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Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets
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I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets.
I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs
and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands
the Maxwell-Calladine index of mechanical structures. “Spontaneous supersymmetry breaking” is identified as
the need to gap all modes in the bulk to create the topological isostatic lattice state. Since ground states of magnetic
systems also satisfy local constraint conditions (such as the vanishing of the total spin on a triangle), I identify a
similar SUSY structure for many common models of antiferromagnets including the square, triangluar, kagome,
pyrochlore nearest-neighbor antiferromagnets, and the J2 = J1/2 square-lattice antiferromagnet. Remarkably,
the kagome family of antiferromagnets is the analog of topological isostatic lattices among this collection of
models. Thus, a solid-state realization of the theory of phonon topological band structure may be found in
frustrated magnetic materials.
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Recently, Kane and Lubensky [1] (KL) identified topo-
logical properties of isostatic lattice phonons. They achieved
this by discovering a topological index governing mechanical
structures by building on Calladine’s work [2] and further
utilizing a Dirac-type square root of the phonon equations of
motion, a problem to which they could apply the theory of
topological insulators. Remarkably, they showed the existence
of lattices with gapped phonons for periodic boundary con-
ditions that must have gapless phonons with open boundary
conditions. It is natural to wonder if this striking effect is
more general and they conclude their study with the following:
“Finally, it will be interesting to explore connections with
theories of frustrated magnetism48” where the reference 48
cite is my study [3] identifying topological gauge dynamics
of the zero modes of classical kagome antiferromagnets. This
paper’s goal is to make this connection and use it to generalize
KL theory beyond phonons.

The KL theory of isostatic lattices is a different branch
of topological phases from the theory of topological band
insulators. Following the original discovery of topological
insulators, topological properties of boson band structures
have been studied for a wide variety of systems including
phonons [4,5], photons [6], acoustic phononic crystals [7],
and magnons [8,9]. These systems achieve their topological
properties in the presence of time-reversal symmetry breaking
and are built directly from the physics of the integer quantum
Hall effect. In contrast, KL’s theory of isostatic phonons is
time-reversal symmetric and “purely geometric in nature” [10].
A connection to the integer quantum Hall effect is made only
after a Dirac-type square-rooting procedure of the equations
of motion. It therefore presents a new direction in the theory
of topological phases.

Remarkably, though it may not apply directly to solid-state
phonons because they are mechanically stable, the KL theory
has already seen a variety of applications due to its insight
into the general phenomena of mechanical collapse. These
include some topological aspects of the jamming and rigidity
percolation transitions [11], metamaterials made from beams
and pins [12], and, remarkably, origami [13]. Reference [12]

has also taken it beyond the linearized level and discovered
solitons that can propagate freely in the bulk of the isostatic
state. So, given the fundamental insight it provides, any
extension of KL theory to a new class of systems, including
extensions that go beyond the linearized limit, is likely to shed
new light on those systems.

In this light, frustrated magnets and/or highly frustrated
magnets are a prime target for an extension of KL theory.
They are magnets not only “on the verge of collapse,” but
also those that have already “collapsed.” Here, collapsing
is the analog of destabilizing the magnetic ordered state
into a paramagnetic state such as a quantum spin liquid
or valence bond solid. A variety of materials including the
organics, kagome family, and pyrochlores are heavily studied
for this reason [14]. In addition, highly geometrically frustrated
magnets have a form of accidental degeneracy that results from
a special feature of the spin Hamiltonian [15]. This frustration
is toylike (fine tuned) perhaps in a similar way that balls and
springs are toylike versions of a general theory of phonons.
So, if KL theory were applicable to frustrated magnets, this
generalization might apply to many already realized solid-state
materials.

In this paper, we show that the key to generalizing KL
theory to other systems lies in connecting it to an abstract
theoretical framework that takes the form of a many-body
supersymmetric (SUSY) structure that extends the description
of balls and springs. The fermionic degrees of freedom, that I
dub “phoninos,” are superpartners to phonons and are governed
by the KL theory’s square-rooted equations of motion. For
linearized phonons, the two sets of degrees of freedom are
decoupled. The phoninos therefore need not be real degrees
of freedom but just reflect the specialness of balls and springs
compared to a more general theory of phonons. I then show
that the topological index identified in KL theory is demanded
by the Witten index [16] of SUSY. A similar conclusion was
reached by Ref. [17] in the continuum limit. Remarkably,
spontaneous SUSY breaking here is just the need to gap all
modes in the bulk to create the topological state (as could
be the case for topological superconductors [18]). Finally,
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we discuss what protects this topology including the role of
quantum effects and nonlinearities.

I then apply the same many-body SUSY construction
to the case of magnons. It turns out SUSY is found for
both unfrustrated and frustrated magnons for either case has
ground states that satisfy local constraints and the SUSY
construction is built on these constraints. Remarkably, kagome
magninos are governed by a Hamiltonian which is the Dirac’s
constraint matrix [19,20] studied in Ref. [3] and is related
through SUSY to the ordinary kagome magnon problem. The
Witten index in this case is then shown to vanish for periodic
boundary conditions but not for open boundary conditions
demonstrating that kagome magnons are the analog of the
isostatic lattice of KL theory if we can gap all their modes
without changing topology such as in a distorted kagome
crystal. Such a phase we call isostatic magnetism. We conclude
by identifying some of the physical phenomena predicted
by these formal developments: the design of magnets by
exploiting weaknesses in isostatic magnetism such as through
a rich set of magnetic-field-induced spin-flip transitions that
we call “self-field modes”; an application of the ideas here to
the origin of the industrial strength of Mn3Ir (why it is a robust
antiferromagnet); the potential application of topological band
theory of electrons to magninos in the isostatic magnetic
phase and via SUSY to magnons; the study of the loss of
magnetic order via isostatic magnetism which can be viewed as
a classical critical point between magnetic order and a classical
spin liquid [21]/cooperative paramagnet [22].

I. TOPOLOGICAL ASPECTS OF PHONONS

A. Theoretical constructs in phonon models

To generalize KL theory to magnetism, we need to first
identify the theoretical constructs that underpin the theory
of phonons and then seek analogs of these constructs in the
magnon problem.

The simplest description of phonons, that of the vibrations
of balls connected to springs (in the classical limit), is endowed
with a number of theoretical constructs that shed much light
on their behavior. To begin with, this simplicity demands a
specific form of their Hamiltonian. If we define the extension
of spring m to be em, then the most general form for an ideal
balls and springs classical Hamiltonian is

Hphonon = 1
2piαmiα,jβpjβ + 1

2emkmnen. (1)

Here, piα is the α = {x,y, . . .} component of the momentum
of the ball labeled by i, miα,jβ is the matrix inverse of the
“mass tensor” miα,jβ , kmn is the spring constant matrix, and
repeated indices are summed over. In the simplest setting,
miα,jβ = mδij δαβ and kmn = kδmn are proportional to identity
matrices. Here, we leave them in the general form to aid our
study of the structure of the theory and not its application.
The restriction of the Hamiltonian to that of balls and springs
therefore introduces two (inverse) metrics kmn and miα,jβ in
configuration space and momentum space, respectively, and
identifies the ground state as satisfying constraints piα = 0,
em = 0.

Balls and springs are a toylike simplification of a full
phonon problem. We will return to the justification of their

use and the validity of the following results in the next section
(Sec. II).

In the linearized phonon limit, there is also a matrix Am,iα

and an associated topological invariant. This matrix relates em

to the displacements of each atom uiα from their equilibrium
positions via em = Am,iαuiα . This matrix also relates the forces
F iα to the tensions T m in each spring via F iα = AT

iα,mT m.
The topological invariant associated with this matrix (which
we will call the Maxwell-Calladine index [2] although it was
discovered by Kane and Lubensky) is

ν = dNs − Nb (2)

= (rankA + nullityA) − (rankAT + nullityAT ) (3)

= nullityA − nullityAT , (4)

where d is the number of components α, Ns the number of
sites, Nb the number of springs (bonds), nullity M denotes the
dimension of the null space of M, and we have used rank A =
rank AT by the fundamental theorem of linear algebra. This
quantity relates the topology data of the system d, Ns , and Nb to
the number of zero modes N0 = nullityA and number of states
of self-stress Nss = nullityAT . Here, a zero mode is a vector
uiα

0 that satisfies em = Am,iαuiα
0 = 0 and a state of self-stress is

a vector of tensions T m
0 that satisfies F iα = AT

iα,mT m
0 = 0. This

quantity is topological in the sense that it does not depend on
the metrics km,n and miα,jβ and remains unchanged under any
changes of the matrix Am,iα . So, linearized balls and springs
also have a natural topological invariant.

