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Thermal conductance by Dirac fermions in a normal-insulator-superconductor junction of silicene
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We theoretically study the properties of thermal conductance in a normal-insulator-superconductor junction of
silicene for both thin and thick barrier limit. We show that while thermal conductance displays the conventional
exponential dependence on temperature, it manifests a nontrivial oscillatory dependence on the strength of
the barrier region. The tunability of the thermal conductance by an external electric field is also investigated.
Moreover, we explore the effect of doping concentration on thermal conductance. In the thin barrier limit, the
period of oscillations of the thermal conductance as a function of the barrier strength comes out be π/2 when
doping concentration in the normal silicene region is small. On the other hand, the period gradually converts
to π with the enhancement of the doping concentration. Such change of periodicity of the thermal response
with doping can be a possible probe to identify the crossover from specular to retro Andreev reflection in Dirac
materials. In the thick barrier limit, thermal conductance exhibits oscillatory behavior as a function of barrier
thickness d and barrier height V0 while the period of oscillation becomes V0 dependent. However, amplitude
of the oscillations, unlike in tunneling conductance, gradually decays with the increase of barrier thickness for
arbitrary height V0 in the highly doped regime. We discuss experimental relevance of our results.
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I. INTRODUCTION

With the discovery of graphene [1,2] and topological
insulator [3,4], the study of Dirac fermions in condensed matter
systems has become one of the most active fields of research
over the past decade. The low energy band spectrum of these
materials exhibits massless Dirac equation. Hence relativistic
electronic band structure leads to upsurge research interest in
terms of possible application as well as fundamental physics
point of view.

In recent years, a silicon analog of graphene, silicene
[5–8] consisting of a monolayer honeycomb structure of
silicon atoms, has attracted an immense amount of research in-
terest both theoretically [5,7] and experimentally [9–12]. This
two-dimensional (2D) material has been grown experimentally
by successful deposition of silicene sheet on silver substrate
[9–11]. Also the interest in silicene soared due to the possibility
of its various future applications ranging from spintronics
[13–17] and valleytronics [18–22] to silicon based transis-
tor [23] at room temperature.

Very recently, it has been reported that low energy exci-
tations in silicene follow relativistic Dirac equation akin to
graphene [7,24]. In fact, silicene shares almost all remarkable
properties with graphene viz. hexagonal honeycomb structure,
Dirac cones, etc. However, due to large ionic radius of silicon
atom, contrary to graphene, silicene does not possess a planar
structure; rather it has a periodically buckled structure. Not
only that, silicene has spin-orbit coupling (∼1.55 meV) [5],
which is significantly large compared to graphene. Conse-
quently, a band gap appears at the Dirac points K and K′
resulting in Dirac fermions being massive. Due to the buckled
structure the two sublattices in silicene respond differently to
an externally applied electric field which can tune the band
gap at the Dirac points [24–26]. Such tunability opens up
the possibility to undergo a topological phase transition from
topologically nontrivial state to a trivial state depending on
whether the applied electric field is less or more than the

critical value at which the band gap closes. Thus a rich variety
of topological phases can be realized in silicene [18,27–30]
under suitable circumstances.

Proximity effect in Dirac materials has attracted a great
deal of attention in recent times [3,31]. Very recently, super-
conducting proximity effect in silicene has been investigated
in Ref. [32] in which the authors have theoretically studied the
behavior of electrical conductance in a normal-superconductor
(NS) junction of silicene. Up to now, no experiment has been
carried out in the context of proximity effect in silicene.
On the other hand, heat transport in Dirac systems [33,34]
and superconducting hybrid structures also has become an
active field of research over the past decade [35–37]. Thermal
conductance (TC) has been investigated in graphene based
hybrid junctions in Refs. [38–41] where, due to low-energy
relativistic nature of Dirac fermions in graphene, TC exhibits
oscillatory behavior with respect to the barrier strength.
Such oscillatory behavior of TC is in sharp contrast to that
of the conventional NS junction [42,43] where TC decays
with the barrier strength. However, study of TC in silicene
based normal-insulator-superconductor (NIS) junction is still
unexplored to the best of our knowledge. The extra tunability
of the band gap by an external electric field also allows one to
control the TC by the same. Also, TC in silicene NIS junction
for both thin and thick (arbitrary barrier thickness) insulating
barrier limit with different doping concentrations is worth to
explore.

