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Ground state spin and excitation energies in half-filled Lieb lattices

M. Ţolea and M. Niţă*
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We present detailed spectral calculations for small Lieb lattices having up to N = 4 number of cells, in the
regime of half-filling, an instance of particular relevance for the nanomagnetism of discrete systems such as
quantum dot arrays, due to the degenerate levels at midspectrum. While for the Hubbard interaction model—
and even number of sites—the ground state spin is given by the Lieb theorem, the inclusion of long-range
interaction—or odd number of sites—makes the spin state not known a priori, which justifies our approach.
We calculate also the excitation energies, which are of experimental importance, and find significant variation
induced by the interaction potential. One obtains insights on the mechanisms involved that impose as ground state
the Lieb state with lower spin rather than the Hund one with maximum spin for the degenerate levels, showing
this in the first and second orders of the interaction potential for the smaller lattices. The analytical results agree
with the numerical ones, which are performed by exact diagonalization calculations or by a combined mean-field
and configuration interaction method. While the Lieb state is always lower in energy than the Hund state, for
strong long-range interaction, when possible, another minimal spin state is imposed as ground state.
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I. INTRODUCTION

The side-centered square lattice, i.e., the Lieb lattice,
was first proposed in Ref. [1] as a rigorous example of
itinerant ferromagnetism in the presence of on-site Hubbard
interactions at half-filling. Recently, the Lieb lattice received
renewed attention in the context of optical and photonic lattices
[2–7], two-dimensional (2D) superconductivity [8,9], and for
its specific topological properties [10–15]. In particular, the
artificial lattice realization offers the advantage of controlling
parameters, leading to various regimes not available in real-
atom lattices, so that one can test a vast spectrum of theoretical
predictions.

The Lieb lattice can have nontrivial magnetic proper-
ties [16–23] and its own specificity originates in the de-
generate energy level, called also a flat band (see, e.g.,
Refs. [1,24–26]), which is located at the middle of the
spectrum. This flat band is one from the total of three bands of
the Lieb lattice, consistent with the three-atom unit cell. While
the electron-hole symmetry imposes that this band is located
at precisely zero energy, its exact degeneracy for a given finite
lattice depends also on the border conditions.

Let us now picture a situation in which such a flat band
is half-filled. Then, a legitimate question would be whether
the system obeys the Hund rule with maximum spin of the
electrons on the degenerate levels, say s = smax, or whether
they have a lower total spin. The applicability of the Hund rule
in various nanosystems has been a subject of considerable
interest (see, e.g., Refs. [27–36]), both from applicative
and fundamental points of view, for understanding the most
intimate mechanisms of magnetism. The results presented in
this paper shall add to the existing debate an instance when the
Hund rule does not apply.

At this point it is important to mention two well-known
theorems that give the ground state spin for some particular
lattices with Hubbard interaction. We shall also define some
labeling of states used in the paper:
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(1) The Lieb theorem [1] states that, for a half-filled
bipartite lattice (composed of two sublattices, say, A and B, and
with hopping only between sites from different sublattices),
with even total number of sites and with on-site Hubbard
repulsion, the spin of the ground state is sL = 1

2 ||A| − |B||
(|A|, being the number of sites of the sublattice A). Needless
to say, the Lieb lattice itself is bipartite. Its ground-state spin
is thus given by the site number mismatch between the two
sublattices, with the theorem stating also that the ground
state is not degenerate (excluding the trivial 2sL + 1 spin
degeneracy). The state lowest in energy from the subspace with
spin sL shall be referred throughout the paper as the Lieb state.

(2) The Mielke theorem [24] states that a flat band located
at the lowest part of the spectrum will always have the
maximum spin ground state smax, if filled up to at most half, in
the presence of Hubbard interaction. For exactly half-filling,
the maximum spin ground state may be degenerate only with
the state with a single spin flipped (excluding again the trivial
spin degeneracy). Throughout this paper, such a state with
the maximum spin value of the electrons in a flat band or
degenerate level will be referred as a Hund state with spin sH =
smax, for the correspondence with the atomic physics rule.

In this paper we shall address finite Lieb lattices with up
to N = 4 number of cells, or elementary squares, as the one
depicted in Fig. 1, and we shall impose vanishing boundary
conditions. Technically, this means that we can start from the
infinite two-dimensional (2D) Lieb lattice from which one cuts
the smaller lattice of interest by imposing the wave functions to
be zero on the exterior points (for the square in Fig. 1 the wave
functions vanish on the sites B21, B22, C12, etc., that are not
drawn), as opposed to periodicity conditions. The vanishing
boundary conditions are particularly relevant for small lattices,
with influence on the physical properties. In Ref. [16], for
instance, the authors consider antiperiodic conditions instead,
and obtain a different number of levels in the flat band.

For our case, the midspectrum level degeneracy is g =
N + 1 [15] and the interesting problem here is that the spin
values predicted by the above theorems at half-filling are
different. They are sL = (N − 1)/2 for the Lieb state and
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M. ŢOLEA AND M. NIŢĂ PHYSICAL REVIEW B 94, 165103 (2016)

A11 B11 A21

A12 B12 A22

C11 C21x

y

Φ1
-(π/2,π/2)

Φ2
- (π,π/2) Φ3

- (π/2,π)

Φ5
0(π/2,π/2) Φ4

0(π,π)

Φ6
+(π,π/2) Φ7

+(π/2,π)

Φ8
+(π/2,π/2)

ε1=-2t

ε2,3=-√⎯2t

ε4,5=0

ε6,7=√⎯2t

ε8=2t

E ,E

O ,E E ,O

E ,E  (B,C) O ,O  (A)

O ,E E ,O

E ,E

FIG. 1. (Left) The one-cell Lieb lattice with eight sites. The
indices n, m of the atoms A, B, and C count the three-sites cells.
(Right) The single-particle eigenstates �α(kx,ky) and eigenvalues εα

with α = 1, . . . ,8. There are three sets of eigenstates: �+ for ε > 0,
the midspectrum degenerate levels �0 for ε = 0 (called also flat
band), and �− for ε < 0. The states marked with Ex and Ey are the
states with even parity on x and y axes respectively and the states
marked with Ox and Oy have odd parity. The two states in the flat band
are nonoverlapping, being localized on different lattice points, �0

4 on
A sites [�0

4(A) �= 0,�0
4(B,C) = 0] and �0

5 on B,C sites [�0
5(A) = 0

and �0
5(B,C) �= 0].

sH = (N + 1)/2 for the Hund one [37], being related by the
formula sL = sH − 1 and suggesting a single spin-flip process
between them. However, as shall be shown, one does not face a
contradiction since the Lieb lattices do not have the degenerate
flat band at the bottom of the spectrum but in its middle, and we
shall show that the interaction with the below electrons proves
decisive in imposing the ground state spin. Nevertheless, it
shall be insightful throughout the paper to discuss also the
spin properties of the isolated degenerate levels for small Lieb
lattices; hence the relevance of the Mielke theorem here.

Both the Lieb and Mielke theorems have been rigourously
proven only for on-site Hubbard interaction, so if one includes
as well long-range interaction, the results are no longer known
a priori, justifying our approach. Also, for the case of nanosys-
tems, one is typically interested not as much in the ground
states configurations, but especially in the excitation energies,
which are the experimentally measurable quantities. Moreover,
we shall give insights on the mechanisms that impose the Lieb
state as the ground state using the nonoverlapping property of
one of the states in the midspectrum [15] and the electron-hole
symmetry of the Hamiltonian [38–40].

In this paper, particular attention will be paid to the smallest
one-cell Lieb lattice depicted in Fig. 1, which allows (having
only eight sites) an analytical solution at small interactions,
as well as numerical exact diagonalization for any value of
the interactions. If only Hubbard interaction is considered, we
are in the frame of the Lieb theorem. However, our alternative
proof for this specific system allows for an insight on the
role of the states’ spacial distributions and their symmetry
properties. Similar arguments are presented for a two-cell
Lieb lattice that, having odd number of sites, falls outside
of the Lieb theorem conditions. The long-range interaction
included in our calculations will show that the ground state
spin remains unaffected, even if the electronic configuration
itself may change.

For lattices of sizes N = 2 ÷ 4, numerical results will
be presented by making use of a combined mean-field and
configuration-interaction method (see, e.g., Refs. [34,41–56]),
an approach particularly justified for weak interactions. The
results concur with those obtained for the smallest N = 1
lattice, and the Lieb state energy is lower than the Hund state
energy both for even and odd number of sites, even when
long-range interaction is turned on. For N = 1 and N = 2, the
Lieb state [1] corresponds to the minimum spin [this being
sL = 0( 1

2 ) for N = 1(2)]; however, for N = 3 and N = 4 the
paramagnetic state—of minimum spin—differs from the Lieb
state and emerges as ground state when the interaction ratio
(long range versus Hubbard) exceeds a certain value. This is
attributed to the long-range interaction favoring the lowest spin
ground state [57].

