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Interedge backscattering in buried split-gate-defined graphene quantum point contacts
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Quantum Hall effects offer a formidable playground for the investigation of quantum transport phenomena.
Edge modes can be deflected, branched, and mixed by designing a suitable potential landscape in a two-
dimensional conducting system subject to a strong magnetic field. In the present work, we demonstrate a buried
split-gate architecture and use it to control electron conduction in large-scale single-crystal monolayer graphene
grown by chemical vapor deposition. The control of the edge trajectories is demonstrated by the observation of
various fractional quantum resistances, as a result of a controllable interedge scattering. Experimental data are
successfully modeled both numerically and analytically within the Landauer-Biittiker formalism. Our architecture
is particularly promising and unique in view of the investigation of quantum transport via scanning probe
microscopy, since graphene constitutes the topmost layer of the device. For this reason, it can be approached and
perturbed by a scanning probe down to the limit of mechanical contact.
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I. INTRODUCTION

The quantum Hall (QH) effect has offered exciting op-
portunities for the investigation of quantum transport in
two-dimensional electron gas systems [1] for more than
three decades, and it still is the foundation for a number of
research activities. QH physics is particularly interesting—for
a set of different reasons—in the case of graphene [2,3], a
two-dimensional (2D) layer of carbon atoms arranged in a
honeycomb lattice. First of all, owing to the nontrivial Berry
phase of the electron system [4,5], the QH effect in graphene
displays half-integer plateaus and thus differs from what is
observed in other conventional 2D systems [2,3,6-10]. In
addition, graphene is an ambipolar material, and opposite QH
chiralities can be obtained on the same sample by simply
tuning the carrier density: for instance ambipolarity was
exploited to investigate Klein tunneling [11-13] and the QH
physics in graphene p-n junctions [14—16]. Finally, graphene
implements a stand-alone one-atom-thick 2D electron system,
and charge conduction essentially occurs at its surface.
Differently from other materials, conducting electrons can thus
be approached down to any small distance: this characteristic
offers unique perspectives in view of the investigation of the
local conduction properties, in particular in the context of
quantum transport and QH physics. In order to take advantage
of all these features, however, it is necessary to implement new
methods to control the local carrier density in graphene, while
retaining direct access to its surface and maintaining low-level
disorder. To this end, here we investigate a buried split-gate
architecture in which graphene constitutes the topmost layer
of the device. We demonstrate that good mobility can be
obtained using single-crystal monolayer graphene grown by
chemical vapor deposition (CVD) [10,17]. The successful
control of edge trajectories in the QH regime is demonstrated
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by the observation of fractional quantized resistance values,
akin to what was recently demonstrated in a conventional top
split-gate architecture (i.e., a device in which the split-gate is
placed on top of the graphene) [18]. Owing to the different
electrostatics of the device, though, lever arm values observed
here for back and local gates are markedly different with
respect to previous works [18,19].

The observed experimental behavior is described within the
framework of the Landauer-Biittiker formalism by assuming
the presence of three distinct filling factors: in the bulk of
the sample (vp¢), above the split-gate electrodes (vsg), and
in the quantum-point-contact opening (vgpc). In order to
support the consistency of this interpretation and to provide
a more general modeling framework, we present numerical
calculations where the electrostatic potential landscape in-
duced by the electrodes is directly obtained by solving the
Poisson equation, and no assumptions are made on local
filling factors. In the quantum scattering problem, decoherence
and equilibration are introduced in the present model only
in regions where different edge modes co-propagate [16,20].
Numerical results reproduce the experimental data and confirm
that transport in our devices is governed by currents flowing
along the edges of regions with three distinct filling factors.

II. EXPERIMENTAL METHODS

In our sample, four split gates [indicated as SG1 to SG4 in
Fig. 1(a)] were patterned by electron beam lithography (EBL)
on a Si/Si0, substrate (oxide thickness 300 nm). The width of
the gate fingers is 500 nm, while their relative distance is 400,
600, 800, and 1000 nm for each split-gate pair, respectively.
The local gating structure was then buried under a PMMA
layer, which was spin-coated on the sample and played the
role of gate insulator. A 200 um x 200 um region centered
on the split gates was then cross-linked by a high-dose e-beam
exposure (15000 1.C/cm?), while the rest of the PMMA was
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FIG. 1. (a) Optical micrograph of the device. The four split gates
are indicated as SG1 to SG4. SG2 and SG4 were investigated in the
present work. The contacts that were used to measure the longitudinal
voltage drop V., across SG2 and SG4 are indicated, as well. The
transversal voltage drop V,, was measured in the center of the device.
(b) Cross-sectional sketch of the device.

dissolved in acetone. The final thickness of the PMMA was
measured to be 150 nm.

