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The ground-state subspace of a topological phase of matter forms a representation of the mapping class group
of the space on which the state is defined. We show that elements of the mapping class group of a surface of
genus g can be obtained through a sequence of topological charge projections along at least three mutually
intersecting noncontractible cycles. We demonstrate this both through the algebraic theory of anyons and also
through an analysis of the topology of the space-time manifold. We combine this result with two observations: (i)
that surfaces of genus g can be effectively simulated in planar geometries by using bilayer, or doubled, versions
of the topological phase of interest, and inducing the appropriate types of gapped boundaries; and (ii) that
the required topological charge projections can be implemented as adiabatic unitary transformations by locally
tuning microscopic parameters of the system, such as the energy gap. These observations suggest a possible path
towards effectively implementing modular transformations in physical systems. In particular, they also show how
the Ising ⊗ Ising state, in the presence of disconnected gapped boundaries, can support universal topological
quantum computation.
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Non-Abelian anyons in a topological phase of matter are
known to give rise to a topologically protected space of
states, which are indistinguishable by any local operator [1].
Adiabatically braiding the positions of the non-Abelian anyons
gives rise to a unitary representation of the braid group on this
topological subspace, offering the possibility of implementing
nontrivial, topologically protected unitary transformations on
the state of the system.

Topological ground-state degeneracies can also arise when
the system is defined on a space with nontrivial topology,
such as a torus [2–4]. In this case, there is also a group of
topologically protected unitary transformations that act on the
ground-state subspace, analogous to the case of braiding non-
Abelian anyons. These transformations are associated with
adiabatically varying the geometry of the surface � on which
the system is defined. The analog of the braid group in this
case is the mapping class group (MCG) of �, which is the
group of self-diffeomorphisms of �, modulo those which can
be continuously connected to the identity. Each element of the
MCG is referred to as a modular transformation. The braid
group for n particles can be viewed as a special case of the
MCG of a disk with n punctures.

Given a topological phase of matter, the MCG of a genus
g > 0 surface provides access to a much richer group of
topologically protected unitary transformations than can be
achieved by braiding the anyons alone. For example, in an
Abelian topological phase, the representation of the braid
group for the anyons is always one dimensional, whereas
the representation of the MCG on a higher genus surface is
always multidimensional. In some cases, such as for the Ising
topological phase, the braid group of non-Abelian anyons is
not sufficient for universal topological quantum computation
(TQC), while access to the MCG of the system on a high
genus surface can be utilized to perform universal TQC [5,6].
Moreover, it is conjectured that the modular transformations
on the torus, together with the chiral central charge of the

topological phase, can completely characterize all of the robust
universal properties of a topological phase of matter [7]. Thus,
it is of great interest to perform these modular transformations
both in numerical simulations for the purpose of diagnosing
topological order, and also in real physical systems.

The realization of modular transformations in a topological
phase of matter on a torus has been discussed previously in sev-
eral ways. One is through adiabatic variations of the geometry
of the system, through varying the metric in a continuum theory
[8–10] or by varying microscopic interactions in a lattice sys-
tem [11]. Modular transformations can also be associated with
basis transformations in the topological ground-state subspace
[2,12]; methods for extracting the suitable bases and thus
the basis transformations through entanglement considerations
have also been demonstrated, and are useful for numerical
diagnostics of topological order [13,14]. Reference [15] further
proposed methods to effectively generate a specific set of
modular transformations for topological phases described
by the Ising topological quantum field theory (TQFT), by
depleting the topological phase and performing topological
charge measurements of the non-Abelian anyons along varying
cycles of surfaces with nontrivial genus [16].

In this paper, we provide an alternative way of realizing
modular transformations on a high genus surface. We show
that any generic modular transformation can be implemented
through a series of topological charge projections along
at least three mutually intersecting noncontractible cycles
of the system. We further show that each of the required
topological charge projections can in principle be realized
through adiabatic unitary evolution, assuming the ability to
locally tune certain microscopic parameters, such as the energy
gap, of the system. That the required topological charge
projections can be realized as unitary operations is made
possible through the use of an extra handle in the space, which
acts as an ancillary set of degrees of freedom. This is related
to previous work demonstrating that measurement-based
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braiding of non-Abelian anyons [18] can be achieved by
adiabatically tuning the interactions between them [19].

Finally, we note that genus g surfaces can be realized in
planar geometries by considering doubled, or bilayer, versions
of the topological phase of interest, together with either
g + 1 disconnected gapped boundaries or 2g + 2 genons [20].
Altogether, these observations suggest a possible route towards
effectively realizing modular transformations on high genus
surfaces in physically realistic systems where both the genus
and the required topological projections can be effectively
implemented with experimentally controllable parameters.

This paper is organized as follows. In Sec. I, we provide
a discussion, most of which is review, of how high genus
surfaces can effectively be realized in planar systems through
the use of bilayer, or doubled, versions of the topological phase
of interest, together with either genons or gapped boundaries.
This provides some physical motivation for considering mod-
ular transformations and high genus surfaces. In Sec. II, we
provide a brief review of topological ground-state degeneracies
on genus g surfaces, and we establish some notation that will
be used in the subsequent paper. In Sec. III, we provide a
general overview of the relation between adiabatic variations
and topological charge measurements, and between the braid
group and the mapping class group. In Sec. IV, we define
the notion of topological charge projections that we use, and
discuss how the ones of interest to us can be implemented
through an adiabatic unitary process. In Sec. V, we describe
how modular transformations are realized through topological
charge projections, and demonstrate this through an algebraic
calculation in Sec. VI and also through analysis of the topology
of the resulting space-time manifold in Sec. VII. We make a
few concluding comments in Sec. VIII.

I. EFFECTIVELY REALIZING HIGH GENUS SURFACES
THROUGH PLANAR GEOMETRIES

The discussion of topological phases of matter on high
genus surfaces seems to be, at first glance, of purely theoretical
interest, given that physical systems are most naturally realized
experimentally in planar geometries. However, recent studies
of gapped boundaries in topological phases of matter have
demonstrated several ways in which high genus can be
effectively simulated in planar systems by using bilayer, or
doubled, versions of the topological phase of interest and
inducing the appropriate gapped interfaces or boundaries in
the system. In order to provide some practical motivation for
our subsequent considerations, below we briefly review two
ways in which a topological phase of matter, described by a
unitary braided tensor category (UBTC) C, can be realized on
a genus g surface in a planar geometry that would be amenable
to experimental realization.

A. C ⊗ C and genons

Let us consider a topological phase of the form C ⊗ C,
which is topologically equivalent to two independent copies
of a single topological phase C. States of this form have been
experimentally realized in the context of bilayer fractional
quantum Hall (FQH) systems [22–24]. They can also be
considered in lattice models, as depicted in Fig. 1. In such

FIG. 1. (a) Bilayer system. (b) Two copies of a lattice system.
(c) Branch cut that connects the two layers. (d) Cross-sectional view
of a way to realize the branch cut and genons in a bilayer FQH
state, proposed in Ref. [21]. Top and bottom electrical gates (gray)
locally deplete the electron fluid, resulting in counterpropagating
chiral edge states in each layer (shown in dots and crosses). Electron
tunneling (double arrow) between counterpropagating edge states
of different layers can be used to effectively “glue” the two layers
together, realizing half of the branch cut. The other half of the branch
cut gluing can be neglected as this merely leaves behind a puncture
which can be projected into the trivial charge sector and subsequently
ignored. (Alternatively, second-order tunneling processes can also
induce the other half of the branch cut [21].) (e) Lattice defect that
effectively couples the two copies of the lattice system.

a system, one can consider a line segment along which there
is a “branch cut,” where the two layers are connected to each
other along the cut. Physically, these can be created in bilayer
FQH states by using electrical gates on the top and bottom
layers to effectively “cut” and “reglue” the FQH state in a
twisted manner, as proposed in Ref. [21]. In lattice models they
can be created by changing the connectivity of the lattice, by
inserting lattice dislocations into the system [25] (see Ref. [26]
for a recent proposed physical realization using Majorana
nanowires).

The system with such branch cuts can be thought of as a
twofold branch cover of the disk. The end point of the cut,
where the branch covering degenerates, is a certain type of
topological twist defect referred to as a “genon” [20]. The
branch cut itself is not detectable by topological operations
such as braiding. The positions of the genons, however,
are well defined; the genons are non-Abelian twist defects
[20,25,27,28] whose topological properties are described
within the framework of G-crossed braided tensor categories
[29], with G = Z2 corresponding to the permutation of the
two copies of C in C ⊗ C.

The genons effectively change the topology of the man-
ifold: the topological state C ⊗ C with n pairs of genons is
topologically equivalent to a single copy of C, on a genus
g = n − 1 surface [20,30].
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FIG. 2. (a) Double-layer system with boundaries. Dashed lines
describe electron tunneling between counterpropagating chiral edge
states. (b) Cross-sectional view of a way to realize gapped boundaries
in electron-hole bilayer FQH state. Top and bottom electrical gates
(gray) locally deplete the electron/hole fluids in the two layers,
resulting in counterpropagating chiral edge states in each layer
(shown in dots and crosses). Electron tunneling (double arrow)
between counterpropagating edge states of different layers can be
used to effectively “glue” the two layers together, realizing a gapped
boundary where quasiparticles can coherently propagate from one
layer to another.