Various shape of nanoscale lattices can be created as
artificial semiconductor quantum-dot molecules [58]. We
briefly mention the experimental realization of quadruple
quantum-dot molecules [59] and theoretical investigations
related to this subject, including also the interaction effects
of half-filled systems [60]. The artificial benzene molecule
is theoretically studied [61] and is proposed as an ultracold
atom system in Ref. [62]. Using GaAs, InAs, or Si quantum
dots as building blocks, various sizes of Lieb-type systems
with interdot distances a = 5 ÷ 100 nm [16] can be tailored.
This opens the possibility of exploring the properties of a
Hubbard-like interaction Hamiltonian in few-site Lieb lattices,
as studied here.

The outline of the paper is as follows: In Sec. II we give
the Hamiltonian and describe the singlet-triplet formulation,
Sec. III gives both analytical insights and exact diagonalization
results for the one-cell Lieb lattice, while Sec. IV addresses
numerically bigger cells with N = 2 ÷ 4. The Appendixes
provide calculations details for the main sections and also
analytical insights on the two-cell Lieb lattice.

II. INTERACTING HAMILTONIAN. SINGLET
AND TRIPLET OPERATORS

Let us consider a 2D lattice with the noninteracting
Hamiltonian Ĥ0 having the single-particle eigenstates (or
noninteracting orbitals in Ref. [63]) �α and the corresponding
energies εα . When the electron-electron interaction is consid-
ered as well, the total Hamiltonian can be generically written
in the second quantization:

Ĥ = Ĥ0 + Ĥint

=
∑
α,σ

εαc†ασ cασ + 1

2

∑
α,β,γ,δ

∑
σσ ′

Vαβ,γ δc
†
ασ c

†
βσ ′cδσ ′cγσ , (1)

where c†ασ and its conjugated cασ are the fermionic creation
and annihilation operators of the states |nασ 〉 in the occupation
number base, corresponding to one electron in the state
�α with spin σ = ±1/2. Vαβ,γ δ are the Coulombian matrix
elements expressed as the scalar products

Vαβ,γ δ = 〈�α(1)�β(2)|V (1,2)|�γ (1)�δ(2)〉, (2)

with V (1,2) the interaction potential between the particles 1
and 2 and �(1) or �(2) are eigenstates of the particle 1 or 2.
The states and energies of the many-particle Hamiltonian will
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be noted with 	 and E; the spin quantum numbers are s for the
total spin operator Ŝ and ms for its projection Ŝz. The energy
unit is the hopping integral that is considered t = 1 and we
work with � = 1.

In the tight-binding model, suitable for lattices such as the
Lieb ones we consider here, the Coulombian matrix elements
are the sum of on-site Hubbard and intersite long-range
interaction terms [49,63]:

Vαβ,γ δ = UH

∑
i

�α(i)∗�β(i)∗�γ (i)�δ(i)

+VL

∑
i �=j

�α(i)∗�β(j )∗�γ (i)�δ(j )

|Ri − Rj | , (3)

where i,j are the discrete lattice sites and Ri,Rj are their
space coordinates that are expressed in terms of the lattice
constant a. In Fig. 1, a is the square length. UH and VL give the
Hubbard and long-range interaction strengths. For a quantum
dot array with the confinement potential described in Ref. [16]
the Hubbard parameter is UH =

√
2πe2

4πεd
with d being the dot

radius depending on the confinement and ε being the dielectric
constant. If we consider the long-range interaction parameter
VL = e2

4πεa
we obtain the ratio VL/UH = d

a
√

2π
. As example,

by varying the dot radius 0 < d < 0.2a the ratio VL/UH can
be modified from 0 to 0.5. We use these values in the numerical
calculations.

As is well known, the Hamiltonian commutes with the spin
operators Ŝ and Ŝz. As a consequence, and as will be seen in
the following sections, the eigenfunctions for two electrons
will always be singlet (s = 0,ms = 0) or triplet (s = 1,ms =
0,±1) states that are obtained by acting the following singlet
and triplet operators on the vacuum:

Ŝαα = c
†
α↑c

†
α↓, (4)

Ŝαβ = 1√
2

(c†α↑c
†
β↓ − c

†
α↓c

†
β↑), for α �= β, (5)

T̂ 0
αβ = 1√

2
(c†α↑c

†
β↓ + c

†
α↓c

†
β↑), (6)

T̂ +1
αβ = c

†
α↑c

†
β↑, (7)

T̂ −1
αβ = c

†
α↓c

†
β↓. (8)

The singlet and triplet states are simply a change of basis for
the operators pairs that appear in the Hamiltonian, and we can
easily derive the matrix elements of Ĥint in this basis, relations
that will prove useful in the following spectral calculations:

〈Sαα|Ĥint|Sγγ 〉 = Vαα,γ γ , (9)

〈Sαα|Ĥint|Sγ δ〉 =
√

2Vαα,γ δ with γ �= δ, (10)

〈Sαβ |Ĥint|Sγ δ〉 = Vαβ,γ δ + Vαβ,δγ

with α �= β, γ �= δ, and (11)

〈
T

ms

αβ

∣∣Ĥint

∣∣T ms

γ δ

〉 = Vαβ,γ δ − Vαβ,δγ . (12)

The full eigenfunctions 	 for larger number of electrons
(for the one-cell lattice for instance we shall need eight

electrons) will be conveniently expressed by grouping pairs
of electrons into singlet and triplet states.

We mention that the Greek indices α, β, . . . are for the
single-particle eigenstates (or orbital states) and Latin indices
i,j are for the lattice sites.

III. ONE-CELL LIEB LATTICE

Now we shall specialize the generic Hamiltonian given in
the previous section, for the particular case of a square with
centered sides, depicted in Fig. 1. As shall be seen, this smallest
realization of a Lieb lattice already has a degenerate level in
the middle of the spectrum, raising nontrivial questions like
the ground-state spin at half filling or the values of the first
excitation energy. The two midspectrum degenerate levels
are spatially disjoint (nonoverlapping), causing a vanishing
exchange interaction between two electrons occupying them
and consequently a degeneracy between singlet and triplet
states. We show, however, that the degeneracy is in the
favor of the singlet state, that is, remaining the unique
ground state when the configurations involving the rest of
the spectrum are considered. We shall present analytical
results—considering single-electron excitations in the second
order of perturbation—and also exact diagonalization results.

A. Single-particle states

The one-cell Lieb lattice has eight states in the single-
particle spectrum as shown in Fig. 1. We shall use the
notations from Ref. [15], the eight eigenstates being grouped
in three branches: the states �±(
k) for wave vectors 
k =
(π,π/2), (π/2,π ) and (π/2,π/2) with positive (+) and neg-
ative (−) energies ε±(
k) = ±2t[cos2(kx/2) + cos2(ky/2)]

1/2

and two states �0(
k) for 
k = (π,π ) and (π/2,π/2) with zero
energy ε0(
k) = 0. For simplicity the states are also indexed
�1···8 and their energies are shown in Fig. 1.

We give below the expression for the first five quantum
states (vanishing boundary conditions have been implicitly
assumed, meaning that the wave functions are normalized
on the eight sites of the system and vanish outside, also no
periodicity conditions are imposed):

�−
1

(
π

2
,
π

2

)
= 1

2
√

2
(−|A11〉 + |B11〉 − |A21〉 + |C21〉

− |A22〉 + |B12〉 − |A12〉 + |C11〉), (13)

�−
2

(
π,

π

2

)
= 1

2
√

2
(−|A11〉 + |A21〉 −

√
2|C21〉 + |A22〉

− |A12〉 +
√

2|C11〉), (14)

�−
3

(
π

2
,π

)
= 1

2
√

2
(−|A11〉 +

√
2|B11〉 − |A21〉 + |A22〉

−
√

2|B12〉 + |A12〉), (15)

�0
4(π,π ) = 1

2
(|A11〉 − |A21〉 + |A22〉 − |A12〉), and (16)

�0
5

(
π

2
,
π

2

)
= 1

2
(|B11〉 − |C21〉 + |B12〉 − |C11〉). (17)

Some comments are in order:
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(i) The states �+(
k) are obtained from the states �−(
k)
changing the sign of A sites’ coefficients. This is an electron-
hole symmetry operation that changes a state with energy
ε in the state with energy −ε and changes the sign of
the wave function projected on one of the sublattices [38–
40]. In our case �+(
k; A) = −�−(
k; A) and �+(
k; B,C) =
�−(
k; B,C).

(ii) In the finite Lieb lattice there is a degenerate level
ε = 0 at midspectrum having one of the degenerate states
located on A sites and all of the other states located on B and
C sites [15]. For one cell the degeneracy of the zero-energy
level is g = 2 and, following the introduced notation, �4 is
localized on A lattice sites and �5 on B,C lattice sites, thus
making them spatially disjoint. This nonoverlapping property
of single-particle wave functions one has to keep in mind, as
it will play an important role for the many-body spectrum,
leading, for instance, to the missing of ferromagnetism in a
flat band [64]. The property of certain eigenfunctions being
exactly zero in some lattice sites was proven to be important
also for building generalized eigenfunctions for bigger lattices
built by so-called origami rules [65].