Single-crystal monolayer CVD graphene was grown on ox-
idized Cu foil using a cold-wall CVD reactor [17]. To minimize
the transfer-induced contamination, it was removed from the
growth substrate using electrochemical delamination [21] and
then transferred on top of the PMMA and precisely aligned to
the split-gate structures [10]. As final step, metallic contacts
(Cr/Au: 10 nm/60 nm) to the graphene flake were defined by
EBL and thermal evaporation. A cross section of the complete
buried split-gate architecture is shown in Fig. 1(b). For the
present work, only the 400-nm-wide and the 800-nm-wide
split gates were investigated, indicated as SG4 and SG2,
respectively, in Fig. 1(a). Measurements were performed using
a four-terminal lock-in technique in a *He closed-cycle system
with base temperature of 250 mK. The longitudinal and
transversal resistances are defined as R = V;;/Isp, with V;;
the voltage drop measured between contacts i and j, and Isp
the applied source-drain current (10 nA for all measurement).

III. RESULTS

The electrostatic action of the various gates on the carrier
density in graphene is illustrated in Fig. 2(a) showing the
longitudinal resistance as a function of back-gate (Vps) and
split-gate (Vsg) voltages, at B = 0 T. The impact of the back
gate is clearly visible, and a resistance maximum at Vpg ~
15 V is observed for every value of Vgg. This trend is also
visible from the cross-sectional plot in Fig. 2(b), which was
obtained along the vertical dashed green line in Fig. 2(a)
at Vgg = 0 V. This resistance maximum corresponds to the
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FIG. 2. (a) Measured longitudinal resistance R,, as a function of
Vg and Vsi. Note the logarithmic scale for R, .. (b) R,, as a function
of Vg for fixed Vsg = 0 V. (¢) R,, as a function of Vg for Vg =
0V, 15V, and 30 V. Split-gate width 400 nm, B =0T, T = 270 mK.

charge neutrality point (CNP), or Dirac point, in the bulk of
the graphene flake.

It is well known that the carrier concentration n in graphene
varies with Vg asn =~ Cpg|Ves — Vbiracl/€ [22]. Here Cpg
and e are the gate capacitance per area and the elementary
charge, respectively. The gate capacitance for a 300 nm SiO,
oxideis Cggo = 11.5 nF/cm2 [22]. Here, we need to consider
the additional 150 nm thickness of the PMMA layer, which has
approximately the same dielectric constant value of SiO,. We
therefore set Cgg =~ Cpgo/1.5 = 7.67 nF/cmz. This yields an
intrinsic carrier density of 7.2 x 10" cm™2 at V3¢ = 0V (hole
doping), in good agreement with what is typically observed for
this kind of CVD graphene [10]. The mobility u of the device
was determined from u = 1/nep, where p is the resistivity at
B =0 T. A transport mobility, away from the Dirac point, of
15 300 cm?/(V s) was determined for Vg = 0 V.

The effect of Vi on the carrier density in graphene is not as
pronounced, but a peak in R, can also be observed for every
given value of Vpg. Selected profiles are shown in Fig. 2(c)
and correspond to the horizontal dashed lines in Fig. 2(a).
The resistance maximum is always observed at Vs &~ 4 V,
regardless of the value of V. This behavior can be interpreted
as due to the local modulation of the carrier density in the
regions immediately above the split-gate structure. Also in
this case, the resistance peaks when graphene is tuned to the
CNP. However, given the limited graphene area controlled by
the split gates, the magnitude of the peak is markedly smaller
than the one observed for the back-gate sweep.

