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Cubic scaling GW : Towards fast quasiparticle calculations
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Within the framework of the full potential projector-augmented wave methodology, we present a promising
low-scaling GW implementation. It allows for quasiparticle calculations with a scaling that is cubic in the system
size and linear in the number of k points used to sample the Brillouin zone. This is achieved by calculating
the polarizability and self-energy in the real-space and imaginary-time domains. The transformation from the
imaginary time to the frequency domain is done by an efficient discrete Fourier transformation with only a few
nonuniform grid points. Fast Fourier transformations are used to go from real space to reciprocal space and vice
versa. The analytic continuation from the imaginary to the real frequency axis is performed by exploiting Thiele’s
reciprocal difference approach. Finally, the method is applied successfully to predict the quasiparticle energies
and spectral functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF),
and metals (Cu and SrVO3). The results are compared with conventional GW calculations. Good agreement is
achieved, highlighting the strength of the present method.
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I. INTRODUCTION

Kohn-Sham (KS) density functional theory (DFT) in the
local density approximation (LDA) [1] has been proven to
be successful in describing the ground-state properties for
many weakly correlated materials. However, it fails to predict
excited-state properties [2]. For instance, DFT within the
LDA or generalized gradient approximation (GGA) always
gives a smaller band gap than the experimental value. This
is not surprising because DFT is just a ground-state theory
and there is no formal justification to interpret DFT eigen-
values as quasiparticle (QP) energies. In contrast, the GW

approximation of Hedin [3,4] has been widely and successfully
applied to the calculations of QP energies for many kinds of
systems (for reviews, see Refs. [5,6]) because it provides a
good approximation for the electron’s self-energy by including
many-body effects in the electron-electron interaction. This is
achieved by screening the bare exchange interaction with the
inverse frequency-dependent dielectric function. Moreover,
since the GW self-energy can be diagrammatically formulated
in the same many-body framework as dynamical mean field
theory (DMFT) [7,8], the GW approximation not only enables
an elegant combination with DMFT, i.e., GW+DMFT [9,10],
but also overcomes the fundamental double-counting problems
occurring in LDA+DMFT because for GW+DMFT one actu-
ally knows which Feynman diagrams are counted twice [11].

However, conventional GW calculations are usually re-
stricted to small systems and few k points. This is related to
the fairly high computational cost, which is caused by the
evaluation of the computationally demanding polarizability
and self-energy at a set of real frequencies. Direct evaluation
of the polarizability using the Adler and Wiser formula [12,13]
involves a summation over all pairs of occupied and
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unoccupied states, leading to the quartic scaling in the system
size and quadratic scaling in the number of k points used to
sample the Brillouin zone (BZ). Furthermore, calculation of
the self-energy for all occupied states in reciprocal space and
real frequency is at least two times more expensive than the
evaluation of the polarizability. To reduce the computational
effort, the space-time method [14,15], which calculates the
polarizability and self-energy in real space and imaginary time,
was proposed. Nevertheless, the space-time method demands
considerable storage for the Green’s function and self-energy
due to the huge number of real-space grid points. In addition,
to obtain reasonable convergence, fairly dense imaginary-time
grids are required.

To circumvent the large storage requirement of the space-
time method, a promising scheme has been recently proposed
by Kaltak et al. [16,17]. It allows to calculate the random phase
approximation (RPA) correlation energy with a cubic scaling
in the system size and a linear scaling in the number of k points
used to sample the BZ. As in the work of Rojas et al. [14],
this is achieved by calculating the polarizability in real space
and imaginary time via contraction over the Green’s functions
of occupied and unoccupied states. The transformation of the
polarizability from the imaginary time to the frequency domain
is performed by an efficient discrete Fourier transformation
with only a few nonuniform grid points [16]. Spatial fast
Fourier transformations (FFT) within a supercell are utilized
to go from real space to reciprocal space and vice versa [17].

Here, we extend Kaltak’s scheme [16,17] to QP calculations
in the GW approximation, in which the screened Coulomb
interaction W is calculated within the RPA and the self-
energy is efficiently evaluated via contraction over the Green’s
function and W in real space and imaginary time. Similar
spatial FFT as discussed in Ref. [17] are employed, whenever
transformations between the real and reciprocal space are
required. To transform the self-energy from the imaginary
time to the frequency domain, nonuniform cosine and sine
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transformations are used for the even and odd parts of the self-
energy, respectively. Given that DMFT is usually formulated
on the imaginary frequency axis as well [7,8], our method
provides a natural interface for the combination of GW with
DMFT.

In this paper, we focus only on the GW QP calculations.
Detailed formulations for our low-scaling GW implementa-
tion within the framework of the projector-augmented wave
(PAW) are given. Considering that the Green’s functions and
self-energies in the present implementation are evaluated at
imaginary frequencies, an analytic continuation to the real
frequency axis is required to compare with experimentally
measured observables, such as QP energies and spectral func-
tions. To this end, Thiele’s reciprocal difference method [18]
is used. We then apply our new implementation to predict the
QP energies and spectral functions for typical semiconductors
(Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and
LiF), and metals (Cu and SrVO3), and compare our results
with the conventional GW implementation. For the sake of
brevity, we just show the comparison for the single-shot GW

calculations, i.e., G0W0, where the one-electron energies and
wave functions required in G and W are fixed at the DFT level.
The self-consistent low-scaling GW will be discussed in future
publications. To avoid confusion with the conventional G0W0,
we denote our low-scaling single-shot GW as G0W0r . It is
found that the QP energies and spectral functions predicted by
G0W0r are in good agreement with G0W0 but with a reduced
scaling in the system size and number of k points, highlighting
the power of the present method.

II. METHOD

Figure 1 shows our scheme for the low-scaling GW QP
calculations. The polarizability χ (r,R′,iτ ) is calculated via
the contraction (GG) of the occupied and unoccupied Green’s
functions within the PAW framework [17]. The contraction
is performed in real space and the necessary quantities are
obtained by fast Fourier transformations (FFT) within a super-
cell [17]. Subsequently, the screened interaction Wk(g,g′,iω)

FIG. 1. Schematic work flow for the low-scaling GW QP
calculations showing the necessary steps [(1)–(12)] to obtain the
QP energies from the Green’s function G via the polarizability χ ,
screened Coulomb interaction W , and self-energy �. FFT denote
fast Fourier transformations between real and reciprocal space. CT
and ST are nonuniform cosine and sine transformations between
imaginary time and frequency.

is obtained within the RPA. To transform the polarizability χ

and screened Coulomb interaction W from imaginary time
to frequency domain and vice versa, efficient nonuniform
cosine transformations (CT) [16] are used. The self-energy
�(r,R′,iτ ) is calculated by contracting the Green’s function
and W within the GW approximation. The matrix elements
of the self-energy in the orbital basis are evaluated within
the PAW. To transform the self-energy from the imaginary
time to the frequency domain, CT and sine transformations
(ST), respectively, are used for the even and odd parts of the
self-energy. The self-energy along the real frequency axis is
obtained by an analytic continuation (AC). Finally, the QP
energies E

QP
nk within single-shot G0W0r are calculated by

linearizing the diagonal elements of the self-energy around the
DFT one-electron eigenvalues εnk. The subsequent subsections
describe these steps in detail.

A. Description of notations and definitions

In this part, we will give the description of the notations used
throughout the paper, the definition of the Green’s functions,
as well as the spatial and temporal Fourier transformations.