Motivated by the above mentioned facts, in this article we
study TC in silicene NIS junction for both thin and thick
insulating barrier as well as with various doping concentration
in the normal silicene regime. In our analysis, we consider only
the electronic part of the TC and neglect the phonon contribu-
tion at low temperature. We find that TC has an exponential
dependence on temperature which is due to the s-wave symme-
try of the superconductor. As the thermal transport is carried
by the low-energy Dirac fermions like graphene, TC is shown
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to be oscillatory as a function of barrier strength. In moderate
doped regime, where chemical potential is of the same order
of band gap at the Dirac points, TC shows a nontrivial nature
due to interplay of chemical potenial, gap, and temperature.
TC is also controllable by the external electric field applied
perpendicular to the silicene sheet. The period of oscillations
of TC as a function of barrier strength depend on the doping
concentration. In the thin barrier limit, the period changes from
π/2 to π as we go across from undoped to highly doped regime.
In the thick barrier limit, oscillations persist in TC as a function
of barrier thickness and barrier height but the period and am-
plitude of oscillations become functions of the barrier height.
More strikingly, amplitude of oscillations of TC diminishes
after a certain barrier thickness and height in the highly doped
regime which is in contrast to the tunneling conductance [44].

The remainder of the paper is organized as follows. In
Sec. II, we describe our model and method. Section III is
devoted to the thin barrier regime where results are presented
for three different doping concentrations. Results for the thick
barrier limit are shown in Sec. IV. Finally, we summarize and
conclude in Sec. V.

II. MODEL AND METHOD

We consider a monolayer of silicene consisting of two
sublattices A and B. Two sublattice planes are separated by
a distance 2l due to the buckled structure. When an electric
field is applied perpendicular to the silicene sheet, a staggered
potential is generated between the two sublattices A and B.
In general tight-binding Hamiltonian for this system is given
by [5,24]

H = −t
∑
〈i,j〉α

ĉ
†
iα ĉjα + i

λSO

3
√

3

∑
〈〈i,j〉〉αβ

νij ĉ
†
iασ z

αβ ĉjβ

− i
2

3
λR

∑
〈〈i,j〉〉αβ

μij ĉ
†
iα(�σ × d̂ij )

z

αβ
ĉjβ

+ el
∑
iα

ζiE
i
zĉ

†
iα ĉiα − μ

∑
iα

ĉ
†
iα ĉiα. (1)

The operator ĉ
†
iα creates an electron at site i with spin

ploarization α while the operator ĉiα annihilates it. The first
term describes the nearest-neighbor hopping of amplitude t on
honeycomb lattice, where 〈i,j 〉 denotes the nearest-neighbor
sites. The second term is for the effective spin-orbit coupling
(SOC) with λSO ∼ 4 meV [24], where �σ = (σx,σ y,σ z) is
the Pauli spin matrices and νij = ( �di × �dj )/|( �di × �dj )|. Here
�di and �dj are two nearest bonds between the next nearest
neighbors. The sum 〈〈i,j 〉〉 is over the next nearest-neighboring
sites. The third term is the Rashba SOC of amplitude λR ,
where μij = ±1 for the A(B) site. The fourth term represents
the staggered sublattice potential, where ζi = ±1 for the A(B)
sites. We consider λR = 0 throughout our analysis. The low
energy Hamiltonian of silicene can be obtained from Eq. (1)
near the Dirac points kη,η = ±1 as [24]

Hη = �vf (ηkxτ̂ x − kyτ̂ y) + (elEz − ησλSO)τ̂ z − μ1̂. (2)

where vf is the Fermi velocity of the electrons, μ is the
chemical potential, and Ez is the external electric field. η = ±1

FIG. 1. Schematic sketch of our silicene NIS setup. Silicene
sheet with hexagonal lattice structure is deposited on a substrate
(orange, light gray). Here N indicates the normal region; I denotes the
insulating barrier region of width d (gray). A bulk superconducting
material denoted by S (light gray) is placed in close proximity to the
silicene sheet to induce superconductivity in it. A gate (blue, light
gray) is connected to the silicene sheet to tune the chemical potential
(doping) in the normal region. The magenta (light gray) line indicates
the direction of the heat transport in response to a temperature gradient
δT between the normal and the superconducting side.

corresponds to the K and K′ valley. In Eq. (2), σ is the spin
index and τ̂ correspond to the Pauli matrices in the sublattice
space and 1̂ is the 2 × 2 identity operator.