B. C ⊗ C and gapped boundaries

Let us consider a topological phase of matter C on a plane.
By folding half of the plane over on itself, say along the line
(x,y = 0), we obtain a topological phase C ⊗ C, together with
a boundary to vacuum, where C corresponds to the parity-
reversed counterpart of C. The process where a quasiparticle
a ∈ C propagates across the folding line (x,y = 0) then gets
mapped to a quasiparticle a ∈ C propagating to the boundary
and reflecting from the boundary as a quasiparticle a ∈ C.
Equivalently, this implies that a pair of quasiparticles of the
form (a,a) ∈ C ⊗ C can be annihilated into the vacuum upon
approaching the boundary of the system. This is one particular
type of gapped boundary of C ⊗ C with the vacuum. In general,
there can be many other topologically distinct classes of
gapped boundaries between C ⊗ C and vacuum [28,31–33].
The one described above is always one of the possible types
of gapped boundaries.

Let us consider now a topological phase C ⊗ C in the
presence of nb disconnected gapped boundaries, where the
boundary condition is as described above. From the above
discussion, it is clear that this situation is equivalent to a single
copy of C on a genus g = nb − 1 surface.

There are several examples which are of particular physical
interest. One class of examples corresponds to cases where
C ⊗ C is realized as the ground state of a Hamiltonian which is
a sum of commuting projectors, as in a Levin-Wen model [34].
Another class of examples that may be of experimental interest,
which we will discuss in some detail below, corresponds to
cases where C describes a fractional quantum Hall (FQH) state
at filling fraction ν.

Example: Fractional quantum Hall states

For definiteness, let us consider C to correspond to a
ν = 1/m Laughlin FQH state. The situation discussed above
can be realized by considering a bilayer system, consisting
of electrons in one layer and holes in the second layer (see
Fig. 2). Since the holes have opposite charge relative to the
electrons, in a uniform magnetic field the two layers will form
FQH states of opposite chirality, forming ν = ±1/m Laughlin
FQH states. At an interface with vacuum, the two layers will,
due to the opposite chiralities, give rise to counterpropagating

chiral Luttinger liquid edge modes. These edge modes are
described by the Lagrangian [35]

L0 = 1

4π
(−1)Im∂xφI ∂tφI − VIJ ∂xφI ∂xφJ , (1)

where φI , for I = 1,2, are real scalar fields describing the
counterpropagating edge modes in the two layers, and VIJ

is a positive-definite matrix describing the velocities of and
interactions between the edge modes. The electron operator
on the two layers is described by the operator �I ∼ eimφI ,
while the charge 1/m quasiparticle operators in the two layers
are given by eiφI . Electron backscattering between the edge
modes is therefore described by the term

Lt = −t cos[m(φ1 − φ2)]. (2)

For large tunneling amplitude t , the cosine term can pin
its argument: 〈ei(φ1−φ2)〉 �= 0, thus localizing the edge modes
and leading to a gapped boundary. Physically, the fact that
〈ei(φ1−φ2)〉 �= 0 means that quasiparticle-quasihole pairs from
the two layers have condensed at the boundary, and thus can
disappear into the boundary condensate upon approaching the
boundary from the bulk of the system.

To summarize, an electron-hole bilayer FQH state can
be used to simulate a single FQH state on a genus g

surface by fabricating g + 1 disconnected boundaries in the
system, and causing the counterpropagating edge modes to
be localized through electron tunneling (backscattering) along
the boundaries.

II. REVIEW OF TOPOLOGICAL
GROUND-STATE DEGENERACY

In this section, we briefly review the understanding of
topological ground-state degeneracy on genus g surfaces, and
introduce the relevant notation that will be used in subsequent
sections.

Let Vg denote the ground-state subspace of a topological
phase of matter on a closed genus g surface. The number of
ground states on a genus g surface is given by the dimension
of Vg , and is determined by the Verlinde formula

dim Vg =
∑
a∈C

S
2−2g

0a , (3)

where S is the modular S matrix of C and 0 ∈ C is the identity
topological charge. States in Vg are labeled by the values of
the topological charges along a maximal set of nonintersecting,
noncontractible cycles.

For example, consider the torus g = 1. The ground-state
degeneracy can be labeled by the topological charge value a ∈
C that would be obtained by measuring the topological charge
along the longitudinal cycle [labeled α in Fig. 3(a)] of the torus.
Such states will be labeled as |a〉α (see Fig. 4). Alternatively,
the states can be labeled by the topological charge value a that
would be obtained by measuring the topological charge along
the meridianal cycle of the torus (labeled β) in Fig. 4. Such
states will be labeled as |a〉β . {|a〉α} and {a〉β} each provide
a complete basis for the ground-state subspace V1. They are
related to each other by the modular S matrix

|a〉α =
∑
b∈C

Sab|b〉β. (4)
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(a)

(b)

FIG. 3. Labeling of cycles. In the genus 2 case, we will sometimes
drop the subscript in γ1 and δ1.

On a genus g = 2 surface, we have more choices of cycles.
We can, for example, pick cycles β1,γ1,β2, as shown in
Fig. 3(b). The states in V2 can then be labeled by the values
of the topological charges that would be measured along
these cycles, a,b,c ∈ C, respectively, giving rise to a basis set
denoted |abc〉β1γ1β1 (see Fig. 4). The number of such states is
determined by the fusion rules (Nc

ab
)2, as there are two fusion

FIG. 4. Convention for labeling states. Top left: states are labeled
by definite topological charge a ∈ C along the meridianal (blue) loop
β. A dual loop is also depicted, as the dashed black loop. The state
|a〉β can be obtained from the state |1〉β by applying a Wilson loop
for the quasiparticle a along a dual loop α. Top right: states labeled
by topological charge in the longitudinal (blue) loop. Bottom two
figures: conventions for genus two surfaces, generalizing the notation
for the genus one case.

vertices in this case. Thus, a complete labeling of the basis
states is |abc; μν〉β1,γ1,β1 , for a,b,c ∈ C and μ,ν = 1, . . . ,Nc

ab
.

Here, a ∈ C refers to the antiparticle (or dual) of a ∈ C.
We can fix a different basis by picking a different maximal

set of nonintersecting cycles ω1,ω2,ω3, and labeling the states
as |abc; μν〉ω1ω2ω3 , generalizing the above discussion. The
basis transformations between several different useful bases
are listed below:

|a0c〉β1δ1α2 =
∑
c′

Scc′ |a0c′〉β1δ1β2 . (5)

More generally,

|abc; μν〉β1δ1α2 =
∑
c′

S
(b)
cc′;μνμ′ν ′ |abc′; μ′ν ′〉β1δ1β2 , (6)

where S(b) is the “punctured” S matrix, although we will not
explicitly use the definition of S(b) here.

Furthermore, we have

|abc; μν〉β1δ1β2 =
∑

b′,μ′,ν ′

[
F āac̄

c̄

]
(b̄μν)(b′μ′ν ′)|ab′c; μ′ν ′〉β1γ1β2 ,

(7)

where Fabc
d are the F symbols of the UBTC C. Note that

[
F āac̄

c̄

]
(000)(b′μ′ν ′) =

√
db′

dadc

δμ′ν ′ if Nb′
ac̄ �= 0, (8)

and is equal to 0 otherwise, where da = S0a/S00 is the quantum
dimension of a. This implies

|a0c〉β1δ1β2 =
∑

{b′|Nb′
ac̄ �=0}

Nb′
ac̄∑

μ′=1

√
db′

dadc

|ab′c; μ′μ′〉β1γ1β2 . (9)

III. GENERAL OVERVIEW

In the topological quantum field theory (TQFT) description
of topological phases of matter, the world lines of the anyons
must be given a framing in order to be well defined; physically,
this framing is required to keep track of the topological spin
of the quasiparticles.

Framed braiding is reversible, hence unitary, whereas
measurement is not. Yet, a sequence of collective state
projective measurements (of collective anyon charge) can
create a framed braid on one tensor factor, tensor a density
matrix, e.g., |P1〉〈P1|, on an ancilla [18] (see Fig. 5).

Similarly, in this paper we consider a surface � in a TQFT
ground state |�〉 evolving in time. We define analogs of both
braiding and “measuring collective states,” which produces a
unitary on a tensor factor. The key common feature on both
sides of the analogy, i.e., in all four cases, is that the unitary
results by comparing two distinct diffeomorphisms from an
initial to a final state.

Some measurement protocols produce exotic unitaries,
which cannot possibly be induced by any diffeomorphism, the
irrational phase gate of Ref. [36] being an example. This paper
explores the simpler case: diffeomorphisms, over subsystems,
induced by measurement.

In the case of a braid, the first diffeomorphism from
“bottom” to “top” merely follows the vertical (time) product
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ancilla timebraid

a1 a2 a3 a4

FIG. 5. Braid history of four anyons, labeled a1, . . . ,a4 left to
right, together with three sequential projections to the identity of the
fusion channel of two anyons. These are (a2,a4), followed by (a2,a3),
followed by (a1,a2). This effectively executes a braid between a1 and
a3, together with a twist of a3. Note that the two ellipses shown,
which result from the initial and final projections of (a2,a4), have
only overcrossings with the lines that they cross, which allows for the
product structure discussed in the text.

structure (PS) on R2 × Rt , giving the “identity map.” The
second follows the braided PS and when compared to the
first, is an element of the mapping class group (MCG) of the
punctured plane, i.e., the braid group. This group represents
on the TQFT Hilbert space.

