term is the representation of nσ

e in
the σ -flux free Hilbert space. We emphasize that the mapping
of Ref. [25] is valid independent of the sign of J

ψ
e .

H AIZ
eff has been extensively studied [32,39,42,46,47], and is

known to have three distinct gapped phases: a paramagnetic
phase for |Jψ

e | � Jp, a ferromagnetic phase for J
ψ
e � Jp, and

an antiferromagnetic phase for −J
ψ
e � Jp. Since the σ fluxes

are nondynamical throughout, reintroducing them cannot lead

to additional phase transitions. It follows that the perturbed
string-net model also undergoes two phase transitions (one for
J

ψ
e > 0 located at point a in the phase diagram Fig. 2 and one

for J
ψ
e < 0 located at point e in Fig. 2) out of the Ising × Ising

phase arising at J
ψ
e = 0.

B. The ferromagnetic topological Z2 phase

The effective Hamiltonian (8) allows us to identify the
location and universality classes of the phase transitions in our
system, but does not fully describe the corresponding gapped
phases in the original model (1). To understand these gapped
phases we must reintroduce the σ fluxes, which we will now
do for the two phases with large |Jψ

e |.
We begin at large positive J

ψ
e , where the ψ fluxes have

condensed [i.e., deep in the ferromagnetic phase of the
effective model (8)]. In the limit J

ψ
e → ∞ (denoted by Z in

Fig. 2), where σ edges are effectively absent from the ground
state, the low-energy effective Hamiltonian is:

HZ
eff = PHP = −Jp

4

∑
p

(
1 + Bψ

p

) = 1

2
H

Z2
SN , (9)

where P is a projector onto the low-energy Hilbert space—
which in this case is the set of states with no σ edges. The
relation to the Z2 string-net Hamiltonian H

Z2
SN results from

identifying the edge label 1 (ψ) with the label 1 (−1) [48] of
the Z2 algebra with the particle content 1 (trivial), e (electric),
m (magnetic), ε (fermion) [2].

For finite J
ψ
e , the projector P (and the corresponding

Hamiltonian) must be modified to include fluctuations gen-
erating short σ loops. However, since the topological order
cannot change unless the system undergoes a phase transition,
the analysis above suffices to characterize the entire phase.

The Z2-topological order can also be deduced at more
general values of J

ψ
e from the set of string operators that

commute with P . Specifically, PW
(α,β)
Ci

P = 0 for either α =
σ �= β or α �= σ = β, since these strings create extended σ

loops, whereas P projects onto states with only short σ loops.
For the remaining operators, we have

PW
(1,1)
Ci

P = PW
(ψ,ψ)
Ci

P ≡ W 1
Ci ,FM, (10)

PW
(ψ,1)
Ci

P = PW
(1,ψ)
Ci

P ≡ W ε
Ci ,FM. (11)

The first identity follows from the fact that the only operator
that can distinguish between W

(1,1)
Ci

and W
(ψ,ψ)
Ci

is an extended
(noncontractible) σ string; hence P eliminates the distinction
between these two states. The second line is a consequence of
the first, since W

(1,ψ)
Ci

= W
(ψ,1)
Ci

× W
(ψ,ψ)
Ci

.
Additionally we have the nontrivial relation [25]

PW
(σ ,σ )
Ci

P ≡ W e
Ci ,FM + W m

Ci ,FM. (12)

The form of the operators W e
Ci ,FM and W m

Ci ,FM is given in
Appendix D. Essentially, however, Eq. (12) follows from the
fact that W

(σ ,σ )
Ci

strings come in two “flavors.” These are mixed
in the presence of extended (or open, in the original Levin-Wen
formulation) σ strings [49], but become physically distinct
excitations when these extended strings are confined.
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⇒

FIG. 3. In the limit of large negative J ψ
e , the number of σ edges

(depicted in red) is maximized leading to low-energy states, which
can be described as dimer coverings of the hexagonal lattice. Dimers
are depicted as thickened gray objects. The dimers have an ‘internal’
degree of freedom, corresponding to whether the corresponding edge
is in the 1 (black) or ψ (blue) state.

C. The antiferromagnetic Z2 phase

We now turn to the phase at −J
ψ
e � Jp. The effective model

(8) dictates that there is a single phase transition for negative
J

ψ
e , separating the paramagnetic phase (which, in the full

model, corresponds to a phase with Ising × Ising topological
order) from a phase with partial antiferromagnetic order which
breaks three-sublattice translation symmetry. As for J

ψ
e > 0,

to characterize this phase in the full topological model (7),
we must reintroduce the σ fluxes and deduce the resulting
topological order.

To do so, we will again construct an effective Hamiltonian
HA

eff , valid in the limit J
ψ
e → −∞, by projecting onto the

corresponding low-energy Hilbert space. In this low-energy
Hilbert space the number of σ labels on the edges is maxi-
mized. The corresponding projector P̄ onto this Hilbert space
therefore selects dimer coverings of the honeycomb lattice, as
noted by Ref. [36], with dimers representing edges that do not
carry the σ label. However, with this definition there are two
vertex configurations in Fig. 1 (up to rotations) with a single
dimer. To account for this, each dimer carries an “internal”
degree of freedom, indicating whether the corresponding edge
is labeled 1 (black) or ψ (blue). We will use gray dimers to
represent edges for which the label may be either 1 or ψ . One
example of this identification is shown in Fig. 3.

The effective low-energy Hamilton HA
eff in this limit reads

HA
eff = P̄H P̄ (13)

= −Jp

√
2

4

∑
p

P̄Bσ
p P̄ − Jp

4

∑
p

P̄Bψ
p P̄

+
(

−Jp

4
+ Jψ

e

)
NpP̄ (14)

= −Jp

8

∑
p,i,f

(
β(i,f )

∣∣ 〉〈 ∣∣ + H.c.
)

− Jp

4

∑
p,i,f

(
γ (i,f )

∣∣ 〉〈 ∣∣ + · · · )

+
(

−Jp

4
+ Jψ

e

)
NpP̄ . (15)

�n1�n2

= +

FIG. 4. Plaquette (positional) order of the dimers. The dimers
fluctuate around 1/3 of the plaquettes as shown on the right. The
dashed lines depict the unit cell. The internal state of the dimers
(depicted in gray) is either 1 or ψ and results in Z2-topological order
on top of the translational symmetry broken background.

The first line of Eq. (15) describes the action of B̄σ
p ≡ P̄ Bσ

p P̄ .
This term annihilates plaquettes with less than three dimers
and interchanges dimer and nondimer edges on “flippable”
plaquettes (with exactly three dimer edges). Here we have left
the action on the internal dimer labels ambiguous; however
the amplitudes β(i,f ) ∈ {±1}, given in Appendix E, depend
on both the internal dimer states and the dimer locations
in the initial (i) and final (f ) state. This is also the case
for the coefficients γ (i,f ) appearing in the second line of
Eq. (15), which gives the action of B̄

ψ
p ≡ P̄ B

ψ
p P̄ . The operator

B
ψ
p flips the internal dimer labels and therefore commutes

with P̄ . Consequently, the restriction to the dimer model
has nonzero matrix elements when acting on any dimer
configuration and does not favor any particular state. The “. . .”
therefore represents a sum of such terms for all possible states
allowed by the dimer and vertex constraints. Further, since
[Bψ

p ,P̄ ] = [Bψ
p ,Bσ

p ] = 0, B̄
ψ
p and B̄σ

p commute with each
other and therefore their effects can be considered separately.

Because the second line of Eq. (15) affects only the
internal dimer labels, the positional dimer order is completely
determined by B̄σ

p . This operator corresponds to the so-
called resonance term of the quantum-dimer model on the
honeycomb lattice [32]; it favors configurations in which the
number of fluctuating plaquettes is maximized. This leads
to a three-sublattice (so-called plaquette) order, which is
adiabatically connected to the state depicted in Fig. 4. In this
phase, one third of the plaquettes are resonating (i.e., in an
eigenstate of B̄σ

p with maximal eigenvalue +1 as depicted in
the right side of Fig. 4), whereas the other plaquettes remain
frustrated (i.e., nonresonating).

This three-sublattice order is identical to that of the dual
Ising model (8), which for −J

ψ
e � Jp is also described by an

effective dimer Hamiltonian consisting only of this resonance
term [50]. In terms of the pseudospins introduced in Eq. (8),
the resulting plaquette phase corresponds to a magnetization
pattern 〈τ x〉 = (0,m,−m) for the three different sublattices.
Sites with 〈τ x〉 = ±m correspond to nonresonating plaquettes,
on which the ψ-flux eigenvalue (which is measured by the
eigenvalue of Bσ

P ) is not fixed. Sites with magnetization 〈τ x〉 =
0 correspond to resonating plaquettes, which carry zero ψ flux
since B̄σ

p has eigenvalue 1. The corresponding pseudospins
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are therefore polarized along the +ẑ axis. Excited states with
|↓〉p (i.e., a ψ flux located on a resonating plaquette p), for
which B̄σ

p has eigenvalue −1, correspond to visons in the dimer
model. These nontopological excitations of the dimer model
are gapped with a gap renormalized from the bare value of
Jp/8 by about 25% [40].

We note that generically, a quantum dimer model [50] con-
sists of two terms: a resonance term, which flips the position
of the dimers along a plaquette of the underlying lattice and a
so-called potential term, which assigns a relative energy cost to
different dimer configurations. As discussed above, the former
favors configurations that maximize fluctuations, and in our
case leads to the plaquette order. The latter stabilizes other, less
fluctuating, orders. Though the effective model (15) contains
only the resonance term, later we will see that for J σ

e �= 0 both
terms are generated, leading to different translation-breaking
orders.

So far, we have ignored the internal degrees of freedom
of the dimers, which describe (in a dual basis) precisely the
degrees of freedom that are not captured by the effective
spin Hamiltonian (8). The unusual properties of our three-
sublattice ordered phase become apparent when we consider
their dynamics, given by the second line of Eq. (15). Since

(B̄ψ
p )

2 = P̄ , B̄
ψ
p has possible eigenvalues ±1 in the dimer

subspace. Because this term does not compete with the dimer
fluctuations, the ground state(s) |�0〉 obey B̄

ψ
p |�0〉 = +|�0〉.

We will show that the resulting ground state superposition of
different internal dimer configurations leads to Z2 topological
order.

To demonstrate topological order, we will construct a set
of loop operators, valid in the dimer limit, which lead to a
fourfold ground state degeneracy on the torus. We also discuss
(with more details given in Appendix D) the low-energy
excitations in this phase, proving that the quasiparticle types
are isomorphic to those of the Toric code [2].

In contrast to the ferromagnetic case, in the antiferro-
magnetic phase there are dimer configurations in which
we can interchange σ and non-σ edges along extended
noncontractible loops without leaving the dimer Hilbert space.
Hence P does not annihilate operators such as W

(σ ,1)
Ci

. Instead,

operators W
(α,β)
Ci

which change σ to 1 or ψ either map a given
state outside of the dimer Hilbert space, or to a state with a
defect in the long-ranged three-sublattice plaquette order along
the length of the string Ci . Thus extended σ strings have finite
energy cost, and are not associated with topological order. In
contrast, string operators which only act on the internal states
of the dimers do not disrupt the long-range order, and act
within the dimer Hilbert space.