In addition, it should be noted that the two values (4 V
and 15 V) are in good agreement with the different expected
capacitive couplings between the split gate and graphene, and
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FIG. 3. Longitudinal (R,,) and transverse (R,,) resistance in the
bulk of the graphene flake as a function of back-gate voltage Vg at
B =10T and VSG =0V

between the back gate and graphene. In the former case, the
dielectric insulation is just due to the 150-nm-thick PMMA
layer; in the latter, capacitive coupling is mediated by a stack
of 300 nm of SiO, and, again, 150 nm of PMMA.

Differently from what was obtained in recent experiments
using a top-gate architecture [14-16], the position of the
resistance maximum as a function of Vs does not depend
on the value of V. This indicates that back gate and split
gates are independent, and no cross talk is observed between
them. This is because the back-gate voltage is screened by
the buried metallic split gate, which is inserted in between the
back gate and the graphene layer. To a good approximation, in
our devices the bulk carrier density is only controlled by Vg,
while the density in correspondence to the split gates is only
controlled by Vs¢. On the other hand, in top-gated devices the
local carrier density in proximity of the split-gate structure is
affected by both back-gate and top-gate voltages.

The occurrence of QH states in the bulk of the graphene
flake can be inferred from the longitudinal resistance R, at
a magnetic field B = 10 T, shown in Fig. 3, where Vs was
swept from —20 V to +45 V while keeping Vs = 0 V. QH
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plateaus at filling factors v = —6, —2, 42, and +6 are observed
in this Vg range [23] and confirm that the flake is a monolayer
and that the graphene quality is good.

The full evolution of the longitudinal resistance R, across
the 400-nm-wide QPC as a function of both Vss and Vg is
shown in Fig. 4(a): various fractionally quantized regions can
be spotted in the color plot. As argued in the following, they can
be understood in terms of carrier density configurations leading
to three different filling factors: the bulk filling factor vg that
is controlled by Vg, the filling factor in correspondence to the
split-gate fingers vgg in turn controlled by Vs, and the filling
factor in the constriction region—or split-gate opening—vg pc
that is driven by both gates.

In contrast to the results obtained with n-p-n junctions
[14-16,19,20,24] or quantum point contacts (QPCs) defined by
a top split gate [18], where the filling factor under the top gate
depends both on the back-gate and top-gate voltage, in our ge-
ometry with the split gate buried in PMMA under the graphene
ribbon, the filling factor over the split-gate vs¢ is independent
of the back-gate voltage. The split gate screens the potential
of the back gate; hence the lines separating subsequent filling
factors are vertical. In Fig. 4(a) the horizontal dashed lines
indicate the threshold for subsequent filling factors v in the
bulk of the device, and the vertical ones, the filling factors vsg
over the split gate.

Whenever vgg and vgg are equal, the resistance is zero:
charge transport through the device occurs without backscat-
tering. Indeed, Fig. 4(a) shows four rectangular regions that
show value zero and align in the diagonal, corresponding to
VBG = VsG-

The values in the other regions are between O and 1
whenever these two filling factors take different values. This
phenomenology was also observed in local top-gate [14—-16]
and top split-gate [18] devices. The resistance values are given
by [18,24]

_ h |lvee — vsgl
XX — _2—'
e* |vpgllvscl
Note, however, that in the experimental results of Fig. 4,

some of the rectangles are divided into two regions with
different resistance values. We can explain this by noticing
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FIG. 4. (a) Longitudinal resistance R,, (in units of //e*) measured across the 400-nm-wide QPC as a function of the back-gate (V) and
split-gate (V) voltage biases at B = 10 T. (b) Analytical results obtained with Egs. (3)—(6) reproduce well the observed resistance plateaus.
The arrows in (a) indicate where the cross sections of Figs. 9(a) and 9(b) were taken.
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that the filling factor vy pc in the middle of the 400-nm-wide
QPC may differ from vgg. For the case vopc = vpg, the QPC
is open for all edge states coming from the source, and the
resistance is zero. When vgpc = vsg, the device behaves like
a unipolar or bipolar junction, and the resistance takes the
values given by Eq. (1).