(iii) Our Hamiltonian has parity symmetry and conse-
quently the eigenstates are even or odd in respect to the
parity operators P̂x and P̂y that change x in −x and y in
−y, respectively. The states are even at parity operation on x

direction when P̂x� = � and we say they have the property
Ex , and the states are odd when P̂x� = −� and they have
the property Ox . For parity on y direction we note with Ey

and Oy . The parity properties of the eigenstates are written in
Fig. 1. When the electron-electron interaction is considered the
parity becomes an important property because the interaction
does not mix the many-particle states with different parity
due to the selection rules of the Coulombians Vαβ,γ δ defined
in Eq. (2). For instance, an excitation involving an electron
transition from the state �−

2 to the state �+
6 is allowed but to

the state �+
7 is forbidden.

B. Two electrons on the degenerate zero levels

Keeping in mind that the subject of our paper regards the
half-filled Lieb lattices (which for the one cell translates in
placing eight electrons on the eight states), one can intuitively
picture a situation at small interaction strength with the lowest
energy states (�1, �2, and �3) double occupied and the
remaining two electrons to be placed on the two degenerate
states at midspectrum (�4 and �5). This situation is pictured
in Fig. 3(a).

It is instructive to address first the simplified situation
in which we neglect the interaction of these two topmost
electrons with the lower fully occupied states, which is similar
to considering an isolated flat band and places us in the frame
of the Mielke theorem [24].

As the interaction conserves the spin, the Hamil-
tonian is block diagonal in the total spin subspace,
and the two-particle eigenfunctions are the singlets
and the triplets. The eigenenergies can be straightfor-
wardly derived: E(S44) = V44,44, E(S55) = V55,55, E(S45) =
V45,45 + V45,54, and E(T45) = V45,45 − V45,54 with exchange
term V45,54 = 0. Using the single-particle functions Eqs. (16)

and (17), one obtains the following energies:

E(S44) = 4 + √
2

8
VL + 1

4
UH � 0.67VL + 0.25UH , (18)

E(S55) = 1 + 2
√

2

4
VL + 1

4
UH � 0.95VL + 0.25UH , (19)

E(S45) = 5 + √
5

5
VL � 1.44VL, (20)

E
(
T

ms

45

) = 5 + √
5

5
VL � 1.44VL. (21)

Let us briefly discuss the possible ordering on the real axis
of the above-defined energies.

(1) For Hubbard interaction only, UH �= 0 and VL = 0, the
ground state has the degeneracy g = 4 and this corresponds to
E(S45) = E(T ms

45 ) ≡ EG = 0.
(2) For long-range interaction only, VL �= 0 and UH = 0,

all energies linearly increase with VL. The ground state is the
singlet state S44 with EG = 0.67VL.

(3) For both long-range and Hubbard interaction there are
two cases that are seen in Fig. 2(a). (i) When VL < V0 with
V0 � 0.32UH the ground state has degeneracy g = 4, one is
the singlet state S45 and three are the triplet states T

ms

45 . (ii)
When VL > V0 the ground state is nondegenerate and is the
singlet state S44. The term proportional with VL in formula of
E(S44) becomes important and the singlet state S44 will have
the lowest direct energy of the long-range interaction due to
its A site localization (i.e., at the corners of the square).

One can easily calculate the first excitation energy (demag-
netization energy, �E) as the difference between the lowest
energy of the nonmagnetic state with total spin quantum
number s = 0 and the lowest energy of the magnetic state
with spin s = 1, �E = E(s = 0) − E(s = 1). We perform
this for the one-cell Lieb lattice and for octagon with the same
electrostatic repulsion between nearby sites and the results are
presented in Fig. 2(b). In accordance with the above discussion,
one has �E = 0 for VL < V0 and a sudden decrease of �E

for VL > V0, with V0 � 0.32UH for one-cell Lieb lattice and
V0 � 0.36UH for octagon. The same qualitative behavior of
sudden decrease for �E at a given ratio VL/UH is also seen
in Fig. 5 where the numerical calculations are performed,
however, at a lower ratio value for Lieb lattice due to the
electrostatic repulsion with the electrons from the other levels
(which supplementarily favor the configuration S44 with the
electrons in the corners being at maximum average distance
from the rest of the charge, as shall be discussed).

For both systems, the one-cell Lieb lattice and the octagon,
the calculations in this subsection show that the singlet and
triplet states are degenerate for low values of the ratio VL/UH ,
while for high values of VL/UH , the S44 singlet becomes the
ground state (degenerated with the S55 singlet for the octagon).
In the next subsection we shall see that the singlet- and triplet-
states’ degeneracy at low VL/UH is lifted in the favor of the
singlet state, due to the interaction with the other electrons in
the lattice.

We mention that the noninteracting eigenspectra for one-
cell Lieb lattice or octagon have similar features with the
Hückel model [66] for a molecule with eight identical
atoms and equivalent bonds. For instance, our nonoverlapping
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FIG. 2. (a) Energy evolution of the two-electron states E/UH from Eqs. (18)–(21) vs the ratio VL/UH for one-cell Lieb lattice. For VL < V0

the degenerate ground state is the singlet state S45 and the three triplets T
ms

45 . For VL > V0 the role of the long-range interaction increases and the
nondegenerated ground state is the singlet state S44. (b) The difference between s = 0 and s = 1 ground-state energies, �E/UH , vs the ratio
VL/UH for one-cell Lieb lattice and for octagon. For VL < V0,�E = 0 and for VL > V0,�E decreases because a new singlet state becomes
the ground state in the s = 0 spin sector. The features from panel (b) exhibit no Hund rule behavior. The crossing point in panel (a) and the
sharp decrease of �E in panel (b) are for the long-range parameter value called V0, that is, V0 � 0.32UH for Lieb square and V0 � 0.36UH for
octagon.

zero-energy eigenstates from Eqs. (16) and (17) are the
well-known nonbonding orbitals at the midspectrum of planar
D8h cyclooctatetraene [67].

C. First- and second-order approximations

In this subsection we want to study the lifting of the ground-
state degeneracy that was seen in the previous subsection for
two isolated degenerate levels if VL < V0, and for this purpose
one should account for configuration mixing that implies the
rest of the spectrum, by using the full eight electron wave
functions.

The perturbation calculations start with considering the
noninteracting ground state, corresponding to the first six
electrons occupying the lowest single-particle states �α with
α = 1,2,3, grouped in pairs of singlets S11, S22, and S33. The
last two electrons occupy the degenerated states �4 and �5

with zero energy, forming pairs of triplet states T
ms

45 or pairs
of singlet states S44, S55, and S45. In the base of the total spin
operators Ŝ2 and Ŝz the six degenerate eigenfunctions and their

parity properties are as follows:

	
ms

0 =S11S22S33T
ms

45 with s = 1, ms = 0, ±1, Ox, Oy,

(22)

	 ′
0 = S11S22S33S45 with s = 0, ms = 0, Ox, Oy, (23)

	 ′′
0 = S11S22S33S44 with s = 0, ms = 0, Ex, Ey, (24)

	 ′′′
0 = S11S22S33S55 with s = 0, ms = 0, Ex, Ey. (25)

If the interaction is turned on, the ground state will be decided
between the states 	 ′

0 (Lieb) and 	
ms

0 (Hund), since the singlets
	 ′′

0 and 	 ′′′
0 shall imply highest Coulomb repulsion, as seen in

the simplified model of Fig. 2 for VL < V0.
One possible ground state configuration and two possi-

ble configurations obtained by single-particle transitions are
shown schematically in Fig. 3 (spins are not explicitly drawn).

The spin and parity conservation rules split the total Hilbert
space into subspaces, and only configurations from the same

Φ1

Φ2 Φ3

Φ5 Φ4

Φ6 Φ7

Φ8

Ex,Ey

Ox,Ey Ex,Oy

Ex,Ey (B,C) Ox,Oy (A)

Ox,Ey Ex,Oy

Ex,Ey

(a) ΨG

Φ1

Φ2 Φ3

Φ5 Φ4

Φ6 Φ7

Φ8

Ex,Ey

Ox,Ey Ex,Oy

Ex,Ey (B,C) Ox,Oy (A)

Ox,Ey Ex,Oy

Ex,Ey

(b) Φ3 → Φ7

Φ1

Φ2 Φ3

Φ5 Φ4

Φ6 Φ7

Φ8

Ex,Ey

Ox,Ey Ex,Oy

Ex,Ey (B,C) Ox,Oy (A)

Ox,Ey Ex,Oy

Ex,Ey

(c) Φ5 → Φ8

FIG. 3. The electron configuration of the noninteracting ground state (a) and of the first excited states obtained by single-particle excitation
that conserve the parity of the wave functions (b, c) for one-cell Lieb lattice at half filling. The configuration in panel (b) is obtained by a
symmetric transition, �3 → �7, that changes the energy from −ε
k → ε
k . The configuration in panel (c) is obtained by an asymmetric transition
�5 → �8 from a midspectrum state to an upper energy state. The single-particle states are explained in Fig. 1.
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subspace can mix. Relevant subspaces for our discussion
have the spin and parity properties of the four groups of
noninteracting ground states above.