In Fig. 5, we see (solid lines) a sequence of four collective
state measurements to zero charge which factors as a braid (up
to a frame twist) and |P1〉〈P1| on an ancilla. Again, there is
the vertical PS which may be compared to a braided PS over
a subset S ⊂ R2 × R1

t . Extending to the larger time history
(include the dotted lines in Fig. 5), S can be described as
R2 × R1

t \ 2 balls, the balls enclosing the circular loops. Since
in any TQFT the Hilbert space for a sphere V(S2) ∼= C and
furthermore [37] V(S2) contains a canonical nonzero element,
the Verlinda idempotent x. This slightly diminished product S

still yields a well-defined unitary by filling in x at the puncture,
following the braid, and then comparing with the vertical PS.
To summarize, diminishing a PS by removing balls does not
affect the linear TQFT map it induces.

Now, let us cross to the “surface side” of the analogy. One
way to do this is to imagine that Fig. 5 is the time history
of Z2 genons and create surfaces interpolated by 3-manifolds
by taking a twofold branched cover [20]. In this case, a braid
(not drawn) will branch to a product cobordism, whose PS
provides an isotopy class which can be compared with the
vertical PS (“id”) to produce an element of the MCG. In
the measurement case (drawn as the solid and dashed line in
Fig. 5), the “braided” PS is again diminished: it is only defined
in the complement of two tubes, each tube is S2 × I , where

S2 × I
×2−→ D3 is the total space of the branched cover of D3

along an unknotted loop. As before, the fact that the “braided”
PS has “holes” with 2-sphere boundary is no obstacle (again
insert copies of x) to defining the unitary from initial to final
state.

While the genon example is a useful model for creating
interesting surfaces �2 and cobordisms M3 between them,
and from these operations on the Hilbert space V(�), we focus
here on a more general construction of three-dimensional (3D)
cobordisms through two operations:

Dγ

FIG. 6. Adiabatically modifying the interactions in a lattice
system can provide a lattice realization of adiabatically varying the
geometry of the space along a noncontractible loop in Teichmuller
space.

(1) Adiabatic variation of geometry, i.e., a path in Te-
ichmüller space T(�) joining a point to its image under a MCG
element, thus a loop in moduli space M(�) = T(�)/MCG
(see Refs. [8,11]).

(2) A succession of topological-charge-basis projections
on (we will restrict to) constant time Wilson loops of �t .

While point 1 is associated with a global PS, point 2 is
analogous to Fig. 5: the product PS is partial; in favorable
cases it may be arranged that only balls are missing from the
PS and unitaries are again then well defined.

We briefly summarize point 1 before turning in detail to
point 2 in the subsequent sections. The most concrete way
to combinatorially mimic an essential loop in M(�) is to
consider a lattice Hamiltonian H on � and a loop γ ⊂ �

transverse to the bonds on �. The Dehn twist Dγ can be
implemented on H by gradually rearranging bonds until a full
Dehn twist is achieved. At this moment, H returns to itself
and the charge along a fixed loop α ⊂ � will now be mapped
to charge along D−1

γ (α). In Fig. 6, γ is the vertical dashed arc
drawn in the first panel. Again, thinking of Z2 genons makes
the analogy to braiding precise. For example, under branched
cover, the conformal moduli spaces M(S4,4 pts) ∼= M(T 2) ∼=
SL(2,Z) \ SL(2,R)/SO(2). For 2g + 2 points, g > 1, and
genus g surfaces, the branched cover arrow −→ is onto (only)
the hyperelliptic geometries, which is why for g > 2 the MCG
is richer than the corresponding braid group. However, given a
MTC C, and C ⊗ C represented in the plane with genons, if the
rules for measuring charge along simple planar loops permit
the breaking of sheet symmetry, all elements of the projective
MCG representation can be realized.

IV. TOPOLOGICAL CHARGE PROJECTIONS
AND ADIABATIC UNITARY OPERATIONS

In this paper, we require, as input, the ability to guide the
state of the system into subspaces associated with definite
values of topological charge along certain noncontractible
cycles of interest. In general, this is implemented as a
projection operator, which corresponds to a measurement
of topological charge. As we will describe, the particular
projections of interest to us here can also be implemented
through unitary adiabatic evolution.

Let P (a)
ω denote the projection of a state |ψ〉 ∈ Vg into

a subspace corresponding to the topological charge value a

associated with the noncontractible cycle ω. For example, on
a torus, we have

P (a)
α |b〉α = δab|b〉α. (10)
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On a genus 2 surface, we have

P (d)
ω3

|abc; μν〉ω1,ω2,ω3 = δdc|abc; μν〉ω1,ω2,ω3 . (11)

Following, we will describe how the operator P (a)
ω can be

implemented through an adiabatic process. This is similar
to the case where the collective measurement of the fusion
channel of a pair of non-Abelian anyons can also be obtained
by adiabatically tuning the interactions between them [19].

The ground-state degeneracy on a genus g surface will,
in finite-size systems, generically acquire exponentially small
splittings. In a finite-size system, there is an effective Hamil-
tonian Heff that acts on the ground-state subspace Vg . In
general, Heff will consist of all possible instanton processes,
corresponding to virtual tunneling of quasiparticles along
various closed paths (see, e.g., Ref. [4]). The amplitude for
each such process is exponentially small in the ratio of the
length of the path to the correlation length of the system.

As an example, let us first consider the case of a topological
phase of matter on a torus, with an effective Hamiltonian that
acts on the ground-state subspace V1 given by

Heff =
∑
a∈C

[
taαWa(α) + taβWa(β) + H.c.

]
, (12)

where α and β are the longitudinal and meridianal cycles
of the torus. The operators Wa(ω) correspond to the process
where a quasiparticle/antiparticle pair of type a,a are created
out of the vacuum, one of them tunnels virtually along the
cycle ω, and they reannihilate. Here, we neglect the Wilson
loop operators along the diagonal loop Wa(α + β), as the
corresponding amplitudes taα+β are typically exponentially
suppressed compared to taα , taβ due to the length of the loops.
This situation could, however, be changed if desired by locally
tuning the energy gap along α + β.

The effect of Wa(ω) on the ground-state subspace V1 can
be determined from the modular S matrix. In general,

α〈c|Wa(α)|b〉α = δbc

Sab

Sb0
. (13)

The tunneling amplitudes taα are nonuniversal quantities
and depend on the microscopic details of the system. For a
given path of length L, the corresponding amplitude for a
quasiparticle to tunnel along the path is proportional to e−L/ξa ,
where ξa is a finite correlation length that can depend on the
quasiparticle type a. The tunneling amplitude taα is the sum over
the amplitudes for quasiparticles of type a to tunnel along all
possible paths that are topologically equivalent to the cycle α.

Let us suppose that the tunneling amplitudes taα can be
adiabatically varied. This could be done, for example, by
tuning microscopic parameters along the loop α in such a way
as to locally tune the energy gap along α. We then consider a
time-dependent Hamiltonian

Heff(τ ) = (1 − τ )
∑

a

[
taαWa(α) + H.c.

]
+ τ

∑
a

[
taβWa(β) + H.c.

]
. (14)

Let us denote the ground state of Heff(τ ) as |�(τ )〉. It is clear
that

|�(0)〉 = |b0〉α, (15)

where b0 is such that the ground-state energy E = ∑
a taα

Sab0
S0b0

+
c.c. is minimized. If there are multiple such b0, then the ground
state is degenerate. However, generically there should be a
unique such b0 unless there is fine tuning of the parameters taα ,
due to braiding nondegeneracy (which implies unitarity of the
S matrix). Similarly,

|�(1)〉 = |b1〉β, (16)

where b1 is such that E = ∑
a taβ

Sab1
S0b1

+ c.c. is minimized.
Again, the choice b1 will generically be unique unless there is
fine tuning of the tunneling amplitudes taβ .

In fact, aside from accidental degeneracies which can be
removed by perturbing the Hamiltonian, Heff will generically
have a unique ground state for all τ . Therefore, we see
that tuning the tunneling amplitudes can cause the system
to be tuned adiabatically between states of definite topological
charge along any desired noncontractible cycle. For Sb1b0 �= 0,
the above adiabatic process can be expressed in terms of the
projector:

|�(1)〉 = eiφ 1

Sb1b0

P
(b1)
β |�(0)〉, (17)

up to a nonuniversal overall phase eiφ .
For more details about implementing the above adiabatic

evolution in a concrete system in the context of electron-hole
bilayer FQH states, we refer to Ref. [38], which utilizes the
ideas presented above.

Applying the above idea to genus g surfaces, we see that it
is possible to implement the projections P (a)

ω by adiabatically
tuning the exponentially small amplitudes for quasiparticles to
tunnel along the various noncontractible cycles.

Diabatic errors associated with such protocols can be
managed, as discussed recently in the context of adiabatic
braiding operations of non-Abelian anyons in Ref. [39].

V. IMPLEMENTING DEHN TWISTS THROUGH
TOPOLOGICAL CHARGE PROJECTIONS

Let us consider starting with a generic state |�〉 ∈ V1:

|�〉 =
∑
a∈C

ψa|a〉β. (18)

The effect of a Dehn twist Dβ around β is

Dβ |�〉 =
∑
a∈C

eiθaψa|a〉β, (19)

where θa is the topological spin of a. We wish to demonstrate
a protocol for implementing the Dehn twist Dβ through a
sequence of topological charge projections.