In the most general case, when all three filling factors have a
different value, the resistance deviates from the value given by
Eq. (1). We can see in Fig. 4(a) that in many rectangles there are
two different plateaus whose values will be calculated in the
following section. The red dashed lines in Fig. 4 indicate the
transition between subsequent vy pc: these lines are inclined,
since the filling factor in the constriction opening depends on
both back-gate and split-gate voltages. One can see that for
a fixed set of the three filling factors the resistance is more
or less constant. At the transition between subsequent vgg, it
rises because the Fermi energy is close to the Landau level,
and instead of perfect edge states propagating in the device,
we have a significant backscattering, giving rise to a higher
resistance.

The possibility to achieve a vgpc # vpg is further sup-
ported by the fact that the above-cited deviations are only
observed for narrow split gates while a different behavior
occurs for instance in the case of the 800-nm-wide split-gate
devices (see Supplemental Material [38]). Indeed, for wide-
gap split gates, the fringe field of the finger electrodes is not

J

G+Gi3+Gui
-Gy
—Gs

G

and invert it to obtain the matrix R = G~'. The longitudinal
resistance Rj; 34 is obtained with the current flowing from
lead 1 into 2 with the voltage drop measured between leads 3
and 4, and equals R3; — R3; [25], where R;; is the G~ ! matrix
element of ith row and jth column. Due to the symmetry in our
system, G4 = G3; and G34 = G»y. For B > 0 and vgg > 0,
all carriers from lead 3 flow into lead 1 with the Lorentz force
keeping the current at the left edge of the sample with respect
to the direction of the charge flow: G 3 = vgge?/h, Goz = 0.
We also assume that all carriers from lead 2 flow into lead
4, which gives G3; =0, G, = 0. Finally, G4 = 0, as the
carriers from lead 4 can never reach lead 1.

Depending on the relative chirality of the bulk, split-gate,
and QPC regions, there are four regimes to be considered,
as shown in Fig. 6. For the calculation of the conduc-
tance matrix elements, we proceed in a similar way as in
Ref. [16] on n-p-n junctions, which however covered a
simpler case with the edges only between pairs of regions
of varied v. The numerical modeling (see the next section)
indicates that here mode mixing needs to cover the border
lines between the bulk and split-gate regions. In Ref. [19]
for a top split-gate the anomalous Hall plateaus could be
explained by the equilibration of the N = 0 Landau level.
The results for the present sample call for mixing of all the
subbands.
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expected to be sufficiently strong to induce a filling factor
different from vgs in the middle of the constriction. This
heuristic assumption will be better justified by the numerical
simulations reported in Sec. V.

IV. DISCUSSION

The experimental resistance pattern of Fig. 4(a), as well as
the results of the Schrodinger-Poisson simulation reported in
the next section, can be explained in a simple model based
on current conservation and edge-mode equilibration. In the
model we consider a graphene device including a back gate
and a split gate which can induce regions with various filling
factors: vpg in the bulk, vgs above the split-gate electrodes,
and vg pc in the QPC opening (see Fig. 5). In the experiment,
longitudinal resistances are obtained in a four-wire scheme by
measuring the longitudinal voltage drop V,, in the presence
of a current bias Igp between the source to drain contacts.
Four leads connected to the graphene device are thus included
in the model in order to reproduce the experimental results.
The resulting device geometry, including the contacts and the
various local filling factors, is shown in Fig. 5.

For the calculation of resistances using the Landauer-
Biittiker formalism, we calculate the values of conductance
G p, for the electron flow from terminal ¢ to p. Next we build
a G matrix [25]

-G —-G3
+ Gz + Goy -Gy 2
-G G311+ Gz + G

In the first case [Fig. 6(a)] transmission of vy pc edge modes
of the incident v modes occurs. Therefore, the resistance is
the same as in a bipolar junction with filling factor vy pc in the
middle area, and it equals
h |veg| = [vgrc]

3

Fize e? |vggllvorcl
For the special case shown in Fig. 6(a), Eq. (3) gives
R12,34 = 1/15