Because they also commute with HSN before projecting
to the dimer subspace, these loop operators map the system
between (topologically) distinct ground states. In analogy to
Eqs. (10)–(12), we have:

P̄pW
(1,1)
Ci

P̄p = P̄pW
(ψ,ψ)
Ci

P̄p ≡ W 1
Ci ,AFM, (16)

P̄pW
(ψ,1)
Ci

P̄p = P̄pW
(1,ψ)
Ci

P̄p ≡ W ε
Ci ,AFM, (17)

P̄pW
(σ ,σ )
Ci

P̄p ≡ W
b1
Ci ,AFM + W

b2
Ci ,AFM. (18)

The explicit construction of those operators is detailed in
Appendix D. As in the ferromagnetic case, these relations are
justified by the absence of extended σ strings, such as W

(σ ,1)
Ci

,
in the low-energy Hilbert space. Since σ strings are confined at
long length scales by the three-sublattice order, the relations re-
main valid everywhere in the translation-breaking phase. How-
ever, the reduced topological order is tied to the translational
symmetry breaking, such that it is not possible to separate the
topological and symmetry-breaking phase transitions.

It is worth elaborating on the nature of the loop operators
in this case, to clarify why low-energy extended σ loops are
required to alter the topological order. In both Eqs. (16) and
(17), the matrix elements given in Appendix D for the two loop
operators of the Ising string net differ by phase factors of −1 for
each σ edge crossed by the noncontractible curve Ci . However,
in the ordered phase Ci will cross an even number of σ edges
in any low-energy state, such that each pair of operators have
identical matrix elements in the low-energy Hilbert space.

Equation (18) is slightly more involved. In the absence of
noncontractible σ loops, our lattice admits a bipartition into
“black” and “white” regions, separated by σ loops. Within each
domain type, the operator W

(σ ,σ )
Ci

splits into two operators, one
of which raises the edges inC by ψ , analogous to W e

Ci ,AFM in the

limit J
ψ
e � Jp, and the other of which measures the number

of ψ-labeled edges crossed by C, analogous to W m
Ci ,AFM. (See

Appendix D for details). Upon crossing from a “white” to a
“black” region (i.e., upon crossing a σ edge), the two types are
interchanged. In other words, one of the two string operators
arising from W

(σ ,σ )
Ci

raises the edges by ψ in the black partition,
and measures crossed ψ edges in the white partition; the other
operator measures the ψ labels in the black partition and raises
them by ψ in the white partition. The crucial point is that
though σ loops are densely packed in the ordered state, an
ambiguity between these two operators can arise only when
the distinction between black and white regions is lost—in
other words, only when C crosses an odd number of σ edges.
We refer to the two distinct loop operators as Wb1 and Wb2 .

In Appendix D, we also describe how to construct open
string operators in the dimer limit. Interestingly, in contrast
to the Z2 phase at J

ψ
e � Jp, in the dimer limit all three

quasiparticle types can be realized, even in the presence of
vertex constraints, and we explicitly give open string operators
for two mutually semionic bosons, and one fermion. The
corresponding string endpoints create a minimum of either
one (for Wbi ) or two (for W ε) plaquettes on which B

ψ
p has

eigenvalue −1. In the latter case, one defect is necessarily in
the “black” region, and the other in the “white” region. This
means that the two bosons b1 and b2 are in fact distinguished by
which of these regions they occupy, as the difference between a
boson in the black region and a boson in the white region is the
fermion. (As discussed in Appendix D, open string operators
necessarily create either pairs of b1 or pairs of b2 excitations).

It is interesting to note that the energy of such a defect
depends on which sublattice(s) the flux defect(s) occupy. As
operators, we have Bσ

p = Bσ
p B

ψ
p , from which it follows that if

B
ψ
p |�̄〉 = −|�̄〉,

Bσ
p |�̄〉 =Bσ

p
1
2 (1 + Bψ

p )|�̄〉 = Bσ
p 12(1 − 1)|�̄〉 = 0. (19)
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Consequently, plaquettes that are eigenstates of B
ψ
p with

eigenvalue −1 cannot resonate. Therefore in the plaquette-
ordered ground state the gap of these excitations is � ≈ Jp

2

for nonresonating plaquettes, but � ≈ 5Jp

8 for a resonating
plaquette.

Because the bosonic string operators are “e-like” in one
region, and “m-like” in the other, we will call the two bosons
b1 and b2, rather than e and m. The reason that this does
not conflict with Z2 topological order is that this last is
invariant under interchange of the two bosons e and m:
Such an exchange preserves all topological data, including
the particles’ mutual statistics. Thus in our model the mutual
statistics, which are determined by the commutation relations
of the string operators far from their endpoints, are well-
defined independent of whether the two defects are in the
same region.

From the above discussion, it is apparent that any topologi-
cal distinction between b1 and b2 (or Wb1 and Wb2 ) disappears
in the presence of extended σ lines (or of open σ lines, if we
were to allow these in our Hilbert space), since in this case we
can bring a b1 excitation around a noncontractible curve on
the lattice and have it return to the same point as a b2. This is
anticipated by Refs. [49,51–53], who showed in the Toric code
that crossing such a defect line interchanges the excitations
e ↔ m. As a consequence, once the linear confining energy
for extended σ loops (or open σ strings) disappears, b1 and
b2 are no longer physically distinct excitations, but rather the
two internal states of the non-Abelian σ -flux defect found in
the Ising × Ising phase.

Thus, we have established that in the regime J
ψ
e → −∞

(point A in Fig. 2) we have on one hand the long-ranged
order and translational symmetry breaking due to the dimer
locations, and on the other hand topologically-ordered internal
states of the dimers. Further, we have shown that disintegration
of the long-ranged order (for J σ

e = 0) necessarily restores the
full topological order of the Ising × Ising phase.

D. Away from Jσ
e = 0: Numerical results

We conclude this section with a discussion of the fate of the
phase transitions described in Sec. IV B for finite J σ

e . Because
the nature of the condensing excitation remains the same at
finite J σ

e , on general grounds we expect that both of these
transitions remain in the universality class of the J

ψ
e = 0

line throughout the region separating the Z2 topologically
ordered phases from the Ising × Ising phase. Here we present
numerical results supporting this expectation.

We begin with the phase transition between the Ising ×
Ising and the Z2 phase at positive J

ψ
e , which is in the 3D

classical Ising universality class for J σ
e = 0. In that case the

critical value is known from Monte Carlo simulations to be at
J

ψ
e /Jp|c = 0.419 [54] (point a in Fig. 2), with an exponent for

the gap closure zν = 0.63 [55]. Our series expansion at this
point gives a transition at J

ψ
e /Jp|c = 0.415 and an exponent

of zν = 0.637, in good agreement with the exact results.
Given the good agreement between series expansion at

J σ
e = 0 and the best-known results for the 3D Ising critical

point, what does series expansion predict about the nature of
the phase transition along the critical line (b-a-g)? For J σ

e �= 0

FIG. 5. The critical exponent zν obtained from the gap closure via
a dlog-Padé [4,5] extrapolation for the transition between the Ising (I)
and the ferromagnetic topological phase (Z). The dotted line indicates
values obtained from defective extrapolants [45]. The deviations from
the Monte Carlo value of 0.63 [55], depicted as dashed line, appear to
be within the precision of the series expansions, which we estimate
from the discrepancy between series expansion and Monte Carlo
results at J σ

e = 0 [35].

the σ excitations become mobile, and strictly speaking, the
dual mapping to the effective spin Hamiltonian H AIZ

eff (8) is not
valid anymore. We give the leading orders of the corresponding
series in Appendix F. The main result is that these predict a
value of the critical exponent zν that remains constant (within
the uncertainties of the method, which can be estimated from
its error at J σ

e = 0) up to the phase boundaries of the Z2 phase
(points b, g in Fig. 2), as shown in Fig. 5.

Figure 6 compares the gap to the first excited state obtained
from series expansion with the low-energy spectrum of the
full topological Hamiltonian Eq. (1) obtained from exact
diagonalization. The ED data indicates a transition around
J

ψ
e /Jp ≈ 0.45 overestimating this value by roughly 10%.

Additionally, the ED spectrum shown in Fig. 6 for values of J σ
e

close to the boundary of the resulting Z2 phase is very similar
to that at J σ

e = 0 (point a in Fig. 2), suggesting that there
are no qualitative changes to the critical behavior along this
line. This is in agreement with the (low-order) perturbative
arguments (for small J σ

e /Jp) in Ref. [24], but also extends
also all the way up to the phase boundary of the Z2 topological
phase. Therefore our numerics support our expectation that the
perturbations introduced by (gapped) σ fluxes at the critical
point do not change the universality class of the transition.

For J
ψ
e < 0, the universality class of the transition between

the symmetry-breaking topological and the Ising × Ising
phase is that of the classical 3D XY-model [42,43,56]. High-
order series expansion of the Hamiltonian (7) (see Fig. 8)
pinpoints the phase transition at J

ψ
e /Jp|c = −1.222 (point

e in Fig. 2), and the critical exponent (Fig. 7) zν = 0.714.
This is in reasonable agreement with the literature for the
3D model: Quantum Monte Carlo studies give a transition
at J

ψ
e /Jp|c = −1.212 [43], whereas both series expansions

studies [56] and Monte Carlo [57] give zν = 0.67. In Fig. 7,
we show our results for the transition between these two phases
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FIG. 6. Low-energy gap in the regime of the transition between
the Ising (J ψ

e = 0) and the topological phase (J ψ
e � Jp). The exact

diagonalization results for the �k = �0 sector are shown for the largest
system (Np = 13) in red for J σ

e = 0Jp. Note that the Hilbert space of
the Hamiltonians (1,7) contains the single-particle mode condensing

at the phase transition J
ψ
e
Jp

|c = 0.415 (dashed line). The orange lines
denote the dlog-Padé extrapolants obtained from series expansion
for the single-ψ-flux mode in the Ising phase up to order 10. For
J σ

e = 0.15Jp (J σ
e = −0.2Jp), the ED spectrum is shown in purple

(pink). The low-energy features are similar to those at J σ
e = 0.

for J σ
e �= 0, i.e., along the line d-e-f. As for J

ψ
e > 0, the

exponent remains constant (within the uncertainties of the
method). Again, this is consistent with our expectation that
introducing gapped σ -flux excitations should not change the
universality class.

In Fig. 8, we show the low-energy spectrum for J σ
e = 0,

J
ψ
e < 0. Again, the ED data overestimates the location of

the transition by roughly 10% yielding J
ψ
e /Jp ≈ −1.37. We

also display results for J σ
e �= 0, for which the spectra are

qualitatively similar (though quantitatively different), in that

FIG. 7. The critical exponent zν obtained from the gap closure
via a dlog-Padé extrapolation [5,4] for the transition between the
Ising and the antiferromagnetic topological phase. The deviations
from the Monte Carlo value zν = 0.67 [57], depicted as dashed line,
are typical for the series expansion results [35].

FIG. 8. Low-energy gap in the regime of the transition between
the Ising (J ψ

e = 0) and the topological phase (−J ψ
e � Jp). The exact

diagonalization results for the �k = �0 and �k = (± 2π

3 ,∓ 2π

3 ) sector
are shown in red for the largest system commensurate with the
three-sublattice order (Np = 12). Note that the Hilbert space of the
Hamiltonians (1,7) contains the single-particle mode condensing at

the phase transition .
J

ψ
e
Jp

|c = −1.222 (dashed line). The orange lines
denote the dlog-Padé extrapolants obtained from series expansion
for the single-ψ-flux mode in the Ising phase up to order 10. The
low-energy features are similar for nonzero J σ

e indicating the phase
transition to be of the same universality class. Note however the en-
hanced finite-size splittings to the vicinity of the topological
phase for J σ

e > 0.

we do not find evidence for intermediate phases or phase
transitions as J

ψ
e increases. For J σ

e = 0 this follows from
the known behavior of the effective model (8), and our
numerics suggest that this remains the case for over a range of
|J σ

e | > 0.
In summary, we have established that there are three

distinct topologically ordered phases on the line J σ
e = 0. In

particular, in addition to the Ising × Ising and Z2-topological
phase already discussed in the literature, there exists a phase
in the regime of large negative J

ψ
e which simultaneously

exhibits topological and long-ranged order. Additionally, we
have identified the phase transitions separating these phases
and presented numerical evidence that they remain in the
universality class appropriate to the transverse-field triangular
lattice Ising model for all values of J σ

e for which these phases
persist.