In order to perform Dβ as described above, we first note
that we can embed |�〉 into a larger space, on a genus 2 surface
V2 :

|�̃〉 =
∑
a∈C

ψa|a00〉β1δ1β2 , (20)
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where we refer to Fig. 4 for the notation. Formally, there is
an inclusion Vg ⊗ V1 ↪→ Vg+1, such that |�〉 ⊗ |0〉β ↪→ |�̃〉.
The additional genus in this case can be thought of as giving
rise to an “ancilla” degree of freedom, which is useful for
performing the operation. In this case, the Dehn twists along
β1 and γ are equivalent:

Dβ1 |�̃〉 = Dγ |�̃〉 =
∑

a

eiθaψa|a00〉β1δ1β2 . (21)

In what follows, we will show that Dγ can be obtained up
to overall phase by a series of projections:

D†
γ |�̃〉 = D3e−2πic/8Pβ2Pγ+α2Pα2 |�̃〉,

(22)
Dγ |�̃〉 = D3e2πic/8Pβ2Pα2Pγ+α2 |�̃〉,

where Pω ≡ P (0)
ω is the projection onto the identity topological

charge, c is the chiral central charge of the topological phase,
and D = √∑

a d2
a is the total quantum dimension.

The above statements can be immediately generalized: a
Dehn twist Dω along an arbitrary loop ω acting on a state
|�〉 ∈ Vg on a genus g surface can be implemented as follows.
We first embed |�〉 into a larger space Vg+1, on a genus g + 1
surface by considering the state |�̃〉, which satisfies

Pβg+1 |�̃〉 = |�̃〉. (23)

Then,

D†
ω|�̃〉 = D3e−2πic/8Pβg+1Pαg+1+ωPαg+1 |�̃〉,

Dω|�̃〉 = D3e2πic/8Pβg+1Pαg+1Pαg+1+ω|�̃〉. (24)

To phrase the above result differently, consider three cycles
ω1,ω2,ω3, which have the property that ωi and ωj intersect
exactly once (for i �= j ). If we then start with a state |�̃〉
which satisfies Pω1 |�̃〉 = |�̃〉, we have

D
†
ω3−ω2

|�̃〉 = D3e−2πic/8Pω1Pω2Pω3 |�̃〉,
Dω3−ω2 |�̃〉 = D3e2πic/8Pω1Pω3Pω2 |�̃〉. (25)

In the following, we will establish the above result in two
ways, first through a calculation using the algebraic theory
of anyons, and then by studying in detail the topology of the
space-time history of the surface.

VI. ALGEBRAIC CALCULATION

In order to understand the effect of the projections of
interest, note that Pα2 |abc〉β1δ1α2 = δb0δc0|a00〉β1δ1α2 . This

implies

Pα2 |abc〉β1δ1β2 = δb0
dc

D2

∑
c′∈C

dc′ |a0c′〉β1δ1β2 . (26)

Furthermore, we also have the following relation:

Pγ+α2 = D†
γ Pα2Dγ . (27)

We will use the following identity (Gauss-Milgram sum):

1

D
∑
a∈C

d2
a eiθa = e2πic/8. (28)

A. Abelian phases

At this stage, it is simpler to first consider the case where
the topological phase is Abelian. In this case,

Dγ |a0c〉β1δ1β2 = eiθa−c |a0c〉β1δ1β2 , (29)

and da = 1 for all a ∈ C. Thus, we find for the Abelian case

Pβ2Pγ+α2Pα2 |a00〉β1δ1β2

= Pβ2D
†
γ Pα2Dγ

∑
c′

1

D2
|a0c′〉β1δ1β2

= Pβ2D
†
γ Pα2

∑
c′

eiθa−c′
1

D2
|a0c′〉β1δ1β2

= Pβ2D
†
γ

∑
c′,d ′

eiθa−c′
1

D4
|a0d ′〉β1δ1β2

= Pβ2

∑
c′,d ′

eiθa−c′ e−iθa−d′ 1

D4
|a0d ′〉β1δ1β2

= e−iθa
1

D4

∑
c′

eiθa−c′ |a00〉β1δ1β2

= 1

D3
e−iθa e2πic/8|a00〉β1δ1β2 , (30)

where to obtain the last line we have used Eq. (28). This then
implies the result (22).

B. Non-Abelian phases

Let us now consider the more complicated case where the
topological phase is non-Abelian. Note that

Dγ |ab′c; μν〉β1γ1β2 = eiθb′ |ab′c; μν〉β1γ1β2 . (31)

Thus,

D†
γ |abc; μν〉β1δ1β2 =

∑
b′,μ′ν ′

e−iθb′ [F āac̄
c̄

]
(b̄μν)(b′μ′ν ′)|ab′c; μ′ν ′〉β1γ1β2

=
∑

b′,μ′,ν ′,d,α,β

e−iθb′ [F āac̄
c̄

]
(b̄μν)(b′μ′ν ′)

[
F āac̄

c̄

]†
(b′μ′ν ′)(dαβ)|adc; αβ〉β1δ1β2 . (32)

In particular,

D†
γ |a0c〉β1δ1β2 =

∑
{b′|Nb′

ac̄ �=0}

∑
μ′,d,α,β

e−iθb′

√
db′

dadc

[
F āac̄

c̄

]†
(b′μ′μ′)(dαβ)|adc; αβ〉β1δ1β2 . (33)
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Thus,

Pβ2Pγ+α2Pα2 |a00〉β1δ1β2 = Pβ2D
†
γ Pα2Dγ

∑
c′

dc′

D2
|a0c′〉β1δ1β2

= Pβ2D
†
γ Pα2

∑
c′,d

∑
{b′|Nb′

ac̄′ �=0}

∑
μ′,α,β

dc′

D2
eiθb′

√
db′

dadc′

[
F āac̄′

c̄′
]†

(b′μ′μ′)(dαβ)|adc′; αβ〉β1δ1β2

= Pβ2D
†
γ

∑
c′,e

∑
{b′|Nb′

ac̄′ �=0}

∑
μ′

de

D
d2

c′

D3
eiθb′

√
db′

dadc′

[
F āac̄′

c̄′
]†

(b′μ′μ′)(000)|a0e〉β1δ1β2

= Pβ2D
†
γ

∑
c′,e

∑
{b′|Nb′

ac̄′ �=0}

∑
μ′

de

D
dc′

D3
eiθb′ db′

da

|a0e〉β1δ1β2

= Pβ2

∑
c′,e

∑
f ′,g,κ,δ,σ

∑
{b′ |Nb′

ac̄′ �=0}

∑
μ′

de

D
dc′

D3
eiθb′ db′

da

e−iθf ′

√
df ′

dade

[
F āaē

ē

]†
(f ′κκ)(gδσ )|age; δσ 〉β1δ1β2

=
∑
c′

∑
{b′ |Nb′

ac̄′ �=0}

∑
μ′

dc′

D4
eiθb′ db′

da

e−iθa
[
F āa0

0

]†
(a00)(000)|a00〉β1δ1β2 (34)

=
∑
c′

∑
{b′ |Nb′

ac̄′ �=0}

∑
μ′

1

D4
eiθb′ dc′db′

da

e−iθa |a00〉β1δ1β2 (35)

=
∑
c′

∑
b′

1

D4
eiθb′ N

b′
ac̄′dc′db′

da

e−iθa |a00〉β1δ1β2 (36)

=
∑
c′

∑
b′

1

D4
eiθb′ N

c′
ab̄′dc′db′

da

e−iθa |a00〉β1δ1β2 (37)

=
∑
b′

1

D4
eiθb′ d2

b′e
−iθa |a00〉β1δ1β2 (38)

= 1

D3
e2πic/8e−iθa |a00〉β1δ1β2 , (39)

which establishes the result (22). The first several equalities are
obtained by straightforward applications of the projectors Pα2

and Pβ2 , and the Dehn twists Dγ , as described in the previous
sections. To get Eq. (35) from the preceding equation, we used
the fact that [F āa0

0 ]†(a00)(000) = 1. Equation (36) is obtained from
Eq. (35) by replacing the restricted sum over b and the fusion
channel index μ,

∑
{b′|Nb′

ac̄′ �=0}
∑

μ′ , by the unrestricted sum∑
b′ N

b′
ac̄′ . Equation (37) is obtained from Eq. (36) using the

identity Nb′
ac̄′ = Nc′

ab̄′ . Equation (38) is obtained from Eq. (37)
using the identity

∑
c′ N

c′
ab̄′dc′ = dadb̄′ , together with the fact

that db = db̄. Finally, Eq. (39) is obtained from Eq. (38) by
using the Gauss-Milgram sum (28).

C. Projections onto other topological charge sectors

Let us consider now a slightly more general setup. We
consider the projectors P (b)

α , which project onto the topological
charge b. The previous considerations are associated with
taking b = 0.