In the second case [Fig. 6(b)], edge mode mixing occurs,
and the current in the spots marked by purple rectangles is
partitioned equally between available modes. The probabilities
of the current going into one of the directions shown in Fig. 6(b)

|i Vsag g
VBaG |VQprc| VBG

FIG. 5. Sketch of the device geometry adopted in the Landauer-
Biittiker model. Four contacts and regions with three distinct filling
factors vpg, Vs, and vy pc are assumed.
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FIG. 6. Edge connectivities as a function of the three filling
factors vgg, Vs, and vgpc. Each sketch implies a different edge
propagation, splitting, and equilibration configuration and thus a
different analytical formula for the longitudinal resistivity. Config-
urations with opposite chiralities are not reported explicitly. Black
arrows indicate the currents for each of the spin-degenerate available
transport modes and their chirality. In order to provide a specific
example, the green numbers indicate one of the possible filling factor
combinations giving rise to the sketched connectivity scheme. In
panels (b), (c), and (d), edge equilibration in co-propagating modes
plays a crucial role: the purple squares indicate the points where
current branches. In the model current is assumed to partition equally
on all available channels; i.e., edge modes are assumed to completely
equilibrate before the branching.

arer; = % andr, = % We label the current at each

side of the split gate by 1,2, ...,10 as shown in Fig. 6(c). The
currents satisfy the following relations: I, = (1 —ry)Iy, Iz =
rh, Iy =1 —r)h, Is = —r)ls, I; =rls, and I;p =
(1 — ry)Is. Assuming that a current I flows in the first lead,
we find the following current conservation rules: [ + Ig =
11, 17 + 19 = 18» ]3 + 110 = ]4, and 14 = ]5. We construct
a system of 10 equations and find the outflowing currents
Iow =1, — I, and I, = Is — Ic. Then, the conductances are
Gy = Zhiz|vBG|Iout/I and Gz = 2762|v30|1(;ut. Inserting this
information into the G matrix and inverting it, we find
Ripss = %(|VQPC| |VBG|)’ @
e’ |vpgllvorcl

which is equivalent to a unipolar junction with a filling factor
satisfying |[vopc| > |vpg| in the middle area. For the special
case shown in Fig. 6(b), Eq. (4) yields 1.

The remaining two cases are shown in Figs. 6(c) and 6(d).
The resistances are (for the calculation see Supplemental
Material [38])

Ripss = ﬁz (lvsg| + [vec(vopcl + vec )
’ e” vpgll(lvsgl — IvecDIvorcl + 2|vgclivsgl]
(5)
for the case presented in Fig. 6(c), and
Ripas = kz (IvsGl + v )(Ivorcl — vecl)
' e* vpgll(Ivsgl — v DIvorcl — 2|vaclIvscl]
(6)

for the case shown in Fig. 6(d).
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Summarizing, the resistance is given by Eqs. (3)—(6) for the
four configurations of the filling factors shown in Fig. 6. Note
that always |vgppc| < |vscg|. Figure 4(b) shows a schematic
plot with the calculated filling factors in each part of the device.
There is a good agreement observed with the experimental data
of Fig. 4(a).

V. SCHRODINGER-POISSON MODEL

The previous section described a simple model based on
the Landauer-Biittiker formalism that can explain the observed
resistance pattern, provided one makes the assumption of three
independent filling factors. In this section, we shall show that
such an assumption can indeed be directly derived from a
Schrodinger-Poisson model of the device [26,27]. Based on the
resulting potential landscape, the quantum transport problem
is solved numerically. The calculation is performed using a
wave-function matching method and yields the actual current
paths and G, values from the scattering wave functions at the
Fermi level. These parameters are then used to calculate the
longitudinal resistance.

A. Description of the model

The numerical calculation is performed on a graphene
region with zigzag horizontal and armchair vertical edges.
The constriction region has a width of 197.2 nm and a length
of 443.2 nm. In the simulation, the leads are 24.6 nm long and
17.4 nm wide, which corresponds to a width of 40 atoms across
the ribbon. This gives a total length of the device with contacts
of 492.4 nm. For the simulation we use the scaling approach
of Ref. [28], with a scaling factor s . The qualitative results of
the model do not change when s is increased beyond 4 and
only depend on the configuration of the filling factor regions.
Simulations were thus performed with sy = 4. The simulated
system is thus smaller than the real one: this is compensated
by performing calculation with (i) smaller voltages in order
to induce the same electric field values as in the larger device
(see discussion below) and (ii) larger values of the external
magnetic field that drive the same number of available edge
channels.