One can define two classes of single-electron transition
processes that conserve both the spin and the parity properties:
(i) First we have the symmetric transitions between states with
opposite energies but the same wave vector −ε
k → ε
k . In
our case they are �3 → �7, �2 → �6, and �1 → �8 with
general formula of single-particle excitation energy �δ,γ =
εδ − εγ . The transition �3 → �7 is sketched in Fig. 3(b).
As we show below, this class of transitions leads to lower
energy for the singlet state. (ii) Second we have nonsymmetric
transitions between one state from the flat band to a higher
energy state, �5 → �8, as sketched in Fig. 3(c) or opposite,
from a low-energy state to the flat band, �1 → �5. However,
these nonsymmetric transitions contribute with identical en-
ergy shifts for both the singlet and the triplet states of the
pair of flat band electrons (i.e., the states 	 ′

0 and 	
ms

0 defined
above), at least up to the second order of our perturbation
calculations (not shown here, as they are technically similar
with the ones given below). As such, they do not contribute
to the lifting of the Lieb-Hund energy degeneracy—our main
focus—and can be disregarded at this point.

We present first the calculation for the situation when the
possible excited states arise from the electron transition �3 →
�7. If the other two symmetric transitions are considered, the
second energy correction can be shown to be additive.

(1) The ground state in the subspace with the total spin
s = 1 and symmetry Ox,Oy . In that case the states have
Ŝz spin degeneracy and we consider the subspace of states
with ms = 1. The situation corresponds to the Hund rule
with maximum spin smax = 1 of the two electrons on the two
degenerate states �4 and �5. The nonperturbed ground state
	0 and three possible excited states obtained by the single
electron transition �3 → �7 that conserve the spin and parity
properties are as follows:

	0 = S11S22S33T
+1

45 , (26)

	1 = S11S22T
+1

37 S45, (27)

	2 = S11S22S37T
+1

45 , and (28)

	3 = 1√
2
S11S22

(
T 0

37T
+1

45 − T +1
37 T 0

45

)
, (29)

with nonperturbed energies E0 = 2ε1 + 2ε2 + 2ε3 and E1 =
E2 = E3 = E0 + �7,3. By applying the spin operators Ŝ2 and
Ŝz it is readily verified that Ŝ2	 = 2	 and Ŝz	 = 	, meaning
s = 1 and ms = 1.

The first-order energy correction is w00 = 〈	0|Ĥint|	0〉
and the second energy correction is given by the transition
amplitudes: w10 = 〈	1|Ĥint|	0〉, w20 = 〈	2|Ĥint|	0〉, and
w30 = 〈	3|Ĥint|	0〉. The first- and second-order corrections
of the energy E0 give the value

E(s = 1) = E0 + w00 − w2
10 + w2

20 + w2
30

E1 − E0
, (30)

with E1 − E0 = �7,3.

(2) The ground state in the subspace with total spin s =
0,ms = 0 and parity Ox,Oy . This situation corresponds to
the ground state spin given by the Lieb theorem that states
the total spin should be s = 0. In this case the noninteracting
ground state 	 ′

0 and two possible excited states 	 ′
1 and 	 ′

2 that
account for the one-electron excitation process �3 → �7 are
as follows:

	 ′
0 = S11S22S33S45, (31)

	 ′
1 = 1√

3
S11S22

(
T 0

37T
0

45 − T +1
37 T −1

45 − T −1
37 T +1

45

)
, and (32)

	 ′
2 = S11S22S37S45, (33)

with the noninteracting energies E′
0 = E0 and E′

1 = E′
2 = E1,

the same as in the subspace with s = 1. They are also
eigenstates of spin operators with Ŝ2	 = 0 and Ŝz	 = 0,
meaning s = 0 and ms = 0.

The first-order energy correction w′
00 = 〈	 ′

0|Ĥint|	 ′
0〉 and

the transition amplitudes that give the second-energy correc-
tions are w′

10 = 〈	 ′
1|Ĥint|	 ′

0〉 and w′
20 = 〈	 ′

2|Ĥint|	 ′
0〉. In the

first and second orders of the perturbation theory the energy
will be

E′(s = 0) = E0 + w′
00 − w′2

10 + w′2
20

E′
1 − E′

0
, (34)

with E′
1 − E′

0 = �7,3.
We have derived the following useful relations for the

transition amplitudes:

w00 = C + V45,45 − V45,54, (35)

w′
00 = C + V45,45 + V45,54, (36)

w′
10 =

√
3w10, (37)

w′
20 = w20, (38)

where the energy term C depends on other interaction
processes except for those implying exclusively the states �4

and �5. The first energy corrections w00 and w′
00 are different

by the exchange interaction V45,54 as the difference between
the simple triplet and singlet states T45 and S45 that can be seen
from Eqs. (11) and (12). The Eqs. (35), (36), and (38) can be
shown by straightforward calculations and Eq. (37) is derived
in Appendix A.

We are interested in the energy difference between the s = 0
and s = 1 spin states. Using Eqs. (30) and (34) and relations
between the matrix elements, Eqs. (35)–(38), we calculate that
�E = E′(s = 0) − E(s = 1) depends on w10,w30,V45,54 and
does not depend on w20. Consequently we calculate the matrix
elements w10 and w30, obtaining

w10 = 1√
2

(V74,43 − V75,53), (39)

w30 = V74,43 + V75,53, (40)

and using them we obtain the following formula for the energy
difference �E expressed in the terms on the Coulombian
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matrix elements and excitation energy �7,3 = ε7 − ε3:

�E = 2V45,54 + 4V74,43V75,53

�7,3
. (41)

We note that �E was obtained considering the single-
particle excitation �3 → �7 [Fig. 3(b)]. If the other single-
electron transitions (�2 → �6 and �1 → �8) are also con-
sidered, the energy difference becomes

�E = 2V45,54 +
∑
(δ,γ )

4Vδ4,4γ Vδ5,5γ

�δ,γ

, (42)

with the summation over the pairs of the states (δ,γ ) = (6,2),
(7,3), and (8,1).

Comment 1. In the first order of perturbation the singlet and
triplet states are still degenerated because the exchange term
V45,54 = 0. It comes from the nonoverlapping functions �4

and �5 [see Eqs. (16) and (17)].
Comment 2. In the second order of the perturbation and

for Hubbard interaction only we have �E < 0, meaning the
degeneracy is risen and singlet state becomes the ground state.
To prove this we consider the electron-hole symmetry of the
states (γ,δ), meaning that �γ (B,C) = �δ(B,C) and �γ (A) =
−�δ(A), and use the localization properties of states �4 and
�5 saying that �4(B,C) = 0 and �5(A) = 0. One obtains
Vδ4,4γ = −Vδ5,5γ and �E < 0.

We show the above result, performing the calculation
of the interaction matrix elements in the absence of the
long-range interaction. Using the eigenvectors �− from
Eqs. (13)–(17) and their e-h pairs �+, from Coulombian
matrix Eq. (3) one obtains Vδ4,4γ = −Vδ5,5γ = −UH /8 for
(δ,γ ) = (6,2), (7,3), and (8,1). The single-particle excitations
energies are �6,2 = �7,3 = 2

√
2t and �8,1 = 4t . The energy

difference becomes

�E = − U 2
H

16
√

2t
− U 2

H

64t
� −0.059

U 2
H

t
, (43)

which is in good agrement with the parabolic curve obtained
in the following numerical calculations of Fig. 4.

This can be regarded as an alternative proof of the Lieb
theorem for the particular case of the one-loop Lieb lattice
if only single-particle excitation processes are addressed at
low interaction. Supplementary to that, in the low interaction
limit, we have proven the missing linear term and parabolic
dependence of the excitation energy on UH . We notice that
one obtains the same conclusions for two-cell Lieb lattice
considering the same type of single-particle transitions, and
the excitation energy calculation is shortly presented in
Appendix B.

Numerical calculation using the formula Eq. (41) gives
negative �E for any ratio VL/UH . Finally we remark that
for interaction exceeding a crossing point V0, the formula
Eq. (41) no longer represents the first excitation energy, as
the ground state in the s = 0 subspace will be the new singlet
	 ′′

0 [Eq. (24)], thus leading to the sharp decrease of �E

obtained in the first order of perturbation theory. This effect
is explained in the previous subsection using the two-level
system.

FIG. 4. Exact diagonalization results for the one-cell Lieb lattice
with Hubbard interaction at half-filling. The excitation energy
between the Lieb ground state (with s = 0) and the Hund excited state
(with s = 1), �E = EL − EH , has a parabolic dependence for small
values of UH with a leading coefficient �E � −0.059U 2

H . There is a
very good concordance with the perturbative analytical results from
the previous subsection [see Eq. (43) for low UH values]. The inset
shows that for larger values of UH the dependence becomes linear
and than sublinear.

D. Exact diagonalization

Here we present exact diagonalization results for the half-
filled one-cell Lieb lattice (Ne = 8 electrons). This subsection
is complementary to the previous ones, as it does not offer
clear insights on the mechanisms involved, but on the other
hand the results are numerically exact and one is not restricted
to small values of the interaction strength (UH or VL).

In Fig. 4 we plot the value of the inverse excitation energy
�E = E(s = 0) − E(s = 1), i.e., the difference between the
Lieb ground state energy and the excited Hund state energy,
versus UH . For small values of Hubbard parameter (UH < 1)
and zero long-range interaction, we obtain the parabolic
dependence of �E with the value of the U 2

H leading coefficient
�0.059. This is very close to the analytical one calculated in
the second order of the perturabation theory in Eq. (43) for
one-electron excitation processes.