Let us consider starting with a state

|a0b0〉β1δ1β2 . (40)

Note that

P (b)
α2

|a0c〉β1δ1α2 = δcb|a0b〉β1δ1α2 . (41)

This implies

P (b)
α2

|a0c〉β1δ1β2 = Scb

∑
c′

S
†
bc′ |a0c′〉β1δ1β2 . (42)

Now, it useful to note that

P
(b)
γ+α2

= D†
γ P (b)

α2
Dγ . (43)

Therefore, our task is to compute

P
(b3)
β2

D†
γ P (b2)

α2
Dγ Sb0b1

∑
c′

S
†
b1c′ |a0c′〉β1δ1β2 . (44)
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Abelian phases

Let us now specialize to the Abelian case. We use the
following identities:

Sab = 1

D eiθa,b , (45)

where θa,b is the mutual statistics between a and b, and

θa+b = θa + θb + θa,b. (46)

Following the preceding calculation together with repeated
application of the above identities, we obtain

P
(b3)
β2

D†
γ P (b2)

α2
Dγ Sb0b1

∑
c′

S
†
b1,c′ |a0c′〉β1δ1β2 = P

(b3)
β2

D†
γ P (b2)

α2
Sb0b1

∑
c′

S
†
b1c′e

iθa−c′ |a0c′〉β1δ1β2

= P
(b3)
β2

D†
γ Sb0b1

∑
c′

S
†
b1c′e

iθa−c′ Sc′b2

∑
d ′

S
†
b2d ′ |a0d ′〉β1δ1β2

= P
(b3)
β2

Sb0b1

∑
c′

S
†
b1c′e

iθa−c′ Sc′b2

∑
d ′

S
†
b2d ′e

−iθa−d′ |a0d ′〉β1δ1β2

= Sb0b1

∑
c′

S
†
b1c′e

iθa−c′ Sc′b2S
†
b2b3

e−iθa−b3 |a0b3〉β1δ1β2

= 1

D4
eiθb0 ,b1 −iθb2 ,b3

∑
c′

e−iθb,c′ +iθa−c′+iθc′ ,b2 e−iθa−b3 |a0b3〉β1δ1β2

= 1

D4
eiθb0 ,b1 −iθb2 ,b3

∑
c′

eiθc′ ,b2−b1−a+iθc′ e−iθb3 +iθa,b3 |a0b3〉β1δ1β2

= 1

D4
eiθb0 ,b1 −iθb2 ,b3 −iθb3 eiθa,b3

∑
c′

eiθc′+b2−b1−a−iθb2−b1−a |a0b3〉β1δ1β2

= 1

D3
e2πic/8eiθb0 ,b1 −iθb2 ,b3 −iθb3 eiθa,b3 e−iθb2−b1−a |a0b3〉β1δ1β2

= 1

D3
e2πic/8eiθb0 ,b1 −iθb2 ,b3 −iθb3 −iθb2−b1 e−iθa eiθa,b3+b2−b1 |a0b3〉β1δ1β2

= 1

D3
e2πic/8eiθb0 ,b1 −iθb2 ,b3 −iθb3 −iθb2−b1 +iθb1−b2−b3 e−iθa+b1−b2−b3 |a0b3〉β1δ1β2

= 1

D3
e2πic/8eiθb0−b3,b1 e−iθa+b1−b2−b3 |a0b3〉β1δ1β2 . (47)

The final result can be rewritten as

W
†
b1−b2−b3

(α1)D†
γ Wb1−b2−b3 (α1)|a0b3〉β1δ1β2

= D3e−2πic/8eiθb3−b0,b1 P
(b3)
β2

P
(b2)
γ+α2

P (b1)
α2

|a0b3〉β1δ1β2 . (48)

The analogous calculation of P
(b3)
β2

P
(b2)
γ+α2

P (b1)
α2

|a0b3〉 can
now also be performed for a general non-Abelian topological
phase as well. However, the computation quickly becomes
quite complex. Below, we introduce a different way to evaluate
the result of the projections by studying the topology of the
space-time history of the surface. In addition to providing a
new perspective, this method allows one to express the results
in a simpler fashion.

VII. TOPOLOGY OF SPACE-TIME HISTORY

We have shown that a succession of measurements along
time constant Wilson loops {ωi} ⊂ � can be used to realize a
Dehn twist. As explained in Refs. [40,41] this can be given
a three-dimensional interpretation as framed surgeries Si

on � × [0,1]time (and further four-dimensional interpretation
which we will soon come to). The 3D interpretation is that
around each ωi a solid torus Si ⊂ � × [0,1] is deleted and

another solid torus S ′
i is glued back. The gluing back is done

so that the meridianal curve on S ′
i (i.e., the isotopy class of

curve that bounds a disk in S ′
i) glues to an in-surface parallel

ω′
i to ωi where ω′

i , ωi ∈ � × ti . This is the interpretation when
the trivial charge is measured along ωi , meaning that when
� × ti is cut along ωi the trivial charge appears on the two new
boundary circles ω′

i and ω′′
i . It is not difficult to understand why

this is so: trivial charge on ω′
i is equivalent to the topological

ground state being extendable over a disk bounding ω′
i . The

solid torus S ′
i is nothing more than a circle’s worth, the circle

being the normal linking circle to ωi ⊂ � × [0,1], of disks Dθ

in the TQFT ground state. Similarly, if instead of the trivial
charge being measured along ωi , the topological charge ai is
measured, then the glued back solid torus S ′

i will have a charge
ai Wilson loop at its core corresponding to the fact that each
Dθ will now have an ai anyon at its center. We denote the
manifold after the regluing on {ωi}, the surgered manifold, by
S(� × I ). However, in what follows, it will not contain ai

Wilson loops.
The 3D picture contains the requisite pair of PSs. The first

is easy: the vertical time lines, they identify �0 with �1. To get
a unitary we need to locate a second PS in the complement of
some balls inside S(� × I ). We need to find an embedding i
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Notation: β2

α2 + γ

α2δ

γ

whenever δ slides over
x using “part of y,”
we darken the part of
y involved

2D-handle slide perspective

Dγ |Ψ̃ = Pβ2Pα2Pα2+γ |Ψ̃ (up to phase and normalization)

δinitial

(a)

slide δ over
β2 using
part of
α2 + γ

(b)

slide δ over
α2 + γ
using part
of α2

(c)

redraw

(d)

slide δ over
α2 using
part of β2

(e)

redraw

(f)

FIG. 7. The initial state |�̃〉 satisfies Pβ2 |�̃〉 = |�̃〉 (see Sec. V), which justifies the first slide from (a) to (b). The effect of the final
projection Pβ2 is not shown explicitly; it effectively removes the handle associated with β2.

where f can be an interesting map, for example, a Dehn twist
Dβ1 , for β1 ⊂ �, the case we treat in detail.

Figures 7 and 8 show an annulary neighborhood N(β1) of
any β1 ⊂ �, expanded by creating a small nearby handle with
meridian β2 carrying trivial charge. Then, from this starting
point, a succession of three measurements of trivial charge
produce S(� × I ), which admits an inclusion i, as in Fig. 9,
inducing f = Dβ1 or D−1

β1
in Figures 7 and 8, respectively. We

will give successively 2D, 3D, and 4D accounts of the effect
of measurement. In the 2D account, the ± twist is verified
by tracking a typical fiber δ in the normal annular collar about
β1 ⊂ � under the “handle slides” shown. Handle slides of δ are
merely isotopies over the “new material” provided by giving

in {S ′
i} ⊂ S(� × I ) (see Sec. VII A). Note that when acting

on states of the form |�̃〉 as described in Sec. V, Dβ1 = Dγ

[see Eq. (21)].
The embedding i (from Fig. 9) is the identity outside

N(β1) × I . On N(β1) × I it is defined (with compatible
boundary conditions except on a single 3-ball). One may
visualize domain(i) as swept out in two parameters by the
arc δ in Fig. 7 (or 8). One parameter is the progression through
the subfigures (a)– (f). The other parameter is obtained by
pushing δ as far as possible around the annulus N(β1). Before
the creation and after the destruction of the additional genus,
δ can be slid 2π around β1 staying normal to β1. While the
additional genus is present, there is an obstacle that δ cannot
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D−1
γ |Ψ̃ = Pβ2Pα2+γPα2 |Ψ̃ (up to phase and normalization)

δinitial

(a)

slide δ over
α2 along
part of
α2 + γ

(b)

redraw

(c)

slide δ over
α2 + γ
along part
of β2

α2

(d)

slide δ over
β2 along
part of α2

(e)

redraw

(f)

FIG. 8.

cross, a “missing” 2-disk. These missing 2-disks sweep out
a 3-ball in time; this is the 3-ball missing from the PS of
domain(i). Section VII B gives additional details on the 3D
interpretation.

A. 2D interpretation

We start with the surface � and state |�〉 ∈ V(�). All
operations take place near β1 so we restrict attention to the
annular neighborhood N(β1) = Y with boundary components
{β+

1 ,β−
1 }. The most naive, but still accurate, point of view is

that any simple loop ω which is definitely in a trivial charge
state behaves as if it bounds a disk � of material in the

Σ × 1

Σ × I \ balls

Σ × 0

Σ × 1

S(Σ × I)

Σ × 0

f

i

id

FIG. 9.

TQFT ground state. Thus, for all physical purposes, there is no
distinction between an arc passing along a segment ω′ ⊂ ω and
its complementary segment ω′′ = ω \ ω′. If � were physically
present, replacing ω′ by ω′′ would be an “isotopy across �.” In
Sec. VII B, we will explain why this isotopy is called a handle
slide.