Kane and Lubensky argued that a Dirac-type square-rooted
equation of motion enables the study of phonons following the
theory of topological insulators. These equations of motion are
defined by the matrix

H =
(

0 −miα,kγ AT
kγ,n

km,pAp,jβ 0

)
. (5)

Here, I have taken the liberty to add a minus sign to Kane and
Lubensky’s matrix and reinserted km,n and miα,jβ which they
set to identity matrices. This is so that squaring this matrix
produces

H2 =
(−miα,kγ AT

kγ,pkp,qAq,jβ 0
0 −km,pAp,kγ mkγ,lδAT

lδ,n

)
,

(6)

where the upper left block defines the second-order differential
equation for the displacements

üiα = −miα,kγ AT
kγ,pkp,qAq,jβujβ . (7)

The minus sign can be removed by multiplying H by τ z =
(I 0
0 −I) from the right, something we are free to do since τ z

commutes with theH (a feature noted by Kane and Lubensky).
This model helps us understand the importance of the

topological index. If, for periodic boundary conditions, ν �= 0
then there must always be either a zero mode (if ν > 0) or a
self-stress mode (if ν < 0). In the spectrum of H, there is no
gap to the excitations. However, if ν = 0 then we can always
find an Am,iα such that the gap disappears. In such a case, if
we open the boundary conditions we will invariably find that
ν �= 0 since we change the counting of the number of sites and
bonds and so either special self-stresses exist due to boundary
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conditions or special zero modes exist. In either case, there is
an interplay between gap, topology, and boundary conditions
as found in other topological systems such as the quantum Hall
effect or topological insulators.

Finally, there is one more mathematical object we will find
useful for the study of phonons. To study the zero modes
of this problem directly, we can follow Ref. [3] and view
the Hamiltonian as energetically imposing constraints on the
degrees of freedom. Here, these constraints are simply piα = 0
and em = 0 as noted above, for if these conditions are met
the Hamiltonian vanishes. In his development of constrained
Hamiltonian mechanics, Dirac pointed out that an important
object in the study of constraints in phase space is the constraint
matrix which here takes the form

C =
({piα,pjβ} {piα,en}

{em,pjβ} {em,en}
)

, (8)

where {f,g} is the usual Poisson bracket of classical mechanics
for phase space observables f and g. A vector in the null
space of this matrix is then either associated with a redundant
constraint (when there are more constraint functions than
necessary to constrain the variables) or with a zero-mode
coordinate that has no conjugate variable in the space of zero
modes (gauge coordinate). If we expand the spring extensions
em in terms of the displacements of the atoms from their
equilibrium positions uiα as em = Am,iαuiα , then the constraint
matrix takes the form

C =
(

0 −AT
iα,n

Am,jβ 0

)
. (9)

Remarkably, in this form, C is similar to the “square-rooted”
Hamiltonian H discussed above. If we work in Kane and
Lubensky’s units where km,n = δm,n and miα,jβ = δij δαβ ,
they are actually the same. We also see that the redundant
constraints are associated with self-stress modes living in
the null space of AT

iα,m and the gauge coordinates with
the zero modes living in the null space of Am,iα . So, the
eigenvalue problem associated with Dirac’s constraint matrix
here is closely related to the Dirac-type square-rooted phonon
Hamiltonian!

Now, the relationship between all of these mathematical
objects, the metrics, the Hamiltonians, the Am,iα matrix, and
the constraint matrix are not so easily understood. They
all clearly derive from the balls and springs construction.
But, how is the topological index dependent on the metrics?
How is the constraint matrix C related to the square-rooted
Hamiltonian H? In what way is the topology protected? Can
these constructions be applied to other systems that are not
balls and springs?

To address these questions, we need an abstract theo-
retical framework that identifies all of these mathematical
objects from a simpler set of constructs. Remarkably, such
a framework is provided by extending the model’s phase
space to include a set of fermion degrees of freedom γ m

and �iα that we will call phonino modes and imposing
supersymmetry. From this vantage point, we will then look
down on all the mathematical objects discussed previously
and see their relationships to each other. The formal nature
of the supersymmetry will then also allow us to connect two
seemingly different problems: balls and springs and quadratic

spin models. We then just need to determine if the connection is
merely formal or whether it predicts new physical phenomena
for either balls and springs or magnetic systems.

B. Supersymmetric phonons

A Hamiltonian that is a quadratic form in constraint func-
tions that define its ground state has a natural supersymmetry.
To construct this supersymmetric model, we begin by defining
the supersymmetric charge by the product of a constraint
function and a new degree of freedom:

Q = �iαpiα + γ mem. (10)

This looks like a Lagrange multiplier term in an action meant
to impose the constraints piα = 0 and em = 0 where �iα and
γ m are the Lagrange multipliers. However, here we view
these as degrees of freedom that satisfy their own Poisson
bracket relations. Indeed, we can construct the supersymmetric
Hamiltonian using the Poisson bracket

HSUSY = 1
2 {Q,Q}

= γ m{em,piα}�iα + 1
2piα{�iα,�jβ}pjβ

+ 1
2em{γ m,γ n}en, (11)

where {f,g} denotes a Poisson bracket. For this equation to
be true, it is necessary for γ m and �iα to be Grassmann
numbers so that Q is Grassmann odd and {Q,Q} does not
vanish by the normal antisymmetry of Poisson brackets. We
also used {�iα,γ m} = {piα,pjβ} = {em,en} = 0. If we choose
the remaining Poisson brackets to be

{�iα,�jβ} = miα,jβ, {γ m,γ n} = kmn, (12)

then we obtain the simple relation HSUSY = Hphonino + Hphonon

where Hphonino is the first term and the second and third terms
make up Hphonon of Eq. (1). This defines the Poisson bracket
to be [23–25]

{f,g} = ∂f

∂uiα

∂g

∂piα

− ∂f

∂piα

∂g

∂uiα

+ f

←−
∂

∂�iα
miα,jβ ∂g

∂�jβ
+ f

←−
∂

∂γ m
kmn ∂g

∂γ n
, (13)

which is symmetric if f and g are both Grassmann odd and
antisymmetric otherwise. Finally, we see that {Q,HSUSY} = 0
so the two observables form a closed superalgebra. So, we can
promote the phonon problem to a supersymmetric problem of
bosonic phonons and fermionic phoninos where the phoninos
satisfy a Clifford algebra with metrics kmn and miα,jβ and the
phonino Hamiltonian is determined by the constraint matrix

Hphonino = 1

2
(�iα γm)C

(
�jβ

γ n

)
, (14)

where C is given by Eq. (8).
Note, here we have chosen to study phonons classically

using Grassmann numbers. In this sense, we follow one of
the original motivations to introduce Grassmann numbers into
classical mechanics: to construct simpler-than-field-theory
supersymmetry models [23]. The use of classical mechanics
here, however, is just to connect with the history of theories of
balls and springs and is not necessary as we will discuss Sec. II.
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Furthermore, our analysis of the model presented below will be
informed by the use of supersymmetry in quantum mechanics
(see Ref. [26] for a review) because it is another simpler-than-
field-theory supersymmetry model. However, unlike quantum
mechanics, the above model is a many-body supersymmetric
lattice model, one not so different from the lattice model
of a supersymmetric topological superconductor studied in
Ref. [18].

In the linearized limit, the two Hamiltonians become

Hphonon = 1
2piαmiα,jβpjβ + 1

2uiαAT
iα,mkmm′

Am′,jβujβ (15)

and

Hphonino = γ mAm,iα�iα, (16)

where we used {piα,ujβ} = δ
j

i δ
α
β . In this limit then, the

phonons and the phoninos are decoupled and the Hamiltonians
are quadratic. We therefore have a model we can apply to
real systems since it contains the correct phonon eigenvalue
problem. It is not so obvious, however, what we can learn by
introducing the phoninos. To settle this, we need to directly
study the different eigenvalue problems.

C. SUSY eigenvalue problem

To study the eigenvalue problems of HSUSY, we need to
solve the corresponding equations of motion. The first order
in time differential equations for the phonons is(

u̇iα

ṗiα

)
=

(
0 miα,jβ

−AT
iα,mkm,nAn,jβ

)(
ujβ

pjβ

)
(17)

and for the phoninos is(
�̇iα

γ̇ m

)
=

(
0 −miα,kγ AT

kγ,n

km,pAp,jβ 0

)(
�jβ

γ n

)
. (18)

Remarkably, the phonino equations of motion are the square-
rooted Hamiltonian matrix H introduced by Kane and Luben-
sky. The constraint matrices C and H are therefore related in
the supersymmetric model by one entering the Hamiltonian
quadratic form and the other by the corresponding equations
of motion.