For larger values of UH , however, the parabolical depen-
dence becomes linear and then sublinear, as depicted in the
inset of Fig. 4. For strong interaction energies comparable
or exceeding the single-particle level spacing, a very large
number of configurations appear in the ground state, including
those with two or more electrons on the upper energy levels
(states labeled �6, �7, and �8 in Fig. 1). The analytical
insights from Sec. III C, that are valid for weak interactions,
no longer hold.

Next, we see the influence of introducing long-range
interaction, an instance for which the distances between points
play an important role as well. To illustrate this, we make
numerical calculation for two lattice configurations that differ
by the distances between their points, namely the square shape
(Lieb structure) and octagon shape (which maximizes the
distances between points); the results are shown in Fig. 5.

At half-filling both configurations satisfy the Lieb theorem
conditions for Hubbard interaction having s = 0 ground state
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FIG. 5. The energy difference �E = EL − EH vs the ratio
of the long-range vs Hubbard interactions VL/UH for one-cell
Lieb lattice and for octagon at half-filling. As the ratio VL/UH is
increased, one notices first a slight decrease in the excitation energy
module (the difference �E slowly approaches zero), and then a sharp
variation while the ground state changes to a different singlet (see
description in text). The sharp decrease of �E happens at a long-range
interaction value VL = V0 that is larger for the octagon then for the
Lieb square.

spin and we want to see if it changes when the long-range
interaction is present.

In Fig. 5 an interesting slight decrease for the excitation en-
ergy module, which approaches zero, is noticed as long-range
interaction is turned on. This evolution raises the question
whether one can induce a ground state spin change (by the sign
change of �E); however such an instance was not numerically
found either for Lieb or for octagon configurations, which is
in agreement with Eq. (42).

For larger VL/UH ratios, one notices a sudden pronounced
linear decrease of �E starting from a certain long-range
parameter value, generically noted with V0, being qualitatively
similar with the curves obtained for the two-level system in
Fig. 2(b). As described, this is accompanied by the changing
of the ground state spatial configuration and not by the spin
change.

The sharp decrease of �E happens at a value of the long-
range parameter that is lower for the Lieb structure than for the
octagon, and below we shall give insight into why this happens.
For this we have a look at the singlet and triplet energy curves
in Fig. 2(a) and we try to understand how they are changed
when the two midspectrum electrons start to interact with the
rest of the charge distribution from the occupied states �1, �2,

and �3.
(i) In the case of a square lattice there is an energetic

advantage for the midspectrum electrons to stay in the corners
(on state �4) rather than in the middles of the sides (state
�5 is occupied) because this maximizes the distance to the
rest of the charge. The state S44 will have a lower increase
in energy compared with S45 or T45 and this can be seen in
the difference between diagonal matrix elements of Ĥint for
the states 	0, 	 ′

0, and 	 ′′
0 [see Eqs. (22), (23), and (24)].

This will lead to the decrease of the crossing point V0 when
the interaction with the rest of the electrons are considered.
[See V0 � 0.32UH in Fig. 2(b) and V0 � 0.14UH in Fig. 5

for Lieb lattice.] (ii) This is not the case of an octagon
configuration where the two states (�4 and �5) have equivalent
distances to the other lattice points, being only rotated with
one site. Consequently the singlet and triplet state energies
increase with equal quantities when the interaction between
the two midspectrum electrons and the rest of the charge is
considered. It means that the crossing point V0 for the octagon
remains the same at least in the first order of approximation.
[See V0 � 0.36UH in Figs. 2(b) and 5 for octagon.]

IV. FEW-CELL LIEB LATTICES: NUMERICAL RESULTS

In the previous section we paid detailed attention to the
one-cell Lieb lattice, taking advantage of the fact that the
small number of levels allowed both for an analytical insight
and for exact diagonalization at half-filling; however, this
unfortunately is no longer easy or even possible for bigger
lattices. Here we consider N = 2,3 and 4 linear cells as the
one depicted in Fig. 1, meaning lattice dimensions 2×1, 3×1,

and 4×1. The largest one would require, for instance, placing
23 electrons on 46 states for exact diagonalization, an
overwhelmingly demanding computational task (equivalent to
diagonalizing a matrix with the size of about 8 × 1012).

We shall address the problem in an approximate manner,
by treating the lowest electrons in a mean-field approximation
and the upper ones (including the ones in the midspectrum)
by the configuration-interaction approach. As in Ref. [41] the
terminology refers to the situation when, even if only a certain
number of single-particle levels are considered and not all (as
allowed by the computing power), importantly, all the Slater
determinants for a given number of electrons are then built and
no truncations are performed in the Fock space. The method
works for small interaction strength, when it is justified to treat
the lowest occupied states in a mean-field approximation [49],
as the configurations involving high-energy single-particle
excitations have negligible contributions.

The N linear cells Lieb lattice has 5N + 3 single-particle
states (without spin) and according to the general counting
rule [37] have N + 1 degenerate states at midspectrum (or
flat band) and 2N + 1 states in the upper and lower bands,
respectively. We shall treat the electrons on the lowest
2N + 1 states in a mean-field approximation, meaning that
the modification of the orbitals and of the eigenenergies due to
electron-electron interaction is calculated using Hartree-Fock
approach and these lowest electrons further influence the
remaining higher ones only by the electrostatic potential
created. The configuration-interaction method is then applied
for the highest N + 3 electrons (N + 1 levels from the flat
band plus the first level below and the first one above).

Importantly, the lattices of sizes N = 2 and N = 4 have
odd numbers of total sites, which places them outside the strict
conditions of the Lieb theorem, and also motivates our study
to determine the ground state spin as well as the excitation
energies.

The Hund state has all the electrons in the flat band with
parallel spins, sH = smax, meaning sH = (N + 1)/2 [37]. We
have sH = 3/2, 2, and 5/2 for the cells numbering N = 2, 3,

and 4 respectively. The Lieb state corresponds to the total
spin sL = 1

2 (N − 1) and we have sL = 1/2, 1, and 3/2 for
N = 2, 3, and 4. For cells numbering N = 3 and N = 4,
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(a)

(b)

(c)

FIG. 6. (a) Difference between the Lieb and Hund energies vs
UH for the Lieb lattices of sizes 2 × 1, 3 × 1, and 4 × 1. (b) A
zoom for small UH to emphasize the parabolic behavior in this range.
(c) Difference between the Lieb and paramagnetic energies, for the
3 × 1 and 4 × 1 lattices (when the two energies are distinct).

three total spin values are possible and the minimum spin
for them is smin = 0 and 1/2 respectively. They are referred to
as paramagnetic states.

For the Hubbard interaction only we obtain that the Lieb
state is the ground state, as for the N = 1 case discussed
in the previous section, with the difference from the Hund
energy being depicted in Fig. 6(a). Figure 6(b) is a closeup
of small UH , while Fig. 6(c) shows the energy difference
between the Lieb and the paramagnetic states. A parabolic
dependence is confirmed for small positive values of UH ,
while for negative values of UH [Fig. 6(a)] a more abrupt,
almost linear dependence is only noticed. A detailed analysis
of the UH < 0 regime is not intended here.

Next, we discuss the effect of turning on the long-range
interaction VL. We notice the abrupt change of �E = EL −
EH for a given value VL = V0 in Fig. 7 for similar motifs, as
discussed for the one-cell case. We mean that at V0 a new state
with a different spatial configuration becomes the ground state

FIG. 7. Difference between the Lieb and Hund energies as long-
range interaction is turned on (on the x axis one has the ratio between
the long-range and Hubbard interactions VL/UH ), for lattices of sizes
2 × 1, 3 × 1, and 4 × 1. The inset shows a zoom to see that the
difference is always negative, the Lieb state being the ground state.
The sharp decrease of �E happens at a value of long range called V0

that depends on the lattice size.

FIG. 8. Difference between the Lieb (sL = smax − 1) and param-
agnetic (smin = smax − 2) energies as function of the ratio VL/UH for
lattice sizes 3 × 1 and 4 × 1. Notice the nonmonotonic behavior (the
peak for VL � V0 with V0 defined in Fig. 7) and the sign change (i.e.,
ground state spin change) for VL � 0.4UH .

in the spin sector s = sL. One can argue also that the long-range
interaction favors the lower spin state (Lieb vs Hund).

However, for much higher long-range interaction, and if
available, the third spin state with even lower spin will have
the lowest energy. This is shown in Fig. 8 where the difference
between the Lieb state and the paramagnetic state energies
�E = EL − EP is calculated for the lattices of sizes 3 × 1
and 4 × 1.

Before the expected ground state changes into the para-
magnetic one, as the ratio VL/UH increases, one notices
a nonmonotonous dependence around the value VL = V0 at
which the energies in the three different spin sectors EH, EL,

and EP are close together but not equal.

V. SUMMARY AND CONCLUSIONS

The Lieb lattices have degenerate energy levels at midspec-
trum, which offer a particular instance to test the alignment
of electron spins in Hund-like situations, and therefore the
mechanisms involved in nanomagnetism. It is shown that the
Hund state, with the maximum spin for the electrons on the
degenerate levels, is not the ground state of the half-filled
system, with the electrons preferring a state with one (or more)
spin(s) flipped.