In Y we see a product structure (PS) of arcs joining β+
1

to β−
1 , one of those arcs we call δ. The first operation is to

expand Y to Y+ by adding one to the genus; Y+ is the surface
studied in Fig. 7. The three arrows labeled by “slide δ over . . . ”
indicate isotoping δ until it runs parallel to a tiny segment ω′
of the curve ω which it is to be slid over, and then replacing the
bit parallel to ω′ with a bit parallel to ω′′. The measurements
of zero charge successively along β2, α2 + γ , and α2 each
temporarily secure the condition needed for this handle slide
that, at that moment, the charge on ω (=β2, then α2 + γ ,
then α2) is trivial. The composition of these slides allows
us to follow the progress of one fiber δ of the 2D PS of Y

under these three measurements. After the measurements, the
extra genus is removed by a final projection Pβ2 . In this time
history, contained in the right-hand column of Fig. 9, we see
the punctured product structure embedded by the map i as
described above. The central conclusion is that δ as drawn in
Fig. 7(f) has picked up a 2π -twist relative to its position in
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Fig. 7(a). The bridge between measurement and Dehn twist is
already evident in this 2D analysis, and clarified further within
the 3D interpretation; however, the extraction of the precise
overall phase factor must wait for the 4D interpretation.

B. 3D interpretation

Here, we use Morse theory to build the 3D bordism S(� ×
I ) (see Fig. 9) as a time history. We discuss this first from the
perspective of the surface � evolving in time and then in the
language of 3D surgery. The latter perspective belongs to the
next section since 3D surgeries are accomplished by passing
across 4D cobordisms.

In the first perspective (evolving surface), there are eight
events, each of which is an (i − 1)-surgery on the surface,
or equivalently from the perspective of the space-time the
attachment of a 3D, index = i handle hi , for i = 1 or 2. The
eight values for i, in order, are (1,2,1,2,1,2,1,2). Let us explain
this language. Since we will shortly turn to 4D, we give the
definitions in all dimensions.

A d-dimensional p-handle is a d-ball which contains
a distinguished subset called the attaching region on its
boundary:

d-dimensional p-handle h: (Dp × Dq,∂Dp × Dq), (49)

where d = p + q. The “belt” or nonattaching region is Dp ×
∂Dq . Given a d-manifold with boundary (M,∂M), we attach

h by embedding ∂Dp × Dq
e

↪→ ∂M . The result is shown in
Fig. 10.

The effect on the boundary is ∂M → [∂M \ e(∂Dp ×
Dq)] ∪ (Dp × ∂Dq); this is called a (p − 1)-surgery.

So for cobording a surface to make a 3-manifold, we have
two operations: The first event is type (a) (attach 1-handle,
do 0-surgery); it adds genus (presuming the 1-handle joins
already connected regions of the surface). The last event is
type (b) (attach 2-handle, do 1-surgery); it removes genus
(or disconnects the surface). It is important to note how the
genus is removed; it is removed by attaching to β2; that is,
the genus is removed by surgery on the meridian created by
the first 0-surgery. (This gives a very different 3D trace than
would removing the genus by surgery on that dual curve α2.)
The remaining six events are in three pairs. Measuring the
trivial charge (along first β2, then α2 + γ , then α2) attaches
a 2-handle and effects a 1-surgery (first on β2, then α2 + γ ,
then α2) but immediately after each measurement, since we
want our surface back as it was (not with reduced genus),
we should immediately reverse the 2-handle attachment (in
all three cases) by attaching a 1-handle to the “belt region.”
This way, the 3D cobordism records the charge measurement
but does not ultimately alter the topology of the surface. This
pair of 3D handle attachments may seem ad hoc from the

M ∪e h =

M

h

FIG. 10.

D2
second

D2
first

“attaching region” in bold = S1 × D2

FIG. 11.

perspective of the evolving space-time, but we will next see
that it is quite essential from the perspective of 3D surgery.

In the 3D surgery perspective, we take as the starting point
the 3D cobordism (from �int to �final) consisting of only the
first and last events, which actually alter topology. From this
starting point, we interpret the three measurements of trivial
charge as three 3D 1-surgeries.

C. 4D interpretation

The 4D interpretation of 3D surgery is 4D handle at-
tachment. The 4D cobordism provides a geometric way of
understanding the overall phases intrinsic to Chern-Simons
theory and in particular the relevant central extensions of the
MCG (see Ref. [37], Chaps. 16 and 17, Shale-Weil cocycle).
A 4D handle is merely a ball with the following portion of
its boundary specified as a subspace, and called the “attaching
region”:

(D2 × D2,∂D2 × D2) = (D2 × D2,S1 × D2).

Figure 11 attempts to capture this 4D 2-handle in pictures by
cutting dimensions in half. Figure 12 illustrates this handle
being attached to M3 × [0,1].

Note that Si and S ′
i appearing disconnected is merely an

artifact of the low dimensionality of the picture. In Figs. 11
and 12, subspaces diffeomorphic to S1 × D2 are drawn as
S0 × D1. S0 is by definition the boundary of the unit ball in
R1, that is {−1,+1}, two points.

Also note that gluing S1 × D2 to Si requires choosing a
normal framing to the core circle of Si . Up to isotopy, the
framing lies in a Z-torsor. In 3-space or S3, the Z-torsor is
based (0 is the linking number = zero pushoff) so the data for
handle attachment (and surgery), a framed link, can also be
thought of as a link with integral labels in S3. A literal picture
of 3D 2-handles was drawn in Fig. 13(b). In general, handles
of the same index, in this paper it is always 2, may be “slid over
each other” (see Fig. 14). This process isotopes the attaching
region of one k-handle in the “upper” boundary which results
from the attachment of the other k-handles. Slides may occur
in sequences of arbitrary length; it is only necessary at each
step to choose which k-handle is mobile and fix the rest.

S1 × D2 glues to Si

Si

FIG. 12.
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Σ0 Σ0

Σ1

(a) attach 3D 1-handle, accomplish 0-surgery

Σ0

(b) attach 3D 2-handle, accomplish 1-surgery

FIG. 13.

Importantly, handle sliding does not change the topology
(or smooth structure) of the manifold; it merely changes
its combinatorial description, or handle decomposition. Our
4D handle body pictures begin with a 4-ball (0-handle) and
the entire diagram should be seen as lying on its boundary
∂D4 = S3.

We will exploit a useful 3D notation: An unknotted circle

with a dot on it means delete a 2-handle from the 0-handle

D4. As far as the boundary is concerned, this gives the same

result as attaching a 0-framed 2-handle to the unknot
0
. But

the bulks are different. yields S1 × D3 and so represents

(dually) the attachment of a 4D 1-handle, whereas
0

yields

S2 × D2 as one would expect from attaching a trivial 2-handle.
Thus, instead of attaching a 4D 1-handle to a 4-ball D4, the
same 4-manifold results from deleting from D4 a properly
embedded disk whose boundary is the dotted circle. In one
dimension lower, this is the duality; “a topologist cannot tell
a bridge from a (perpendicular) tunnel.” For more details on
handles and handle sliding, see Ref. [42].

(a) slide of 3D 2-handles

(b) slide of 2D 1-handles, and schematic for slide of 4D 2-handles

FIG. 14.

Recall the notation in Fig. 7. According to Ref. [37], to
keep track of phase information one must work with extended
surfaces, i.e., a surface � with a maximal isotropic subspace
L of H1(�; R) specified. In our case, all the action is confined
to the subsurface N(β1) = Y ⊂ �. After adding one genus to
Y , we obtain Y+ (see also Fig. 17):

Y + =

β+
1

β−
1

β2

We should choose L to be spanned by β2 (since Pβ2 |ψ〉 = 1)
and either β+

1 or β−
1 , let us say β+

1 . To match the algebraic
calculation (Sec. VI), the surface � should be extended
by choosing L = span{β’s}. The β ’s include β+

1 and the
stabilizing β2 and the other meridians to � (if genus � > 1).
Restricting to Y+ this is the L specified above. Again,
following the notation of Ref. [37] we pass to the capped
off surface Ŷ+, a torus with L = span (β2), and compute
the signature σ of the 4D cobordism associated to the three
measurement (=4D 2-handle attachments).

From the 4D perspective, the entire measurement protocol
for Dγ (up to phase) (see Fig. 7) has five (not eight) steps: a
3D 1-handle is attached to add one genus and a 3D 2-handle
is attached to β2 to remove the added genus. This produces a
3D cobordism which we product with I and then attach three
4D 2-handles. We may localize to where the action is Y . Ŷ

is a 2-sphere and the (localized) 3D cobordism we construct
turns out to be (S2 × I�S1 × S2,S2 × 0 ∪ S2 × 1) as shown in
Fig. 15.

We must draw an exact handle diagram and manipulate
it according to the rules of the “Kirby calculus” to compute
the signature of the 4D bulk σ , the Dehn twist Dγ between
the caps, and what 3-manifold arises on the right edge of
Fig. 16(b), the other end of the 4D cobordism.

But, before drawing the diagram, we should explain how
each 3D 1-surgery effects the same transformation of the 3-
manifold as a pair of 3D (index 2, index 1)-handle attachments.
This identity explains why the eight steps of Sec. VII B become
five in the 4D perspective; each (2,1)-handle attachment pair
becomes a single 3D 1-surgery. A 3D 1-surgery has two steps:
a tubular neighborhood N(S1) = S1 × D2 is deleted from the
3-manifold, and then another D2 × S1 is reglued according
to the framing instructions. In the case that the core circle
S1 × 0 ⊂ S1 × D2 lies in a level of a foliation by surfaces, N

may be arranged to consist of an interval [−ε,ε] of annular
strips in surface levels (leaves) with the annuli degenerating
to circles (i.e., annuli of zero thickness) at both −ε and ε.
Then, the replacement operation on levels [−ε,0] is precisely
the attachment of a 3D 2-handle to the circle (= degenerate
annulus) at level = −ε. Similarly, the replacement operation
on levels [0,ε] is the inverse or “Poincaré dual” 3D 1-handle
attachment. This dual attachment is along the nonattaching
(belt) region of the previously attached 2-handle.