We will also find it useful to work with the second derivative
in time equations of motion:

üiα = −miα,jβAT
jβ,mkm,nAn,kγ ukγ , (19)

p̈iα = −AT
iα,mkm,nAn,jβmjβ,kγ pkγ , (20)

�̈iα = −miα,jβAT
jβ,mkm,nAn,kγ �kγ , (21)

γ̈ m = −km,nAn,iαmiα,jβAT
jβ,pγ p. (22)

From these, we see that uiα , viα = miα,jβpjβ and �iα all obey
the same equations of motion. γ m obeys a distinctly different
equation. We also can determine that each equation has two
types of eigenmodes. For the uiα-type equations, all modes
either have zero eigenvalue and are in the null space of Am,iα

or they have finite eigenvalues. There are no modes with zero
eigenvalue that satisfy Am,iαuiα �= 0. This is because such a
mode would satisfy gmkm,ngn = 0 with gm = Am,iαuiα �= 0
and violate the assumption that km,n is a positive-definite
matrix. For a similar reason, the γ m equation has two mode

types, those with zero eigenvalue in the null space of AT
iα,m

and those with finite eigenvalues.
We can of course proceed by solving these equations

separately, but this would not give us any insight into how
the phoninos can help us understand the phonons. Instead, let
us proceed by studying supersymmetry transformations and
reduce the problem to solving only the parts not related by
supersymmetry.

The supersymmetric charge provides us with a map between
the phase space observables with an even number of phonino
coordinates (Grassmann even) and those with an odd number
(Grassmann odd). The single-particle phonon modes which
are linear combinations of uiα and piα are in the even group
while the single-particle phonino modes which are linear
combinations of �iα and γ m are in the odd group. The map
{
,Q} we can construct from Q sends an observable from the
even sector to the odd sector by inserting it into the location of
the 
. This map has a special relationship with the equations
of motion: time evolution of the mapped observable is the
same as the unmapped observable. For example, {uiα,Q} is a
phonino observable that obeys the equations of motion

d2

dt2
{uiα,Q} = −miα,jβAT

jβ,mkm,nAn,kγ {ukγ ,Q}, (23)

which is the equation of motion for uiα . Similarly, the phonon
observables {piα,Q}, {�iα,Q}, {γ m,Q} obey the piα , �iα , and
γ m equations, respectively. Computing these Poisson brackets
explicitly, we see that they are

{uiα,Q} = �iα, {piα,Q} = AT
iα,mγ m, (24)

{�iα,Q} = miα,jβpjβ, {γ m,Q} = km,nAn,iαuiα. (25)

So, it would seem that supersymmetry is too powerful a
symmetry, that the phonino problem is equivalent to the
phonon problem (and therefore uninteresting).

To study these relationships in more detail, let us now take
linear combinations of phase space observables. If viαpiα is
an eigenmode of the piα equation, then it obeys

viαAT
iα,mkm,nAn,jβmjβ,kγ = ω2vkγ . (26)

Now, if viαAT
iα,m = 0 so the viα is in the (left) null space of

AT
iα,m, then it is an eigenvector with frequency ω = 0. If this

is not the case, it is an eigenvector with a finite frequency as
discussed above. Now, let us map this to a linear combination
of γ m’s using Q:

{viαpiα,Q} = viαAT
iα,mγ m. (27)

If viα therefore corresponds to a zero mode, it gets annihilated
by this map. Only the finite-frequency modes therefore actually
pass from the piα eigenmode problem to the γ m eigenmode
problem. However, for the finite mode case, notice that the
mapped observable is a linear combination whose coefficients
obey

viαAT
iα,mkm,nAn,jβmjβ,kγ AT

kγ,p = ω2viαAT
iα,p. (28)

So, it is a (left) eigenvector of the γ m differential equation
with the same eigenvalue it had in the piα differential equation
before it was mapped. Mapped observables therefore carry
their eigenvalue with them.
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FIG. 1. Graphical display of eigenmode relationships. Here, two
types of arrows are drawn: one called “is” results from the identical
form of the two differential equations and one called “Q” is the
supersymmetry map. Notice Q does not map zero-mode eigenstates
from piα to γ m and from γ m to uiα . Since all arrows represent maps
of unique elements to unique elements, if a path of arrows exists from
one set of modes to another and another path exists from that set of
modes back to the first, then the two sets of modes are isomorphic.
For finite modes, any two sets of eigenstates have such paths relating
them so they are all isomorphic to each other. For zero modes, only
the uiα , �iα , and piα sets of eigenstates are isomorphic. The γ m set
is different and hence the phonino problem has a different set of zero
modes from the phonon problem. Note this figure follows the rules
of an olog [27].

Extending this study to each of the four differential
equations and breaking their set of eigenvectors into two
groups, the finite and the zero eigenvalue modes, we have
constructed Fig. 1 that graphically depicts all the different
relationships. In it an arrow represents a function mapping the
set of eigenmodes at its tail to the set of eigenmodes at its
head. If two different paths exist between any two sets, one
going from one set to the other and the other going the reverse
direction, then the two sets are isomorphic and in particular
have the same number of eigenmodes. In this way, we see that
the number of finite-energy eigenmodes are the same for all
differential equations, just their zero modes are different.

Now, with the above analysis of the eigenmodes, we are in
a position to understand the topological index associated with
a supersymmetric theory. As pointed out by Witten (and often
called the “Witten index”) the total number of boson modes
minus the total number of fermion modes [Tr(−1)F where
F = 0 for a boson mode, and F = 1 for a fermion mode]
is a topological invariant. Applying this to the single-particle

sector we have

ν = Tr(−1)F = 2dNs − dNs − Nb = dNs − Nb. (29)

But, if we break down the count of zero modes into the four
groups of two types of modes, we have

ν = (N> + N0)︸ ︷︷ ︸
uiα modes

+ (N> + N0)︸ ︷︷ ︸
piα modes

− (N> + N0)︸ ︷︷ ︸
�iα modes

− (N> + Nss)︸ ︷︷ ︸
γ m modes

(30)

= N0 − Nss, (31)

where we used Fig. 1 to establish that the number of finite
modes N> is the same between all mode types while N0 is the
same only between uiα , �iα , and piα and is in general different
from the number of γ m zero modes Nss . To derive these results,
we heavily relied on the positive definiteness of miα,jβ and
km,n for if this were not the case, more modes could fail to be
mapped by Q. So, the Witten index of supersymmetry, when
applied to the single-particle sector valid for the linearized
theory, is identical to the Maxwell-Calladine index but its
derivation is directly built on eigenvalue problems rather than
directly on the properties of the matrix Am,iα .

The Witten index is useful in a supersymmetric theory
because it dictates whether there must be a zero mode. If ν > 0,
there must be ν bosonic (phonon) zero modes. If ν < 0, there
must be |ν| fermionic (phonino) zero modes which here must
be self-stress modes. So long as ν �= 0 then, supersymmetry
can exist in the “ground state” for there is then a zero mode
that satisfies Q̂|0〉 = 0 (in the quantum language). However,
if ν = 0 then without explicitly breaking supersymmetry one
can remove all zero modes. Then, there are no states satisfying
Q̂|0〉 = 0 and supersymmetry is spontaneously broken in the
ground state. Remarkably, an isostatic lattice has both ν = 0
for periodic boundary conditions and all zero modes gapped
(N0 = 0). So, isostatic lattices are an example of spontaneous
SUSY breaking.

Finally, we need to comment on the question of how the
above supersymmetry is related to the quantum-mechanics-
like supersymmetry of the square-rooted equations of motion
[Eq. (18)] pointed out by Kane and Lubensky. This symmetry
is a supersymmetry between �iα modes and γ m modes
(both of which are fermionic here) and has an associated
topological index which is numerically the same index as the
single-particle Witten index discussed above and the Maxwell-
Calladine index. So, the phonon problem appears to have two
different supersymmetries, one at the full phase space level that
we discuss above and the other at the level of the equations of
motion of the linearized fermions that related different fermion
modes to each other (quantum-mechanics-like SUSY need not
always relate bosonic modes to fermionic modes).

In summary, the supersymmetry model has brought all
mathematical objects mentioned so far under one umbrella.
The supersymmetric theory has the phonon Hamiltonian, the
two metrics miα,jβ and km,n play a central role as they deter-
mine the commutation relations of the fermions, the phonino
Hamiltonian is determined by the constraint matrix C, and
its corresponding equation of motion is the square-rooted
HamiltonianH. Finally, the topological index is determined by
the supersymmetry relations between the various eigenmodes.
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Lastly, it suggests that the specialness of the balls and springs
description is the requirement that it is supersymmetric. If
we break this specialness, if we explicitly break the super-
symmetry, then most of the mathematical objects contained
in the theory lose their meaning. In this way, I argue that the
topological structure of isostatic lattices identified by Kane
and Lubensky is SUSY protected.