In this work we consider a normal-insulator-superconductor
(NIS) setup of silicene in x − y plane as depicted in Fig. 1 with
normal region (N) being in x � −d. The insulating region
(I) with width d has −d � x � 0 while the superconducting
region (S) occupies x � 0 for all y. The insulating region has
a barrier potential which can be implemented by an external
gate voltage. Also the chemical potential can be tuned by
a gate voltage connected to the silicene sheet (see Fig. 1).
Superconductivity in silicene is induced via the proximity
effect of a bulk s-wave superconductor placed close to the
silicene sheet in the region x � 0.

Silicene NIS junction can be described by the Dirac
Bogoliubov–de Gennes (DBdG) equation of the form [32][

Ĥη �1̂

�†1̂ −Ĥη

]

 = E
, (3)

where E is the excitation energy, � is the proximity induced
superconducting pairing gap, and Hη is given by Eq. (2). The
schematic band diagram of the silicene NIS setup is shown in
Fig. 2. In silicene, the pairing occurs between η = 1, σ = 1
and η = −1, σ = −1 as well as η = 1, σ = −1 and η = −1,

σ = 1 for an s-wave superconductor.
Solving Eq. (3) we find the wave functions in three different

regions. The wave functions for the electrons and holes moving
in ±x direction in normal silicene region reads

ψe
N

± = 1

A

⎡
⎢⎢⎢⎢⎣

±ηke
1e

± i ηαe

τ e
1

1

0

0

⎤
⎥⎥⎥⎥⎦ exp

[
i
(±ke

1x
x + ke

1y
y
)]

,

ψh
N

± = 1

B

⎡
⎢⎢⎢⎢⎣

0

0
∓ηkh

1 e± i ηαh

τ h
1

1

⎤
⎥⎥⎥⎥⎦ exp

[
i
(±kh

1x
x + kh

1y
y
)]

, (4)
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FIG. 2. Schematic band diagram of our silicene NIS geometry.
While in the normal (N) silicene and superconducting (S) silicene
region both K and K′ valleys are depicted, in the insulating (I)
barrier region only K valley is shown for simplicity. Blue solid line
indicates conduction band while valence bands are represented by the
red dashed lines. Dot-dashed line and dot-dot-dashed line represent
μN = 0 and μN = 100�, respectively.

where the normalization factors are given by A =
√

2(E+μN )
τ e

1
,

B =
√

2(E−μN )
τh

1
, and

k
e(h)
1 =

√(
k

e(h)
1x

)2 + (
k

e(h)
1y

)2
, (5)

k
e(h)
1x

=
√

(E±μN )2 − (elEz − ησλSO)2 − (
k

e(h)
1y

)2
, (6)

τ
e(h)
1 = E±μN∓(elEz − ησλSO). (7)

Here μN is the chemical potential in the normal silicene region.
Due to translational invariance in the y direction, corre-

sponding momentum k
e(h)
1y

is conserved. The angle of incidence
αe and the Andreev reflection (AR) angle αh are related via
the relation

kh
1 sin(αh) = ke

1 sin(αe). (8)

For the rest of the paper, we have denoted the band gap
(elEz − λSO)/� at K valley by λ and the gap (elEz + λSO)/�
at K′ valley by λ′. In the insulating region wave functions can
be found from normal region wave functions [Eq. (4)] by
replacing μN → μN − V0.

In the superconducting region the wave functions of DBdG
quasiparticles are given by

ψe
S = 1√

2

⎡
⎢⎢⎢⎣

u1

ηu1e
iηθe

u2

ηu2e
iηθe

⎤
⎥⎥⎥⎦ exp

[
(iμS − κ)x + iqe

yy
]
,

ψh
S = 1√

2

⎡
⎢⎢⎢⎣

u2

−ηu2e
−i ηθh

u1

−ηu1e
−i ηθe

⎤
⎥⎥⎥⎦ exp

[
(−iμS − κ)x + iqh

y y
]
. (9)

Here, u1(2) = [ 1
2 ±

√
E2−�2

2E
]

1
2 and κ = √

�2 − E2. The
transmission angles for electronlike and holelike quasiparticles

are given by

qα sin θα = ke
1 sin αe (10)

for α = e,h. The quasiparticle momentums can be written as

qe(h) = μS ±
√

E2 − �2, (11)

where μS = μN + U0 and U0 is the gate potential applied
in the superconducting region to tune the Fermi surface
mismatch. The requirement for the mean-field treatment of
superconductivity is that μS 
 � [31,45].