1. Definitions of Green’s functions

In this paper, we have defined two types of Green’s
functions: occupied and unoccupied Green’s functions, which
are evaluated for the negative and positive time, respectively:

G(r,r′,iτ ) =
occ∑
i

ψi(r)ψ∗
i (r′)e−εi τ (τ < 0), (1)

G(r,r′,iτ ) = −
unocc∑

a

ψa(r)ψ∗
a (r′)e−εaτ (τ > 0). (2)

Here, the indices i and a label occupied and unoccupied
orbitals, respectively. ψi(r) [ψa(r)] is the one-electron orbital
with the energy of εi (εa) and the Fermi energy is set to
zero. This implies that all occupied (unoccupied) one-electron
energies εi (εa) are negative (positive), yielding exponentially
decaying Green’s functions G and G. With the definitions in
Eqs. (1) and (2), the single-particle Green’s function can be
expressed as

G(r,r′,iτ ) = �(τ )G(r,r′,iτ ) + �(−τ )G(r,r′,iτ ), (3)

where � is the Heaviside step function.

2. Nonuniform imaginary-time and frequency grids

The imaginary-time {iτj }Nj=1 and frequency {iωk}Nk=1 grids
used in this work have been determined by minimizing the
discretization error of the direct Møller-Plesset energy in the
imaginary-time and frequency domains, respectively [16]. It
has been found that the two grids are dual to each other.
That is, given {iτj }Nj=1, the discretization error function is
minimal at the grid points {iωk}Nk=1, and vice versa [16].
It has also been observed that the RPA correlation energy
can be evaluated accurately with a modest number of grid
points [16]. For instance, to achieve μeV accuracy per atom,
16 time and frequency points are usually sufficient [16]. In
this work, we also found that with 20 grid points, we could
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obtain converged QP energies with 0.01 eV accuracy for all
the materials considered. With a few imaginary grid points,
the memory requirements are obviously much reduced.

3. Nonuniform cosine and sine transformations

To go from the imaginary time to imaginary frequency,
and vice versa, nonuniform discrete cosine and sine transfor-
mations have been exploited for the even and odd functions,
respectively. Specifically, for an even function F with respect
to imaginary time/frequency, such as the polarizability χ

and screened Coulomb interaction W , the forward Fourier
transformation is given by a CT

F (iωk) =
N∑

j=1

γkj cos(ωkτj )F (iτj ). (4)

Here, the imaginary time {iτj }Nj=1 and frequency {iωk}Nk=1
grids are precalculated. The coefficients γkj are determined
in analogy to the imaginary time and frequency grids by
minimizing the error function [16]

ηc(x,γ ) = 2x

x2 + ω2
k︸ ︷︷ ︸

2
∫ ∞

0 dτ cos(ωkτ )e−xτ

−
N∑

j=1

γkj cos(ωkτj )e−xτj , (5)

for all transition energies min(εa − εi) � x � max(εa − εi)
and each known frequency point ωk separately.

Analogously, the inverse CT is given by [16]

F (iτj ) =
N∑

k=1

ξjk cos(τjωk)F (iωk), (6)

where the matrix ξ cos(τω) is the inverse of the matrix
γ cos(ωτ ) in Eq. (4).

In contrast, for an odd function F with respect to imag-
inary time/frequency, the forward Fourier transformation is
described by a ST

F (iωk) = i

N∑
j=1

λkj sin(ωkτj )F (iτj ). (7)

Again, {iτj }Nj=1 and {iωk}Nk=1 are precalculated and chosen to
be identical to the cosine grid. However, the coefficients λkj

are determined by minimizing the error function

ηs(x,λ) = 2ωk

x2 + ω2
k︸ ︷︷ ︸

2
∫ ∞

0 dτ sin(ωkτ )e−xτ

−
N∑

j=1

λkj sin(ωkτj )e−xτj . (8)

To this end, similar strategies as discussed in Ref. [16] are
used. The inverse ST is then obtained by

F (iτj ) = −i

N∑
k=1

ζjksin(τjωk)F (iωk), (9)

where the matrix ζ sin(τω) is the inverse of the matrix λsin(ωτ )
in Eq. (7). It should be noted that the matrices γ , ξ , λ, and ζ are
all precalculated and stored after the imaginary time {iτj }Nj=1

and frequency {iωk}Nk=1 grids are determined.

4. Spatial fast Fourier transformation

To transform the Green’s functions from reciprocal to real
space, we employ fast discrete Fourier transformation within
a supercell [17]. Considering the symmetry of the Green’s
functions, only the irreducible stripe G(r,R′) needs to be
calculated in two steps [17]:

G(r,G′) =
∑
g∈L∗

c

ei(k+g)rGk(g,g′), (10)

G(r,R′) =
∑

G′∈L∗
s

G(r,G′)e−iG′R′
. (11)

Here, position vector r is restricted to the unit cell (C), whereas
R extends over the entire supercell (S). g and G, respectively,
represent the lattice vector of the reciprocal cell (L∗

c ) and
reciprocal supercell (L∗

s ). Furthermore, k is a k point used
to sample the Brillouin zone (BZ) and G′ = k + g′. The time
complexity of the spatial FFT is of the order ln(N2

b Nk)N2
b Nk

with Nb and Nk being the total number of considered basis
vectors g and k points in the BZ, respectively [17].

Similarly, the inverse spatial FFT is given by [17]

G(r,G′) =
∑
R′∈S

G(r,R′)eiG′R′
, (12)

Gk(g,g′) =
∑
r∈C

e−i(k+g)rG(r,G′), (13)

which has the same time complexity as the spatial FFT.
Considering that the polarizability χ has the same spatial

symmetry as the Green’s functions, the above-mentioned
spatial and inverse spatial FFT applies to the polarizability
χ as well.

B. Calculation of the polarizability χ (r,R′,iτ ) within the PAW

In this section, we discuss the steps 1 and 2 in Fig. 1 and
derive a suitable expression for the polarizability in real space
χ (r,R′,iτ ) within the framework of the PAW method.

It is known that the evaluation of the polarizability in
reciprocal space and real frequency results in an unfavorable
scaling. However, the polarizability is simply multiplicative,
when evaluated in the real-space and imaginary-time do-
mains [14,15]

χ (r,R′,iτ ) = G(r,R′,iτ )G∗(r,R′, − iτ ). (14)

For simplicity, we restrict our considerations to positive
imaginary times τ > 0 in the following since the expressions
for τ < 0 are obtained by exchanging G ↔ G.

Inserting expression (3) for the Green’s function into (14)
and using the explicit representations in Eqs. (1) and (2) yields,
for τ > 0,

χ (r,R′,iτ ) = −
unocc∑

a

ψa(r)ψ∗
a (R′)e−εaτ

occ∑
i

ψi(R′)ψ∗
i (r)eεiτ .