The electron-electron interactions, which are responsible
for the nontrivial spin behavior, have been considered in this
work both as on-site Hubbard term (UH ) and as long-range
interaction (VL), a case which falls outside known theorems
such as Lieb [1] or Mielke [24]. Our focus was to calculate
excitation energies, which are of experimental relevance.

The special attention is devoted to the smallest lattice shown
in Fig. 1 for two reasons: (i) it allows analytical insights into
both the second order of perturbation theory and numerical
exact diagonalization for the half-filling situation and (ii) it
already shows the relevant mechanisms we want to discuss.
For the half-filled case, the debate is whether the two topmost
electrons on the midspectrum degenerate levels are in the Hund
state with total spin sH = smax equal to 1 in this case (triplet
state) or in the Lieb state with sL = smax − 1 (singlet state).
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We emphasize the wave functions properties that establish
the Lieb state as the ground state: (a) one of the states of
the midspectrum (flat band) has no spatial overlap with the
other(s) and (b) the allowed single-particle excitations take
place between states related by the electron-hole symmetry
[see, for instance, the transition in Fig. 3(b)]. The property
b systematically leads to negative sign contributions to the
level spacing �E between the Lieb and Hund energies, being
a second-order effect of the interaction potential, while the
first-order correction of �E is zero due to the property a.
The coefficient of the parabolic dependence of �E on UH is
calculated.

When the long-range interaction is increased and the ratio
VL/UH exceeds a certain value one obtains a sharp variation
of �E with no spin change of the ground state. This is
attributed to the crossing between two different singlet states
in the many-particle spectrum. The ground state will change
to a different singlet with two electrons occupying the state
located at corners, which minimizes the Coulomb repulsion.
For comparison, it is shown that such a sharp transition occurs
for higher values of VL/UH in the case of the octagon. The
effect is noticed in the first order of perturbation theory and
it is confirmed by exact diagonalization calculations, which
address also the case of stronger interactions.

The same two properties a and b described above support
the Lieb state having the minimum energy also for the
two-cell Lieb lattice with Hubbard interaction, which has an
odd number of lattice points, placing it outside of the Lieb
theorem’s strict conditions.

The numerical calculations for N = 2 ÷ 4 size lattices,
using the combined mean-field plus configuration-interaction
method, lead to similar results as the analytical ones, with the
Lieb state being always lower in energy than the Hund state. We
have again a parabolic dependence of their energy difference
at small UH (and VL = 0) and we obtain the sharp decrease of
the excitation energy while the ratio VL/UH exceeds a certain
value (for VL = V0) that depends on the lattice size. In the
Lieb lattice, there is always one of the degenerate midspectrum
states that is nonoverlapping with the others [15], allowing the
Lieb state to be degenerate with the Hund one for the isolated
flat band and to get lower in energy when configurations
involving the rest of the spectrum are taken into account.

For lattices with number of cells N = 3 and N = 4 a new
state of minimum spin smin has to be considered as possible
ground state alongside the Hund and Lieb states. Our numerical
calculations show that at small long-range interaction the Lieb
state remains lower in energy, while higher values of long-
range interaction promote the smin state as ground state. In
between there is a narrow interval for VL (around VL � V0)
in which the lowest energies in the three different spin sectors
are very close together (but never quite equal).

The results can be experimentally realized in nanoscaled
quantum dot devices, artificial molecules, or optical lattices
that can be a platform for testing the quantum models as in the
extended Hubbard Hamiltonian [16,58,68,69]. The interaction
parameters UH and VL can be tuned, for instance, by varying
the dot sizes, interdot distances, or the lattice potential.

One of the main results obtained in the paper is that the
few-site Lieb lattice is an interesting example where the Hund
rule of maximum spin does not apply for the midspectrum

degenerate levels in the presence of Hubbard and long-range
interaction as well, giving insight into the microscopic origin
of this. By varying the interaction strength we obtain two
regimes that differ by a strong enhancement of the Hund state
excitation energy when the interacting ratio VL/UH exceeds a
certain lattice-dependent value.
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APPENDIX A: MATRIX ELEMENTS w10 AND w
,

10

In this Appendix we want to prove Eq. (37), namely that
w′

10 = √
3w10. In the spin subspace with s = 1,ms = 1 we

consider the matrix element of Ĥint,

w10 = 〈
S11S22T

+1
37 S45

∣∣Ĥint

∣∣S11S22S33T
+1

45

〉
. (A1)

In the subspace of Ŝz spin ms = 0 (and not s = 0) we consider
the matrix elements

w1 = 〈
S11S22T

0
37T

0
45

∣∣Ĥint|S11S22S33S45〉, (A2)

w2 = 〈
S11S22T

+1
37 T −1

45

∣∣Ĥint|S11S22S33S45〉, (A3)

w3 = 〈
S11S22T

−1
37 T +1

45

∣∣Ĥint|S11S22S33S45〉. (A4)

We want to show that w10 = w1 = −w2 = −w3, which will
help us to prove Eq. (37).

(1) By applying an Ŝ− operator on both sides of the
scalar product from definition of w10 we obtain w10 =
〈S11S22T

0
37S45|Ĥint|S11S22S33T

0
45〉. By writing explicitly S45

and T 0
45 we obtain w10 = w1. We use the fact that any scalar

product of Ĥint between vectors that have more than two
different occupation numbers is zero, because Ĥint is biparticle.

(2) After that we prove that w1 = −w2 = −w3. For this
we start from the expression of w1 and use T 0

37T
0

45 = (−1 +
1
2 Ŝ+Ŝ−)T +1

37 T −1
45 . Considering that the spin operators Ŝ− and

Ŝ+ commute with Ĥint and the action of Ŝ− and Ŝ+ on any
singlet pair is zero, we immediately obtain w1 = −w2.

In the same manner, using T 0
37T

0
45 = (−1 + 1

2 Ŝ+Ŝ−)
T −1

37 T +1
45 we obtain w1 = −w3.

(3) The matrix element w′
10 is w′

10 = 〈	 ′
1|Ĥint|	 ′

0〉 with 	 ′
0

and 	 ′
1 from Eqs. (31) and (32). We obtain w′

10 in the terms of
w1,w2,w3 defined above, w′

10 = (w1 − w2 − w3)/
√

3. Using
the proved relation w10 = w1 = −w2 = −w3 we immediately
obtain Eq. (37): w′

10 = √
3w10.

APPENDIX B: TWO-CELL LIEB LATTICE:
ANALYTICAL INSIGHTS

We consider a two-cell finite Lieb lattice (N = 2) as in
Fig. 9. The one-electron Hamiltonian has 13 single-particle
states, �1, . . . ,�13, with energies schematically depicted in
Fig. 9(right). The following remarks can be made: (i) The
Hamiltonian has the e-h symmetry specific to any bipartite
lattice, with the eigenvalues being symmetric around ε = 0. (ii)
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FIG. 9. (Left) The finite two-cell Lieb lattice N = 2 with 13 sites.
The indices n,m of the atoms A, B, and C count the unit cells of the
lattice. (Right) The single-particle eigenstates. Among them there are
three states with zero energy. Two of these, �6 and �7, are localized
only on B,C sites, and the state �8 has only A site localization.

The energy spectrum contains N + 1 = 3 zero-energy states
with the known localization properties: two states localized on
B,C sites only (�6 and �7) and one state localized on A sites
(�8). (iii) Like the one-cell finite lattice, the two-cell lattice
has also parity symmetry, which can be used as selection rule
for the Coulombian matrix elements.

At half filling, for Ne = 13 electrons, we want to calculate
the ground state spin in the second order of approximation
when only one-electron excitation processes are taken into
account [symmetric transitions as in Fig. 3(b)]. For the
noninteracting case we consider the many-particle ground
state with double occupancy for the lower energy states α =
1, . . . ,5 while the zero-energy degenerate states α = 6,7,8
have one electron each of them. We do not consider the state
with double occupancy for ε = 0 because, when interaction
is turned on, due to Hubbard repulsion, they will have higher
energy in the first-order approximation already. We work in
the spin subspace with s = ms . We have three noninetracting
ground states, one with spin s = 3/2 and two states with
s = 1/2:

	 3
2

3
2

= S11 . . . S55T
+1

67 n8↑, (B1)

	 1
2

1
2

= S11 . . . S55S67n8↑, (B2)

	 ′
1
2

1
2

= 1√
3
S11 . . . S55

(
T 0

67n8↑ −
√

2T +1
67 n8↓

)
. (B3)

The symbol n8σ means that we have one electron in the
state �8 with spin σ . The spin properties of the states are
readily verified by the actions Ŝ2	s,ms

= s(s + 1)	s,ms
and

Ŝz	s,ms
= ms	s,ms

.
Following the same steps as for the one-cell Lieb lattice,

we consider the excited states obtained by the one-electron
transition �5 → �9 that conserve the parity of the system and
perform calculations up to the second order of approximation.
We give only the principal results. (i) First we obtain that the
interaction potential does not couple between the two s = 1/2
states, 	 1

2
1
2

and 	 ′
1
2

1
2
, and the first-order lowest energy in their

spin sector is for the state 	 ′
1
2

1
2
. These are a direct consequence

of the different localization of the states �8 and �7 (or �6)
and of the fact that the exchange energy V67,76 is a positive
quantity, at least for VL = 0 [see Eq. (3)], which makes the
triplet state T

ms

67 have lower energy than the singlet state S67

[see Eqs. (11) and (12)]. (ii) Second, the energy difference
�E from the ground states with spin s = 1/2 and with spin
s = 3/2 has the formula

�E = 3(V56,69 + V57,79)V58,89

�9,5
, (B4)

where the first-order terms are canceled out. The excitation
energy is �9,5 = ε9 − ε5. Some brief comments are in order:

Comment 1. For Hubbard interaction (VL = 0) we
have negative �E. The states �5 and �9 are related
by the e-h symmetry, meaning that �5(A) = −�9(A)
and �5(B,C) = �9(B,C). For zero-energy states we have
�6(A) = 0,�7(A) = 0 and �8(B,C) = 0. From Eq. (B4) and
from Coulombian definition Eq. (3) we obtain that V56,69 and
V57,79 are positive and V58,89 is negative. We immediately have
that �E < 0. It means that the interacting ground state spin is
s = 1/2, which is in agreement with the Lieb theorem result
even if it is not strictly applied in our case because the two-cell
Lieb lattice has an odd number of sites.