We consider electrons with energy E incident at the inter-
face of our NIS junction of a silicene sheet. Considering both
normal reflection and Andreev reflection from the interface,
we can write the wave functions in three different regions of
the junction as


N = ψe
N

+ + rψe
N

− + rAψh
N

−,


I = pψe
I
+ + qψe

I
− + mψh

I
+ + nψh

I
−, (12)


S = t eψ
e
S + thψ

h
S ,

where r and rA are the amplitudes of normal reflection and
Andreev reflection in the N region, respectively. t e and th
denote the amplitudes of transmitted electronlike and holelike
quasiparticles in the S region. Using boundary conditions at
the two interfaces, we can write


N |x=−d = 
I |x=−d , 
I |x=0 = 
S |x=0. (13)

From these equations we can find the reflection and AR
amplitudes r and rA, required for evaluating the electronic
contribution of TC. For the NIS junction, normalized thermal
conductance κ is given by [38,46]

κ =
∫ ∞

0

∫ π
2

− π
2

dE dαe

[
1 − Re − Rh

cos(αh)

cos(αe)

]

× cos(αe)

[
E2

4T 2 cosh2
(

E
2T

)]
. (14)

Here, Re and Rh are reflection and AR probability,
respectively. From current conservation, we obtain [32]

Re = |r|2,

Rh = kh
1x

ke
1x

[
2(E + μN )(E − μN − λ)∣∣ηkh
1x

− ike
1y

∣∣2 + (E − μN − λ)2

]
|rA|2. (15)

III. THIN BARRIER

In this section, we present our numerical results based on
Eq. (14) for the thin barrier limit. In this particular limit of
insulating barrier, we consider d → 0 and V0 → ∞, such
that ke

I d,kh
I d → χ where ke

I ,k
h
I are the electron and hole

momentum inside the insulating barrier, respectively. χ is
defined as the barrier strength of the insulating region. Such
limit has been considered before in Ref. [47] for the analysis
of tunneling conductance in graphene.

We take U0 to be very large compared to the superconduct-
ing pairing potential �. For simplicity, we consider θe = 0 and
θh = 0 in Eq. (10) and Eq. (11). Due to significant chemical
potential imbalance between the normal and superconducting
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sides, there is a large mismatch of Fermi wavelengths in these
two sides resulting in interesting behavior in TC.

Before proceeding to present our numerical results, here we
illustrate whether both valleys contribute to TC at all doping
conentrations or not. For silicene, the band gap at K′ valley
satisfies λ′ 
 μN/� for the undoped and moderately doped
regime. Consequently, K′ valley does not contribute to TC
in these two regimes. Nevertheless, in highly doped regime,
μN ∼ 100� which is much larger than both the band gaps λ

and λ′ at K and K′ valley, respectively (see Fig. 2). Hence
we consider contribution for both the valleys while calculating
TC for the highly doped regime. Therefore, we can write κ =
κK + κK′ in this case. On the other hand, κ = κK for the
undoped and moderately doped case.

A. Undoped regime (μN = 0)

In this subsection we present our results when the normal
region of the silicene sheet is undoped, i.e., μN = 0. In
Figs. 3(a)–3(d) we show the behavior of TC as a function
of T/Tc for λ ranging from 0 to 0.8. In silicene λ can
be tuned by just the external electric field Ez. We choose
various barrier strengths. Here, Tc is the transition temperature
of the superconducting silicene. The exponential fall of TC
(κ) when the temperature is below the transition temperature
Tc results because of spherical symmetry of the s-wave
superconductor [38]. This behavior is similar to that of
conventional normal metal–superconductor junction [43]. As
we increase λ by suitably adjusting the perpendicular electric
field Ez, TC decreases monotonically. As, λ i.e., the band
gap increases, the available propagating states through which
thermal transport takes place reduces and as a consequence
TC decreases monotonically with λ. However, as carriers with
all energies contribute to the thermal transport, quantitative
value of κ is hardly affected by change of band gap at
Dirac points which is less than the induced superconducting
gap in magnitude. This we can see from the formula of κ

[see Eq. (14)].
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FIG. 3. Thermal conductance is shown as a function of temper-
ature T/TC with U = 100� and λ ranging from 0 to 0.8 for the
undoped regime (μN = 0).
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=0.9

(a) (b)

(c)
(d)

FIG. 4. Thermal conductance is depicted as a function of the
barrier strength χ with U = 100� and λ ranging from 0 to 0.8 for
the undoped regime (μN = 0). Blue (solid), magenta (dotted), green
(dashed), red (dash-dotted), and orange (dash-dot-dotted) curves
indicate λ values 0.0, 0.2, 0.4, 0.6, and 0.8, respectively.