In order to evaluate the electrostatic potential energy
experienced by the electron gas within the graphene device, we
solved the Poisson equation for the considered geometry with
the electron density given by the Thomas-Fermi approxima-
tion [29] and found that the influence of the space charge for the
profile of the potential landscape is negligible. The potential
is thus determined by the Laplace equation for the system
of electrodes given in Fig. 7. We consider a computational
box of 492.4 x 197.2 x 246 nm? in the x x y x z direction,
respectively, where the size in x includes the scattering region
and the left and right leads. The back gate and the split gate
are placed at z =0 and z = 27.6 nm, respectively, and the
nanoribbon at z = 37.4 nm. The split gate (size of each gate
finger 165.2 nm in x and 68.1 nm in y) is placed in the middle
of the ribbon’s length, with a spacing between the gate fingers
of 61 nm. At each electrostatic gate we use Dirichlet boundary
conditions for applied potentials and at the side and top walls
of the computational box Neumann boundary conditions with
zero electric field, which at the top side of the box is justified by
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FIG. 7. Schematic drawing of the studied system. (a) Scheme
of the nanoribbon with four horizontal zigzag leads, two vertical
armchair Biittiker probes, and four Biittiker probes connected to
the interior of the nanoribbon near the n-p junctions, highlighted in
orange. Green lines show schematic isolines of the potential. (b) The
computational box for the Laplace problem. Voltage V¢ is applied
to the back gate (bottom of the computational box), and Vss to the
split gate colored in blue. The dimensions used for the simulation are
dsio, = 27.6 nm, dpyya = 9.8 nm, dy,c = 208.6 nm.

the charge neutrality of the system, and at the lateral sides by
the symmetry of the system far from the split gate. The value
of d, is chosen so that the potential within the graphene layer
does not change any further upon increasing the box height.
For the calculations, we use the tight-binding Hamiltonian

H =) (cle; +He)+ Y virele. 7
{i.j} i
where V(r;) is the external potential at r;, the position of
the ith atom, and the first summation runs over the nearest
neighbors. The magnetic field is taken into account by Peierl’s
substitution in the hopping parameter,

i\ ("
t,-jztexp<%>/ A-dl (8)
r;

where ¢ is the hopping parameter and ¢y = % the flux quantum.
For a magnetic field perpendicular to the graphene plane
B = (0,0,B), we use a Landau gauge A = (—yB,0,0). As
already mentioned, a scaling approach is used [28] with scaling
condition a = apsy and t = ty/s s, where the scaling factor is
sy = 4,19 = —2.7eV is the unscaled hopping parameter, while
ag = 2.46 A is the graphene lattice constant. The rescaled
magnetic field is B = Bos?, with By being the magnetic field
characterizing the real sample. The ratio of the ribbon width to
magnetic length /5 equals [/l = 56.76, with magnetic length
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lg = /% = 26 nm/+/By[T]. Zero temperature is assumed.

We determine the filling factor from the number of Landau
levels below the Fermi energy.

To solve the scattering problem, we use wave function
matching (WFM). The details of the computational method
are described in Ref. [30]. The transmission probability from
terminal / to mode m in terminal k is

Tkr;l = Z |tr]:lln
n

with X being the probability amplitude for the transmission
from the mode # in terminal / to mode m in the terminal k.
Figure 5 shows the labeling of the leads in the model system.
To compute Rj; 34, we construct a conductance matrix G of
dimension N — 1, where N is the number of terminals, and

calculate it as a sum over the modes:

Gu=Goy Ty, (10)

2

, (€))

where Gy = Zhi is the conductance quantum. Then, we use the
following formula to relate the current /; in terminal k to the
voltages in all terminals:

L= GuVi = W), (11
l

where V; and V; are voltages in terminals k and /, respectively.
The resistance calculation proceeds as explained in Sec. IV.

In view of a comparison between numerical results and
actual experimental data, it is crucial to comment on the
magnitudes of the gate voltages in relation with the scaling
method adopted in the model. Indeed transport properties are
simulated in a scaled atomistic model. As a consequence, gates
were assumed to be closer to the graphene plane than in the
actual devices, which reduces the number of mesh elements in
the finite difference solver. In particular, in the simulation the
dimensions of the system are approximately 10 times smaller
than in the experiment. The gate-voltage-to-energy conversion
factor is inversely proportional to the distance between the
electron confinement area and the gates. Hence, because of
the reduced distance between the gates and the graphene, the
gate voltages inducing a specific filling factor distribution are
accordingly smaller.