V. AWAY FROM THE TOPOLOGICAL LINE

In this section, we describe the physics arising in the limits
of large |Jψ

e | for J σ
e �= 0. Our objective is to understand the

regime where J σ
e is large enough to drive the system out of

the gapped Z2 phases described in Sec. IV. For J
ψ
e > 0, this

problem is well studied [9–11,13,15] and results in distinct
transitions out of the Z2-topologically ordered phase whose
nature depends on the sign of J σ

e . We will review these results
in the context of our model in Sec. V A, since they provide
a useful context for our discussion of the regime J

ψ
e < 0

presented in Sec. V B.
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A. The standard line P-Z-T

In this section, we briefly discuss the phases and transitions
arising in the limit J

ψ
e � Jp for J σ

e �= 0. In this limit, σ edges
are absent from the low-energy Hilbert space, leading to the
effective Hamiltonian

H PZT
eff = −Jp

4

∑
p

(
1 + Bψ

p

) − J σ
e

2

∑
e

(
n1

e − nψ
e

)
(20)

= 1

2

(
H

Z2
SN − J σ

e

∑
e

(
n1

e − nψ
e

))
. (21)

This is the Z2 string-net model [28] (or equivalently the Toric
code [2] on the honeycomb lattice) with a perturbation that
either favors or disfavors the nontrivial edge label ψ . This
type of model has been studied extensively [9–11,13,15]; here
we review the features that will be germane to our discussion
of the analogous model in the frustrated Z2 phase.

For J σ
e = 0, we showed in Sec. IV that the ground state

has Z2-topological order. In the constrained Hilbert space the
only deconfined excitation here is a Z2 flux. Hence in the limit
J

ψ
e → ∞, the effective model (21) can be mapped exactly onto

the transverse field Ising model on a triangular lattice [8,9],
where in this case the ferromagnetic Ising coupling is given by
J σ

e [instead of J
ψ
e in Eq. (8)]. Thus, as discussed in the previous

section, we find for J σ
e � Jp an unfrustrated phase, in which

ψ loops are confined. This results in a trivial ground state (T),
which is adiabatically connected to the (polarized) product
state in which all edges carry the 1 label. For −J σ

e � Jp

we find an antiferromagnetic phase, with broken translational
symmetry and a three-sublattice magnetic order [42,46]. In
terms of the edge variables, this phase is described by a dimer
model of the form (15), but with only the resonance term
[32], which now acts on ψ instead σ edges. Consequently,
this antiferromagnetic phase is adiabatically connected to the
plaquette phase of a quantum dimer model, where the dimers
are now given by 1 dimers in the background of ψ edges. This
phase is labeled as plaqψ in Fig. 2.

In contrast to the case discussed in Sec. IV, here the
dual Ising model (8) describes all of the system’s degrees
of freedom. Therefore there is no additional ground state
degeneracy in the limit of large |J σ

e |, and these phases have
trivial topological order [15,41]. This can also be inferred from
the loop operators. Specifically, none of the loop operators
Wα

Ci ,FM (10)–(12) commute with the term ∝J σ
e . It follows that

the topological degeneracy is lifted completely in the limit of
large |J σ

e |. Our numerical and series expansion results for this
line can be found in Appendix G.

B. The frustrated line S-A-C

Having described the limit of large positive J
ψ
e , in which

the σ links are absent, let us now turn to the limit of large
negative J

ψ
e , where the number of σ links is maximized. As we

have observed for J σ
e = 0, projecting onto states with maximal

numbers of σ edges leads to an effective dimer Hamiltonian
in which dimers carry an additional internal label (1 or ψ).
The gapped phases of these dimer models necessarily break
the translational symmetry of the underlying lattice. Here we
will extend this dimer description to the entire region Jp �

−J
ψ
e , J σ

e < J
ψ
e . In Sec. VI we will discuss the behavior for

J σ
e ≈ −J

ψ
e , where the dimer projection is no longer valid and

a competing order arises. Projecting onto the dimer Hilbert
space we obtain the effective Hamiltonian:

H SAC
eff = P̄H P̄ (22)

= −Jp

√
2

4

∑
p

P̄Bσ
p P̄ − Jp

4

∑
p

P̄Bψ
p P̄

−J σ
e

2

∑
e

(
n1

e − nψ
e

) +
(

−Jp

4
+ Jψ

e

)
NpP̄ (23)

= −Jp

8

∑
p,i,f

(
β(i,f )

∣∣ 〉〈 ∣∣ + H.c.
)

−Jp

4

∑
p,i,f

(
γ (i,f )

∣∣ 〉〈 ∣∣ + · · · )

−J σ
e

2

∑
e

(
n1

e − nψ
e

) + ( − Jp

4
+ Jψ

e

)
NpP̄ , (24)

where again i denotes the initial and f the final states after
action of the corresponding operator.

For J σ
e = 0, we recover HA

eff (15). For finite J σ
e , one of the

internal states of the dimers is disfavored with respect to the
other. This effect competes with the second line of Eq. (24),
which flips the internal states of all dimers. As |J σ

e | increases,
this produces a transition in which the Z2 topological order
associated with the internal dimer labels disappears.

To understand the effect of varying J σ
e , it is useful to

consider the limiting cases of the effective dimer model (24).
For −J σ

e � Jp, configurations with internal 1-dimer states are
energetically costly, and the low-energy states consist entirely
of configurations involving the third vertex configuration of
Fig. 1. The Hamiltonian (24) reduces to

HSC = −Jp

8

∑
p

(∣∣ 〉〈 ∣∣ + H.c.
)

− Jp

4

∑
p

∣∣ 〉〈 ∣∣ + const. (25)

Importantly, projecting out the 1 labels annihilates all of the
terms on the second line of Eq. (24) except for one. The
resulting interaction, known as a potential term in the dimer
model, explicitly favors certain dimer configurations and can
help stabilize particular ordered states. Comparing the spectra
of the effective model (25) and the original model (1) shows
that the latter accurately describes the low-energy spectrum of
the full model for sufficiently large values of Jp [36].

The effective model (25) is now an undecorated quantum
dimer model on the honeycomb lattice, whose phase diagram
was established by Refs. [36,58]. As the potential term
increases, the dimer model undergoes a transition from the
plaquette phase to a phase with the “columnar order” shown in
Fig. 9. This order consists of static dimers, which are arranged
such that one third of the plaquettes have dimers located only
on their outgoing edges. This region is labeled by colψ in
Fig. 2.
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�n1�n2

FIG. 9. Columnar or star-crystal (positional) order of the dimers.
The dashed lines depict the unit cell. The dimers remain static. The
internal state of the dimers (depicted in gray) is either 1 for positive
J σ

e or ψ for negative J σ
e .

Excitations within the dimer Hilbert space consist of dimer
configurations not maximizing the number of perfect (i.e., σ )
hexagons. As detailed in Ref. [36], the (nontopological) low-
energy excitations of this phase eliminate three σ hexagons;
these are created by the action of the resonance term in Eq. (25)
and thus exist on the sublattices formed by the nonperfect
hexagons. We will return to this point later, when we discuss
transitions between the topological and nontopological three-
sublattice ordered phases.

An analogous picture holds in the limit J σ
e � Jp, where

the roles of the states |1〉e and |ψ〉e are interchanged. As this
does not affect the effective Hamiltonian, the same reasoning
applied above implies that the resulting phase is a columnar
phase, labeled by col1 in Fig. 2, where the internal state of the
dimers is fixed to be |1〉.

1. Transitions between the frustrated phases

Having discussed the limiting columnar orders for large
|J σ

e | in the dimer limit, let us now discuss the effect of varying
J σ

e : for J σ
e = 0, as discussed above, the gapped phase with two

qualitatively different types of excitations. The nontopological
excitations correspond to a deviation from the ordering pattern
of the dimers from the ground states. As the operator ∝J σ

e only
acts on the internal states of the dimers, this operator does not
impact the positional order of the dimers and therefore does
not interact with these nontopological excitations.

However, the topological excitations of theZ2 phase, which
are static for J σ

e = 0, become mobile for finite J σ
e . As detailed

in Sec. IV C, these excitations also prevent excited plaquettes
from resonating, such that it is energetically unfavorable for
these excitations to occupy the resonating sublattice. Therefore
the lowest-energy topological excitations are located on non-
resonating plaquettes (which correspond to the sublattices with
finite magnetizations in terms of the pseudospin τ ). Further, the
dynamics that result from finite J σ

e cannot hop these defects
between the two distinct nonresonating sublattices. This is
because the inequivalent nonresonating sublattices are always
separated by domain walls formed by σ edges, whereas the
term ∝J σ

e annihilates states in which the edge e does not
contain a dimer. Therefore finite J σ

e endows the lowest-energy

FIG. 10. The lowest-energy excitations in the antiferromagnetic
Z2 phase are located on the two nonresonating sublattices (depicted
here in black and white). Their dynamics occurs via the intermediate
state on the resonating (gray) plaquette, shown as black arrows. Thus
each of the configurations depicted here allows only excitations on
one sublattice to gain kinetic energy. Therefore the two nonresonating
sublattices compete for the resonating sublattice.

quasiparticles with dynamics such that they hop on one of two
disjunct triangular lattices.

The hopping between these sublattices occurs via virtual
states on the resonating sublattice. This has two notable
consequences: First, the effective hopping matrix elements
between sites in a given nonresonating sublattice are even
in −J σ

e . Therefore, in the dimer limit, to leading order the
sign of J σ

e does not have an impact on the dispersion of
the topological excitations, leading to an effective symmetry
J σ

e ↔ −J σ
e which can, e.g., be seen in the ED spectrum (see

Fig. 12).
Second, since hopping between sites on a given sublattice

can only occur for one of the two possible configurations of
the resonating plaquette, the two nonresonating sublattices
are competing for the resonating sublattice in order to gain
kinetic energy. An example of this is depicted in Fig. 10; it
can be viewed as a result of the fact that the model’s dynamics
cannot transform b1-type excitations into b2-type excitations,
such that hopping of the defects can occur only within the
same region (black or white). Thus the two interpenetrating
sublattices are mutually frustrating. At the transition the
symmetry between these two sublattices is spontaneously
broken and the resonating plaquette is largely pinned in one of
its two configurations, leading to the star-crystal order shown
in Fig. 9.

This correlation between the change in the three-sublattice
order and proliferation of plaquette defects on one of the
three sublattices suggests that the transition in the dimer order
generically coincides with the loss of Z2 topological order
(which disappears when these defects condense, confining
fluctuations of the internal dimer labels). This is supported
by our numerics, which are consistent with a single phase
transition between the Z2 plaquette and star-crystal phases
as J σ

e varies (e.g., in Fig. 12), where the long-range and
topological orders change simultaneously.

Though our analysis is not sufficient to resolve the order of
this transition, in the pure quantum dimer model, the transition
between the plaquette and columnar phases is first order
[32,40,42,58]. Hence for our model we expect, in analogy
to the dimer model, first-order transitions for both signs of J σ

e .
The conclusions we have just drawn from the effective

dimer model (25) must be applied to the full Hamiltonian
with care, as there are important differences. First, the effect
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of decreasing |Jψ
e | from infinity allows fluctuations out of

the dimer Hilbert space, such that our effective Hamiltonian
no longer applies. However, our numerical analysis shows no
signature of intermediate phases between the columnar phase
and plaquette phase (P) for finite J

ψ
e .