(15)
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Fourier transforming this expression using Eqs. (12) and (13)
gives the polarizability in reciprocal space for τ > 0,

χk(g,g′,iτ ) = −
occ∑
i

unocc∑
a

ξia(iτ )〈ψi |e−i(k+g)r|ψa〉

× 〈ψa|ei(k+g′)r′ |ψi〉, (16)

where ξia(τ ) = e−(εa−εi )τ describes the time dependence.
However, within the PAW method [19,20], this expression

is more involved because the all-electron orbitals ψnk are
related to the corresponding pseudo-orbitals ψ̃nk by a linear
transformation

|ψnk〉 = |ψ̃nk〉 +
∑

μ

(|φμ〉 − |φ̃μ〉)〈p̃μ|ψ̃nk〉. (17)

The pseudo-orbitals ψ̃nk are the variational quantity of the
PAW method and are expanded in plane waves, whereas φμ

and φ̃μ are all-electron and pseudo-partial waves, respectively,
and p̃μ are projectors, which are dual to the φ̃μ within the
augmentation sphere. The index μ = (Rμ,nμ,lμ,mμ) is an
abbreviation for the atomic site Rμ and the energy quantum
number nμ and angular momentum numbers (lμ,mμ) that
characterize the solution of the Schrödinger equation for a
reference atom.

Inserting Eq. (17) into Eq. (15) yields four terms for τ > 0:

χ (1)(r,R′,iτ ) = −
unocc∑

a

ψ̃a(r)ψ̃∗
a (R′)e−εaτ

×
occ∑
i

ψ̃i(R′)ψ̃∗
i (r)eεiτ , (18)

χ (2)(r,R′,iτ ) = −
∑
μν

Qμν(r)
unocc∑

a

〈p̃ν |ψ̃a〉ψ̃∗
a (R′)e−εaτ

×
occ∑
i

ψ̃i(R′)〈ψ̃i |p̃μ〉eεiτ , (19)

χ (3)(r,R′,iτ ) = −
∑
αβ

Qαβ(R′)
unocc∑

a

ψ̃a(r)〈ψ̃a|p̃α〉e−εaτ

×
occ∑
i

〈p̃β |ψ̃i〉ψ̃∗
i (r)eεiτ , (20)

χ (4)(r,R′,iτ ) = −
∑
μναβ

Qμν(r)Qαβ(R′)

×
unocc∑

a

〈p̃ν |ψ̃a〉〈ψ̃a|p̃α〉e−εaτ

×
occ∑
i

〈p̃β |ψ̃i〉〈ψ̃i |p̃μ〉eεiτ , (21)

where the auxiliary function Qαβ(r) is defined as

Qαβ(r) = φ∗
α(r)φβ(r) − φ̃∗

α(r)φ̃β(r), (22)

and describes the difference between the charge density of
all-electron and pseudo-partial waves. In practice, one needs
further approximations for Qαβ(r) since normally this function
is oscillatory within the augmentation sphere. In the present

implementation, the function is expanded in an orthogonal set
of functions, and the rapid spatial oscillations are neglected
beyond a certain plane-wave energy cutoff [20].

According to the definitions of the Green’s functions in
Eqs. (1) and (2) and four expressions in Eqs. (18)–(21), we
define here four auxiliary functions for unoccupied Green’s
functions:

G
(1)

(r,R′,iτ ) = −
unocc∑

a

ψ̃a(r)ψ̃∗
a (R′)e−εaτ , (23)

G
(2)

(ν,R′,iτ ) = −
unocc∑

a

〈p̃ν |ψ̃a〉ψ̃∗
a (R′)e−εaτ , (24)

G
(3)

(r,α,iτ ) = −
unocc∑

a

ψ̃a(r)〈ψ̃a|p̃α〉e−εaτ , (25)

G
(4)

(ν,α,iτ ) = −
unocc∑

a

〈p̃ν |ψ̃a〉〈ψ̃a|p̃α〉e−εaτ , (26)

and four auxiliary functions for occupied Green’s functions:

G∗(1)(r,R′,−iτ ) =
occ∑
i

ψ̃i(R′)ψ̃∗
i (r)eεiτ , (27)

G∗(2)(μ,R′,−iτ ) =
occ∑
i

ψ̃i(R′)〈ψ̃i |p̃μ〉eεiτ , (28)

G∗(3)(r,β,−iτ ) =
occ∑
i

〈p̃β |ψ̃i〉ψ̃∗
i (r)eεiτ , (29)

G∗(4)(μ,β,−iτ ) =
occ∑
i

〈p̃β |ψ̃i〉〈ψ̃i |p̃μ〉eεiτ . (30)

It is easy to prove that

G(2)(ν,R′,iτ ) =
∑
r∈C

〈p̃ν |r〉G(1)(r,R′,iτ ), (31)

G(3)(r,α,iτ ) =
∑
R′∈S

G(1)(r,R′,iτ )〈R′|p̃α〉, (32)

G(4)(ν,α,iτ ) =
∑
r∈C

∑
R′∈S

〈p̃ν |r〉G(1)(r,R′,iτ )〈R′|p̃α〉, (33)

holds for both auxiliary unoccupied and occupied Green’s
functions.

With the definitions in Eqs. (23)–(30), we obtain the central
expression for the polarizability χ (r,R′,iτ ) at τ > 0 within the
PAW framework as follows:

χ (r,R′,iτ ) = G
(1)

(r,R′,iτ )G∗(1)(r,R′,−iτ )

+
∑
μν

Qμν(r)G
(2)

(ν,R′,iτ )G∗(2)(μ,R′,−iτ )

+
∑
αβ

Qαβ(R′)G
(3)

(r,α,iτ )G∗(3)(r,β,−iτ )

+
∑
μναβ

Qμν(r)Qαβ(R′)

×G
(4)

(ν,α,iτ )G∗(4)(μ,β,−iτ ). (34)

Here, the atomic positions Rμ, Rν are restricted to the unit
cell C, while Rα , Rβ take values within the supercell S. Note
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that the polarizability for τ < 0 is recovered from Eq. (34) by
exchanging G ↔ G.

In practice, we do not store the auxiliary Green’s functions
in Eqs. (23)–(25) and (27)–(29) directly using the real-space
grids since this would demand considerable storage due to the
large number of real-space grid points. Instead, we evaluate
them in the reciprocal space using a plane-wave representation
first, and successively Fourier transform the functions to real
space whenever required. Since the number of plane-wave
coefficients is at least twice but often up to 16 times smaller
than the number of real-space grid points, the storage demand
is dramatically reduced. Fourier transforming Eqs. (23)–(25) to
the reciprocal space yields another three auxiliary unoccupied
Green’s functions:

G
(1)
k (g,G′,iτ ) = −

unocc∑
a

〈g|ψ̃a〉〈ψ̃a|G′〉e−εaτ , (35)

G
(2)
k (ν,G′,iτ ) = −

unocc∑
a

〈p̃ν |ψ̃a〉〈ψ̃a|G′〉e−εaτ , (36)

G
(3)
k (g,α,iτ ) = −

unocc∑
a

〈g|ψ̃a〉〈ψ̃a|p̃α〉e−εaτ . (37)

Analogously, Fourier transforming Eqs. (27)–(29) to the re-
ciprocal space yields another three auxiliary occupied Green’s
functions [21]:

G
∗(1)
k (g,G′,−iτ ) =

occ∑
i

〈G′|ψ̃i〉〈ψ̃i |g〉eεiτ , (38)

G
∗(2)
k (μ,G′,−iτ ) =

occ∑
i

〈G′|ψ̃i〉〈ψ̃i |p̃μ〉eεiτ , (39)

G
∗(3)
k (g,β,−iτ ) =

occ∑
i

〈p̃β |ψ̃i〉〈ψ̃i |g〉eεiτ , (40)

where the notation

〈g|ψ̃〉 =
∑
r∈C

e−i(k+g)rψ̃(r), (41)

〈ψ̃ |G′〉 =
∑
R′∈S

ψ̃∗(R′)eiG′R′
(42)

is used. The computational complexity for evaluating both

G(j ) and G
(j )

is of the order:NNkN
3
b showing a roughly cubic

scaling in the system size (≈Nb) and linear scaling in the
number of k points Nk and imaginary grid points N .