II. TOPOLOGICAL PROTECTION

The previous results show that models of phonons built on
constraint functions like the extension em of a spring from
its equilibrium length have a topological index tied to their
equations of motion by a supersymmetric relationship with
phoninos. This index guarantees the existence of zero modes
from topology (even in the absence of a continuous symmetry)
much like Goldstone’s theorem guarantees the existence of
zero modes from spontaneous symmetry breaking. Here, we
discuss the question of to what extent this topological property
is robust.

A. Robustness to quantum fluctuations

For the most part, we worked in the classical limit where
phonons are actually lattice vibrations. If we quantize it, then
we convert Poisson brackets to commutators or anticommuta-
tors such as [p̂iα,ûjβ] = iδ

jβ

iα and {γ̂ m,γ̂ n} = km,n. Quantizing
the supersymmetric charge Q̂ = �̂iαp̂iα + γ̂ mAm,iαûiα then
gives the supersymmetric Hamiltonian

ĤSUSY = 1
2 {Q̂,Q̂} = iγ̂ mAm,iα�̂iα + 1

2 p̂iαmiα,jβ p̂jβ

+ 1
2 ûiαAT

iα,mkmm′
Am′,jβ ûjβ . (32)

This is identical in form to the classical case. A similar
correspondence between the nonlinear forms of the classical
and quantum models also holds. So, the main results of this
paper hold in both the classical and quantum forms and are not
restricted to semiclassical or classical regimes.

B. What do metric distortions do?

Since the metrics km,n and miα,jβ entering the phonon
problem are not present in the respective topological indices,
the topological protection holds if these undergo a distortion so
long as they remain positive-definite matrices. In particular, the
topological index holds if we stretch and distort the lattice as
was used extensively in the discovery of Weyl phonon modes
in Ref. [28].

C. What happens in the nonlinear phonon problem?

Let us first address this question for the nonlinear super-
symmetry models before returning to the problem of purely
nonlinear phonons in the absence of phoninos.

In the presence of nonlinearities, the eigenmodes of the
system are no longer linear combinations of single-particle
observables. Instead, they become a linear combination of
all multiparticle observables. As a result, the Witten index
restricted to the single-particle sector loses its meaning but the

full index

ν = Tr(−1)F (33)

= # of bosonic observables − # of fermionic observables

(34)

still holds because Q still maps multiparticle bosonic ob-
servables to multiparticle fermionic observables. To get a
sense of this full set of observables, we have considered
the two-particle sector. This consists of bosonic observables
of types uiαujβ , piαpjβ , uiαpjβ , γ mγ n, �iα�jβ , and γ m�iα

and fermionic observables of types γ muiα , γ mpiα , �iαujβ ,
and �iαpjβ . Counting all of these two different two-particle
observables, noting that squares of Grassmann observables
vanish (i.e., γ mγ m = 0), I obtain after simplifying

ν2 particle = dNs(dNs + 1)/2 + Nb(Nb − 1)/2 − dNsNb.

(35)

If Nb = dNs as in the isostatic lattice case, we see this also
vanishes. Since the index for the one-particle and two-particle
sectors vanishes, likely the total sum over all sectors relevant
for the many-body nonlinear problem also vanishes. So, the
topological protection remains in effect for the full nonlinear
supersymmetric problem.

With this technical extension, we see that the nonlinear
models are also topological. Since they consist now of
Majorana fermions coupled to phonons, they could in principle
be realized in a carefully engineered superconductor. In
practice, however, they may prove to be more useful as a
means of gaining theoretical insight into “symmetry protected
topological order” in the presence of interacting fermions
which does not make use of K theory [29], Chern-Simons
quantum field theory [30,31], or supercohomology [32].

Unfortunately, the salient feature of the nonlinear problem
is that the phonons are now coupled to the phoninos. We can no
longer think about the added fermionic degrees of freedom as a
device to construct a topological index. So, if the fermions are
absent, the supersymmetry is lost and with it the topological
protection. This statement, however, is about the microscopic
physics. It may very well be that the full nonlinear phonon
problem has the same low-energy long-distance physics as the
corresponding supersymmetric nonlinear phonon. After all, it
is the physics close to the ground state which we used to build
the model of balls and springs from constraint functions. It is
therefore possible that the SUSY breaking terms are irrelevant
in the renormalization group sense. If so, the topological
protection may nevertheless emerge in the low-energy limit.

D. What happens if the supersymmetry is broken?

The models discussed in this paper are all “toy” models
in that they correspond to useful simplifications of the actual
phonon microscopic physics but in any real system, there will
be perturbations that are not of the simple form. For example,
the general quadratic phonon potential

Vphonon = 1

2

∑
ij

uiαViα,jβujβ �= 1

2
uiαAT

iα,mkm,nAm,jβujβ

(36)
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is not that of balls and springs (Viα,jβ �= AT
iα,mkm,nAm,jβ). The

supersymmetry can therefore be thought of as a symmetry
emerging from the “toyness” of the model. We can speculate
on what this might mean. The extent to which the toy model
captures the full physics of a real material is likely the extent
to which the supersymmetry will be obeyed. In particular,
if supersymmetry demands gapless phonon edge modes in a
system with gapped bulk phonon modes, these edge modes
would likely be gapped by perturbations violating the toylike
property of balls and springs and the size of the gap is likely
related to the strength of these non-toylike perturbations.

III. TOPOLOGICAL ASPECTS OF MAGNONS

A. Unfrustrated magnons

We can extend the above phonon discussion to magnons
(or other similar systems) by recognizing their essential
ingredient: constraints. The phonon problem is built on the
local-in-configuration space condition that the extensions em

vanish in the ground state. Since a ground state also requires
a vanishing momenta piα , we see that the phonon problem is
a quadratic form in the set of local-in-phase space constraints
on the ground state. To extend to magnons, we therefore
need models built around local-in-phase space constraints that
define a ground-state magnetic ordering pattern.

Perhaps the simplest example of such a constraint in a
magnetic system is the vanishing total (classical) spin of a
nearest-neighbor bond in the Néel state of the square-lattice
antiferromagnet. Each nearest-neighbor bond m has a pair
of sites ij that satisfies Smα ≡ Siα + Sjα = 0. Here, each
Siα is a dynamical spin vector satisfying angular momentum
Poisson brackets {Siα,Siβ} = ε

γ

αβSiγ and lives in a spherical
two-dimensional phase space. Such a condition is directly
analogous to a motionless unstretched spring with vanishing
extension em = 0 and momenta piα = 0, pjα = 0. So, we can
follow our phonon discussion and use the condition Smα = 0
to write the SUSY charge

Q = γ mαSmα (37)

and SUSY Hamiltonian

HSUSY = 1
2 {Q,Q} = 1

2Smα{γ mα,γ nβ}Snβ

+ 1
2γ mα{Smα,Snβ}γ nβ. (38)

Choosing {γ mα,γ nβ} = Jmα,nβ a positive-definite symmetric
matrix makes the first term a typical quadratic spin model with
Smα = 0 for a ground state (e.g., the case Jmα,nβ = Jδmnδαβ

is just the Heisenberg model). This makes the γ mα Grassmann
variables obeying a Clifford algebra just like we found for the
phonon problem. Additionally, Cmα,nβ ≡ {Smα,Snβ} follows
from {Siα,Siβ} above and defines the fermion Hamiltonian
again as Dirac’s constraint matrix. We can then expand
about a ground state to linear order using Smα = Amα,iμxiμ

with xiμ → (qi,pi) the phase space coordinates representing
deviations of the spin on site i from its ground-state value.
This renders Cmα,nβ constant and decouples the two terms
in HSUSY. Linearizing allows us to demote the magninos
described by γ mα to fictitious particles whose use is to reveal
the implications of the supersymmetry just like the case of the
phoninos. However, the equations of motion of these magninos

does not give us the “square-rooted” Hamiltonian for it is

γ̇ mα = Jmα,m′βCm′β,m′′γ γ m′′γ , (39)

which, when squared, is not the magnon equations of motion.
So, the structure of the square-rooted Hamiltonian and its
associated quantum-mechanics-like supersymmetry does not
apply here. Thus, by starting from the ground-state condition
Smα = 0, we obtain the same structure as the phonon problem
which presumably has a Witten index ν that can tell us about
its zero modes without solving the equations of motion.