Comment 2. If we consider other single-particle excitation
process, between states �γ and �δ related by e-h symmetry,
formula (B4) is additive. The cancellation of the first-order
corrections in the formula of energy difference is preserved
and, for Hubbard interaction, �E remains negative in the
second order of perturbation.
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[55] F. Ţolea and M. Ţolea, Phys. B: Condens. Matter 458, 85
(2015).

[56] K. Ferhat and A. Ralko, Phys. Rev. B 89, 155141 (2014).
[57] E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962).
[58] J. Wu and Z. M. Wang, Quantum Dot Molecules, Lecture Notes

in Nanoscale Science and Technology (Springer, New York,
2013).

[59] R. Thalineau, S. Hermelin, A. D. Wieck, C. Bauerle, L.
Saminadayar, and T. Meunier, Appl. Phys. Lett. 101, 103102
(2012); M. D. Shulman, O. E. Dial, S. P. Harvey, H. Bluhm, V.
Umansky, and A. Yacoby, Science 336, 202 (2012).

[60] I. Ozfidan, A. H. Trojnar, M. Korkusinski, and P. Hawrylak,
Solid State Commun. 172, 15 (2013); C. Schilling, Phys. Rev.
B 92, 155149 (2015).

[61] G. Begemann, S. Koller, M. Grifoni, and J. Paaske, Phys.
Rev. B 82, 045316 (2010); I. Ozfidan, M. Vladisavljevic, M.
Korkusinski, and P. Hawrylak, ibid. 92, 245304 (2015).

[62] D.-S. Lühmann, C. Weitenberg, and K. Sengstock, Phys. Rev. X
5, 031016 (2015).

[63] G. Benenti, G. Caldara, and D. L. Shepelyansky, Phys. Rev.
Lett. 86, 5333 (2001).

[64] P. Müller, J. Richter, and O. Derzhko, Phys. Rev. B 93, 144418
(2016).

[65] R. G. Dias and J. D. Gouveia, Sci. Rep. 5, 16852 (2015).
[66] E. Hückel, Z. Phys. 70, 204 (1931); 72, 310 (1931); 76, 628

(1932); 83, 632 (1933).
[67] C. Trindle and T. Wolfskill, J. Org. Chem. 56, 5426 (1991); T.

Nishinaga, T. Ohmae, and M. Iyoda, Symmetry 2, 76 (2010).
[68] R. Walters, G. Cotugno, T. H. Johnson, S. R. Clark, and D.

Jaksch, Phys. Rev. A 87, 043613 (2013).
[69] Y. Chougale and R. Nath, J. Phys. B: At. Mol. Opt. Phys. 49,

144005 (2016).