Second the symmetry J σ
e ↔ −J σ

e of the effective dimer
model (24) is approximate at best, and is strongly broken
in the original model (1) for |J σ

e | ≈ −J
ψ
e (i.e., after the

transition into the star-crystal phase). This turns out to have
important implications for the phase diagram. For J σ

e = J
ψ
e <

0, the nontopological term is V = − J σ
e
2

∑
e (n1

e − n
ψ
e − nσ

e ) =
|J σ

e | ∑e (n1
e − 1

2 ). Due to the vertex constraints, minimizing
the number of 1 edges yields a low-energy manifold of states
formed by dimer coverings, and the effective description
given above remains valid, as evidenced by the extent
of the colψ phase in Fig. 2. However, for J σ

e = −J
ψ
e >

0, V = − J σ
e
2

∑
e (n1

e − n
ψ
e + nσ

e ) = |J σ
e | ∑e (nψ

e − 1
2 ). Mini-

mizing the number of ψ edges does not restrict the Hilbert
space to dimer coverings, since it is possible for three 1 edges
to meet at a vertex. Hence in this limit, as (to leading order)
σ edges and 1 edges have the same energy, the low-energy
Hilbert space contains superpositions of σ loops of arbitrary
length. This leads to a breakdown of long-ranged order, and
a second Z2 phase in the upper left corner (C) of the phase
diagram Fig. 2, which we discuss in the following section.

VI. AN EMERGENT Z2 TOPOLOGICAL PHASE

For J σ
e ≈ −J

ψ
e , the effective dimer model of the previous

section breaks down, and a second Z2 phase emerges, which
we describe here. We will keep the ratio J σ

e /Jp large and
positive, such that ψ edges are very energetically costly, and
thus essentially absent from the low-energy Hilbert space.
However, we will consider the limit −J

ψ
e ≈ J σ

e , such that
for σ edges (which are favored by −J

ψ
e , but disfavored by

J σ
e ), the potential and kinetic terms are of the same order of

magnitude. To study the region J σ
e ≈ −J

ψ
e � Jp, it is useful

to use 1 = nσ
e + n

ψ
e + n1

e to write

V = J−
e

∑
e

(
nψ

e − 1

2

)
− J+

e

2

(
n1

e − nσ
e − nψ

e

)
, (26)

where J±
e = 1

2 (J σ
e ± J

ψ
e ). For J σ

e ≈ −J
ψ
e , we have J−

e �
J+

e ,Jp.
We next project the Hamiltonian (1) into the low-energy

Hilbert space, where there are no ψ edges in the system. The
resulting effective Hamiltonian reads

HC
eff = −Jp

4

∑
p

∣∣∣∣
〉〈 ∣∣∣∣

− Jp

4

∑
p

((√
2
∣∣ 〉〈 ∣∣ + H.c.

)

+ (∣∣ 〉〈 ∣∣ + · · · )
+

(
1√
2

∣∣ 〉〈 ∣∣ + · · ·
)

+
(

1

2

∣∣ 〉〈 ∣∣ + · · ·
))

− J+
e

2

∑
e

(
n1

e − nσ
e

) + const, (27)

where the “. . .” include all possible σ configurations with the
same number of σ edges on the outer legs of plaquette p.

The first term in Eq. (27), which results from the action of
the operator B

ψ
p , clearly favors the columnar order discussed

in the previous section. The last term favors the “trivial” state
for positive J+

e , and maximizes the number of σ edges for
−J+

e . Hence these two terms dictate a trivial ground state for
J+

e � Jp, and recover the columnar phase discussed in the
previous section for −J+

e � Jp. These correspond to regions
labeled by trivial and col1 in Fig. 2.

In the regime where Jp/J
+
e is not small, however, the second

line of Eq. (27) plays an important role. Indeed, Eq. (27) differs
from Eq. (21) only in the first term, which selects the columnar
ordered state for negative J+

e , and in the nontrivial weights
of the different terms in the second sum. The second term
is therefore a deformation of the Z2 string-net Hamiltonian
H

Z2
SN (21), suggesting that for sufficiently small J+

e a third, Z2

topologically ordered, phase emerges.
In this section, we will present numerical evidence suggest-

ing that this phase, which we refer to as Z′
2 in the following,

does indeed exist. In Fig. 11, we show the low-energy
spectrum of HC

eff (27) derived from exact diagonalization
on systems with Np = 21 (dashed) and Np = 27 (solid) for
periodic boundary conditions, as well as the derivatives of the
ground-state energy. Orange lines show modes at the momenta
�k = (± 2π

3 ,∓ 2π
3 ), in the sector with an even number of

noncontractible σ loops. The remaining lines have �k = (0,0),
with brown indicating an even number of noncontractible
loops, and gray indicating sectors with an odd number of
noncontractible σ loop in at least one direction.

For J+
e > 0, the spectrum is gapped, with a unique ground

state. At J+
e ≈ 0, the lowest-energy mode with an odd number

of noncontractible σ lines drops in energy to become virtually
degenerate with the ground state. This degeneracy persists until
J+

e ≈ −0.2Jp, at which point the states with noncontractible
σ loops are split from the ground state, while states at nonzero
�k join the ground-state sector. The resulting translational
symmetry breaking ground state is adiabatically connected
to the columnar ground state discussed in Sec. V B.

Thus Fig. 11 suggests two transitions: one from the trivial
phase to a Z′

2-topologically ordered phase, and a second from
this phase into the three-sublattice ordered columnar phase.
By extrapolating to the thermodynamic limit as shown in
Appendix H, we can estimate the location of these two phase
transitions. This yields a transition into the trivial phase at
J+

e
Jp

|
c1

= −0.0276, and a transition to the columnar phase at
J+

e
Jp

|
c2

= −0.275.

In the region −J
ψ
e /Jp � 1, we expect these results for

the effective model (27) also to be qualitatively correct for
the full model, from which it follows that the region labeled
by Z′

2 in Fig. 2 is in the Z′
2 topological phase. Indeed

exact diagonalization of the original model indicates the
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FIG. 11. We show in the upper panel the low-energy spectrum of
the effective model (27) as a function of J +

e [orange �k = (± 2π

3 ,∓ 2π

3 ),

brown �k = (0,0) no strings, gray �k = (0,0) at least one string]
for different system sizes (Np = 21 plaquettes dashed, Np = 27
plaquettes solid). The location of the phase transition is obtained
from the minima of ∂2

J+
e
e0 (lower panel). The corresponding finite

size scaling is shown in Appendix H.

same pattern of ground states (trivial, topologically ordered,
and finally translation breaking as −J+

e increases) as seen
in Fig. 11. However, for the full Hamiltonian we only
reach system sizes Np = 13 (Np = 12 for systems compatible
with threefold translational symmetry breaking), which is
insufficient to obtain a reliable estimate of the positions of the
phase boundaries in the thermodynamic limit due to finite size
effects, which are already significant for the effective model,
where system sizes Np = 27 can be obtained (cf. Appendix H).
This poses a quantitative challenge in the regime where the
effective model (27) is no longer valid. For example, near
the antiferromagnetic topological phase (phase col1 in the
phase diagram 2), we are not able to reliably extrapolate the
location of the phase boundaries between the different types
of translational symmetry breaking and topologically ordered
phases to the thermodynamic limit. In particular, we are not
able to determine how the different phase boundaries connect
in this regime, i.e., around point d in Fig. 2.

Nevertheless, our results suggest that there is a phase
boundary separating the Z′

2 topological phase and the non-
Abelian Ising × Ising topological phase (line d-c in Fig. 2).
Though we cannot resolve the nature of this transition, we
conjecture that it is either first order or unconventional for
the following reason. In contrast to the other Z2 topological

phases, the Z′
2 phase cannot be obtained by condensing flux

excitations in the Ising × Ising phase. This follows from the
fact that the Z′

2 string operators cannot be obtained from
the operators W

(α,β)
Ci

of the non-Abelian phase using the
prescription of Refs. [18,25]. For example, in the Z′

2 phase
the string operator that creates vertex defects is

W e′
Ci

=
∏
e∈Ci

⎛
⎝0 1 0

1 0 0
0 0 ∗

⎞
⎠, (28)

i.e., it flips between the states |1〉e and |σ 〉e and can have any
(diagonal) action onto the high-energy states |ψ〉e.

In the Z′
2 phase, the corresponding excitation should be

either a boson or a fermion; however, even if we relax the
vertex constraint the Ising × Ising phase contains no bosonic
or fermionic excitations associated with string operators that
raise the edge labels by σ . Further, squaring the operator W σ

Ci

that raise edges by σ in the Ising × Ising phase gives 1 + W
ψ

Ci
,

which creates extended ψ strings and is therefore confined in
theZ′

2 phase. This incompatibility of the string operators in the
two phases implies that they cannot be related by condensing
bosonic excitations (see Ref. [18]).

VII. CONCLUSION

A. Summary

In this paper, we have studied the phase diagram of the
perturbed Ising string-net model (1) and described several
phases not previously discussed in the literature. Notably, we
have identified a frustrated phase in which Z2 topological
order coexists with translational symmetry breaking and
outlined the interplay between the topological and symmetry-
breaking defects. We have also identified a new Z′

2 phase,
separating a columnar ordered phase with threefold breaking
of translational symmetry from the trivial phase. In addition,
in some cases we have identified the corresponding phase
transitions analytically, using effective mappings between our
full Hamiltonian and various reduced Hamiltonians whose
phase transitions are known.

For each of the phases identified above, we have presented
an effective model, valid in some region of the phase diagram,
from which the defining features of each phase can be derived
exactly. Needless to say these effective descriptions are not
valid over the entire parameter regime that we study, and our
phase diagram (Fig. 2) is based partly on numerical analysis
(Lanczos exact diagonalization). In particular, we do not find
any numerical evidence for additional (intermediate) phases
beyond those described here. Needless to say, with the small
system sizes attainable numerically, this does not definitively
rule out the possibility of additional structure in the phase
diagram.

The numerical results are exemplified in Figs. 12 and
13, where we show the low-energy spectrum (Fig. 12) and
ground-state energy derivative (Fig. 13) along one cut for

J σ
e

2 + J
ψ
e

2 = Jp tan(π
5 ) = const for the phases arising in the

limit of large J σ
e ,J

ψ
e . Shown are our results for the largest

system (Np = 12) sizes allowing for the three-sublattice
symmetry breaking. Additionally, we distinguish different
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FIG. 12. Low-energy spectrum of the full model (1) as a function
of ϕ for the relevant �k values, where tan ϕ = J σ

e

J
ψ
e

for J σ
e

2 + J ψ
e

2 =
Jp tan( π

5 ). The corresponding cut in the phase diagram is indicated
by the solid line in the inset. The low-energy gap �/Jp is shown
here for the momenta �k = (0,0) and for �k = (± 2π

3 ,∓ 2π

3 ) (dotted) for

system size Np = 12. Additionally, we distinguish for �k = (0,0) the
different topological sectors (see text), by solid and dashed lines. The
different ground state degeneracies (up to finite size splitting) indicate
the different phases labeled above the plot.

topological sectors and different �k values to show the nature
of the different ground state degeneracies (up to finite size
splitting), which are in agreement with the conclusions drawn
from the effective models in the above sections.

FIG. 13. Second derivative of the ground-state energy per plaque-
tte ∂2

ϕe0 of the full model (1) (for the Np = 12-system) as a function

of ϕ, where tan ϕ = J σ
e

J
ψ
e

. The divergences (dips for the finite-size

system) of the second derivative allow us to estimate the location
of the phase transitions between the phases indicated above the plot.
The insets show ∂4

ϕe0, used to separate nearby phase transitions, which
allows us to locate the phase transitions between the topological to
the translational symmetry broken phases, i.e., the transition from Z′

2

to col1 and Z2 to plaqψ .