The above Néel state bond constraint Smα is an application
of the SUSY phonon problem to unfrustrated antiferromag-
nets. It readily generalizes to the ferromagnetic case which
has a vanishing difference of spin vectors on each bond
(Smα ≡ Siα − Sjα = 0) provided we draw arrows on each bond
to specify which of the two sites of nearest-neighbor bond m

enters Smα with a negative sign. It also readily generalizes
to other bipartite lattices such as the cubic lattice and the
honeycomb lattice. Writing the topological index expected for
these generalizations will therefore allow us to determine if an
analog of isostatic phonons exists and also how we may use it
to study the loss of magnetic order.

For each case, we can guess the form of the topological
index

νunfrustrated = (# of magnons) − (# of magninos)

= 2Ns − 3Nb (40)

= nullityA − nullityAT . (41)

The last line here is not a guess, it follows from the previous
line by the fundamental theorem of linear algebra as before.
Presumably, if νunfrustrated > 0, there must be a finite number
of magnon zero modes, and if it is negative a finite number of
magnino modes. We will discuss the meaning and correctness
of this statement below. But, assuming it is correct for the
present discussion, we see that essentially all unfrustrated
magnets have νunfrustrated < 0. Only dimerized systems which
have two sites for each bond or trimerized systems with two
bonds for each trimer have non-negative νunfrustrated (see Fig. 2).
The best case with connected sites is the one-dimensional chain
with Ns = Nb and νunfrustrated = −Ns for periodic boundary
conditions. A similar best case holds for bond percolation on
the square lattice where at threshold Nb = Ns [33]. So, for
unfrustrated magnets, the topological structure imposed by
supersymmetry does not demand any magnon zero modes.

The above derivation of the magnetic Maxwell-Calladine
index was mostly a guess. To see that it is correct, we need
to work out the supersymmetry relations between eigenmodes

(a) (b) (c)

FIG. 2. Topological index for small chains with a collinear Néel
ground state. Since ν becomes increasingly negative with increasing
chain length going negative for four or more spins, essentially all
unfrustrated magnetic systems will have a negative topological index.
This explains the general robustness of magnetic order in many
magnetic materials.
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and the Witten index as we did for the phonon problem. This
is a more complicated problem than the phonon case due to
the existence of two types of zero modes [3] (canonical and
gauge). But, this just requires a little more organization and
the following proceeds just like the phonon case.

The equations of motion for both bosonic and fermionic
problems are

ẋiμ = σ iμ,jνAT
jν,mαJmα,m′βAm′β,kλx

kλ, (42)

γ̇ mα = Jmα,m′βAm′β,iμσ iμ,jνAT
jν,m′′γ γ m′′γ , (43)

where σ iμ,jν = {xiμ,xjν} = δij εμν is the Poisson bracket
tensor with εμν the two-dimensional Levi-Civita tensor and
we expanded the constraint matrix to leading order (where
Cmα,m′β = Amα,iμσ iμ,jνAT

jν,m′β). Let us identify first the types
of bosonic eigenmodes, then the types of fermionic eigen-
modes, and then see how they map into each other by
supersymmetry.

For the xiμ equations of motion, we can break up the set of
eigenmode observables viμẋiμ into four types of modes:

(1) Finite-frequency modes obeying viμσ iμ,jνAT
jν,mα

Jmα,m′βAm′β,kλ = iωvkλ with ω > 0.
(2) Gauge zero modes that are eigenmodes with ω =

0 but whose observable viμxiμ commutes with all other
observables corresponding to other ω = 0 eigenmodes. These
obey Amα,iμσ iμ,jνvjν = 0 and {viμxiμ,wjνx

jν} = 0 where
wjν is any vector satisfying Amα,iμσ iμ,jνwjν = 0.

(3) Canonical zero modes that are eigenmodes with
ω = 0 that are not gauge zero modes. These obey
Amα,iμσ iμ,jνvjν = 0 and {viμxiμ,wjνx

jν} �= 0 for some wjν

satisfying Amα,iμσ iμ,jνwjν = 0.
(4) Noneigenmodes of the equations of motion that can

arise because the eigenvalue problem here is a nonsymmetric
matrix that does not guarantee a complete set of eigenvectors.
These turn out to be the modes conjugate to the gauge zero
modes. We will therefore call them “conjugate gauge modes.”

These modes are best understood by choosing a canonical
basis that pairs them up into position Qa = viμẋiμ and
momentum Pa = wjνx

jν observables. Then, each pair has
Hamiltonian

P 2
a

2ma

+ 1

2
maω

2
aQ

2
a. (44)

In this light, finite-frequency modes have ma �= 0, ωa �= 0,
canonical zero modes have ma = ∞, ωa = 0 and maω

2
a = 0

and gauge modes have ma > 0, ωa = 0.
For the γ mα equations of motion, we can break up the set

of eigenmodes gmαγ mα into
(i) finite-frequency modes obeying gmαJmα,m′βAm′β,iμ

σ iμ,jνAT
jν,m′′γ = iωgm′′γ ;

(ii) self-field modes obeying AT
iμ,mαJmα,m′βgm′β = 0;

(iii) magnino gauge modes that do not satisfy
Amα,m′βJm′β,m′′γ gm′′γ = 0 but are eigenmodes with ω = 0.

Self-field modes are modes that correspond to a choice
of local magnetic fields on the bonds hmα that contribute no
Zeeman energy

HZeeman = −hmαSmα = 0. (45)

FIG. 3. A graphical depiction of the relationships between eigen-
modes of the magnon-magnino supersymmetric model. The magnon
modes are broken down into four groups due to the canonical
structure of the zero modes: some zero modes have a canonical
conjugate (canonical zero-frequency mode) and others do not (gauge
zero-frequency mode). Since each arrow maps a unique eigenmode
to a unique eigenmode, the finite-frequency magnon and magnino
modes are isomorphic. Also, the magnon gauge zero-frequency
modes are isomorphic to the magnino “gauge” zero-frequency modes
which explains Dirac’s use of the constraint matrix to count gauge
modes purely from supersymmetry. Note: like Fig. 1, this figure is
also an olog [27].

They identify a redundancy in the set of functions Smα when
viewing them as constraints on the ground-state configuration.
The “magnino gauge modes” are not gauge modes in the sense
of zero modes whose conjugate is not a zero mode. Their name
here comes from their use in counting gauge modes: Dirac
found [19,20] there is a gauge mode for every eigenvector in
the null space of the constraint matrix that does not correspond
to a redundant constraint (i.e., is not self-field mode).

Now, with all these modes identified, we can pass them
through the supersymmetry map {
,Q} and see how they are
related by supersymmetry. The result is presented in Fig. 3.
Since no two eigenmodes mapped by {
,Q} map to the same
eigenmode, we must have

(i) the number of finite-frequency magnon modes N> is
equal to the number of finite-frequency magnino modes;

(ii) the number of magnon gauge modes NG is equal to the
number of magnino “gauge” modes.

In addition, we see that the supersymmetry map gives us
a direct explanation of Dirac mode counting: magnino gauge
modes map to magnon gauge modes under supersymmetry and
the conjugate to this magnon gauge mode maps back to the
magnino gauge modes. This defines an isomorphism between
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magnon and magnino gauge modes and so the number of each
must be the same. The supersymmetry map also verifies our
guess for the single-particle Witten index/magnetic Maxwell-
Calladine index for the above conditions on the number of
modes in each set implies the difference between the number
of magnon and magnino modes is

ν = 2Ns︸︷︷︸
xiμ modes

− 3Nb︸︷︷︸
γ m modes

(46)

= (N> + 2NG + 2Nc) − (N> + NG + Nsf ) (47)

= NG + 2Nc − Nsf , (48)

where Nc is half the number of zero modes with a conjugate
pair that is also a zero mode and Nsf is the number of self-
field modes. And, so our guess of Eq. (65) is indeed correct
with a positive ν demanding NG + 2Nc � ν and a negative ν

demanding Nsf � |ν|.
We can also determine ν another way. We see from the

above discussion that NG + 2Nc = nullityA (dimension of
the constraint surface S�α = 0 in phase space) and Nsf =
nullityAT since these null spaces define the modes that do not
get mapped under supersymmetry. Hence, the Witten index in
the magnon problem also obeys ν = nullityA − nullityAT .

So, our guess for the topological index is correct but this
in turn implies that unfrustrated magnons are always far
away from the analog of mechanical collapse expected for
ν > 0 (i.e., they all have a negative ν). So, to explore the
physics of the Kane-Lubensky theory in magnetic systems,
we need to generalize beyond unfrustrated magnetic systems.
But before doing so, we turn to an illustrative example of the
above magnon and magnino eigenvalue problems: the simple
ferromagnet on the square lattice.