B. Numerical results

When transport is fully coherent, no equilibration occurs
between co-propagating edge modes and the model cannot
correctly reproduce the observed behavior (see Supplemental
Material [38]). In order to induce partitioning of the current,
dephasing Biittiker virtual probes were introduced, as visible
in Fig. 7(a). These are used as voltage probes; i.e., a zero
net current flow is assumed at each of the probes. Electrons
entering the probe equilibrate in the reservoir, and emerge from
it with a different phase. The choice of the positions of such
artificial probes is crucial for edge-mode mixing. According to
the theoretical models [14,16,20], equilibration in the bipolar
junction takes place along the n-p interface, and in the case
of a unipolar junction, shown in Fig. 6(b), along the edge in
the central, split-gate region. For the latter case, the addition
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FIG. 8. (a) Simulated longitudinal resistance (in units of &/e?) as a function of V¢ and V. (b) Resistance values calculated according to
Egs. (3)-(6) (in units of /1/e?). The nonlinear shape of the boundaries of regions at fixed vz is caused by the limited size of the computational

box which cause the potential in the leads to slightly depend on V.

of voltage probes connected to the region over the split-gate
results in resistance values that are in very good quantitative
agreement with the values given by Eq. (4). For the former
case, no configuration of the probes in the plane of the graphene
nanoribbon gives values close to what is predicted by Egs. (5)
or (6). However, we obtained results that agree with experiment
for the probes connected to the interior of the nanoribbon near
the n-p junctions [31,32], as shown in Fig. 7(a). The position
and length of the probes is set so that most of the currents
flowing along the junction can reach the probes.

The final position and size of the probes is discussed in
the following. Two probes are armchair nanoribbons of 35
atoms width (i.e., they approximately have the same width as
the leads) connected to the region over the split gate, and are
assumed to be semi-infinite in the y direction. Further four
probes are semi-infinite in the z direction and attached to the
ribbon in the vicinity of the split gate, marked in orange in
Fig. 7(a) and consisting of 60 zigzag chains attached to the
graphene plane within four areas marked schematically by
black rectangles in Fig. 7(a) (see Supplemental Material [38]
for further details).

We calculate R 34 as a function of potentials Vg and Vg
at the back gate and split gate, respectively (see Fig. 7). The
calculated resistance is presented in Fig. 8(a). The horizontal
dashed lines indicate the transition between subsequent filling
factors vps in the bulk of the nanoribbon, the vertical ones
between filling factors vg in the split gate, and the red dashed
lines between filling factors vy pc in the middle of the QPC.
Following the nomenclature of Ref. [16], the plot is divided
into sectors, depending on the relationship between the filling
factors. In the sectors between dashed white lines labeled with
I, where the filling factors have the same sign vggvsg > 0
and vps > vsg, the device is in the edge state transmission
regime. In the sectors labeled II, partial equilibration occurs.
As shown in Sec. IV, in both aforementioned regimes, the
device behaves like a unipolar junction with the resistance
governed by vp pc. In the most unique case, in sectors I, it is
governed by the full equilibration process. Whereas in sectors
I and II the resistance is independent of vgg, in sector III it

depends on all three filling factors. This is consistent with what
was observed in the experimental data [see Fig. 4(a)].

The corresponding model values obtained with the
Landauer-Biittiker formalism discussed in Sec. IV are shown
in the 2D plot in Fig. 8(b). The underlined numbers are
the values for vpg # vsg 7# vopc in the full equilibration
regime. There is a perfect agreement between the two plots in
Figs. 8(a) and 8(b) for region I, which would be the case even
without any Biittiker probes. In the edge-state transmission
regime, no equilibration occurs, and only vy pc modes out of
incoming v modes can pass the split gate; therefore no phase
randomizing is needed to obtain the expected resistance. In
regime II the resistance also coincides with the model values,
as the high magnetic field used for the simulation forces all the
incoming electrons to the side probes, where they equilibrate.
In sector III, where equilibration occurs along the BG-SG
interface, the agreement with the model data is good for
Vopc = Vsg, but the simulated values for vppc # vsi exceed
slightly the model ones. The reason is that the magnetic field
perpendicular to the plane of the ribbon does not push the
electrons into the probes in z, so that not all electrons enter the
probes and a small fraction of electrons does not equilibrate.
For vgpc = vgg, for which the edge-state partitioning takes
place at the point where the junction interface meets the edge,
this does not yield a large deviation from the model resistance
values. However, in the more complex case of vo pc # vsg, the
random partitioning is expected to take place also between the
SG and QPC regions, the effectiveness of which is somewhat
smaller in the simulation.