In Figs. 4(a)–4(d) we demonstrate the bahavior of TC
with respect to the barrier strength χ . We choose different
temperatures below the transition temperature Tc. TC exhibits a
periodic behavior with periodicity π/2 as shown in Fig. 4. Such
periodic behavior of TC is entirely different from conventional
NS junction where TC always decays with the barrier strength.
This periodic behavior is also the manifestation of Dirac
fermions in silicene. When temperature T is very small
compared to Tc, the quantitative value of κ is vanishingly
small which can also be seen from Fig. 3 focusing at small
T/Tc region. Also, the π/2 periodicity of TC is independent
of T/Tc value. Moreover, for the μN = 0 regime, the major
contribution in TC originates from the specular Andreev
reflection (SAR) [45] process due to the pecularity of 2D Dirac
systems. The effect of λ is more prominent near the transition
temperature Tc because superconducting gap decreases as
T → Tc resulting in the band gap in the normal region to
overcome the superconducting pairing gap. As a result normal
reflection probability enhances resulting in reduction in κ .
Note that the maxima of the peaks of κ for different λ are
the same for T = 0.15Tc, which is unique behavior at very
low temperature (T � Tc). On the contrary, peak heights of
κ get reduced due to the evanescent modes as long as T

approaches Tc.
The oscillatory behavior of the TC can be explained as

follows. Nonrelativistic free electrons with energy E incident
on a potential barrier with height V0 are described by an
exponentially decaying (nonoscillatory) wave function inside
the barrier region if E < V0, since the dispersion relation is
k ∼ √

E − V0. On the contrary, relativistic free electrons
satisfy a dispersion k ∼ (E − V0) consequently corresponding
wave functions do not decay inside the barrier region [48]. In-
stead, the transmittance of the junction displays an oscillatory
behavior as a function of the strength of the barrier. Hence
the undamped oscillatory behavior of TC at T < Tc is a direct
manifestation of the relativistic low-energy Dirac fermions in
silicene.
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FIG. 5. Thermal conductance is shown as a function of tempera-
ture T/TC with U = 100� and λ ranging from 0 to 0.8 for moderate
doping (μN = 0.5�).

B. Moderately doped regime (μN �= 0)

In this subsection, we present our results for the moderate
doping case where chemical potential in the normal part of the
silicene sheet is 0.5�. This regime is qualitatively different
from the undoped one because the doping concentration has
now almost the same order of magnitude with λ. So it is
interesting to analyze whether nontrivial behavior of TC
emerges due to the interplay between doping and band gap at
the two valleys. In Figs. 5(a)–5(d), TC is shown as a function
of temperature with different λ and for various barrier strength
χ . The striking difference from the undoped case is that κ

does not show monotonic behavior with λ. When T � Tc, κ

decreases with increasing λ value by Ez from 0 to 0.4. Then κ

further increases as λ crosses μN value. At temperaure close
to Tc, κ decreases monotonically with increasing λ similar to
the undoped case. Note that κ decreases in the T � Tc regime
due to the evanescent modes present between the energy range
|μN − λ| to |μN + λ|. Then κ start increasing in the subgapped
regime when μN ∼ λ resulting in the nonmonotonic behavior.
As long as T → Tc it again decreases due to the silicene band
gap like the μN = 0 case.

Transition from nonmonotonic to monotonic behavior
of TC takes place at T ∼ 0.6Tc independent of χ value.
This nonmonotonic characteristic is more promiment in
Figs. 6(a)–6(b) where oscillatory nature of κ with barrier
strength is presented for different values of T/Tc. For a fixed
T/Tc, such nonmonotonic characteristics of κ can be tuned by
the external electric field Ez which is unique in silicene. Here
also the periodicity of oscillations remains π/2 independent of
temperature and contribution in κ originates from both SAR
and retro AR.

C. Highly doped regime (μN ∼ 100�)

Here in this subsection we present the features of TC while
normal portion of silicene is highly doped (μN ∼ 100�). In
this case the mean-field condition μN + U 
 � [45] can be
satisfied by assuming U � � or taking U 
 � as before.
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FIG. 6. We show the thermal conductance as a function of the
barrier strength χ with U = 100� and λ ranging from 0 to 0.8 for
moderate doping (μN = 0.5�). Specification of λ is the same as
in Fig. 4.