B. SUSY in the square-lattice ferromagnet

We can write the Hamiltonian for the square-lattice ferro-
magnet Heisenberg model as

H = J
∑
〈ij〉

Si · Sj = 1

2
SmαJmα,nβSnβ, (49)

where Jmα,nβ = Jδmnδαβ , m labels nearest-neighbor bonds
〈ij 〉, and α the spin vector components. The ground state
therefore satisfies Smα ≡ Siα − S(i+x̂)β = 0 on each horizontal
bond and Smα ≡ Siα − S(i+ŷ)β = 0 on each vertical bond. Up
to global spin rotations, this uniquely selects the ground state
to be the uniform state.

To linearize around a ground state, let us choose the case
Six = 1, Siy = Siz = 0. Expressing the spin vectors using

canonical coordinates Si = [cos(qi)
√

1−p2
i , sin(qi)

√
1 − p2

i ,

pi] with {qi,pi} = 1 so that {Siα,Siβ} = ε
γ

αβSiγ we can
linearize by expanding in qi and pi . This gives Si = (1,qi,pi).
Similarly, we can expand the constraint Smα = Am,iμxiμ and
identify xiq = qi and xip = pi with μ = q,p indexing to
which canonical variable xiμ refers. So, we find

Amx,iμ = 0, Amy,iμ = ±δμ,q, Amz,iμ = ±δμ,p, (50)

where the sign depends on which spin iμ refers to in the
expression Smα = Siα − Sjβ .

Now, since the ground state is periodic with the lattice,
we may Fourier transform. To do this, let m = R + d with
d = ax̂/2 or d = aŷ/2 denoting the center of each bond and
i = R denoting the site of the lattice. Then, Am,iμ = AR+d,R′μ
and we see its translational symmetry by just shifting both R
and R′ by a and for some lattice vector a. We can then expand
Am,iμ in Fourier components by

AR+dα,R′μ =
∑

k

Adα,μeik·(R−R′)/Nu, (51)

where Nu is the number of unit cells. This introduces the 6×2
matrix

AT (k) =
(

0 1 − eikxa 0 0 1 − eikya 0

0 0 1 − eikxa 0 0 1 − eikya

)

(52)

and allows us to express the magnon Hamiltonian as

H = 1

2

∑
k

xT (−k)AT (−k)J̃(k)A(k)x(k) (53)

≡ 1

2
xT (−k)h(k)x(k). (54)

Multiplying the matrices out for the nearest-neighbor Heisen-
berg model (J a 6×6 identity matrix) we find h(k) =
4[sin2(kxa) + sin2(kya)]I2×2 ≡ ω(k)I2×2 where I2×2 is the
2×2 identity matrix giving a quadratic dispersion for small
k as expected.

Now, we can identify mode types as finite frequency,
magnon gauge, conjugate to magnon gauge and magnon
canonical zero mode. At k = 0 we find a zero mode with
h(0) = 0. It is therefore of the form of Eq. (44) with ma → ∞,
ωa → 0, and maω

2
a → 0. Hence, it is a canonical zero mode.

For finite k, we see that Hamiltonian is of the form of Eq. (44)
with ma = 1/ω(k) and ωa = ω(k) finite. Hence, these are
finite-frequency magnon modes. There are unfortunately no
magnon gauge modes or conjugate gauge modes to illustrate
this point.

The magnino Hamiltonian takes a similar form. It is

Hmagnino = 1
2γ T (−k)A(−k)σ̃ (k)AT (k)γ (k) (55)

≡ 1
2γ T (−k)C(k)γ (k), (56)

where σ (k) = iσy is the antisymmetric Poisson bracket tensor.
Now, C(k) is a 6×6 anti-Hermitian matrix:

C(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 ξ ∗
x ξx 0 0 ξ ∗

x ξy

0 −ξ ∗
x ξx 0 0 −ξ ∗

x ξy 0

0 0 0 0 0 0

0 0 ξxξ
∗
y 0 0 ξ ∗

y ξy

0 −ξxξ
∗
y 0 0 −ξ ∗

y ξy 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (57)

Choosing J a 6×6 identity matrix so that γ (k) obey canonical
commutation relations then allows us to diagonalize this
matrix. The result is four zero eigenvalues, iω(k) and −iω(k).
Hence, the finite-frequency modes have exactly the same
eigenvalues.
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Again, we can distinguish the different mode types though
here we have not expressed a simple canonical form for the
diagonalized fermion Hamiltonian. We do not have Eq. (44) to
help guide us. But, we can work directly with the definitions
of the modes. Clearly, finite-frequency modes magnino modes
correspond to the eigenvalues iω(k) and −iω(k) for k �= 0 and
there are exactly the same number of these as finite-frequency
magnon modes. The four zero eigenvalues and the case ω(k =
0) = 0 fall into the null space of AT and are “self-field modes.”
There are no zero-frequency modes not in the null space of AT

so there are no “magnino gauge modes” consistent with the
absence of magnon gauge modes discussed above.

C. Frustrated magnons

Perhaps one way to overcome the ubiquitous negative ν

of unfrustrated magnets is to generalize to other degrees of
freedom. For this to improve upon the unfrustrated case, we
need to increase the number of degrees of freedom on each
site compared to the number of constraints on each bond. This
seems difficult for magnetic systems for each site naturally
has its own constraints (such as unit length spin vectors) in
addition to the bond constraints. For example, consider O(2)
quantum rotors each characterized by O(2) spin unit vector siα

(six = cos θi , siy = sin θi) and angular momenta Li conjugate
to θi (see Sachdev’s book [34]). In this case, Li = 0 and smα =
siα ± siβ in the ground state so we can define Q = �iLi +
γ mαsmα . Such a Q leads to HSUSY = Hquantum rotor + Hfermion

with fermions again decoupling in the linearized limit. But,
now our guess for the topological index is

νrotor = 2Ns − Ns − 2Nb = Ns − 2Nb, (58)

which is typically even more negative than νunfrustrated [and
the situation does not improve for O(3) rotors]. But notice
that here we kept the same number of phase space degrees
of freedom on each site and just transferred one of the bond
constraints to a site constraint. Thus, it is even more difficult
to introduce magnon zero modes for quantum rotors than for
quantum spins and they do not seem to be a viable solution.

Let us then turn to changing the constraint functions
entirely. Let us replace the vanishing bond constraint Smα = 0
with a vanishing total spin on a plaquette constraint Spα = 0.
Such a constraint arises in the nearest-neighbor triangular,
kagome, pyrochlore antiferromagnets and the J1-J2 square-
lattice antiferromagnet with J2 = J1/2. All of these cases fall
in to the category of frustrated magnets. For example, the
triangular lattice Heisenberg model can be written

H = J
∑
〈ij〉

SiαδαβSjα = J

4

∑
�α

S2
�α + const, (59)

where � labels each triangle of the triangular lattice and the
J1-J2 square-lattice antiferromagnet at J2 = J1/2 = J/2 can
be written

H = J
∑
〈ij〉

SiαδαβSjα = J

4

∑
�α

S2
�α + const. (60)

We can again guess the topological index. Here it is

νfrustrated = 2Ns − 3Np, (61)

where 3Np is the number of plaquette constraints (and fermion
Grassmann numbers). This gives for Nu unit cells and periodic
boundary conditions νfrustrated = −4Nu for the triangular lattice
(2 triangles, 1 site in unit cell), νfrustrated = −Nu for the
J2 = J1/2 square-lattice case (1 square, 1 site in unit cell),
νfrustrated = 0 for the kagome case (2 triangles, 3 sites in
unit cell), and νfrustrated = 2Nu for the pyrochlore lattice (2
tetrahedrons, 4 sites in unit cell). So, frustration enables a
wide variety of models to explore the impact of the full range
of ν values on the ordering tendencies of the spins. We next
work out the special ν = 0 kagome case as a concrete example
and use it to clarify a number of the above general statements.

On the kagome lattice (and indeed many highly geomet-
rically frustrated magnets [21,35]), the Hamiltonian can be
written

Hkagome = 1
2S�αJ�α,�′βS�′β, (62)

where S�α = Siα + Sjα + Skα is the total spin on triangle ijk.
For the case J�α,�′β = Jδ�,�′

δαβ, this model reduces to the
nearest-neighbor Heisenberg model on a lattice of corner-
sharing triangles such as the kagome lattice and hyperkagome
lattice. We will therefore assume J�α,�′β has positive-definite
eigenvalues and defines a metric.