To simplify notation, the calculation in Fig. 18 is done with
S2

top and S2
bot both capped off by 3-balls, and the resulting

S1 × S2 itself capped off (on the left) by , i.e., S1 × D3.
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FIG. 15. 3D cobordism. The unlabeled two dots in the bottom right figure denote the 2-sphere along which the connected sum occurs.

This allows us to read off the 3-manifold and its right boundary.
Specifically, the canceling 2-handle [Figs. 18(c) and 18(d)]

yields a 2-handle diagram in S3 rather than in ∂( ); then the

+1-framed handle cobords S3 back to S3 with a CP 2 \ (D4 

D4) as bulk. Finally, the 0-framed handle gives a boundary-
connected sum with S2 × D2. In particular, the signature σ =
1 and the right boundary is (again, up to diffeomorphism) S2 ×
I�(S1 × S2). For the record, the entire closed cobordism is
diffeomorphic toCP 2 \ [N(S1) 
 N(S1)], complex projective
space minus the disjoint union of two open neighborhoods of
a circle. One N(S1) is the filling S1 × D3; the other is dual to
the zero framed 2-handle.

Since the Kirby calculus is generally applied to 4-manifolds
with connected boundary, in using it to describe a relative
cobordism we have done two things. First, we closed the
3-manifolds by adding 3-balls. Second, we filled the left
boundary with S1 × D3 to reduce to the case of connected
boundary.

From the computed signature σ = 1, and given the choice
of Lagrangian L� ⊃ span (β1) (implied by the skein choice for
enumerating basis states in Sec. II), one computes the Abelian
phase w in the formula

wD†
γ |�̃〉 = D3Pβ2Pα2+γ Pα2 |�̃〉. (50)

The overall normalization set by D3 is not computed simply
from the topology of the 4-manifold, but requires additional
TQFT data; here, we obtain the overall normalization from
the previous algebraic calculation. The right side of the 4D
cobordism, M , is a product up to an extraneous �S1 × S2.
Using the canonical generator x [37] of the Hilbert space
V(S2), the S1 × S2 factor can be removed and M induces a
unitary from bottom to top exactly as a diffeomorphism would.
By Ref. [37] the Abelian phase factor

w = e
2πic(3σ )

24 . (51)

c is the exponentiated central charge of the TQFT, i.e.,∑
a∈C

d2
a eiθa = e

2πic
8 .

The basic unit of tangential framing on a 3-manifold is
the Pontryagin number p1 on a bounding 4-manifold. The
Hirzebruch signature formula states (in dimension 4)

σ = p1

3
.

This accounts for the factor of 3 in Eq. (51) above. For nota-

tional convenience we did cap off, “on the left,” S1 × S2 by

but σ (S1 × D3) = 0 and so by additivity of signature under
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×I→

→

•
S2

top × I

•
S2

bot × I

three 4D 2-handles

(a)

or even more
schematically

S2
top × I

4D bulk with
signature σ

S2
bot × I

(b)

no Dehn twist
Dehn twist Dγ

between the caps

S2
top = S2 × 1

0

0-framed 3D 1-surgery
on β2 at t = 1

2

S2
bot = S2 × 0

(c) the Kirby diagram for the cobordism (S2 × S1 × S2, S2 × 0 ∪ S2 × 1)

FIG. 16.

gluing along full boundary components, this convenience does
not affect the calculation of σ .

A final point is to extract the Dehn twist Dγ from Fig. 18
and thus provide an independent check on the purely 3D
calculation carried out in Fig. 7. With only a little extra work,
we can calculate the Dehn twist not only in the case where all
particle-type measurements are of the trivial charge, but also
in the more general case where we assume the measurements
along α2 and α2 + γ yield b1 and b2, respectively. Returning
to Fig. 18, we not only restore the deleted a-labeled Wilson
loop but also add new loops labeled b1 and b2 (respectively)
parallel to the cores of the newly glued solid tori. The result is
shown in Fig. 19.

β+
1

β−
1

α2

Y

=

β+
1

β−
1

α2

Y

time

FIG. 17. Right side illustrates alternative representation of Y +

which is useful for the calculations in Figs. 18–19.

In the case that b1 and b2 are Abelian particles, we obtain:

|N |Pβ2Pα2+γ Pα2 |a00〉β1,δ1,β2 = e
2πic

8 e−iθa+b1−b2 |a00〉β1,δ1,β2 ,

agreeing with the calculation of Sec. VI C for the overall
normalization set by |N | = D3. It is straightforward to also
consider the case where the initial and final projections along
β2 yield b0 and b3, respectively, although this is not explicitly
shown in the figures, where we also obtain agreement with the
calculation of Sec. VI C. The more general case, where b1,b2

need not be Abelian, are given by evaluating the final diagram
in Fig. 19.

VIII. DISCUSSION

We have shown in this paper that a sequence of topological
charge projections (measurements) can generate Dehn twists
on surfaces of nontrivial topology. We have seen that the
mathematical theory yields a well-defined overall phase e2πic/8

to the process that we have described. A natural question is
whether it is possible that other sequences of projections could
give rise to the same operation, but with a different overall
phase e2πinc/8, for some integer n. This is indeed possible.
To show this, we use the Lantern relation, which relates a
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•

4D 1-handle (dual representation of α2)

0-framed 4D 2-handle from Pα2

0-framed 4D
2-handle from Pβ2

−1-framed 4D 2-handle
from Pα2+γ

β+
1

β−
1

Wilson loop of charge a along β1

(a)

temporarily drop the Wilson loop and β±
1 and simplify the link diagram:

•

(b)

...
0

handle slide along
...

•

(c)

0

Morse cancel

(d)

=

∂∼= S1 × S2

+1 0

(e)

FIG. 18.

sequence of four Dehn twists to a sequence of three Dehn
twists. Consider a disk with three punctures, labeled 1, 2, 3,
arranged clockwise around a triangle. The Lantern relation is
the identity

D1 = D12D13D23(D2D3D123)−1, (52)

where Di , Dij , and D123 are each right-handed Dehn twists
around the ith puncture, the loop containing the punctures i

and j , and the loop containing all three punctures, respectively.
In the preceding sections, we have shown that each Dehn twist
can be related to a series of projections, multiplied by an overall
phase e2πic/8. From Eq. (52), we see that D1 can be expressed
purely as a series of projections, and the overall phase will

•

a
b1 b2

0
2-handle
slide

•

b1

b2

0

Morse

cancel

a

b1 b2

+1 0 +1 0a

b1

b2

0

a b1 b2

Wilson loops

FIG. 19.
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FIG. 20. A generic topological phase described by a unitary
braided tensor category B, together with three disconnected gapped
boundaries. When B = C ⊗ C, the considerations of this paper are
associated with projections along the loop α2, the graph α2 + γ ,
which connects two disconnected gapped boundaries, and the line
β2, which also connects two disconnected gapped boundaries. One
could consider these sequences of projections for more general B as
well.

cancel out in the product, realizing the case n = 0 above. The
case for general n is a straightforward generalization.

While the overall phase is mathematically well defined,
whether it is physically well defined depends on how the
topological charge projections P (a)

ω are realized. If they
are realized as a non-Abelian Berry phase by adiabatically
tuning microscopic parameters, as described in Sec. IV, then
the overall phase will obtain a nontopological dynamical
contribution as the ground-state energy of the system changes
in time. It is not clear whether there is a physical procedure
for performing the topological charge measurements in such a
way that keeps the overall phase of the process topologically
protected and well defined.

We note that in this paper we have assumed that the
topological phases of interest are described by unitary modular
tensor categories (UMTC), which physically means that
they arise from systems where the microscopic constituents
are bosonic degrees of freedom. For systems where the
microscopic constituents are fermionic degrees of freedom, the
corresponding braided tensor category is not modular. While
similar results as those shown here are expected to go through,
we have not fully analyzed this case. In the discussions of the
topology of the space-time history, one would need to consider
a spin structure on the manifolds to carry out the analysis. One
could, moreover, consider realizing the mapping class group
of nonorientable surfaces through projections, which would
require considering a pin structure on the manifolds of interest.
We leave these analyses for future work.

Furthermore, in this paper we made the connection between
a topological phase, described by a UMTC C, on a genus g

surface and a topological phase C ⊗ C on a disk with nb =
g + 1 disconnected gapped boundaries, with a certain type
of topological boundary condition. The topological charge
projections along the noncontractible cycles in the high genus
surface are then associated with topological projections along
loops and also lines and graphs that connected the boundaries
as shown in Fig. 20.

A more general scenario is to consider a generic topological
phase B in the presence of nb disconnected boundaries,
where each boundary is associated with some topological
boundary condition. Topological phases in the presence of
several disconnected boundaries can have topological ground-
state degeneracies, and one can then consider topological
charge projections along loops and also lines and graphs
that connect the different boundaries, which give rise to
unitary transformations on the topological state space. It may
be interesting to revisit the topological quantum computing
schemes with the Z2 surface code with these ideas in mind
[43]. In the case where B is Abelian, there have been some
general results developed in Ref. [33]. It would be interesting to
develop a more general theory of such topologically protected
unitary transformations.