The former one does not exhibit any Fermi surface mismatch
between the normal and superconducting regions. On the other
hand, the latter one contributes to large density mismatch
between the two sides. We have numerically calculated κ

for U = 0 � μN , U = 100� 
 μN , and U = 10000� 

μN regime. The corresponding results are presented in
Figs. 7 and 8. Here also, similar to the undoped and moderately
doped regime, κ has exponential dependence on temperature
which is a universal feature in thermal transport. The only
difference from the previous two cases lies in the fact that we
consider the separate contribution of both the valleys K and
K′ when μN 
 � (see Fig. 2).

From analytical expressions of the superconducting wave
functions [see Eqs. (10) and (11)], we notice that the change
in wave functions due to the variation of λ and λ′ is negligible
because μN ∼ 100� 
 λ,λ′. Hence, in this regime, κ comes
out to be independent of the applied electric field Ez which is
depicted in Fig. 7. The corresponding behavior is independent
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FIG. 7. Thermal conductance is shown as a function of temper-
ature T/TC with λ ranging from 0 to 0.8 and λ′ ranging from 40 to
40.8 for the highly doped (μN ∼ 100�) regime.
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FIG. 8. Thermal conductance is shown as a function of the barrier
strength χ with λ ranging from 0 to 0.8 for high doping (μN ∼
100�) condition. Specification for λ′ remains the same as mentioned
in Fig. 7.

of U also. Nevertheless, the quantitative value of κ is enhanced
by a factor of 2 compared to the previous two cases due to the
contribution coming from both the valleys.

The oscillatory behavior of TC with respect to the barrier
strength χ persists in the highly doped regime as well [see
Figs. 8(a)–8(d)]. However, now the periodicity changes with
the U value. As long as U 
 μN , period remains π/2 but
it increases gradually to π as U decreases towards U � μN .
Both for U = 0 and U = 100�, periodicity of κ remains the
same at π but the spread of the curve decreases as U decreases
as depicted in Figs. 8(a) and 8(c). This change of behavior with
variation of U can be qualitatively understood from Fermi
surface mismatch between the normal and superconducting
sides. For large Fermi wavelengths mismatch between the
normal and superconducting regions, period of oscillations
remains π/2 which is similar to the undoped and moderately
doped regimes. However, as the Fermi wavelengths mismatch
becomes vanishingly small in the highly doped regime,
periodicity of oscillation converts to π . Here also, λ as well
as λ′ have negligible effect on the thermal transport as μN is
the dominant energy scale in this particular regime. Similar
periodicity of π in the behavior of tunneling conductance in
graphene for the highly doped regime was reported earlier
in Ref. [47].

Note that, for the highly doped regime, major contribution
in κ originates from the retro AR in contrast to SAR in the
undoped regime. Also the periodicity of κ changes from π/2
to π as long as U � μN . Such change of periodicity with
doping, in the behavior of thermal conductance in the thin
barrier limit, can be an indirect way to identify the crossover
from SAR to retro AR in Dirac materials, although it is not
apparent to compute separately the individual contribution
of retro AR and SAR to κ when μN �= 0. This is because
within our scattering matrix formalism we have to average
over all values of energy [see Eq. (14)]. Hence the change of
periodicity of κ from π/2 to π may not be a strong justification
(smoking gun signal) for the crossover phenomenon from
SAR to retro AR as the periodicity again can change from

π to π/2 due to Fermi wavelengths mismatch between the nor-
mal and superconducting regions even if μN ∼ 100�, where
the major contribution to κ arises from retro AR [see Fig. 8(b)].
However, to observe the latter change, one has to enhance the
doping concentration in the superconducting side also.

IV. THICK BARRIER

In this section we examine TC in the thick barrier limit
where we consider a barrier of width d and height V0. The
height of the barrier can be tuned by applying an additional
gate voltage in the insulating region [44]. We emphasize on
the role being played by the barrier height V0 as well as
thickness d. We show κ manifests osscillatory behavior with
respect to both d and V0. However, the period of oscillation is
no longer universal as in the thin barrier limit but beocmes
a function of applied voltage V0 and width d. A similar
feature is found earlier in graphene NIS junction [44], where
tunneling conductance is shown to have oscillation whose
period depends on V0.