This model has the feature that the ground states all satisfy
the local condition S�α = 0. Using this constraint, we can
again write a supersymmetric charge

Q = γ �αS�α (63)

and compute the corresponding supersymmetric Hamiltonian

HSUSY = 1
2S�α{γ �α,γ �′β}S�′β + 1

2γ �αC�α,�′βγ �′β. (64)

So, we need to choose {γ �α,γ �′β} = J�α,�′β to make the first
term Hkagome. The second term is the magnino Hamiltonian and
like the phonino Hamiltonian is determined by the constraint
matrix (C�α,�′β = {S�α,S�′β}). Hence, we obtain the same
structure as we did for the unfrustrated case. We just replace
the index m with �.

We can now compute the topological index for kagome
antiferromagnets. After linearizing as before, the analog of the
magnetic Maxwell-Calladine index is now

ν ≡ 2Ns − 3N� = NG + 2Nc − Nsf . (65)

This is different from the unfrustrated case only in replacing
Nb the number of bonds with N� the number of triangles.
For periodic boundary conditions, we see that ν/Nu = 2ns −
3n� = 0 where Nu is the number of unit cells considered,
ns = 3 is the number of sites within a unit cell, and n� = 2
is the number of triangles within a unit cell. We additionally
see this holds for other kagome lattices like the hyperkagome
lattice of Na4Ir3O8 [36] in three dimensions which has ns =
12, n� = 8. So, the kagome family of lattices all have ν = 0.

Given that ν = 0 for periodic boundary conditions, let
us see what the index demands for various open boundary
conditions. For the two finite kagome clusters shown in Fig. 4,
we have ν = 12 and 6. So, either type of boundary condition
will have ν > 0 and demand zero modes. Presumably, this
holds for any boundary condition that still allows us to write
the Hamiltonian in the general form of Eq. (62). However,
other boundary conditions may include a bond constraint

165101-10



SUPERSYMMETRY PROTECTED TOPOLOGICAL PHASES OF . . . PHYSICAL REVIEW B 94, 165101 (2016)

(b)(a)

FIG. 4. Two examples of open boundary conditions for the
kagome lattice. Each of these cases has ν = 2Ns − 3N� > 0. (a)
Has dangling triangles and ν = 2(33) − 3(18) = 12, (b) has no
dangling triangles and ν = 2(21) − 3(12) = 6. It appears that ν > 0
for any open boundary conditions and only reaches zero for periodic
boundary conditions. Thus, we can always gap out all bulk modes
with a suitable choice of the matrix A but not so at the edge. A magnon
gauge or canonical zero mode must exist on the edge so long as the
magnon Hamiltonian is of the form (62).

function Smα in place of a triangle constraint function S�α

and we would need to rethink the problem and be sure these
constraints really do define ground-state configurations (i.e.,
it could be that there are no spin configurations that satisfy all
the constraints). In these cases, it may be that ν < 0 for such
boundaries given that we found bond constraints negatively
contribute to ν so that ν does not demand any zero modes.
Hence, it may depend on the nature of the boundary conditions
as to whether zero modes are expected. However, there exist
boundary conditions where the topological index will demand
the existence of zero modes even in the absence of any spin
rotational symmetry breaking (as it does in systems with ν > 0
for periodic boundary conditions such as the nearest-neighbor
pyrochlore antiferromagnet).

The above results show that indeed we can extend the
supersymmetry of the linearized phonon problem to both
unfrustrated and frustrated magnons. In addition, we find that
the kagome family is an analog of “Maxwell lattices” [11].
It has ν = 0 for periodic boundary conditions and ν > 0 at
least for certain open boundary conditions. If we gap out all
modes, with supersymmetry allowed perturbations, we would
then have a magnetic analog of an isostatic lattice (a Maxwell
lattice with no zero modes).

IV. PHONON PHYSICS IN MAGNON SYSTEMS

Let us then turn to illuminating some of the physics that
is transported from the theory of phonons into the theory of
magnetism by our formal developments. Perhaps most striking
is the existence of a phase of magnetism which is on the verge
of magnetic collapse that we will here refer to as isostatic
magnetism. We can understand the existence of this phase
in simple terms as shown in Fig. 5. First consider the three
different mechanical structures, the square, the square with
one diagonal beam, and the square with two diagonal beams
and we see three different forms of rigidity: floppy, fragile, and
firm. The square is floppy because it has one zero mode. The
square with one diagonal brace is fragile because although it
is rigid, if you cut/break any of the braces, it becomes floppy.
The square with two diagonal braces is firm because it remains
rigid if you cut/break any one of the braces.

(b)

(e)(d)

(c)

(f)

(a)

FIG. 5. Comparison between mechanical stability of beams
connected by pins and magnetic stability in small systems. Beams
are colored blue, pins colored black, dashed blue lines represent
neighboring sites, and orange arrows represent spins. (a) A square
set of beams with one zero mode shown shown using orange beams.
(b) A square set of beams with one cross beam that eliminates the
zero mode. (c) A square set of beams with two cross beams that
enable a state of self-stress (with tensions shown via black arrows).
(d) Magnetic analog of (a) when imposing a vanishing total spin
constraint on the tetrahedron: here each pair of spins pointing in
opposite directions can be rotated independent of the other pair of
spins. (e) Magnetic analog of (b) when imposing vanishing total
spin on a triangle. This has no redundant constraints or zero modes
aside from global spin rotations. (f) Magnetic analog of (c) when
imposing vanishing total spin on each bond expected in unfrustrated
antiferromagnets. It supports several self-field modes including the
uniform magnetic field h applied to each neighboring spins as shown
with black arrows (equivalent to a uniform field on each spin).

Now, consider the three magnetic structures: four spins
on a square, three spins on a triangle, and four spins on
a tetrahedron in the figure. In the square case, we subject
the spins to Sma ≡ Sia + Sja = 0 for i, j nearest neighbor,
m ↔ ij indexes bonds, and a = x,y,z. In the triangle and
tetrahedron, we merely impose that the total spin of the object
is zero. The square is the analog of the firm mechanical
structure: after imposing Sia + Sja = 0 on three of its four
sides, the fourth side is redundant. Removing one bond would
not destroy the Néel order of its ground state. The triangle
is the example of the fragile mechanical structure. All three
constraints S1a + S2a + S3a = 0 that define its ground state
are needed to set the spins to be 120◦ apart (up to global spin
rotations). If we drop one of these three constraints, it gains a
zero mode. Finally, the tetrahedron is the example of the floppy
mechanical structure. We can choose S1a = −S2a and S3a =
−S4a independently and still S1a + S2a + S3a + S4a = 0. In
this light, the isostatic magnetic order that we can transport
from the theory of phonons is an order like the triangle case: if
we were to drop any one term in the Hamiltonian that imposes
a constraint on the ground state, there is no redundancy and
the system becomes floppy. Isostatic magnetism is fragile.

Remarkably, since we have already the other two cases,
“floppy” magnetism in the form of highly frustrated magnets
and “firm” magnetism for most other magnetic systems, it may
just be a matter of time to identify isostatic magnetism at least
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within some temperature range. One group of materials that
may contain this magnetism is the family of distorted kagome
antiferromagnets. An undistorted ideal kagome antiferromag-
net has ν = 0 but many zero modes. Adding distortions could
then lift the ground-state degeneracy without changing ν since
distortions do not change the topology of the lattice network.
Since distortioned kagome lattices are much more common
than ideal kagome lattices, there may already be a number of
such systems that are isostatic magnets.

Another physical phenomena we can transport from the
phonon theory is the existence of self-field modes that are
the analog of self-stress modes. The square with two diagonal
beams of Fig. 5 has such a self-stress mode because of its
redundancy of constraints. If one puts the diagonal beams
in tension T , then one can place the horizontal and vertical
beams in tension −T/

√
2 and no force will be exerted on the

pins at their vertices. Similarly, one can add a “bond magnetic
field” hma via a term in the Hamiltonian δH = −hmaSma and
there must exist hma such that no net field is experienced
by a spin to linear order in the displacements of the spins
from their ground states. We know actually that there are at
least Nsf = 6 of these from the topological index which here
is ν = 2Nc + NG − Nsf = 2Ns − 3Nb = 2×4 − 3×4 = −4.
Because we include spin rotation invariance, there are two
zero modes and so N0 − Nsf = −4 demands Nsf = −6. If m

labels bonds cyclically around the square, three of these six
modes span h1a = −h2a = h3a = −h4a . These produce δH =
0 nonlinearly (i.e., independent of setting Sma = Ama,iμxiμ).
Of the remaining three, one is the case h1z = h2z = h3z =
h4z ≡ hz assuming we choose a Néel ground state in the z

direction. This case produces

δH = hz

∑
m

Smz = 2hz

∑
i

Siz = 0 (66)

only after we linearize the spins Sia around their magnetic
ground state by setting Sma = Ama,iμxiμ. To nonlinear order
in the deviations of the spins from their ground state, this case
will produce a nonzero energy δH �= 0. The remaining two
self-field modes behave similarly. So, self-field modes exist
and extend our understanding of the theory of magnetism.