B. Outlook

The present paper illustrates how topological order can
become intertwined with long-ranged order, leading to phases
in which the topological excitations are affected by transla-
tional symmetry breaking in a nontrivial way. Though we have
studied only one example, there are many related lattice models
in which condensation transitions that only partially break
the topological order are possible [24]; many of these should
admit translation-breaking frustrated phases with topological
order similar to the one described here, in which the residual
topological order and symmetry-breaking pattern interact in a
nontrivial way.

All of these examples share the common property that the
phases simultaneously exhibiting topological and long-ranged
order descend from a parent phase with additional anyonic
excitations that become confined across the ordering transition.
A more experimentally tantalizing question, however, is
whether similar phases can emerge in systems where such
a parent phase is not natural—which are much more likely to
arise in physically realistic Hamiltonians. In this context, it is
interesting to note that spin liquid states which break lattice
rotational symmetries (but not translational ones) are relatively
natural in the context of certain frustrated spin models [59].

Finally, though many of the phase transitions in our model
can be deduced from our various effective Hamiltonians,
a number of the (possibly second-order) transitions remain
inaccessible through the approaches presented here. Notably,
the transitions out of the Ising × Ising phase in which the
non-Abelian σ fluxes condense are a topic worthy of further
study.
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APPENDIX A: TECHNICAL DETAILS OF THE
STRING-NET MODEL

In this section we give the definition of the operator B s
p used

to define the string-net Hamiltonian HSN (2). For the sake of
generality, we introduce two sets of coefficients, known as F

and R symbols, which can be used to define the string-net
Hamiltonian HSN (2) and the various string operators WCi

for
a general topological order characterized by a unitary modular
tensor category. For a more comprehensive introduction to
unitary modular tensor categories, see, e.g., Refs. [3,38,60].
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The F symbols dictate how string operators raise and lower
labels on a given edge. They are defined by the pictorial relation

i

j k

lm
=

n

F i j m
k l n

i

j k

l
n . (A1)

For the Ising theory, they vanish unless all four involved
vertices obey the vertex constraints shown in Fig. 1. The
nonzero F symbols for the Ising theory all equal 1, except
the following six:

F
σ ψ σ

σ ψ σ = F
ψ σ σ

ψ σ σ = −1, (A2)

F σ σ 1
σ σ 1 = F

σ σ ψ

σ σ 1 = F σ σ 1
σ σ ψ = −F

σ σ ψ

σ σ ψ = 1√
2
. (A3)

In order to define string operators, we will also use the so-
called R symbols. These are needed to define the action of
a string operator where it crosses an edge, in such a way
that it commutes with Bp [28,61]. The corresponding pictorial
definitions read

c

ab

= Rab
c

c

ab

, (A4)

c

ab

= Rba
c

−1

c

ab

. (A5)

The coefficients Rab
c also vanish unless the vertex obeys the

vertex constraint shown in Fig. 1. The nonzero R symbols for
the Ising theory all equal 1, except the following:

Rσσ
1 = e− π i

8 , R
ψψ

1 = − 1,

Rψσ
σ = Rσψ

σ = − i, Rσσ
ψ = e

3π i
8 . (A6)

APPENDIX B: THE ACTION OF THE OPERATORS Bs
p

The operators Bs
p in Eq. (2) are defined by using the F

symbols (A3) to “fuse” the string s into each of the edges of
the plaquette. This can be visualized by the action

Bs
p

a
b

c
d

e

fg

h

i j

k

l

p =

a
b

c
d

e

fg

h

i j

k

l

s . (B1)

To resolve this to the edge-basis states, one can, e.g., make
use of the following relation (for each vertex sequentially):

e l

r
s

= F l l 1
ss l

Θs ,l,l

e l l l

r
s s

. (B2)

In a second step, one uses

e l l
r

r s
=

F e l r
sr l

Θs,l,l

e l

r . (B3)

Combining these two steps, the � factors cancel. Thus the
coefficients φ(v) in Eq. (3) are given by the F symbols (A1).
The nontrivial relations are:

= − , (B4)

= − , (B5)

=
1√
2

+
1√
2

, (B6)

=
1√
2

− 1√
2

. (B7)

Here we have shown the coefficients for one vertex type, where
s acts on the right. The coefficients of the remaining vertices
can be obtained by appropriate rotations of the terms shown
here. It is convenient to know that the factors of

√
2, which

depend on which internal edge is labeled σ , always give a net
amplitude of 1 if the plaquette move creates a σ loop, 1/2 if
it breaks a σ loop, and 1/

√
2 if it neither breaks nor creates σ

loops.
This gives the following matrix elements for B s

p:

a
b

c
d

e

fg

h

i j

k

l

p Bs
p

a
b

c
d

e

fg

h

i j

k

l

p

= F
a l g

sg′l′F
b g h

sh′g′F
c h i
si ′h′F

d i j

sj ′i ′F
e j k

sk′j ′F
f k l

sl′k′ . (B8)

For nonzero matrix elements, the final (primed) link labels
differ from the initial (unprimed) ones by a product of the
raising operators S s

e (4), i.e., B s
p = ∏

v∈p φ(v)
∏

e S s
e , where

the prefactor φ(v) is given by the F symbols stemming from
Eq. (B3).

APPENDIX C: GENERAL FORM OF THE STRING AND
LOOP OPERATORS

In this section, we will review the general mathematical
formulation for the string (or loop) operators characterizing
the topological order realized by the string-net Hamiltonians.
We discuss the details for the Z2 operators in more detail in
Appendix D.

1. The action of the loop operators W (α,β)
C

Just as the operators B s
p can be defined as “fusing” closed

loops into plaquettes of the lattice, the loop operators W
(α,β)
Ci

can be visualized as fusing a pair of closed loops—an α loop
above the lattice and a β loop below the lattice– along the
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FIG. 14. A pictorial representation of loop operators: The loop
operators W

(α,β)
C for a given cycle C (depicted in green) is given

by adding one loop above (blue, labeled by α) and one below (red,
labeled by β) the lattice and subsequently fusing these into the lattice.
Additionally one can also depict the open string operators creating
particles on plaquettes p0 and p1 (red) in a similar fashion [22,63].

noncontractible cycle Ci , as depicted in Fig. 14. The action
of this fusion process on the edges along the curve Ci (shown
in green in Fig. 14) is dictated by the F and R symbols.
The nontrivial R symbols result in the fact that operators
defined on intersecting loops do not commute in general. Loops
above (below) the lattice correspond to right-chiral (left-chiral)
operators in the Ising × Ising topological theory [62].

One way to evaluate the resulting coefficients in practice is
given, e.g., in Ref. [25]: First, the two loops are contracted to
one in between the crossed links via

α

β
i =

X,Y

Fα α 1
β β XFα α 1

β β Y

α

β
iX Y

. (C1)

Second, the resulting rings are resolved to a planar arrangement
by

∑
X,Y

F α α 1
β β XFα α 1

β β Y

α

β
iX Y

=
∑

i ′,j,l,X,Y

F
β β 1
i i j F α α 1

j j i ′ F
i β j

i ′ α lR
i β

j

× (
Ri α

l

)−1
F i α l

β i ′ XF
α i ′ j
i βY

i

i
iX Y

(C2)

≡
∑

i ′,X,Y

w
α,β,i

X,Y,i ′
i

i
iX Y

, (C3)

which can then, in a third step not explicitly shown here,
be reduced to a new configuration of edges by fusing the
remaining strings X,Y into the lattice. This gives after
canceling out all remaining � factors a resulting matrix
element �(v) for crossed edges

∑
X,Y a b

iα βX Y =
∑

X,Y,i ′,a′,b′
w

α,β,i

X,Y,i ′
Fa b i

Y i ′b′F
b′ i a
X a′i

�X,i,i ′ a b

i
. (C4)

From Eq. (C4) it is clear that

W
(α,β)
Ci

=
∏

outside
corners

φ̄(v)
∏

inside
corners

φ(v)
∏
e∈Ci

Sα
e Sβ

e , (C5)

where “inside corners” refers to vertices without crossed edges,
for which the factor φ(v) is given as for the operators Bs

p and
“outside corners” are corners with crossed edges, for which
the matrix element φ̄(v) is given in Eq. (C4). One can then
show that

W
(α,β)
Ci

W
(γ,δ)
Ci

=
∑
ε,ζ

δε,α,γ δζ,β,δW
(ε,ζ )
Ci

, (C6)

where δσ,ρ,ε = 1 if (σ,ρ,ε) is one of the configurations shown
in Fig. (1) and 0 otherwise.

2. Loop operators and the ground state degeneracy

We can find the ground state degeneracy on the torus (or,
through similar means, on any closed manifold) by studying
the algebra of loop operators on the two noncontractible cycles
(C1 andC2). {WC1} is a set of mutually commuting operators that
may be simultaneously diagonalized, as is {WC2}. However,
since any path around C1 must intersect a path around C2 an odd
number of times, any (nonidentity) operator W

(α,β)
C1

will fail to
commute with at least one operator in {WC2}. Here we choose
to label states by eigenvalues of appropriate combinations
of WC1 strings. We will show that all nine possible sets of
eigenvalues can be obtained by acting with WC1 operators on
a given eigenstate.

It is convenient to label our states by defining projectors
{Pα} onto a fixed flux α through the cycle C1. For left-chiral
strings (acting below the lattice), the appropriate projectors are
[28,37]

P1 = 1

4
W

(1,1)
C1

+
√

2

4
W

(1,σ )
C1

+ 1

4
W

(1,ψ)
C1

, (C7)

Pσ = 1

2
W

(1,1)
C1

− 1

2
W

(1,ψ)
C1

, (C8)

Pψ = 1

4
W

(1,1)
C1

−
√

2

4
W

(1,σ )
C1

+ 1

4
W

(1,ψ)
C1

. (C9)

(Projectors for right-chiral strings, which act above the lattice,
are obtained from analogous expressions with the order of
the two indices in the superscripts exchanged. The remaining
projectors are constructed from products of left- and right-
chiral projectors).

One can show that, for any reference configuration |�Ref〉,
PαPβ |�Ref〉 = δα,βPβ |�Ref〉

PαW
(1,α)
C2

P1|�Ref〉 = W
(1,α)
C2

P1|�Ref〉, (C10)

i.e., the three left-chiral projectors project onto orthogonal
Hilbert spaces, and the operator W

(1,β)
C2

acts as a rais-
ing/lowering operator for the corresponding conserved flux
quantum numbers. In particular, three distinct left-chiral flux
eigenstates can be constructed in this way.

Similarly, one can show that W
(α,1)
C2

is a raising/lower
operators for the right-chiral flux. Since all operators in the
right-chiral sector commute with all operators in the left-chiral
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sector, each of the nine possible ground states can be obtained
from a state in the trivial sector by acting with an operator
W

(α,β)
C2

= W
(α,1)
C2

W
(1,β)
C2

.
This construction can in principle also be applied to

determine the ground-state degeneracy in the Z2 topolog-
ically ordered phases. In that case, however, we can no
longer separate the loop operators into products of left- and
right-chiral components. Instead, we construct our projectors
from a maximally commuting set of loop operators (for
example, W 1

Ci
and W m

Ci
), and use the remaining noncommuting

loop operators (i.e., W e
C3−i

, or equivalently Wε
C3−i

) as raising/
lowering operators.