We point out that the widely used conventional GW

implementation [22], where the polarizability is directly
evaluated in the reciprocal space and real frequency domain,
shows an unfavorable scaling that is quartic in the system
size and quadratic in the number of k points. This scaling is
acceptable or even beneficial for small systems, but prohibitive
as the system size becomes larger. In contrast, in our new
GW implementation, the computational cost in calculating
the polarizability reduces to a scaling that is nearly cubic in
the system size and linear in the number of k points. This
definitely increases the efficiency of GW calculations for
large systems. This is also true for the original space-time
implementation of Godby et al. [14,15], but we emphasize

that our implementation has the following advantages: (i) The
Green’s functions are stored in a plane-wave representation
at a few optimized imaginary-time/frequency grid points,
which dramatically reduces the memory requirement. (ii) It
is implemented within the PAW method. (iii) Discrete CT
and ST transformations and spatial FFT are used and the
implementation is highly parallelized. (iv) Although similar
strategies were used in Ref. [15], an auxiliary supercell Green’s
function was defined without the Bloch phase factors eik(r−r′).
The present method is applicable to all electron Hamiltonians,
whereas the augmentation terms cannot be straightforwardly
implemented following Ref. [15].

C. Calculation of the correlated screened Coulomb interaction
W̃ (r,R′,iω)

Now, we describe the evaluation of the dynamical correlated
screened Coulomb interaction W̃ (r,R′,iω), which corresponds
to the steps 3–7 in Fig. 1. Once the polarizability χ (r,R′,iτ )
has been calculated, one has to Fourier transform it to the
reciprocal space and imaginary frequency domain where the
screened Coulomb interaction is much more comfortable to be
calculated. The calculation of W̃ (r,R′,iω) involves five steps:

(i) χk(g,g′,iτ ) is determined by an inverse spatial FFT of
χ (r,R′,iτ ) in two steps:

χ (r,G′,iτ ) =
∑
R′∈S

χ (r,R′,iτ )eiG′R′
, (43)

χk(g,g′,iτ ) =
∑
r∈C

e−i(k+g)rχ (r,G′,iτ ). (44)

Actually, in our implementation the polarizability χ (r,R′,iτ )
is never stored. Instead, once χ (r,R′,iτ ) is known for a
specific r and all R′, Eq. (43) is used to Fourier transform
the second index to the reciprocal space where the reciprocal
wave vectors are restricted to a cutoff sphere, and χ (r,G′,iτ ) is
then stored. The second FFT in Eq. (44) cannot be performed
until χ (r,G′,iτ ) for all r has been calculated.

(ii) χk(g,g′,iω) is computed by a CT of χk(g,g′,iτ ),

χk(g,g′,iωk) =
N∑

j=1

γkj cos(ωkτj )χk(g,g′,iτj ). (45)

(iii) The full screened Coulomb interaction Wk(g,g′,iω) is
evaluated by multiplying the bare Coulomb kernel with the
inverse dielectric matrix

Wk(g,g′,iω) = vk(g,g′)ε−1
k (g,g′,iω), (46)

where the symmetric bare Coulomb kernel vk(g,g′) is

vk(g,g′) = 4πe2

|k + g||k + g′| . (47)

The symmetric dielectric matrix is calculated within the RPA
as

εk(g,g′,iω) = δg,g′ − vk(g,g′)χk(g,g′,iω). (48)

To make the integral over the imaginary frequency well
defined, we further define the correlated screened Coulomb
interaction

W̃k(g,g′,iω) = Wk(g,g′,iω) − vk(g,g′). (49)
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(iv) W̃k(g,g′,iτ ) is determined by an inverse CT of
W̃k(g,g′,iω),

W̃k(g,g′,iτj ) =
N∑

k=1

ξjk cos(τjωk)W̃k(g,g′,iωk). (50)

(v) Finally, W̃ (r,R′,iτ ) is calculated by a spatial FFT in
two steps:

W̃ (r,G′,iτ ) =
∑
g∈L∗

c

ei(k+g)rW̃k(g,g′,iτ ), (51)

W̃ (r,R′,iτ ) =
∑

G′∈L∗
s

W̃ (r,G′,iτ )e−iG′R′
. (52)

D. Calculation of the self-energy

In this section, we give a detailed description how the
matrix elements of the self-energy in the orbital basis along
the imaginary frequency axis are evaluated. This corresponds
to the steps 8–10 in Fig. 1.

1. Evaluation of the self-energy �(r,R′,iτ ) within the GW A

Within the GW approximation, the self-energy in the
reciprocal space and real frequency domain is evaluated
by a convolution of the Green’s function and screened
Coulomb interaction and is used in the conventional GW

implementation [22]. However, to obtain converged self-
energies, a reasonable number of the real frequency points

(∼50 or more) is required to evaluate the convolution integral,
thus increasing the computational cost. In contrast, when the
self-energy is evaluated in real space and time, it is simply
multiplicative [14]

�(r,R′,iτ ) = −G(r,R′,iτ )W (r,R′,iτ ). (53)

In addition, only a few imaginary-time points are required due
to the smooth behavior of the Green’s functions and screened
Coulomb interaction along the imaginary axis.

2. Evaluation of �̃(k)
nn (iτ ) within the PAW

In the following, we evaluate the matrix elements of the
self-energy in the orbital basis within the PAW framework.
We focus only on the frequency/time-dependent correlation
contribution −〈ψnk|GW̃ |ψnk〉 since the bare exchange part
−〈ψnk|Gvx |ψnk〉 within the PAW has already been discussed
elsewhere [23]. Furthermore, we define “occupied” �̃ and

“unoccupied” �̃ correlated self-energies, i.e., the self-energies
evaluated at negative and positive time, respectively, analogous
to the Green’s functions.

Here, we concentrate on the occupied self-energy �̃ only.
The evaluation of the matrix elements of the unoccupied self-
energy �̃ is done by replacing G with G. Within the PAW, the
diagonal matrix elements of the occupied self-energy (τ < 0)
can be calculated as

�̃
(k)
nn (iτ ) = 〈ψnk|�̃(iτ )|ψnk〉 = −〈ψnk|G(iτ )W̃ (iτ )|ψnk〉

= −
∑
r∈C

∑
R′∈S

〈ψ̃nk|
{

|r〉〈r| +
∑
μν

Qμν(r)|p̃μ〉〈p̃ν |
}

G(iτ )W̃ (iτ )

⎧⎨
⎩|R′〉〈R′| +

∑
αβ

Qαβ(R′)|p̃α〉〈p̃β |
⎫⎬
⎭|ψ̃nk〉. (54)

Here, |r〉〈r| + ∑
μν Qμν(r)|p̃μ〉〈p̃ν | is the density operator

within the PAW at the position r [19,20]. The one-center term∑
μν Qμν(r)|p̃μ〉〈p̃ν | arises from the additive augmentation of

the PAW.
The calculation is performed in two steps, starting with

the contraction �̃ = −GW̃ in real space and imaginary time.
In analogy to the four auxiliary components of the Green’s
function, we obtain four quantities that store the self-energy,

�̃
(1)

(r,R′,iτ ) = −G(1)(r,R′,iτ )W̃ (r,R′,iτ ), (55)

�̃
(2)