Actually, we can understand what an experimentalist could
achieve with a knowledge of self-field modes in analogy with
the self-stress modes. Self-stress modes have been studied at
least as far back as Eshelby’s paper [37] who emphasized
the engineering importance of self-stresses in an elastic
medium with inhomogeneities. More recently, they have been
understood as a means of selective mechanical failure of
metamaterials [38]. In a ν = 0 lattice with one self-stress mode
and one zero mode located in different regions, a load was
shown to cause mechanical failure exactly at the self-stress
mode bonds. Similarly, an applied field that corresponds to a
self-field mode should cause a spin flip. Indeed, in the case
above for the square with a field hmz = hz applied, we see
that the spins will flip due to the nonzero energy δH �= 0
caused by the nonlinearities. The other two self-field modes
not discussed in detail similarly cause a spin flip, just not all
spins flip in those cases. So, such self-field modes correspond
to spin-flip transitions and their identification in the constraint

matrix eigenvalue problem may enable the discovery of a
variety of such spin-flip transitions.

V. DISCUSSION

In this paper, we have recognized a supersymmetry in
the structure of Hamiltonians that energetically impose local
constraints on their ground states. This allowed us to formally
connect recent development in the theory of phonons to a
wider range of systems including frustrated and unfrustrated
magnets. The connection ultimately arose from the similar role
of the vanishing extension of springs em = 0 of phonon ground
states to the vanishing total spin on a bond in unfrustrated
magnets and vanishing total spin on a triangle, square,
tetrahedron, or other local simplex in frustrated magnetic
systems. It also highlights the role of Dirac’s constraint matrix
as a central pillar of these recent developments as well as
proves that a topological index exists in all these systems.
Let us end our discussion of these results with some final
comments.

Remarkably, this supersymmetry identifies Maxwell’s
counting of degrees of freedom D = N − K , where N is
the total number of degrees of freedom and K is the total
number of local constraints imposed by the Hamiltonian (i.e.,
possibly a redundant set), to the Witten index ν associated
with the supersymmetry. This Maxwell counting, though long
used for balls and springs and other mechanical structures, was
proposed by Moessner and Chalker as a means of characteriz-
ing highly frustrated antiferromagnets [21,35]. Here, we have
connected their work with the actual number of zero modes
through recognizing it as the topological index.

The use of analogs of Maxwell constraints in magnetism
and the associated topological index provides a simple picture
of the strength of magnetism in a system. To see this in practice,
consider the question of the origin of the industrial strength
of antiferromagnetism in IrMn3. This material magnetically
orders in a 120◦ coplanar state at 960 K [39], but is composed of
kagome planes with a dominant isotropic Heisenberg spin ex-
change [40] that would appear to frustrate the magnetism [41].
How then can the Maxwell-type constraints advanced by this
paper explain such industrial strength magnetism? The answer
lies in the many different kagome planes. They all interconnect
as shown in Fig. 6. Indeed, the lattice is better thought of as
side-sharing triangles in three dimensions instead of layers
of kagome planes. With eight triangles in the unit cell, the
dominant Heisenberg term in its Hamiltonian can be written

H = J

4

∑
�

(S�)2, (67)

where S� is the total spin on each triangle. We therefore have
a topological index ν = 2Ns − 3N� = (2 − 8)Ns (since there
are 8

3 triangles per spin). We can contrast this to say an unfrus-
trated antiferromagnet on the cubic lattice with three bonds in
the unit cell and ν = 2Ns − 3Nb = (2 − 9)Ns = −7Ns . But,
upon closer inspection, we should be careful with such a
comparison. In IrMn3, nearest-neighbor Heisenberg exchange
still has a subextensive number of zero modes because the
side-sharing triangles form corner-sharing octehedra. So, its
TN is likely lower than the unfrustrated antiferromagnet
with the same J . Nevertheless, this effect is subextensive
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FIG. 6. Graphical display of the IrMn3 lattice where dark blue
are the Mn atoms with magnetic moments and yellow atoms are
the Ir atoms without magnetic moments. One view of the lattice is
through the 111 planes for the blue magnetic atoms. They form a
kagome lattice. Another view is achieved by considering how each
triangle shares a side with another triangle in the octahedron. This
view suggests IrMn3 is composed of side-sharing triangles in three
dimensions and is therefore more similar to the triangular lattice
antiferromagnet than the kagome antiferromagnet.

so it is unlikely to be a big effect. Therefore, the energetic
constraints imposed by the dominant Heisenberg exchange in
IrMn3 appear to be nearly as redundant as an unfrustrated
antiferromagnet on a cubic lattice suggesting great industrial
strength even though it is composed of kagome planes.

But, not only firm magnetism may prove useful for practical
applications. Fragile isostatic magnetism may prove to be
easily manipulated for special design purposes. It may play a
role for magnetic systems similar to the role isostatic phonons
have played in the design of metamaterials. Due to the absence
of redundant constraints, isostatic lattices can have particular
weaknesses that can enable their manipulation. Perhaps even
metamaterial designs that exploit this could carry over to
magnetic materials. For example, one lattice was designed to
have selective mechanical failure in Ref. [38] where just a local
set of bonds associated with a state of self-stress broke down
under a load. The magnetic analog of this could correspond
to a material design with a selective spin flip of a local subset
of spins achieved with a global magnetic field. In this way,
isostatic magnetism could prove to have an important role in
the design of magnetic materials for applications.

But, isostatic magnetism may also extend our theoretical
understanding of magnetic materials. There is likely a separate
topological property not discussed in this paper. Since the
magninos are free fermions, and the ideal isostatic magnetism
state is a gapped state, it must fit into our categorization of topo-
logical band theory [29] much like the phoninos were shown
to have a topological band theory by Kane and Lubensky (al-
though they did not call them phoninos). It is the supersymme-
try established by this paper that enables physics that applies to
free fermions (including Majorana fermions) to also apply to
phonons and magnons. This is one of the benefits of generaliz-
ing Kane and Lubensky’s theory to a broader class of systems.

The results of this paper may also shed light on a long-
standing problem in the field of magnetism beyond band the-
ory: how to melt magnetic order. The connection established
by our formal developments shows explicitly that the loss of
rigidity in a solid [44,45], the jamming transition [42,46,47],

6.
(a)

(b)

(c)
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Granular line
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X

Frictionless point
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X = 0

FIG. 7. Similarities between the jamming transition and the loss
of magnetic order by either quantum effects or classical frustration.
(a) The jamming phase diagram taken from Ref. [42] with allowed
jammed states for a given average coordination number Z and
given packing fraction φ. Here, the isostatic point highlighted by
the green dot at the top right occurs for frictionless grains. (b) The
phase diagram for quantum disordering a frustrated antiferromagnet
obtained in a semiclassical field theory [43]. The x axis is a
dimensionless temperature and the y axis a coupling measuring the
strength of quantum fluctuations. (c) Classical phase diagram of the
loss of magnetic order based on the results of this paper. Here again
the green dot represents the isostatic point. Notice in all three cases,
a special point exists in the phase diagram that sheds light on the
rest of the phase diagram. It would be interesting to understand the
relationship between these three points.

and the loss of magnetic order due to frustration [21,35,48]
may all be different aspects of the same problem (see Fig. 7).
Each of these systems are built around constraints, have a
topological index ν, and have isostatic order with ν = 0 that we
curiously identify here with spontaneous SUSY breaking. So
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from this perspective, isostatic magnetism is at a critical point
between magnetic order and a classical spin liquid. It would
be interesting to understand how this critical point is related
to the quantum melting of antiferromagnetic order through a
quantum critical point [43,49], particularly given theories of
this quantum phase transition that are semiclassical in nature.

So, the discovery of an isostatic magnetic material (possibly
in the family of distorted kagome antiferromagnets) could
provide the following:

(i) practical use in the design of magnetic materials via the
topological index, zero modes, and self-field modes;

(ii) an application of topological band theory of fermions
to magnons;

(iii) insight into the mechanism of quantum spin liquids
and other exotic phases of magnetism.

Remarkably, all of this was achieved through the use of su-
persymmetry in condensed matter physics to draw formal con-
nections between two seemingly different physical problems.
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