Note that, in the thick barrier limit, extended BTK for-
malism [49] is valid for our model of NIS junction if d � ξ

where ξ = �vF /π�, which is the phase coherence length
in the superconducting side. Fermi wavelength is given by
λF = 2π/kF where kF = μN/�vF is the Fermi wave vector.
So λF and ξ are related by λF = 2π2�ξ/μN . We notice that
undoped regime is not valid in the thick barrier limit because
Fermi wavelength diverges in that regime. In the moderately
doped regime, choosing μN = 0.5� as before, we obtain
d/λF � 1/4π2 ∼ 0.025.

A. Moderately doped regime (μN �= 0)

When the doping concentration is moderate (μN = 0.5�)
in the normal silicene regime, TC exhibits similar features as
in the thin barrier limit. Here we illustrate the behavior of TC
as a function of barrier height V0 and thickness d in Figs. 9
and 10 for λ = 0.3 and λ = 0.7, respectively. We note the
following features. (i) When d → 0, TC is unaffected by the
barrier height V0. This is true for arbitrary band gap λ as we
can see from Figs. 9 and 10. Nonetheless, V0 affects TC as d

2.090

2.100

2.110

2.120

FIG. 9. Plot of thermal conductance as a function of the bar-
rier height V0 and barrier thickness d for T/Tc = 0.8, λ = 0.3,

U = 100�, and μN = 0.5�.
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2.060

2.070

2.080

2.090

FIG. 10. Thermal conductance is shown as a function of the
barrier height V0 and barrier thickness d . Here λ = 0.7 and the value
of the other parameters are chosen to be the same as in Fig. 10.

increases. Qualitatively we understand that as U is chosen to be
large, ∼100�, small barrier height V0 has negligible effect on
TC. (ii) As barrier height dominates U , TC exhibits oscillatory
behavior as a function of d and such oscillation persists even
for very large values of V0. Similarly, oscillation is present
as V0 changes even for d ∼ 0.025λF . However, the period of
oscillation does not show any universal periodicity of π/2 like
in the thin barrier case. The period of oscillation of κ depends
on both d and V0. Similar feature was found earlier in the case
of tunneling conductance in graphene NIS junction [44]. (iii)
The external electric field Ez does not change the qualitative
behavior of κ as shown in Figs. 9 and 10, although it changes
the quantitative value of κ . As λ increases by tuning Ez, TC
reduces monotonically with both d and V0 similar to the thin
barrier case when T/Tc = 0.8.

B. Highly doped regime (μN ∼ 100)

Here, we present the behavior of TC as a function of d

and V0 with high doping concentration where μN ∼ 100�.
We choose U = 0 only. Hence there is no Fermi wavelength
mismatch between the normal and superconducting side of the
silicene sheet. Thus the effect of applied gate voltage V0 across
the insulating region can be investigated prominently in this
regime due to U = 0. Also, as we have already pointed out in
thin barrier limit that λ and λ′ has negligible effect on κ when
μN/� 
 λ,λ′; hence we consider λ = 0 and λ′ = 40.

Figure 11 represents TC as a function of d and V0 for λ = 0
and T/Tc = 0.8. We choose V0 value to be much larger than
μN in order to investigate the effect of applied gate voltage
or barrier height on TC. We note that κ exhibits oscillation
with respect to V0 even for very small barrier thickness d. The
period of these oscillations is entirely dependent on V0. As
mentioned earlier, such oscillations of κ at very small d do not
appear at moderate doping concentration unless and until V0

exceeds U . Note that the enhancement in the quantitative value
of κ compared to the previous case arises due to both K and
K′ valley contribution. Also in the highly doped regime, the
amplitudes of oscillations of κ decay after a certain value of
barrier thickness (d ∼ 0.4λF ) for arbitrary barrier height V0.

3.0

3.5

4.0

4.5

5.0

FIG. 11. Thermal conductance is depicted as a function of
barrier height V0 and thickness d with λ = 0, λ′ = 40, U = 0,
and T/Tc = 0.8 for the highly doped (μN ∼ 100�) regime.

This can be understood from the Fermi wavelength mismatch
between the barrier and the normal silicene region for high
value of d and V0. This feature of TC is in sharp contrast to
the tunneling conductance in graphene which is oscillatory for
arbitrary d and V0 [44].