APPENDIX D: TECHNICAL DETAILS OF THE STRING
OPERATORS OF THE Z2Z(2) PHASE

Here we will give matrix elements associated with the loop
operators W

(α,β)
Ci

in the (anti)ferromagnetic Z2-topological
phases [point Z (A) in Fig. 2]. Our starting point will be
the nine loop operators in the Ising × Ising phase, whose
matrix elements as detailed in Appendix C 1. Since long σ

strings create confined defects in the three-sublattice order,
the possible loop operators in this phase are constructed from
W

(α,β)
Ci

for (α,β) = (1,ψ),(ψ,1),(ψ,ψ), and (σ ,σ ).
As discussed in Sec. IV, open (ψ,ψ) strings are associated

with visonlike defects in the dimer model. The corresponding
loop operator W

(ψ,ψ)
C1

counts the parity of the number of σ

edges around the closed curve C1. This is necessary even if
C1 is contractible. If C1 is not contractible, it depends on the
parity of the number of noncontractible σ loops parallel to C2.
However in the Z2 phases discussed here, the noncontractible
σ loops are absent, and therefore this parity is fixed to be
even. Thus the operator W

(ψ,ψ)
C1

coincides in this phase with
the identity as stated in Eqs. (10) and (16).

Since W
(1,ψ)
C = W

(ψ,1)
C W

(ψ,ψ)
C , this leaves two string op-

erators that are purely topological: W
(ψ,1)
Ci

and W
(σ ,σ )
Ci

. Here

we will show the following: (1) open W
(ψ,1)
Ci

≡ W
(ε)
Ci

strings

create fermions; (2) W
(σ ,σ )
Ci

strings come in two types, which

we will call W
(b1)
Ci

and W
(b2)
Ci

; (3) W
(b1)
Ci

and W
(b2)
Ci

are both

bosons, and are mutual semions; and (4) W
(ε)
Ci

= W
(b1)
Ci

W
(b2)
Ci

.
In other words, we will identify a set of purely topological
string operators creating exactly the quasiparticle spectrum
(for open strings) and ground-state degeneracy (for closed
noncontractible strings) of the Toric code.

1. Matrix elements of string operators
away from their endpoints

We begin by giving the details of the relevant string
operators, valid everywhere except near the string endpoints,
which we will discuss separately in the next subsection. In
general, the curve C will contain both inside corners [where
the string does not cross over any edges, as depicted in
Eqs. (B4)–(B7)] and outside corners [where it does, as depicted
in Eqs. (D1)–(D3)]. At inside corners, there are only two
choices: Either the operator raises the edges along the string’s
path by ψ , in which case the coefficients are given in Eq. (A3),
or it acts as the identity (with coefficient 1).

At outside corners the action is more involved, as it requires
both F and R symbols, as described in Appendix C 1. For ψ

strings, the matrix elements relevant to the frustrated phase
are:

= , = − , (D1)

= Rσ ,ψ
σ , = −Rσ ,ψ

σ , (D2)

= −Rσ ,ψ
σ , = Rσ ,ψ

σ , (D3)

where R
σ ,ψ
σ = −i (A6), and we have used the fact that the

relevant � symbols are all 1.
For closed ψ strings, however, an equal number of R

σ ,ψ
σ and

−R
σ ,ψ
σ phases occur, such that they cancel and can be dropped

entirely without altering the action of the string operator (one
can check that these phases do not alter the commutation
relations with the other operators).

In the dimer Hilbert space for −J
ψ
e � Jp, the net effect of

the ψ string can be compactly represented as follows. In the
basis (1,σ ,ψ), we define the three matrices:

�X =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠, �Y =

⎛
⎝0 0 −i

0 1 0
i 0 0

⎞
⎠,

�Z =
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠. (D4)

Then, in our projected Hilbert space, the string operator takes
the form

W
(ε)
Ci

=
∏

i∈crossed edges

�Z,i

∏
j∈raised edges

Mj, (D5)

where Mj depends on how the string turns (relative to its
starting point) at the two vertices adjacent to the edge j , via

Mj =
⎧⎨
⎩
�X,j C turns left, left or right, right
�Y,j C turns right, left
�∗

Y,j C turns left, right
, (D6)

i.e., �X acts on edges neighboring inside corners and �Y acts
on edges neighboring one outside corner.

To understand how P̄pW
(σ ,σ )
C P̄p acts on outside corners, we

observe that for α = β = σ in Eq. (C1), the labels X and Y

can each be either 1 or ψ . If the crossed edge [labeled i in
Eq. (C1)] is labeled 1 or ψ , the coefficients in Eq. (C3) vanish
unless X = Y , giving the following possibilities [64]:

σ σ

1

11 = ,
σ σ

ψ

11 = − , (D7)

σ σ

1

ψψ = ,
σ σ

ψ

ψψ = . (D8)

On inside corners, the first operator acts as the identity, while
the second operator acts by raising by a ψ string.
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If the crossed edge is labeled σ , however, we have either
X = 1, Y = ψ or X = ψ , Y = 1. For the second choice, the
relevant matrix elements are:

= (Rσ ,σ
1 )−2 , = −(Rσ ,σ

1 )−2 ,

(D9)

= (Rσ ,σ
1 )−2 , = (Rσ ,σ

1 )−2 .

(D10)

where R
σ ,σ
1 = e−iπ/8. The matrix elements for the other choice

are similar, with R
σ ,σ
1 ↔ (Rσ ,σ

1 )∗.
We may now define two distinct closed string operator

types from W
(σ ,σ )
C as follows. First, for any low-energy edge

configuration we may partition the lattice into “white” and
“black” regions by picking an initial plaquette colored white,
with σ loops forming domain walls between black and white
regions (Fig. 3 of Ref. [24]). We then let W

(b1)
C be the

component of P̄pW
(σ ,σ )
C P̄p for which X = Y = ψ in the white

region, and X = Y = 1 in the black region. W
(b2)
C is defined

analogously, with black and white reversed.
Thus (when acting on a fixed edge configuration) the

operator P̄pW
(σ ,σ )
Ci

P̄p splits into two distinct string operators,
which we labeled W e,W m and Wb1 ,Wb2 , respectively, in
Eqs. (12) and (18). Further, the product of these two string
types gives the ψ string, as can be checked by comparing the
relevant matrix elements. (For closed strings, recall that we
can drop the phases R

σ ,ψ
σ from W ε

Ci
).

One might worry that resonance moves, which change the
configuration of σ edges, will mix these two candidate string
types as they reconfigure the black and white regions. However,
since the closed string operators commute with B̄σ

p , these res-
onance moves cannot alter their commutation relations, which
fix the topological order; hence the topological properties of
the string operators are independent of the configuration acted
upon. One can easily check that in any reference configuration,
for C1,C2 being the two noncontractible curves on the torus,

Wα
C1,(A)FMW

β

C2,(A)FM = eiφα,β W
β

C2,(A)FMWα
C1,(A)FM, (D11)

where the phase φα,β is given by

φ for β\α b1 b2 ε

b1 0 π π

b2 π 0 π

ε π π 0

. (D12)

In other words, the resulting closed string operators correspond
exactly to those of the toric code: W (b1)

Ci
, W (b2)

Ci
to the two bosons

(usually called e and m) and W ε
C to the fermion [2,65].

2. Open string operators

Unlike in most of the phase diagram, in the frustrated
Z2 phase the vertex constraint does not limit the potential
quasiparticle types, and all three of the closed string operators
discussed above can also exist as open strings with anyonic ex-
citations at their endpoints. These open strings differ from the
closed strings only at their endpoints, which we describe here.

p1 p2

p3

i1
vi

FIG. 15. Open ψ (or ε) string ending at vertex vi creates two
fluxes on adjacent plaquettes (in the given configuration at plaquette
p1 and p3).

a. The fermionic open string

We begin with the ψ string. The action of the bulk string
operator dictates everything except the coefficient induced at
the first (vi) and last (vf ) vertices along the string. We will
choose these coefficients to be 1 for all vertex configurations
for the purpose of this presentation.

With this choice, the ψ-string operator creates a σ -flux
defect (i.e., anticommutes with B

ψ
p ) in two of the three

plaquettes adjoining vi,f . However, which two plaquettes are
violated depends on the configuration that the string acts on.
This is illustrated in Fig. 15: Since the ψ string crosses only
one edge of p3, the string always anticommutes with B

ψ
p3 , as

can be verified from the relations (D1)–(D3). Further at vi , we
see that if edge i1 (the first edge that is raised by the ψ string)
is labeled 1 or ψ , then the string anticommutes with B

ψ
p2 , while

if i1 is labeled σ then the string anticommutes with B
ψ
p1 . This

follows from Eq. (B4).
In Sec. IV C, we showed that plaquettes where B̄

ψ
p has

an eigenvalue of −1 cannot resonate. For the plaquettes at the
endpoints of W (ε), this implies that resonance terms cannot mix
configurations in which σ fluxes are on different plaquettes.
On the remaining plaquette at the string’s endpoint, the net
phase induced during resonance is clearly unaffected by the
string operator, meaning that there are also no visonlike defects
bound to ε.

b. The bosonic open strings

Next, we turn to the bosonic strings. To define these, we
first pick a plaquette p1 on which the string starts running to
the right, and designate the interior of this plaquette as “white.”
We then have:

W (b1) p

p

p = p

p

p , (D13)

W (b1) p

p

p = − p

p

p , (D14)

W (b1) p

p

p = (Rσ ,σ
1 )−2 p

p

p , (D15)

W (b1) p

p

p = (Rσ ,σ
1 )−2 p

p

p , (D16)

W (b1) p

p

p = (Rσ ,σ
1 )−2 p

p

p , (D17)

W (b1) p

p

p = −(Rσ ,σ
1 )−2 p

p

p . (D18)
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It is easy to check that this operator anticommutes with B
ψ
p1 ,

and commutes with B
ψ
p2 ,B

ψ
p3 . Hence this operator generates a

σ flux on p1.
We may define the second boson via W (b2) = W (b1)W ε,

where if W (b1) anticommutes with B
ψ
p1 , then the terminal

vertex of the ε string is chosen such that W ε also always
anticommutes with B

ψ
p1 . This gives:

W (b2) p

p

p = p

p

p , (D19)

W (b2) p

p

p = p

p

p , (D20)

W (b2) p

p

p = Rσ ,ψ
σ (Rσ ,σ

1 )−2 p

p

p , (D21)

W (b2) p

p

p = −Rσ ,ψ
σ (Rσ ,σ

1 )−2 p

p

p , (D22)

W (b2) p

p

p = Rσ ,ψ
σ (Rσ ,σ

1 )−2 p

p

p , (D23)

W (b2) p

p

p = Rσ ,ψ
σ (Rσ ,σ

1 )−2 p

p

p . (D24)

This operator creates one σ -flux defect, on either p2 or p3

(whichever is excited by W ε). Again, since the violated plaque-
ttes cannot resonate, resonance terms only mix configurations
with σ fluxes on the same plaquettes.

Though these matrix elements are different from those
relevant to W (b1), the defect that is being created is also on
a different plaquette. In fact, one can show that the full string
operator W (b2) is proportional to a string operator W (b1) that
terminates on either p2 or p3, as appropriate. The form of W ε

ensures that if W (b1) excites a plaquette in the “white” region,
W (b1)W ε excites a plaquette in the “black” region (and vice
versa). In other words, for a given configuration of σ labels,
we may identify two distinct types of bosons, distinguished by
which of the two regions they inhabit.

This raises two puzzles: first, can the action of the
resonance term turn b1 into b2? The answer is no, because
plaquettes bearing these excitations cannot resonate. Further,
the dynamics induced on these excitations for J σ

e �= 0 only
allow hopping within the same region (the matrix element for
hopping across a σ edge is 0). Second, can a given open string
create one b1-type excitation and one b2-type excitation? Here
again, the answer turns out to be no: There is no consistent
termination of the string operators which will create defects
on plaquettes separated by an odd number of σ -edges. Hence
b1 and b2 are truly distinct excitations—as we expect from the
fact that W (b2) = W (b1)W ε.

Indeed, it is easy to check that not only are b1 and b2

distinct excitations, but they are mutual semions. The statistics
of the excitations are fixed by the commutation relations of
the various string operators, as computed away from the string
endpoints (see, e.g., Refs. [2,28]). From Eqs. (D11) and (D12),
we see that the endpoints of Wb1 , Wb2 are mutually semionic
bosons, while W ε creates fermions, as expected for the toric
code.