(μ,R′,iτ ) = −
∑

ν

D(2)(μν,R′,iτ )G(2)(ν,R′,iτ ), (56)

�̃
(3)

(r,β,iτ ) = −
∑

α

G(3)(r,α,iτ )D(3)(r,αβ,iτ ), (57)

�̃
(4)

(μ,β,iτ ) = −
∑
να

G(4)(ν,α,iτ )D(4)(μν,αβ,iτ ), (58)

where the auxiliary quantities D(2), D(3), and D(4) are defined
as

D(2)(μν,R′,iτ ) =
∑
r∈C

Qμν(r)W̃ (r,R′,iτ ), (59)

D(3)(r,αβ,iτ ) =
∑
R′∈S

W̃ (r,R′,iτ )Qαβ(R′), (60)

D(4)(μν,αβ,iτ ) =
∑
r∈C

∑
R′∈S

Qμν(r)W̃ (r,R′,iτ )Qαβ(R′). (61)

Again, the Green’s functions and the screened interaction
are stored in reciprocal space and Fourier transformed to the
real space on the fly, whenever they are required. To reduce
the memory requirements, the self-energy is also stored in
reciprocal space. In the second step, the matrix elements of
the self-energy are then obtained as

�̃
(k)
nn (iτ ) =

∑
r∈C

∑
R′∈S

ψ̃∗
nk(r)�̃

(1)
(r,R′,iτ )ψ̃nk(R′)

+
∑

μ

∑
R′∈S

〈ψ̃nk|p̃μ〉�̃(2)
(μ,R′,iτ )ψ̃nk(R′)

+
∑
r∈C

∑
β

ψ̃∗
nk(r)�̃

(3)
(r,β,iτ )〈p̃β |ψ̃nk〉

+
∑

μ

∑
β

〈ψ̃nk|p̃μ〉�̃(4)
(μ,β,iτ )〈p̃β |ψ̃nk〉. (62)
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One point that should be mentioned here is that in
the present implementation, the core-valence exchange-
correlation interaction is treated in the same way as in the
conventional GW implementation, that is, the Hartree-Fock
approximation is used. This is found to be more reliable than
LDA since the GW self-energy approaches the bare Fock
exchange operator in the short-wavelength limit [22].

3. Evaluation of �̃(k)
nn (iω) by CT+ST

After the matrix elements of the self-energy along the
imaginary time have been obtained, one needs to Fourier
transform them to the imaginary frequency domain to calculate
the QP energies. However, the self-energy (like the Green’s
function) is neither an even nor an odd function in imaginary
time/frequency. Hence, we split the Green’s functions into
even and odd parts

G(iτ ) = [G(iτ ) + G(−iτ )]

2
+ [G(iτ ) − G(−iτ )]

2
. (63)

Then, the self-energy along the imaginary frequency is
given by the temporal Fourier transformation

�̃(iω) = −
∫ ∞

−∞
dτ G(iτ )W̃ (iτ )eiωτ

=2
∫ ∞

0
dτ �̃c(iτ ) cos(ωτ ) + 2i

∫ ∞

0
dτ �̃s(iτ ) sin(ωτ ),

(64)

where the cosine �̃c and sine �̃s part read as

�̃c(iτ ) = − 1

2
[G(iτ ) + G(−iτ )]W̃ (iτ ), (65)

�̃s(iτ ) = − 1

2
[G(iτ ) − G(−iτ )]W̃ (iτ ). (66)

Therefore, the corresponding diagonal matrix elements are
given by

�̃c(k)
nn (iτ ) = 1

2

[
�̃

(k)

nn (iτ ) + �̃
(k)
nn (−iτ )

]
, (67)

�̃s(k)
nn (iτ ) = 1

2

[
�̃

(k)

nn (iτ ) − �̃
(k)
nn (−iτ )

]
. (68)

Finally, the diagonal matrix elements of the correlated self-
energy along the imaginary frequency axis are evaluated as

�̃(k)
nn (iω) = �̃c(k)

nn (iω) + �̃s(k)
nn (iω), (69)

where �̃c(k)
nn (iω) and �̃s(k)

nn (iω), respectively, are determined
by discrete CT and ST:

�̃c(k)
nn (iωk) =

N∑
j=1

γkj cos(ωkτj )�̃c(k)
nn (iτj ), (70)

�̃s(k)
nn (iωk) = i

N∑
j=1

λkj sin(ωkτj )�̃s(k)
nn (iτj ). (71)

E. Calculation of QP energies and spectral functions

In this section, we describe the calculation of QP energies
and spectral functions, which corresponds to the last two steps
in Fig. 1.

1. Analytic continuation

In our present implementation, the self-energy and Green’s
function are calculated in the imaginary frequency domain.
However, the experimental observables of interest, such as QP
energies and spectral functions, are obviously measured all
along the real frequency axis. This implies that an analytic
continuation from the imaginary to the real frequency domain
has to be performed. Given that our self-energy is exact in the
sense that there are no stochastic noises [unlike the Green’s
functions G(iτ ) obtained from quantum Monte Carlo (QMC)
simulations], here we utilize the N -point Padé approximant
and employ Thiele’s reciprocal difference method [18]

PN (z) = a1

1+
a2(z − z1)

1+ . . .
aN (z − zN−1)

1 + (z − zN )gN+1(z)
. (72)

Here, the complex coefficients an are obtained by the following
recursion relations:

an = gn(zn), g1(zn) = fn, n = 1, . . . ,N (73)

gn(z) = gn−1(zn−1) − gn−1(z)

(z − zn−1)gn−1(z)
, n � 2. (74)

It is straightforward to prove [18] that PN (zj ) = fj holds for
the known point-value pairs {zi,fj }Nj=1 of the function f (z)
(the diagonal elements of the self-energy in the G0W0r case).
It should be emphasized that Thiele’s reciprocal difference
method is fairly stable, whereas a naive computation of Padé
coefficients usually yields numerical instabilities. Thiele’s
reciprocal difference method has been successfully applied to
the analytic continuation of dynamic response functions [24].
In the following, we show that this method can be used for the
accurate prediction of GW QP energies and spectral functions
as well (see Sec. IV).

2. Evaluation of E Q P
nk and Ank(ω)

After the diagonal elements of the self-energy along the
real frequency axis �(k)

nn (ω) including contributions from
the core-valence exchange correlation, bare exchange and
dynamical interactions [hereafter we denote it as �nk(ω)] have
been obtained by the analytic continuation, the QP energies
are evaluated as in conventional GW implementations. This
means, for the single-shot GW calculations, the QP energies
are calculated to first order by linearizing the self-energy
around the DFT single-particle eigenvalues εnk:

�nk
(
E

QP
nk

) = �nk(εnk) + ∂�nk(ω)

∂ω

∣∣∣∣
ω=εnk

(
E

QP
nk − εnk

)
. (75)

After some simple derivations, the QP energy is calculated
as [22]

E
QP
nk = εnk + ZnkRe[〈ψnk|T̂ + V̂n−e + V̂H |ψnk〉

+�nk(εnk) − εnk], (76)

where T̂ is the kinetic energy operator, V̂n−e the nuclei po-
tential, V̂H the Hartree potential, and Znk the renormalization
factor given by

Znk =
(

1 − ∂ Re[�nk(ω)]

∂ω

∣∣∣∣
ω=εnk

)−1

. (77)
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In principle, one could calculate the QP energies by searching
the root of equation E

QP
nk = Re[〈ψnk|T̂ + V̂n−e + V̂H |ψnk〉 +

�nk(EQP
nk )] numerically. For solids, this does not make a sizable

difference in the QP energies compared to the linearization. In
this work, we therefore only show the calculated QP energies
from the linearized version to compare with the conventional
implementation where the linearization was used as well.