V. SUMMARY AND CONCLUSIONS

To summarize, in this article, we investigate thermal
conductance κ by Dirac fermions in silicene NIS junction
where superconductivity is induced in silciene sheet through
the proximity effect. We study the behavior of TC in this
setup both for thin and thick insulating barrier limit. We show
that TC exhibits π/2 periodic oscillation with respect to the
barrier strength in thin barrier limit for undoped (μN = 0)
and moderately doped (0 < μN � �) regime where the Fermi
surface mismatch between the normal and superconducting
sides is significant. The oscillation becomes π periodic as a
function of barrier strength in the highly doped (μN 
 �)
regime where Fermi surfaces in the two sides are almost
aligned. This change of periodicity (π/2 to π ) in thermal
response with the variation of doping concentration can be
an indirect probe to identify the crossover from SAR to
retro AR. Nonetheless, TC shows conventional exponential
dependence on temperature independent of doping concen-
tration and barrier characteristics. The external electric field
reduces TC monotonically in the undoped regime. However,
a nontrivial interplay between band gap at Dirac points and
doping concentration appears in the moderately doped case.
Consequently, electric field can tune TC in the later regime.
On the other hand, electric field has negligible effect on TC
when μN/� 
 λ.

In the thick barrier limit, oscillation of TC persists both as
a function of barrier thickness d as well as barrier height V0.
The latter can be tuned by an additional gate voltage applied at
the insulating region. However, we show that the periodicity of
TC no longer remains constant, but rather becomes functions
of both d and V0. Also after a certain barrier thickness
(d ∼ 0.4λF ), amplitude of oscillations in TC decays for
arbitrary V0 in the highly doped regime.
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In our analysis, we consider only the electronic contribution
in TC and neglect the phonon contribution at small tempera-
tures (T < Tc). Very recently, nanoscale control of phonon
excitation in graphene has been reported [50]. Hence such
nanoscale control of phonon excitation in silicene and the
effect of electron-phonon interaction on TC will be presented
elsewhere.

As far as experimental realization of our silicene NIS setup
is concerned, superconductivity in silicene can be induced by
an s-wave superconductor like Al [51,52]. In recent years,
proximity induced superconductivity has been observed in
other 2D materials such as graphene [51–53] and transition
metal dichalcogenides [54]. Once such superconducting prox-
imity effect is realized in silicene, fabrication of silicene NIS
junction can be feasible. Typical spin-orbit energy in silicene is
λSO ∼ 4 meV, while the buckling parameter l ≈ 0.23 Å [5,7].
Considering Ref. [51], typical induced superconducting gap in
silicene would be ∼0.2 meV. For such induced gap, choosing
μN ∼ 100� ∼ 20 meV, we obtain λF ∼ 130 nm. Hence a
barrier of thickness ∼10–15 nm may be considered as a thin
barrier and the gate voltage V0 ∼ 500 meV can therefore meet
the demands of our silicene NIS setup. For the thick barrier
limit, thickness can be varied arbitrarily (satisfying d � λF ∼
100 nm), with the gate voltage V0 ∼ 100–200 meV.

However, the effects of external electric field might not
be visible in the above regime as envisaged by our theoretical
calculation. To realize nontrivial effects due to the electric field
on TC, chemical potential in the normal silicene region can
be μN ∼ 80–120 μeV and the external electric field Ez can
be within the range Ez ∼ 170–180 eV/μm. In this moderately
doped regime (0 < μN � �), the criterion for d and V0 can
be similar to the highly doped regime as mentioned before.

Note that, in our analysis, we have considered a bulk
silicene material following Ref. [32]. The bulk-boundary
correspondence has not been taken into account within
our scattering matrix formalism. So, we cannot distinguish
between the topological phase or the band insulating phase
within our formalism even if we tune the electric field Ez in
our calculation. Hence, in our analysis, the contribution in the
thermal conductance is arising from the bulk states only.

We expect our results to be analogous to the recently
discovered 2D materials like germenene and stanene [55,56],
although the effect of Rashba SOC λR in these materials can
be more important than silicene [5,7]. For silicene, λR is small
compared to λSO [24]. The low energy spectrum of silicene is
independent of λR only at the Dirac point [24]. Inclusion of
small λR breaks the spin symmetry and spin is no longer a good
quantum number. Qualitatively, from a scattering point of view,
presence of small λR introduces spin flip scattering processes
from the normal-superconductor (NS) interface. Apart from
spin conserving reflection and AR processes, the reflection and
AR processes with spin flip also contribute to κ . Nevertheless,
as λR is small, the amplitudes of those additional scattering
processes will also be small. Hence, after averaging over all the
energy values while computing κ , the contribution arising from
these two extra scattering processes on the resulting thermal
conductance will be vanishingly small. Thus the qualitative
feature of κ as a function of T/Tc or χ will remain similar
even when one takes small λR into account.
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