This division of particle type by region, though cumber-
some, is in fact inevitable. The dimension of the Hilbert
space associated with σ fluxes on N plaquettes can grow
at most as 2N , whereas we wish to accommodate three
distinct excitations, all of which are characterized by their
eigenvalue of −1 under B

ψ
p . Since for a given plaquette there

is only one linearly independent state with this eigenvalue, to
accommodate all three particle types requires excitations on
multiple plaquettes, as we have found here.

APPENDIX E: CORRESPONDENCE OF THE Z2- AND
THE ORIGINAL DIMER MODEL

Here, we show that in the absence of σ fluxes (provided
J σ

e = 0) the signs appearing in certain resonance terms in
Eq. (15) do not invalidate a many-to-one mapping in which
the internal dimer labels, as well as the phases β(i,f ),γ (i,f ),
are all set to 1. We will see that this holds not only in the dimer
limit, but more generally. (Similar arguments were made in
Ref. [66]). Hence the extra signs play no role in determining
the ordering, or the critical properties, of the frustrated Z2

topological phase.
The phases β(i,f ),γ (i,f ) appearing in the coefficients of

the effective Hamiltonian (15) are determined by the matrix
elements for the Bσ

p and B
ψ
p , respectively, which are given in

Eq. (B8). For the phases β(i,f ), one can verify from Eq. (B8)
that β(i,f ) = ∏

e∈◦p (1 − 2n
ψ
e+1(i)nψ

e (f )), where ◦p denotes
the inner edges of plaquette p, e + 1 is the edge following edge
e in a counterclockwise sense, and n

ψ
e (i) (nψ

e (f )) denotes the
eigenvalue of n

ψ
e when acting on the initial (final) state i (f ).

The phases γ (i,f ) are given by γ (i,f ) = ∏
e∈∗p (1 − 2n

ψ
e ),

where ∗p denotes the outgoing edges of plaquette p. These
phases thus fix the relative coefficients of the different edge
configurations in the ground state(s).

To argue that these phases have no impact on the resulting
order, we proceed as follows: First, we observe that any
operator diagonal in the edge labels (and specifically the
operator nσ

e which we use to tune the model to the dimer
limit) cannot detect these relative signs.

Second, at least within each topological sector, the relative
phases are uniquely fixed in the ground state. By definition,
a ground state |�〉 obeys |�〉 ∝ ∏

p
1
2 (1 + B

ψ
p )|�〉. For any

given configuration of σ edges, this fixes the relative phases
of all configurations in the internal dimer space. Hence
the dimer configuration is unique, up to the Z2 topological
degeneracy.

Third, we argue that phases induced by changing the pattern
of σ loops are compatible with those fixed by B

ψ
p , and

therefore within a given topological sector the amplitude for
resonance moves connecting any two configurations of σ loops
is simply a sum over all internal dimer configurations (since
the relative phases of the internal dimer configurations are
fixed).

Specifically, if B
ψ
p |�〉 = |�〉, then (as B

ψ
p and Bσ

p com-
mute),

Bψ
p

(
Bσ

p |�〉) = Bσ
p |�〉. (E1)
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This remains true whether or not we project our Hilbert space
onto that of the dimer model.

Further, (Bσ
p )2 = (1 + B

ψ
p ) (an identity which also holds

for the operator P̄ Bσ
p , where P̄ is the projector into the dimer

Hilbert space). Hence by acting an even number of times on
any plaquette (or group of plaquettes) by P̄ Bσ

p P̄ , one obtains

an eigenstate of B
ψ
p with eigenvalue 1. In particular, the relative

signs potentially introduced by the different matrix elements
of P̄ Bσ

p P̄ can never cause any interference at any finite order;
hence we must simply add all transition amplitudes that bring
a configuration of σ loops back to itself, as we would in the
absence of internal dimer states.

The only other way to act nontrivially onto a state |�〉 while
maintaining the same location of the dimers is to change the
topological sector by the action of the operator

∏
p P̄Bσ

p P̄

(note that the single terms in the product have to be ordered in
a certain way to yield a nonvanishing matrix element when
acting on a given state). As this operator does involve an
action on the whole system, its effect will be suppressed in the
thermodynamic limit and can thus be neglected. In conclusion,
the critical properties and ordering pattern of our dimer model
are identical to those of Ref. [32].

APPENDIX F: SERIES EXPANSIONS FOR THE ANYONS
IN THE PERTURBED ISING STRING-NET (LEADING

ORDERS)

In this section we give the leading orders of series expansion
for the Ising string-net phase in terms of J σ = J σ

e
Jp

and

Jψ = J
ψ
e

Jp
. Higher orders and individual hopping elements are

available upon request.
For the ground-state energy per plaquette e0, we get

e0

Jp
= − 1 + 3 Jψ

4
− 3 J σ 2

16
− 3 Jψ 2

32
− 9 J σ 2Jψ

128
− 3 J σ 3

32

− 3 Jψ 3

64
− 41 J σ 2Jψ 2

512
− 7 J σ 3Jψ

64
− 25 J σ 4

256

− 87 Jψ 4

2048
− 2429 J σ 2Jψ 3

24576
− 65 J σ 3Jψ 2

512

− 1187 J σ 4Jψ

6144
− 761 J σ 5

6144
− 99 Jψ 5

2048
. (F1)

For positive J σ , the dispersion of a single non-Abelian anyon
ωσ (�k) is minimized for �k = �0 at leading order and we obtain
for the corresponding gap �+

σ :

�+
σ

Jp
=1 − 3 J σ

2
− 3 Jψ 2

16
− 3 J σ Jψ

4
− 15 J σ 2

16
− 15 Jψ 3

64

− 87 J σ Jψ 2

128
− 9 J σ 2Jψ

8
− 99 J σ 3

128
− 189 Jψ 4

512

− 243 J σ Jψ 3

256
− 991 J σ 2Jψ 2

512
− 77 J σ 3Jψ

32

− 367 J σ 4

256
− 159 Jψ 5

256
− 5739 J σ Jψ 4

4096

− 765 J σ 2Jψ 3

256
− 113567 J σ 3Jψ 2

24576

− 18997 J σ 4Jψ

4096
− 55391 J σ 5

24576
. (F2)

For negative J σ , the dispersion of a single non-Abelian anyon
ωσ (�k) is minimized for �k = (± 2π

3 ,∓ 2π
3 ) at leading order and

we obtain for the corresponding gap �−
σ :

�−
σ

Jp
=1 + 3 J σ

4
− 3 Jψ 2

16
+ 3 J σ Jψ

8
− 3 J σ 2

32
− 15 Jψ 3

64

+ 87 J σ Jψ 2

256
+ 63 J σ 2Jψ

128
− 45 J σ 3

256
− 189 Jψ 4

512

+ 243 J σ Jψ 3

512
− 269 J σ 2Jψ 2

1024
+ 121 J σ 3Jψ

128

− 857 J σ 4

2048
− 159 Jψ 5

256
+ 5739 J σ Jψ 4

8192

− 2661 J σ 2Jψ 3

8192
+ 12845 J σ 3Jψ 2

49152
+ 3061 J σ 4Jψ

2048

− 40795 J σ 5

49152
. (F3)

For positive Jψ , the dispersion of a single hardcore boson
ωψ (�k) is minimized for �k = �0 at leading order and we obtain
for the corresponding gap �+

ψ :

�+
ψ

Jp
=1 − 3 Jψ

2
− 3 Jψ 2

4
− 9 J σ 2

8
− 21 Jψ 3

32
− 3 J σ 2Jψ

32

− 33 J σ 3

16
− 63 Jψ 4

64
− 215 J σ 2Jψ 2

128
+ J σ 3Jψ

8

− 583 J σ 4

128
− 3153 Jψ 5

2048
− 6127 J σ 2Jψ 3

4096

− 23375 J σ 3Jψ 2

6144
+ 585 J σ 4Jψ

2048
− 15313 J σ 5

1536
.

(F4)

For negative Jψ , the dispersion of a single hardcore boson
ωψ (�k) is minimized for �k = (± 2π

3 ,∓ 2π
3 ) at leading order and

we obtain for the corresponding gap �−
ψ :

�−
ψ

Jp
=1 + 3 Jψ

4
+ 3 Jψ 2

32
+ 15 Jψ 3

128
− 3 J σ 2Jψ

128
+ 21 J σ 3

64

+ 243 Jψ 4

2048
+ 7 J σ 2Jψ 2

512
+ 31 J σ 3Jψ

128
− 5 J σ 4

1024

+ 1671 Jψ 5

8192
+ 221 J σ 2Jψ 3

8192
+ 6317 J σ 3Jψ 2

12288

− 1673 J σ 4Jψ

8192
+ 215 J σ 5

1536
. (F5)
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FIG. 16. In the upper panel, we show here the low-energy
spectrum of the effective model (21) as a function of J σ

e [blue
�k = (± 2π

3 ,∓ 2π

3 ), black �k = (0,0) even number of noncontractible

strings, purple �k = (0,0) odd number of noncontractible strings in
at least one direction] for different system sizes (Np = 21 plaquettes
dashed, Np = 27 plaquettes solid). Series expansion results are shown
in orange. The spectrum reveals the topological trivial (unique ground
state) for J σ

e � Jp, the Z2 topological phase by the degeneracy
of the different topological sectors as well as the spontaneous
symmetry broken (nontopological) phase signaled by the ground
state degeneracy formed by states of different �k. In the lower panel,
we show ∂2

J σ
e
e0, whose minima indicate the location of the phase

transition. The inset shows the higher order derivative used to isolate
the transition to the frustrated phase.

APPENDIX G: DETAILS FOR THE STANDARD
(Z2) CASE

1. Benchmarking the numerical results using the Z2 case

In Fig. 16, we show the low-energy spectrum of Hamil-
tonian (21) as a benchmark for our analytical and numerical
findings for the transition out of the Z2 phase. For J σ

e � Jp,
we find a topological trivial phase with a unique ground state.
For |J σ

e | � Jp, we find the topological phase, whose presence
is signaled by the degeneracy of the states in the different
sectors defined by the parity of numbers of noncontractible
loops around the torus in different directions. For −J σ

e � Jp,
we find the translation symmetry broken phase signaled by the
degeneracy (up to finite size effects) of levels of different �k
in the ground state. The reduction from the complete model
(1) to the effective one (21) allows for larger system sizes
for the exact diagonalization as well as higher orders in the

perturbation theory. The coefficients of the series expansions
are given in Appendix G 2. The corresponding series for the
dispersion fit the expressions for the low-energy gap given in
Ref. [67] for the unfrustrated and Ref. [56] for the frustrated
case. Our results of the location of the transition from the
topological to the unfrustrated phase from series expansions
(J σ

e /Jp|c = 0.103) and from exact diagonalization (J σ
e /Jp|c =

0.115) are consistent with the value given in the literature
(J σ

e /Jp|c = 0.104) [54]. The same holds for the transition from
the topological to the frustrated phase, where we obtain the
location of the phase transition (J σ

e /Jp|c = −0.303) [43] from
series expansion as J σ

e /Jp|c = −0.305. In order to extract the
value from the exact diagonalization results, it is instructive
to consider higher order derivatives of the ground state energy
in order to separate the phase transitions more clearly. This
leads to a value J σ

e /Jp|c = −0.304. Note that this value is
reached only for the largest system sizes, as finite size effects
in the frustrated regime play a major role. Generally, one
can attribute the larger uncertainty of exact diagonalization
in this case to the fact that the single quasiparticle mode,
whose condensation drives the phase transition, is not part
of Hilbert space of the Z2 string-net model for periodic
boundary conditions. Thus, in contrast to the non-Abelian
original model (1), the low-energy mode signaling the phase
transition stems from the two-particle continuum. As the free
particle limit is reached only for larger system sizes, finite
size effects are typically more significant in the Abelian
models.