The spectral functions are calculated as the imaginary part
of the interacting Green’s function, which is calculated from
the Dyson equation [25]

Ank(ω) = 1

π
|Im[Gnk(ω)]|

= 1

π

|Im[��nk(ω)]|
{ω − εnk − Re[��nk(ω)]}2 + Im[��nk(ω)]2

,

(78)

where ��nk(ω) = 〈ψnk|T̂ + V̂n−e + V̂H |ψnk〉 + �nk(ω) −
εnk.

III. TECHNICAL DETAILS

Our low-scaling GW scheme has been implemented in the
Vienna ab initio simulation package (VASP) [27,28]. For all the
calculations presented here, the ultrasoft (US) PAW potentials
with an appendix ( GW) released with VASP.5.2 were used
unless otherwise explicitly specified. These potentials are con-
structed by using additional projectors above the vacuum level
and thus describe well the high-energy scattering properties of
the atoms. The plane-wave cutoff for the orbitals was chosen
to be the maximum of all elements in the considered material.
The energy cutoff for the response function was chosen to be
half of the plane-wave cutoff. To sample the Brillouin zone,
8 × 8 × 8 k-point grids centered at the � point were used
except for Cu where the grids were increased to 10 × 10 × 10.
For the tested materials, the experimental lattice constants at
low temperature (if available, otherwise at room temperature)
were used. The total number of bands was chosen to be 480,
which is sufficient to obtain the converged QP energies for
most of the materials considered, except for GaAs and ZnO
where the convergence is very slow. It was suggested that
thousands of orbitals are required for accurate predictions for
ZnO [29], but this finite-basis-set correction is beyond the
scope of this work. In fact, for the present setup the errors
in some QP energies are large, with errors of, e.g., 0.5 eV
for ZnO. For more accurate results, we refer to the previous
publication by some of the present authors [30].

Clearly, the purpose of this work is not to basis set converge
the calculations (this is of course possible with the present
implementation, as it was possible in the standard framework).
Instead, we restrict ourselves to validating the low-scaling GW

implementation by comparing the results with the already
widely used conventional GW implementation. Hence, the
same setups (crystal structure, potential, k points, and so
on) were used for both G0W0r and G0W0 calculations. In
addition, finite-basis-set corrections for QP energies discussed
in Ref. [30] are not taken into account for either G0W0r or
G0W0 calculations.

The actual GW calculations involve three steps: (i) A
self-consistent KS-DFT calculation was performed using the

Perdew-Burke-Ernzerhof (PBE) functional [31]. (ii) The one-
electron wave functions and eigenenergies of all unoccupied
(virtual) orbitals spanned by the plane-wave basis set were
evaluated by an exact diagonalization of the previously
determined self-consistent KS Hamiltonian. (iii) The GW

calculations were carried out. For all the materials considered,
the number of imaginary-time/frequency points in G0W0r

calculations was set to 20, whereas the number of real
frequency points was chosen to be 200 for G0W0 calculations.
Increasing the number of grid points further changes the QP
energies by less than 0.01 eV.

IV. RESULTS

A. Results for semiconductors and insulators

Table I shows the QP energies and band gaps for the
tested semiconductors and insulators predicted by G0W0r and
G0W0. First, we emphasize that our G0W0@PBE results are
consistent with previous calculations [26]. As expected, the
band gaps calculated by G0W0@PBE are slightly underes-
timated compared to the experimental values. Improvements
further towards experimental gaps have been achieved either
by GW0@PBE (iterating the one-electron energies only in
G) [26], or by G0W0@HSE (using the hybrid functionals as
a starting point) [32]. The best agreement with experimental
values thus far has been achieved by GWTC-TC (self-consistent
GW with the vertex correction only in W ) [33]. We note again
that finite-basis-set corrections [30] have not been used here,
which would increase the gap for ZnO by 0.3–0.4 eV, for
instance. Second, one can see that the agreement between the
results from G0W0r and G0W0 is remarkably good, validating
our low-scaling GW implementation. Specifically, for the sp

semiconductors and insulators (Si, SiC, C, BN, MgO, and LiF),
the difference in QP energies and band gaps between G0W0r

and G0W0 is not larger than 0.02 eV. This is even true for GaAs
with localized d orbitals. Except for ZnO, the G0W0r seems to
have the tendency to yield a slightly smaller downwards shift
(below 0.02 eV) for valence and conduction bands compared
to G0W0. However, for ZnO the difference of the calculated
gaps between G0W0r and G0W0 is larger (0.04 eV) since
the self-energy exhibits many poles from d − p excitations at
energies around −40 eV [see Fig. 2(e) below].

To further assess our low-scaling GW implementation, we
plot the diagonal elements of the self-energies and spectral
functions at the � point for some chosen bands around
the Fermi level, as well as the QP shift versus the DFT
eigenvalues for Si and ZnO in Fig. 2. The results obtained from
the conventional G0W0 are also presented for comparison.
Overall, the agreement between the results from G0W0r and
G0W0 is very good, in particular for the region close to the
Fermi level. Specifically, for Si, the self-energies and spectral
functions (including the spectral background and contributions
from plasmons) calculated by G0W0r agree nicely with the
ones from G0W0 [see Figs. 2(a) and 2(b)]. This is achieved
by employing Thiele’s reciprocal difference method. Solving
for the Padé coefficients directly, however, yields less satis-
factory results (not shown here). For ZnO, the agreement in
the self-energies and spectral functions is still good. Even the
small satellites in bands �v

15 and �c
1 are reproduced [see the
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TABLE I. Positions of conduction band (CB) minimum at � (�c) and X (Xc), valence band (VB) maximum at X (Xv) with respect to the
VB maximum at �, as well as the band gap. Spin-orbit coupling (SOC) and finite-basis-set corrections are not included. The crystal structures,
lattice constants, and experimental band gaps are identical to Ref. [26] and references therein.

�c Xc Xv Band gap Crystal Lattice

G0W0r G0W0 G0W0r G0W0 G0W0r G0W0 G0W0r G0W0 Expt. structure constant (Å)

Si 3.22 3.23 1.24 1.25 −2.89 −2.89 1.15 1.16 1.17 diamond 5.430
GaAs 1.33 1.34 1.86 1.88 −2.79 −2.77 1.33 1.34 1.52 zinc-blende 5.648
SiC 7.40 7.41 2.30 2.31 −3.36 −3.35 2.30 2.31 2.40 zinc-blende 4.350
ZnO 2.10 2.06 6.73 6.66 −2.31 −2.28 2.10 2.06 3.44 zinc-blende 4.580
C 7.39 7.39 6.07 6.08 −6.66 −6.66 5.49 5.50 5.48 diamond 3.567
BN 11.14 11.14 6.16 6.17 −5.28 −5.27 6.16 6.17 6.1-6.4 zinc-blende 3.615
MgO 7.27 7.27 11.47 11.48 −1.55 −1.54 7.27 7.27 7.83 rock salt 4.213
LiF 13.68 13.68 20.20 20.20 −1.21 −1.19 13.68 13.68 14.20 rock salt 4.010

inset in Fig. 2(d)]. However, satellites far from the Fermi level
have been smoothed by the analytic continuation.