A particularly relevant application of these results to the
pursuit of universal topological quantum computation is in
the context of the Ising ⊗ Ising topological state. It is well
known that the ability to perform topology change and Dehn
twists in the Ising topological state can provide the missing
topological π/8 phase gate and thus enable universal TQC
[5,6]. An adaptation of the ideas of Refs. [5,6] to the case of the
Ising ⊗ Ising state with genons has also been developed [20].
The considerations of this paper demonstrate that the Ising
⊗ Ising state is also capable of supporting universal TQC, as
the required Dehn twists of the Ising state can be implemented
through projections in the Ising ⊗ Ising state to appropriate
eigenstates of loop, line, and graph operators in the presence
of disconnected gapped boundaries. In the Appendixes, we
provide some additional details of this protocol.
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APPENDIX A: TOPOLOGICAL CHARGE PROJECTIONS
AND WILSON OPERATORS

The topological charge projections P (a)
ω discussed in this

paper can be written in terms of Wilson loop operators of
quasiparticles by using the modular S matrix. Specifically,
let Wa(ω) be a Wilson loop operator for a quasiparticle a

encircling a loop ω. Then,

P (a)
ω =

∑
x∈C

S0aS
∗
xaWx(ω). (A1)

To understand this, note that a state with definite topological
charge b associated to the loop ω is an eigenstate of Wx(ω),
with eigenvalue Sxb/S0b. Therefore, P (a)

ω acting on this state
gives

∑
x∈C S0aS

∗
xaSxb/S0b = δab.

This can be straightforwardly extended to topological
charge projections associated to lines which connect distinct
disconnected gapped boundaries in a planar system. Suppose
that we have a doubled topological phase of the form C ⊗ C,
and gapped boundaries such that quasiparticles of the form
(a,a), with a ∈ C and a ∈ C, can be removed at the boundary
by local operators [that is, the quasiparticles of the form
(a,a) are condensed on the boundary]. This implies that there
exist Wilson line operators W(a,a)(γ ), where γ is a path that
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(1) (2) (3) (5)
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Dehn twist
around 

( , )

( , )

( , )

FIG. 21. Illustration of protocol for π/8 phase gate.

ends on the gapped boundaries, which keep the system in the
ground-state subspace. Consequently, one can define

P (a)
γ =

∑
x∈C

S0aS
∗
xaW(a,a)(γ ). (A2)

This allows one to define a topological charge a ∈ C (or any
superposition) to the open line γ which connects different
gapped boundaries.

APPENDIX B: UNIVERSAL TOPOLOGICAL QUANTUM
COMPUTATION FROM THE ISING ⊗ ISING STATE

Here, we will provide some additional details about how to
implement a universal set of gates for quantum computation
in the Ising ⊗ Ising topological state, assuming the ability to
carry out the topological charge projections discussed in this
paper.

The Ising ⊗ Ising topological state has nine topologically
distinct types of quasiparticles, which we label as (a,b), with
a = I,σ,ψ being the anyons of the Ising state, and b = I,σ ,ψ

the anyons of the Ising state. For a review of the topological
properties of the Ising state, see Ref. [44]. The quasiparticles
have topological twists:

eiθ(a,b) = e2πi(ha−hb), (B1)

where hI = 0, hψ = 1
2 , hσ = 1

16 . The Ising anyons have the
fusion rules

σ × σ = I + ψ, σ × ψ = σ, ψ × ψ = I. (B2)

The modular S matrix of the Ising state is given by

S = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠. (B3)

It is well known that the non-Abelian braiding of quasipar-
ticles in the Ising topological state is not sufficient to realize
a topologically protected universal set of gates for quantum
computation. If we allow the possibility of measuring the
fusion channel of any four σ quasiparticles, then the only
missing gate is the single-qubit π/8 phase gate [45]. Below
we will present a protocol to realize a topologically robust π/8
phase gate by using the Ising ⊗ Ising topological state with
gapped boundaries and topological charge projections. The
protocol presented below is an adaptation of ideas of Ref. [20]
for realizing a robust π/8 phase gate in the Ising ⊗ Ising state
with genons, which in turn are based on ideas of Refs. [5,6]

for realizing a topologically protected π/8 phase gate in Ising
systems when topology changes and Dehn twists are allowed.

1. π/8 phase gate

Let us consider a qubit encoded in the fusion channel of
two (σ,I) particles of the Ising ⊗ Ising state:

(σ,I) × (σ,I) = (I,I) + (ψ,I). (B4)

We consider two disconnected gapped boundaries, shown in
Fig. 21. We then consider the following protocol:

(1) The two disconnected gapped boundaries are initialized
in a state which has trivial topological charge (I,I) through
the loops α1 and α2, as shown. Consequently, the topological
charge through ω0 is equal to that of ω′

0, and is equivalent to
the fusion channel of the two (σ,I) particles of interest.

(2) We apply a loop operator which takes one of the (σ,I)
particles to one of the gapped boundaries, converts it to a
(I,σ ) particle through the action of a local operator on the
boundary, takes it to the other boundary, converts it back to a
(σ,I) particle, and brings it back to its original location.

(3) The topological charge through the loop ω′
0 (see

Fig. 21) is projected to the identity (I,I).
(4) Perform a double “Dehn twist” around γ (see Fig. 21).
(5) Undo step 2 by applying the inverse loop operator.
This protocol applies a relative phase of eiπ/4 to the state of

the qubit, depending on whether the fusion channel is (I,I) or
(ψ,I), thus implementing the single-qubit π/8 phase gate.

To understand this, first observe that after step 1, the
topological charge associated to the loop α1 (and also to α2)
is (I,I). Thus, the topological charge associated to the line
γ , which we will denote as c(γ ), is c(γ ) = 1

2 (I + √
2σ + ψ).

This is because in this situation, c(γ ) is related to c(α1) by the
modular S matrix of the Ising state.

The topological charge associated to the loop ω0, which we
denote as c(ω0), is the state of the qubit, x. After step 2, the
topological charges become c(ω′

0) ⊗ c(γ ) = x ⊗ 1
2 (I − ψ) +

1√
2
[(ψ,I) × x] ⊗ σ . This is because step 2 essentially braids a

σ particle around the topological charge c(γ ). If c(γ ) = I or
ψ , this gives a phase +1 or −1. However, if c(γ ) = σ , then the
fusion channel of the two (σ,I) particles encoding the qubit is
flipped. After step 3, the topological charge c(γ ) is (I − ψ) if
x = (I,I), or σ if x = (ψ,I).

Another way to see these results is as follows. The
system is effectively equivalent to a single copy of the
Ising state on a high genus surface, with two punctures,
one of which has topological charge c(ω0), and the other
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FIG. 22. The Ising ⊗ Ising state with gapped boundaries maps
to a single copy of the Ising state on a torus, with the loops α1, α2, γ ,
ω0, and ω′

0 as shown.

which has topological charge c(ω′
0). The loops α1, α2, and

γ map onto the loops shown in Fig. 22. If the state of
the qubit is x = (I,I), then after step 3 both punctures
have trivial topological charge, and c(α1) = c(α2) = σ , which
implies that c(γ ) = 1√

2
(1 − ψ), by reading off the second

row of the S matrix. However, if instead x = (ψ,I), then
after step 3 the system is equivalent to a torus with a
single puncture c(ω0) = ψ , and c(α1) = c(α2) = σ . c(γ ) is
then determined by the punctured S matrix of the Ising state,
which is S

ψ
σ,a = δa,σ , which implies that c(γ ) = σ .

The double Dehn twist of step 4 around γ then gives a
relative phase of e2πi2hσ = eiπ/4 to the state, depending on
whether x = (I,I) or (ψ,I). After step 5, the topological charge
c(γ ) reverts to 1

2 (I + √
2σ + ψ) and c(α1) = c(α2) = (I,I),

recovering the initial state, up to the π/8 phase gate.
In order to implement the double Dehn twist of step 4, we

use the protocol described in this paper. We introduce another
disconnected gapped boundary (similar to the extra genus used

in the main text), and carry out the relevant sequence of three
topological charge projections.

2. Controlled-Z gate

It also possible to utilize a similar protocol as described
above to implement a controlled-Z gate (CZ) on two qubits.
The controlled-Z gate applies the Pauli σ z operation to the
state of the second qubit depending on the state of the control
qubit, and is represented by the matrix

CZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠. (B5)

To implement this, we consider an additional pair of quasipar-
ticles of type (σ,I), whose fusion channel y = (I,I) or (ψ,I)
is the state of the second qubit. To implement the CZ gate, we
follow the same steps as described above, except we replace
step 4 above with 4′:

(4′). Take the additional pair of quasiparticles through a
loop involving γ . This path is similar to the one used in step 2
for a single (σ,I) quasiparticle.

Based on the preceding discussion, if x = (I,I), then
c(γ ) = 1√

2
(I − ψ), in which case braiding the pair of

quasiparticles in fusion channel y will give a +1.
On the other hand, if x = (ψ,I), then c(γ ) = σ , in
which case the braiding of the pair of quasiparticles
in fusion channel y gives +1 if y = (I,I) and −1 if
y = (ψ,I).
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