2. Series expansions for the Z2 case

In this section, we give the low-energy spectrum of the
Hamiltonian (21) as a function of J = J σ

e
Jp

determined by series
expansions. We give the ground-state energy per plaquette e0

as well as the individual hopping elements t�n leading to the
dispersion relation.

The ground-state energy per plaquette e0 reads up to order
11 in units of Jp:

e0

Jp
= − 1

2
− 3 J 2

4
− 3 J 3

2
− 87 J 4

16
− 99 J 5

4
− 2139 J 6

16

− 6315 J 7

8
− 1280037 J 8

256
− 4263501 J 9

128

− 118233091 J 10

512
− 40611961873 J 11

24576
. (G1)

This coincides with the series given in Ref. [67] after rescaling
the Hamiltonian accordingly.

For the dispersion of the low-energy excitations, we have
ω(�k) = ∑

�n ei�k�nt�n, where the hopping elements t�n are given in
units of Jp:

t�0
Jp

= 1

2
+ 3

2
J 2 + 6 J 3 + 207 J 4

8
+ 303 J 5

2
+ 963 J 6

+ 26697 J 7

4
+ 6136203 J 8

128
+ 45978297 J 9

128

+ 1411200267 J 10

512
+ 266121366979 J 11

12288
(G2)
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t�n2

Jp
= −J

2
− J 2

2
+ J 3

4
+ 9 J 4

4
+ 149 J 5

8
+ 231 J 6

2

+ 53291 J 7

64
+ 91539 J 8

16
+ 21552013 J 9

512

+ 3809770171 J 10

12288
+ 58039640957 J 11

24576
(G3)

t2�n2

Jp
= −J 2

4
− 3 J 3

2
− 41 J 4

8
− 73 J 5

4
− 2223 J 6

32

− 8003 J 7

32
− 46195 J 8

64
+ 829807 J 9

1024

+ 481385009 J 10

12288
+ 9409868561 J 11

18432
(G4)

t3�n2

Jp
= −J 3

4
− 15 J 4

4
− 381 J 5

16
− 543 J 6

4

− 99105 J 7

128
− 580905 J 8

128
− 55803529 J 9

2048

− 1026968231 J 10

6144
− 38227654615 J 11

36864
(G5)

t4�n2

Jp
= −5 J 4

16
− 35 J 5

4
− 347 J 6

4
− 42729 J 7

64

− 1216213 J 8

256
− 16937505 J 9

512

− 1413691361 J 10

6144
− 118743077371 J 11

73728
(G6)

t5�n2

Jp
= −7 J 5

16
− 315 J 6

16
− 9037 J 7

32
− 716327 J 8

256

− 49229795 J 9

2048
− 396348875 J 10

2048

− 223040672585 J 11

147456
(G7)

t6�n2

Jp
= −21 J 6

32
− 693 J 7

16
− 54639 J 8

64
− 10876353 J 9

1024

− 13864707 J 10

128
− 255268593 J 11

256
(G8)

t7�n2

Jp
= −33 J 7

32
− 3003 J 8

32
− 625647 J 9

256

− 153638895 J 10

4096
− 14714945105 J 11

32768
(G9)

t8�n2

Jp
= −429 J 8

256
− 6435 J 9

32
− 1717001 J 10

256

− 2050184705 J 11

16384
(G10)

t9�n2

Jp
= −715 J 9

256
− 109395 J 10

256
− 9112389 J 11

512
(G11)

t10�n2

Jp
= −2431 J 10

512
− 230945 J 11

256
(G12)

t11�n2

Jp
= −4199 J 11

512
(G13)

t�n1+�n2

Jp
= −J 2

2
− 3 J 3

2
− 4 J 4 − 47 J 5

4
− 259 J 6

8

− 737 J 7

32
+ 88575 J 8

128
+ 10288015 J 9

1024

+ 308119475 J 10

3072
+ 136697766643 J 11

147456
(G14)

t�n1+2�n2

Jp
= −3 J 3

4
− 5 J 4 − 51 J 5

2
− 1033 J 6

8

− 86911 J 7

128
− 237909 J 8

64
− 21190753 J 9

1024

− 1432677109 J 10

12288
− 31678495615 J 11

49152
(G15)

t�n1+3�n2

Jp
= −5 J 4

4
− 245 J 5

16
− 1835 J 6

16
− 3075 J 7

4

− 160697 J 8

32
− 67463475 J 9

2048

− 896422249 J 10

4096
− 434747248931 J 11

294912
(G16)

t�n1+4�n2

Jp
= −35 J 5

16
− 693 J 6

16
− 14231 J 7

32

− 958651 J 8

256
− 59524081 J 9

2048

− 1747975 J 10

8
− 239463246341 J 11

147456
(G17)

t�n1+5�n2

Jp
= −63 J 6

16
− 231 J 7

2
− 6279 J 8

4
− 8284299 J 9

512

− 300462381 J 10

2048
− 20429078349 J 11

16384
(G18)

t�n1+6�n2

Jp
= −231 J 7

32
− 4719 J 8

16
− 165363 J 9

32

− 262953129 J 10

4096
− 22060824855 J 11

32768
(G19)

t�n1+7�n2

Jp
= −429 J 8

32
− 186615 J 9

256
− 4121403 J 10

256

− 488124205 J 11

2048
(G20)

t�n1+8�n2

Jp
=−6435 J 9

256
− 449735 J 10

256
− 24552385 J 11

512
(G21)

t�n1+9�n2

Jp
= −12155 J 10

256
− 1062347 J 11

256
(G22)

t�n1+10�n2

Jp
= −46189 J 11

512
(G23)

t2�n1+2�n2

Jp
= −15 J 4

8
− 35 J 5

2
− 1965 J 6

16
− 25231 J 7

32

− 80249 J 8

16
− 16511537 J 9

512
− 40479223 J 10

192

− 12901176995 J 11

9216
(G24)
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t2�n1+3�n2

Jp
= −35 J 5

8
− 945 J 6

16
− 17143 J 7

32
− 537139 J 8

128

− 7969807 J 9

256
− 928510405 J 10

4096

− 485047715845 J 11

294912
(G25)

t2�n1+4�n2

Jp
= −315 J 6

32
− 3003 J 7

16
− 68523 J 8

32
− 20517711 J 9

1024

− 5462787 J 10

32
− 1422572163 J 11

1024
(G26)

t2�n1+5�n2

Jp
= −693 J 7

32
− 9009 J 8

16
− 509553 J 9

64

− 359701515 J 10

4096
− 27921342885 J 11

32768
(G27)

t2�n1+6�n2

Jp
= −3003 J 8

64
− 6435 J 9

4
− 14263821 J 10

512

− 1470047415 J 11

4096
(G28)

t2�n1+7�n2

Jp
=−6435 J 9

64
− 1130415 J 10

256
− 5925205 J 11

64
(G29)

t2�n1+8�n2

Jp
= −109395 J 10

512
− 3002285 J 11

256
(G30)

t2�n1+9�n2

Jp
= −230945 J 11

512
(G31)

t3�n1+3�n2

Jp
= −105 J 6

8
− 3465 J 7

16
− 18837 J 8

8

− 5470485 J 9

256
− 365718357 J 10

2048

− 23482123047 J 11

16384
(G32)

t3�n1+4�n2

Jp
= −1155 J 7

32
− 3003 J 8

4
− 1241625 J 9

128

− 414943293 J 10

4096
− 31076174115 J 11

32768
(G33)

t3�n1+5�n2

Jp
= −3003 J 8

32
− 315315 J 9

128
− 4816383 J 10

128

− 920970315 J 11

2048
(G34)

t3�n1+6�n2

Jp
= −15015 J 9

64
− 984555 J 10

128
− 70804305 J 11

512
(G35)

t3�n1+7�n2

Jp
= −36465 J 10

64
− 11778195 J 11

512
(G36)

t3�n1+8�n2

Jp
= −692835 J 11

512
(G37)

t4�n1+4�n2

Jp
= −15015 J 8

128
− 45045 J 9

16
− 5300295 J 10

128

− 3958082595 J 11

8192
(G38)

t4�n1+5�n2

Jp
= −45045 J 9

128
− 1276275 J 10

128
− 42814629 J 11

256
(G39)

t4�n1+6�n2

Jp
= −255255 J 10

256
− 4295577 J 11

128
(G40)

t4�n1+7�n2

Jp
=−692835 J 11

256
(G41)

t5�n1+5�n2

Jp
= −153153 J 10

128
− 4849845 J 11

128
(G42)

t5�n1+6�n2

Jp
=−969969 J 11

256
(G43)

The remaining hopping elements are related by lattice symme-
tries of the underlying triangular lattice and can be obtained
via the relations

t�r = t−�r , (G44)

tn2 �n1+n1 �n2 = tn1 �n1+n2 �n2 , (G45)

t−n2 �n1+(n1+n2)�n2 = tn1 �n1+n2 �n2 , (G46)

t(−n1−n2)�n1+n1 �n2 = tn1 �n1+n2 �n2 . (G47)

For positive J , the minimum of the dispersion is obtained
for �k = �0 and reads

�+

Jp
= 1

2
− 3 J − 6 J 2 − 21 J 3 − 126 J 4 − 3153 J 5

4

− 44379 J 6

8
− 2570661 J 7

64
− 9821055 J 8

32

− 1222762161 J 9

512
− 39126191841 J 10

2048

− 7619833519319 J 11

49152
. (G48)

This series coincides with the series given in Ref. [67] after
rescaling the Hamiltonian accordingly (up to an obvious typo
in Ref. [67]).

For negative J , the minimum of the dispersion is obtained
for �k = (± 2π

3 ,∓ 2π
3 ) and reads

�−

Jp
= 1

2
+ 3 J

2
+ 3 J 2

4
+ 15 J 3

4
+ 243 J 4

16
+ 1671 J 5

16

+ 22275 J 6

32
+ 162855 J 7

32
+ 9700617 J 8

256

+ 595490847 J 9

2048
+ 9308111103 J 10

4096

+ 1777064899901 J 11

98304
. (G49)

This series coincides with the series given in Ref. [56] after
rescaling the Hamiltonian accordingly.
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FIG. 17. Finite size scaling for the transition from the topological
to the trivial phase. From the minima of ∂2e0, we obtain the points,
which extrapolate to the limit J+

Jp
|
c
= −0.0276.

APPENDIX H: FINITE SIZE SCALING FOR THE
TRANSITION OUT OF THE Z′

2 TOPOLOGICAL PHASE

Here, we present the finite size scaling for the phase
transition out of the Z′

2 phase as determined for the effective
model (27). In Fig. 17, we show the locations of the transition
to the trivial phase obtained for several system sizes by exact
diagonalization by considering the minimum of ∂2

J+
e
e0 (shown

in Fig. 11). Extrapolating the location in 1√
Np

, we obtain the

location of the thermodynamic to be J+

Jp
|
c
= −0.0276.

FIG. 18. Finite size scaling for the transition from the topological
to the columnar phase. From the minima of ∂2e0, we obtain the points,
which extrapolate to the limit J+

Jp
|
c
= −0.275.

A similar analysis of the transition to the columnar phase
col1 shows a much stronger system-size dependence than for
the unfrustrated case (see Fig. 18), which leads us to conclude
that the transition locations determined for the full model (1) on
systems up to Np = 12 plaquettes may deviate from the ones
in the thermodynamic limit significantly. Extrapolating the
results for the effective model (27) to the thermodynamic limit,
we obtain the location of the transition to be at J+

Jp
|
c
= −0.275.
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