In contrast, there exist larger deviations in the region far
away from the Fermi level. As shown in Figs. 2(c) and 2(f), the
difference in the QP shift between G0W0r and G0W0 increases
as the binding energies increase above 4 eV. The reason can be
easily understood. Considering band �1 of Si for instance, the
QP peak is not sharp. Instead, it is broadened with a width of
around 5 eV, as shown in Fig. 2(b). Therefore, it is difficult to
obtain the exact position of the quasiparticle. This is true for
both G0W0r and G0W0. In addition, the QP peaks measured
from the angle-resolved photoelectron spectroscopy (ARPES)
would be as broad as in the GW approximation so that the
errors are in fact negligible compared to the width of the peak.

B. Results for metals

Now, we turn to the QP calculations for metals where
some extra considerations are required. For metallic systems,
there exists a nonvanishing probability that an electron is
excited within one and the same band. These transitions
are called intraband transitions and lead to the so-called
Drude term for the long-wavelength limit (q → 0). Following
similar strategies as in Refs. [37,38], we derived the head of
the intraband dielectric function in the imaginary frequency
domain

εintra
αβ (iω) = ω̄2

αβ

ω2
. (79)

FIG. 2. The real part of the diagonal elements of the self-energy Re[�nk(w)] [(a), (d)], and the spectral functions Ank(w) of the Green’s
functions at the � point [(b), (e)], as well as the QP shift versus the DFT eigenvalues [(c), (f)] for Si (first row) and ZnO (second row). The
solid lines and dotted (broken) lines in [(a), (d), (b), and (e)], respectively, specify the results from G0W0r and G0W0. Note that the sign of the
spectral functions for the unoccupied states in (b) and (e) is intentionally reversed for clarity. The inset in (d) shows the zoom-in plot for the
local satellites.
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FIG. 3. Band structures [(a), (d)], spectral functions Ank(w) of the Green’s functions at the � point [(b), (e)], and QP shift versus the DFT
eigenvalues [(c), (f)] for Cu (first row) and SrVO3 (second row). Note that in (a) and (d) the red broken lines specify the Wannier interpolated
band structure from G0W0. PBE and GW Fermi energies are aligned at zero.

Here, the tensor ω̄αβ is the plasma frequency and its square is
defined as

ω̄2
αβ = −4πe2

�C

∑
nk

2
∂f (εnk)

∂εnk

(
eα · ∂εnk

∂k

)(
eβ · ∂εnk

∂k

)
, (80)

where the factor of 2 is due to the spin-degenerate systems
considered here, �C is the volume of the unit cell, and eα is
the unit vector along the Cartesian coordinate α. It should be
noted that the intraband transitions are only nonvanishing for

the head of the dielectric functions. For the wings and body,
they are both zero.

As a test, we calculated the QP energies for the metals
Cu and SrVO3 and compare the results with the ones from
the conventional G0W0 in Figs. 3(a) and 3(d). To guide the
eye, the PBE band structures and interpolated G0W0 QP band
structures obtained with the WANNIER90 code [39,40] are also
displayed. One can see that good agreement between G0W0r

and G0W0 is achieved for both Cu and SrVO3, indicating
that our low-scaling GW implementation is robust and applies

TABLE II. QP energies (eV) of Cu predicted by G0W0r and G0W0 using the norm-conserving (NC) GW PAW potential (Cu sv GW nc).
Basis-set-corrected G0W0 QP energies are also given for comparison. The labeling of the high-symmetry points is shown in Fig. 3(a). The
results are compared to the pseudopotential plane-wave (PPW) values obtained by Marini et al. [34] and the full potential linear muffin-tin
orbital (LMTO) calculations by Zhukov et al. [35]. Experimental data are taken from Ref. [36].

PBE G0W0r G0W0 Corrected G0W0 PPW [34] LMTO [35] Expt. [36]

Positions of d bands �12 −2.05 −1.92 −1.92 −2.11 −2.81 −2.36 −2.78
X5 −1.33 −1.22 −1.23 −1.45 −2.04 −1.63 −2.01
L3 −1.47 −1.36 −1.37 −1.58 −2.24 −1.78 −2.25
�12 − �25′ 0.84 0.70 0.72 0.69 0.60 0.81 0.81

Widths of d bands X5 − X3 2.97 2.61 2.68 2.60 2.49 2.92 2.79
X5 − X1 3.44 3.05 3.18 3.10 2.90 3.37 3.17
L3 − L3 1.44 1.30 1.31 1.26 1.26 1.43 1.37
L3 − L1 3.51 3.16 3.26 3.16 2.83 3.42 2.91

Positions of s/p bands �1 −9.29 −9.14 −9.20 −9.18 −9.24 −9.35 −8.60
L2′ −0.92 −1.00 −0.98 −1.02 −0.57 −0.92 −0.85

L gap Lc
1 − L2′ 4.80 5.09 5.08 4.98 4.76 4.78 4.95
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to metals as well. However, if we take a closer look at the
spectral functions, as shown in Figs. 3(b) and 3(e), we observed
that although the main QP peaks are well reproduced, the
plasma and some satellites are again smoothed by the analytic
continuation.

Figures 3(c) and 3(f) further show the QP shift versus DFT
eigenvalues for Cu and SrVO3, respectively. For the noble
metal Cu, in the energy region of the plot, overall, the QP shift
difference between G0W0r and G0W0 is not exceeding 0.1 eV.
Analogous behavior as for Si is observed for Cu. The further
one moves away from the Fermi level, the larger is the QP shift
difference. This is due to the large broadening of the QP peak
for the corresponding bands. This is also true for the metal
SrVO3. The negative slope of the QP shift between −1.5 and
1.5 eV implies a shrinking of the t2g bands as compared to
the DFT results, which was observed in other GW studies as
well [25,41]. In the region far away from the Fermi level QP
differences are visible, but the maximum difference is smaller
than 0.2 eV.

In Table II, we show in detail the QP energies of Cu
predicted by G0W0r and G0W0 and compare our results
with other theoretical calculations and experiment. The most
significant error in the PBE one-electron energies is the wrong
description of the absolute positions and the bandwidth of the
d bands. For instance, the highest d band at X5 is located
at −1.33 eV in PBE, 0.68 eV above the experimental value
of −2.01 eV [36]. The bandwidth of the d bands is widened
compared to the experiment (see X5 − X1). Unfortunately,
though, our G0W0 does not improve the results significantly. It
shrinks the bandwidth of the d bands towards the experimental
values, but predicts worse positions for the d bands than
PBE. However, as already mentioned basis-set errors might
be substantial for the 480 bands employed in the present case.
To improve the results, finite-basis-set corrections were used
as discussed in Ref. [30]. Indeed, with these corrections the
absolute positions of the d bands are lowered by about 0.2
eV. Agreement with the full potential LMTO method [35] is
then reasonable. However, our QP d-band energies are still
way above those of Marini et al. [34]. We are pretty confident
that the good agreement of these calculations with experiment
is largely fortuitous: the applied pseudopotentials somehow
canceled the errors introduced by the G0W0 approximation.
Compared to the LMTO data, we note that all our QP energies
are shifted upwards by 0.2 eV (except for L2′ ). Of course,
our QP energies are reported with respect to the G0W0

Fermi energy, whereas Ref. [35] does not mention how and
whether the Fermi energy was determined at the G0W0 level.
Using the DFT Fermi energy would improve agreement with

Ref. [35]. For the widths of the d bands, the present results
are in very good agreement with experiment, though, slightly
improving upon the LMTO data, which were generally above
the experimental data.