165103-12

http://dx.doi.org/10.1103/PhysRevB.92.235106
http://dx.doi.org/10.1103/PhysRevB.92.235106
http://dx.doi.org/10.1103/PhysRevB.92.235106
http://dx.doi.org/10.1103/PhysRevB.92.235106
http://dx.doi.org/10.1103/PhysRevB.92.245119
http://dx.doi.org/10.1103/PhysRevB.92.245119
http://dx.doi.org/10.1103/PhysRevB.92.245119
http://dx.doi.org/10.1103/PhysRevB.92.245119
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.87.125428
http://dx.doi.org/10.1103/PhysRevB.65.085324
http://dx.doi.org/10.1103/PhysRevB.65.085324
http://dx.doi.org/10.1103/PhysRevB.65.085324
http://dx.doi.org/10.1103/PhysRevB.65.085324
http://dx.doi.org/10.1103/PhysRevB.85.085209
http://dx.doi.org/10.1103/PhysRevB.85.085209
http://dx.doi.org/10.1103/PhysRevB.85.085209
http://dx.doi.org/10.1103/PhysRevB.85.085209
http://dx.doi.org/10.1088/0256-307X/31/11/110303
http://dx.doi.org/10.1088/0256-307X/31/11/110303
http://dx.doi.org/10.1088/0256-307X/31/11/110303
http://dx.doi.org/10.1088/0256-307X/31/11/110303
http://dx.doi.org/10.1016/j.jmmm.2015.02.005
http://dx.doi.org/10.1016/j.jmmm.2015.02.005
http://dx.doi.org/10.1016/j.jmmm.2015.02.005
http://dx.doi.org/10.1016/j.jmmm.2015.02.005
http://dx.doi.org/10.1016/j.jmmm.2015.12.096
http://dx.doi.org/10.1016/j.jmmm.2015.12.096
http://dx.doi.org/10.1016/j.jmmm.2015.12.096
http://dx.doi.org/10.1016/j.jmmm.2015.12.096
http://dx.doi.org/10.1088/0953-8984/27/16/166003
http://dx.doi.org/10.1088/0953-8984/27/16/166003
http://dx.doi.org/10.1088/0953-8984/27/16/166003
http://dx.doi.org/10.1088/0953-8984/27/16/166003
http://dx.doi.org/10.1103/PhysRevA.80.063622
http://dx.doi.org/10.1103/PhysRevA.80.063622
http://dx.doi.org/10.1103/PhysRevA.80.063622
http://dx.doi.org/10.1103/PhysRevA.80.063622
http://dx.doi.org/10.1103/PhysRevA.90.043624
http://dx.doi.org/10.1103/PhysRevA.90.043624
http://dx.doi.org/10.1103/PhysRevA.90.043624
http://dx.doi.org/10.1103/PhysRevA.90.043624
http://dx.doi.org/10.1103/PhysRevA.91.063610
http://dx.doi.org/10.1103/PhysRevA.91.063610
http://dx.doi.org/10.1103/PhysRevA.91.063610
http://dx.doi.org/10.1016/0375-9601(93)90207-G
http://dx.doi.org/10.1016/0375-9601(93)90207-G
http://dx.doi.org/10.1016/0375-9601(93)90207-G
http://dx.doi.org/10.1016/0375-9601(93)90207-G
http://dx.doi.org/10.1103/PhysRevLett.82.4312
http://dx.doi.org/10.1103/PhysRevLett.82.4312
http://dx.doi.org/10.1103/PhysRevLett.82.4312
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1143/PTP.99.489
http://dx.doi.org/10.1142/S0217979215300078
http://dx.doi.org/10.1142/S0217979215300078
http://dx.doi.org/10.1142/S0217979215300078
http://dx.doi.org/10.1142/S0217979215300078
http://dx.doi.org/10.1209/epl/i1998-00276-4
http://dx.doi.org/10.1209/epl/i1998-00276-4
http://dx.doi.org/10.1209/epl/i1998-00276-4
http://dx.doi.org/10.1209/epl/i1998-00276-4
http://dx.doi.org/10.1103/PhysRevLett.84.4433
http://dx.doi.org/10.1103/PhysRevLett.84.4433
http://dx.doi.org/10.1103/PhysRevLett.84.4433
http://dx.doi.org/10.1103/PhysRevLett.84.4433
http://dx.doi.org/10.1103/PhysRevA.73.061601
http://dx.doi.org/10.1103/PhysRevA.73.061601
http://dx.doi.org/10.1103/PhysRevA.73.061601
http://dx.doi.org/10.1103/PhysRevA.73.061601
http://dx.doi.org/10.1103/PhysRevB.75.115301
http://dx.doi.org/10.1103/PhysRevB.75.115301
http://dx.doi.org/10.1103/PhysRevB.75.115301
http://dx.doi.org/10.1103/PhysRevB.75.115301
http://dx.doi.org/10.1088/1367-2630/9/2/033
http://dx.doi.org/10.1088/1367-2630/9/2/033
http://dx.doi.org/10.1088/1367-2630/9/2/033
http://dx.doi.org/10.1088/1367-2630/9/2/033
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1103/PhysRevA.81.022501
http://dx.doi.org/10.1088/0953-8984/23/24/243202
http://dx.doi.org/10.1088/0953-8984/23/24/243202
http://dx.doi.org/10.1088/0953-8984/23/24/243202
http://dx.doi.org/10.1088/0953-8984/23/24/243202
http://dx.doi.org/10.1103/PhysRevB.88.085432
http://dx.doi.org/10.1103/PhysRevB.88.085432
http://dx.doi.org/10.1103/PhysRevB.88.085432
http://dx.doi.org/10.1103/PhysRevB.88.085432
http://dx.doi.org/10.1103/PhysRevA.87.042507
http://dx.doi.org/10.1103/PhysRevA.87.042507
http://dx.doi.org/10.1103/PhysRevA.87.042507
http://dx.doi.org/10.1103/PhysRevA.87.042507
http://dx.doi.org/10.1021/ar00040a004
http://dx.doi.org/10.1021/ar00040a004
http://dx.doi.org/10.1021/ar00040a004
http://dx.doi.org/10.1021/ar00040a004
http://dx.doi.org/10.1103/PhysRevB.90.115413
http://dx.doi.org/10.1103/PhysRevB.90.115413
http://dx.doi.org/10.1103/PhysRevB.90.115413
http://dx.doi.org/10.1103/PhysRevB.90.115413
http://dx.doi.org/10.1002/pssr.201409228
http://dx.doi.org/10.1002/pssr.201409228
http://dx.doi.org/10.1002/pssr.201409228
http://dx.doi.org/10.1002/pssr.201409228
http://dx.doi.org/10.1103/PhysRevB.93.075408
http://dx.doi.org/10.1103/PhysRevB.93.075408
http://dx.doi.org/10.1103/PhysRevB.93.075408
http://dx.doi.org/10.1103/PhysRevB.93.075408
http://dx.doi.org/10.1063/1.2179418
http://dx.doi.org/10.1063/1.2179418
http://dx.doi.org/10.1063/1.2179418
http://dx.doi.org/10.1063/1.2179418
http://dx.doi.org/10.1103/PhysRevB.76.035303
http://dx.doi.org/10.1103/PhysRevB.76.035303
http://dx.doi.org/10.1103/PhysRevB.76.035303
http://dx.doi.org/10.1103/PhysRevB.76.035303
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1103/PhysRevB.85.035319
http://dx.doi.org/10.1088/0953-8984/20/39/395225
http://dx.doi.org/10.1088/0953-8984/20/39/395225
http://dx.doi.org/10.1088/0953-8984/20/39/395225
http://dx.doi.org/10.1088/0953-8984/20/39/395225
http://dx.doi.org/10.1103/PhysRevB.73.245327
http://dx.doi.org/10.1103/PhysRevB.73.245327
http://dx.doi.org/10.1103/PhysRevB.73.245327
http://dx.doi.org/10.1103/PhysRevB.73.245327
http://dx.doi.org/10.1103/PhysRevB.85.155316
http://dx.doi.org/10.1103/PhysRevB.85.155316
http://dx.doi.org/10.1103/PhysRevB.85.155316
http://dx.doi.org/10.1103/PhysRevB.85.155316
http://dx.doi.org/10.1103/PhysRevB.84.115311
http://dx.doi.org/10.1103/PhysRevB.84.115311
http://dx.doi.org/10.1103/PhysRevB.84.115311
http://dx.doi.org/10.1103/PhysRevB.84.115311
http://dx.doi.org/10.1103/PhysRevB.81.155442
http://dx.doi.org/10.1103/PhysRevB.81.155442
http://dx.doi.org/10.1103/PhysRevB.81.155442
http://dx.doi.org/10.1103/PhysRevB.81.155442
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1103/PhysRevB.85.075431
http://dx.doi.org/10.1016/j.physleta.2014.01.052
http://dx.doi.org/10.1016/j.physleta.2014.01.052
http://dx.doi.org/10.1016/j.physleta.2014.01.052
http://dx.doi.org/10.1016/j.physleta.2014.01.052
http://dx.doi.org/10.1140/epjb/e2010-10761-0
http://dx.doi.org/10.1140/epjb/e2010-10761-0
http://dx.doi.org/10.1140/epjb/e2010-10761-0
http://dx.doi.org/10.1140/epjb/e2010-10761-0
http://dx.doi.org/10.1088/0953-8984/25/50/505504
http://dx.doi.org/10.1088/0953-8984/25/50/505504
http://dx.doi.org/10.1088/0953-8984/25/50/505504
http://dx.doi.org/10.1088/0953-8984/25/50/505504
http://dx.doi.org/10.1103/PhysRevLett.110.018305
http://dx.doi.org/10.1103/PhysRevLett.110.018305
http://dx.doi.org/10.1103/PhysRevLett.110.018305
http://dx.doi.org/10.1103/PhysRevLett.110.018305
http://dx.doi.org/10.1103/PhysRevA.81.032509
http://dx.doi.org/10.1103/PhysRevA.81.032509
http://dx.doi.org/10.1103/PhysRevA.81.032509
http://dx.doi.org/10.1103/PhysRevA.81.032509
http://dx.doi.org/10.1016/j.physb.2014.11.013
http://dx.doi.org/10.1016/j.physb.2014.11.013
http://dx.doi.org/10.1016/j.physb.2014.11.013
http://dx.doi.org/10.1016/j.physb.2014.11.013
http://dx.doi.org/10.1103/PhysRevB.89.155141
http://dx.doi.org/10.1103/PhysRevB.89.155141
http://dx.doi.org/10.1103/PhysRevB.89.155141
http://dx.doi.org/10.1103/PhysRevB.89.155141
http://dx.doi.org/10.1103/PhysRev.125.164
http://dx.doi.org/10.1103/PhysRev.125.164
http://dx.doi.org/10.1103/PhysRev.125.164
http://dx.doi.org/10.1103/PhysRev.125.164
http://dx.doi.org/10.1063/1.4749811
http://dx.doi.org/10.1063/1.4749811
http://dx.doi.org/10.1063/1.4749811
http://dx.doi.org/10.1063/1.4749811
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1126/science.1217692
http://dx.doi.org/10.1016/j.ssc.2013.08.011
http://dx.doi.org/10.1016/j.ssc.2013.08.011
http://dx.doi.org/10.1016/j.ssc.2013.08.011
http://dx.doi.org/10.1016/j.ssc.2013.08.011
http://dx.doi.org/10.1103/PhysRevB.92.155149
http://dx.doi.org/10.1103/PhysRevB.92.155149
http://dx.doi.org/10.1103/PhysRevB.92.155149
http://dx.doi.org/10.1103/PhysRevB.92.155149
http://dx.doi.org/10.1103/PhysRevB.82.045316
http://dx.doi.org/10.1103/PhysRevB.82.045316
http://dx.doi.org/10.1103/PhysRevB.82.045316
http://dx.doi.org/10.1103/PhysRevB.82.045316
http://dx.doi.org/10.1103/PhysRevB.92.245304
http://dx.doi.org/10.1103/PhysRevB.92.245304
http://dx.doi.org/10.1103/PhysRevB.92.245304
http://dx.doi.org/10.1103/PhysRevB.92.245304
http://dx.doi.org/10.1103/PhysRevX.5.031016
http://dx.doi.org/10.1103/PhysRevX.5.031016
http://dx.doi.org/10.1103/PhysRevX.5.031016
http://dx.doi.org/10.1103/PhysRevX.5.031016
http://dx.doi.org/10.1103/PhysRevLett.86.5333
http://dx.doi.org/10.1103/PhysRevLett.86.5333
http://dx.doi.org/10.1103/PhysRevLett.86.5333
http://dx.doi.org/10.1103/PhysRevLett.86.5333
http://dx.doi.org/10.1103/PhysRevB.93.144418
http://dx.doi.org/10.1103/PhysRevB.93.144418
http://dx.doi.org/10.1103/PhysRevB.93.144418
http://dx.doi.org/10.1103/PhysRevB.93.144418
http://dx.doi.org/10.1038/srep16852
http://dx.doi.org/10.1038/srep16852
http://dx.doi.org/10.1038/srep16852
http://dx.doi.org/10.1038/srep16852
http://dx.doi.org/10.1007/BF01339530
http://dx.doi.org/10.1007/BF01339530
http://dx.doi.org/10.1007/BF01339530
http://dx.doi.org/10.1007/BF01339530
http://dx.doi.org/10.1007/BF01341953
http://dx.doi.org/10.1007/BF01341953
http://dx.doi.org/10.1007/BF01341953
http://dx.doi.org/10.1007/BF01341936
http://dx.doi.org/10.1007/BF01341936
http://dx.doi.org/10.1007/BF01341936
http://dx.doi.org/10.1007/BF01330865
http://dx.doi.org/10.1007/BF01330865
http://dx.doi.org/10.1007/BF01330865
http://dx.doi.org/10.1021/jo00018a043
http://dx.doi.org/10.1021/jo00018a043
http://dx.doi.org/10.1021/jo00018a043
http://dx.doi.org/10.1021/jo00018a043
http://dx.doi.org/10.3390/sym2010076
http://dx.doi.org/10.3390/sym2010076
http://dx.doi.org/10.3390/sym2010076
http://dx.doi.org/10.3390/sym2010076
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1103/PhysRevA.87.043613
http://dx.doi.org/10.1088/0953-4075/49/14/144005
http://dx.doi.org/10.1088/0953-4075/49/14/144005
http://dx.doi.org/10.1088/0953-4075/49/14/144005
http://dx.doi.org/10.1088/0953-4075/49/14/144005