In order to underline the excellent agreement between
experiment, model, and simulation more thoroughly, we plot
cross sections of the longitudinal resistance. In Figs. 9(a)
and 9(b) cross sections of the experimental data are plotted
with orange and blue lines for the V¢ or Vg values indicated
by arrows of the same color in Fig. 4(a). The dashed line shows
the value of resistance resulting from the model. The resistance
reaches plateaus or at least gets close to the expected value for
almost every set of vpg,vsg,vopc in the cross sections. A
particularly good agreement for Vg =8 V is seen for the

155446-7



SHAOHUA XIANG et al.
(@)
1 0 _
_ 08}
o~
L 06
=
e 04 4 -
0.2 .
o IS S R R T
-50 -40 -30 -20 -10 0 10 20 30 40 50
VgglV]
© 1.2 |
1k J -
— 08 -
(]
S 06| .
m 04
0.2 - q
0 | | |

-0.2 0 0.2 0.4
VpgleVl]

PHYSICAL REVIEW B 94, 155446 (2016)

0 LI \ | J \ | J
-06 -04 -0.2 0 02 04 06

VggleV]

FIG. 9. The cross sections of the experimental [(a), (b)] and the simulated [(c), (d)] data, indicated by arrows in Figs. 4 and 8. The color of
the arrow corresponds to the line color. Dashed lines show the model values of resistance given by Eqgs. (3)—(6). (a) vsg = 2,Vsg =8 V, (b)
VpG = _67VBG =-13 V, (C) Vsg = Z’VSG =0.135 eV, (d) VpG = _67VBG = —0.39eV.

plateaus 1—10, %, é, i.e., with vsg # vpg 7 vopc. For the cross

section at Vg = —13 'V, the resistance gets close to the model
values % é, and %, but it does not reach the plateau % for
vsg = 6, vpg = —2, and vgpc =2, and the plateau % for
vsg = 10, vpg = —6, and vopc = 2. A too small resistance
is obtained for almost every case in the partial equilibration
regime.

In Figs. 9(c) and 9(d), cross sections of the simulated
data are presented for V¢ indicated by arrows in Fig. 8(a)
with the same color as the plot line. The agreement with
the model is very good, and only in the case of three
different filling factors in the full-equilibration regime, there
is a small discrepancy. However, even in this case the curve
follows the model line. The shape of the simulated and
measured curves clearly is similar, one difference being the
energies at which subsequent bands enter the transport, and
the slope of the red dashed contours in Fig. 4, which gives
rise to the occurrence of different sets of the three filling
factors.

VI. SUMMARY AND CONCLUSIONS

We have analyzed the behavior of buried split-gate graphene
devices which are suitable for scanning-probe-microscopy
experiments. Differently from studied experimental config-
urations [18], the measurements of the longitudinal resistance
taken at B = 0 indicated a screening of the back gate by the
split gate within the QPC areas: this implies that no cross talk
between the two is observed. Moreover, the measurements
taken in the QH regime as well as the numerical simulation
yield a resistance pattern indicating the clear presence of
regions with three distinct filling factors. The resistance
pattern can be explained with the mode equilibration of

the edge currents that involves all three regions of varied
filling factors and all modes participating in the current flow.
The demonstration of a buried gate geometry accompanied
by its detailed examination by magnetotransport will enable
further progress in scanning probe (STM, SKPM, SNOM,
scanning gate, etc.) experiments aiming to gain understanding
of quantum transport in 2D materials. In particular, we are now
working on scanning gate microscopy experiments of these
devices in order to study details of the edge channel transport
characteristic of the QH regime, similar to our previous studies
on III-V materials [33-37].
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