We feel that the residual errors compared to experiment
are to be expected and arise from (i) the neglect of self-
consistency (the DFT d orbitals of Cu are most likely too
strongly hybridized with the sp states), and (ii) spurious
self-interactions in the GW approximation. The latter error
can be only eliminated via the inclusion of vertex corrections
in the self-energy. Indeed, the importance of vertex corrections
has been highlighted for predicting the ionization potentials
and d-electron binding energies of solids [42], with typical
corrections for the d bands of 0.7 eV.

C. Time complexity for large systems

In order to investigate the scaling with respect to the
system size in our new implementation, we performed G0W0r

calculations on different bulk Si diamond supercells with 16,
24, 36, and 54 atoms using the � point only. For comparison,
similar calculations have been done for the conventional G0W0

code. Our G0W0r implementation displays clearly a better than
cubic scaling in the system size, as shown in Table III. The
reason for this good scaling is that the contraction steps such
as GG and GW scale only quadratically in system size, and
for the number of atoms considered here, construction of the
Green’s function and manipulations of the self-energy matrix,
which scale profoundly cubically, are not yet dominating the
total compute time. Furthermore, it needs to be mentioned
that the G0W0r compute time includes the calculation of the
full nondiagonal self-energy at all frequency points (including
all off-diagonal elements), whereas the G0W0 code calculates
only few diagonal elements of the self-energy for the occupied
and some unoccupied states. Despite this, the G0W0r code
substantially outperforms the older G0W0 code. Concerning
scaling, the old G0W0 code shows a slightly less beneficial
scaling, nevertheless, it is also closer to cubic than quartic
in system size. This relates to the fact that the quartic part
(construction of polarizability and self-energy in orbital basis)
is done using high-efficiency BLAS level 3 calls, and hence this
part becomes only dominant for very large systems, typically
beyond 100 atoms.

To test the scaling with respect to the number of k points,
we performed calculations on a bulk Si diamond supercell
with 16 atoms using 64 cores. We note that the new code
does not yet perform optimally if the number of cores exceeds
the number of atoms. This and the need to use a complex

TABLE III. Timings in minutes for G0W0r and G0W0 calculations for different bulk Si diamond supercells. The calculations were done
for 64 QP energies using the � point only and using the real valued � only VASP version.

Times Times × cores/atoms3 × 103

Atoms Cores G0W0 G0W0r G0W0 G0W0r

16 16 9.18 2.50 35.86 9.78
24 20 18.94 4.14 27.40 5.99
36 48 41.68 5.65 42.88 5.82
54 64 104.53 12.07 42.49 4.91
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FIG. 4. Computational time for G0W0r and G0W0 calculations
with symmetry switched on or off on a bulk Si diamond supercell
with 16 atoms as a function of the number of k points (in the full
Brillouin zone). Note that the computational time of G0W0 for the
3 × 3 × 3 case without symmetry is about 162 minutes, which is not
shown in the figure. The calculations are done for 64 QP energies
using 64 cores.

code version explain why the timings for a single k point in
Fig. 4 are hardly better than for 16 cores shown in Table III.
As shown in Fig. 4, the computational demand increases
almost perfectly linear in the number of k points for G0W0r .
The slight deviation for the 4 × 4 × 4 case arises from the
need to pick a less efficient parallelization strategy for this
k-point set to be able to perform the calculation using the
memory available on 64 cores. In contrast, G0W0 shows a
roughly quadratic scaling in the number of k points. The bad
scaling of the old code is, however, somewhat masked by its
efficient handling of symmetry. The old implementation uses
small point-group operations compatible with the considered
momentum transfer q, whereas the new code uses yet no
symmetry when contracting GG or GW . Concomitantly, if
symmetry is switched off, the new code becomes only slower
by a factor 2 for the 3 × 3 × 3 k points, whereas the time for
the old code increases to 162 minutes (off the scale, see the
blue and pink broken lines in Fig. 4). Therefore, one would
expect that the G0W0r code outperforms the old G0W0 code,
in particular, if large low-symmetry unit cells are used and/or

if many k points are used. It is, however, also clear that the old
code can be competitive or superior for small high-symmetry
unit cells, even if many k points are used to sample the Brillouin
zone. For instance, for a cubic diamond unit cell or for fcc Cu,
the old code is usually much faster than the new GW code.

V. CONCLUSIONS

In conclusion, we present a promising low-scaling GW

implementation within the PAW method, which allows for
fast QP calculations with a scaling that is roughly cubic in the
system size and linear in the number of k points used to sample
the Brillouin zone. All implementation details have been given.
We apply the method to predict the quasiparticle energies and
spectral functions for typical semiconductors, insulators, and
metals. Comparison of the results with the ones from con-
ventional GW calculations shows a good agreement between
the two implementations. Specifically, for semiconductors and
insulators, the positions of the bands and the band gaps agree
within 0.02 eV for all considered materials except for ZnO.
Due to the low scaling of our new GW implementation, we
believe that our method has great potential for applications,
in particular for large unit cells. In addition, our GW self-
energies are obtained in imaginary-time/frequency domain,
which will facilitate an elegant combination of GW with
DMFT, enhancing the predictive abilities of GW+DMFT for
large correlated systems. Finally, we have shown that with
typical compute times around 12 minutes on 64 cores for 54
silicon atoms, GW calculations are becoming a commodity.
We believe this will greatly help to establish methods beyond
density functional theory in the realm of materials modeling.

ACKNOWLEDGMENTS

This work was supported by the China Scholarship Council
(CSC)-Austrian Science Fund (FWF) Scholarship Program
and FWF within the SFB ViCoM (Grant No. F 41) and I597-
N16 (research unit FOR 1346 of the Deutsche Forschungs-
gemeinschaft and FWF). Supercomputing time on the Vienna
Scientific cluster (VSC) is gratefully acknowledged. J.K. is
supported by the European Union’s Horizon 2020 research
and innovation programme under the Marie Sklodowska-Curie
Grant Agreement No. 658705.

[1] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133
(1965).

[2] W. Aulbur, L. Jönsson, and J. Wilkins, Solid State Phys. 54, 1
(2000).

[3] L. Hedin, Phys. Rev. 139, A796 (1965).
[4] L. Hedin and S. Lundqvist, Solid State Physics (Academic, New

York, 1969).
[5] F. Aryasetiawan, Advances in Condensed Matter Science (Gor-

don and Breach, New York, 2000).
[6] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601

(2002).
[7] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.

Mod. Phys. 68, 13 (1996).

[8] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O.
Parcollet, and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

[9] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.
90, 086402 (2003).

[10] K. Held, Adv. Phys. 56, 829 (2007).
[11] The LDA+DMFT Approach to Strongly Correlated Materi-

als, Lecture Notes of the Autumn School 2011, Hands-On
LDA+DMFT, edited by E. Pavarini, E. Koch, D. Vollhardt,
and A. E.. Lichtenstein (Forschungszentrum, Jülich, 2011).
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[17] M. Kaltak, J. Klimeš, and G. Kresse, Phys. Rev. B 90, 054115
(2014).

[18] G. A. J. Baker, Essentials of Padé Approximants (Academic,
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[36] R. Courths and S. Hüfner, Phys. Rep. 112, 53 (1984).
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