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Thermoelectric transport through Majorana bound states and violation of Wiedemann-Franz law
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We study features of thermoelectric transport through a one-dimensional topological system model hosting
Majorana bound states (MBSs) at its ends. We describe the behavior of the Seebeck coefficient and the ZT figure
of merit for two configurations between the MBS and normal current leads. We find an important violation of
the Wiedemann-Franz law in one of these geometries, leading to sizable values of the thermoelectric efficiency
over a narrow window in chemical potential away from neutrality. These findings could lead to interesting
thermoelectric-based MBS detection devices, via measurements of the Seebeck coefficient and figure of merit.
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I. INTRODUCTION

A new kind of fermionic quasiparticle has been studied
in the context of condensed matter in recent years, with its
principal feature being that it is its own antiparticle. These Ma-
jorana fermions (MFs), first predicted by E. Majorana [1], have
other interesting properties such as satisfying non-Abelian
statistics and are therefore of interest in quantum computation
implementations [2,3]. These quasiparticles appear in systems
with particle-hole symmetry as zero-energy excitations and are
predicted to be found at the ends of a one-dimensional (1D)
semiconductor nanowire with spin-orbit interaction (SOI) in a
magnetic field and proximitized by an adjacent superconductor
[4,5]. Such Majorana states may also appear in other systems as
in a vortex of a p-wave superconductor [6], on the surface of a
topological insulator [7], and at the ends of a chain of magnetic
impurities on a superconducting surface [8,9]. The Majorana
bound states (MBSs) at the end of such a wire/chain system can
be seen as the implementation of a Kitaev chain [10]. Mourik
et al. [11] reported the first observation of Majorana signatures
in a semiconductor-superconductor nanowire, built of InSb
(indium antimonide) and NbTiN (niobium titanium nitride),
with several others groups reporting zero-bias conductance
peaks in similar hybrid devices [12–15]. MBS pairs are
predicted to interact with a coupling strength εM proportional
to exp[−L/ξ ], where L is the wire length and ξ is the
superconducting coherence length. Recent experimental work
has probed this dependence of εM in wire length, verifying
expectation[16].

Moreover, there is a great deal of interest in the ther-
moelectricity of nanostructures [17–19]. When a thermal
bias is applied across a system, a quantity of interest is
the thermoelectric energy-conversion efficiency, characterized
by the dimensionless figure of merit ZT , which involves
the Seebeck coefficient, as well as the ratio of thermal and
electrical conductances [20]. A way to improve ZT is to
overcome the Wiedemann-Franz (WF) law, which sets the
ratio κ/GT = �0 ≡ constant in all systems, where G is the
electrical conductance, κ the thermal conductance, T the
background temperature, and �0 = (π3/3)(kB/e)2 the Lorenz
number [21]. Although macroscopic materials have shown to
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generally follow the WF law, nanostructured systems have
proved to be very good thermoconverters, as they are able
to overcome that restriction [22]. Thermoelectric efficient
devices have been proposed in systems such as molecular
junctions [23,24], quantum dots [25], and topological insula-
tors [26]. Thermal detection of Majorana states in topological
superconductors has also been proposed [27]. Even though
several Majorana detection setups have been realized [8,11–
15], much less attention has been directed to thermoelectric-
based detection devices. Different thermoelectric setups with
Majorana nanowires and/or connected quantum dots have been
considered, where thermal biases are applied across the normal
leads [28,29] or across normal lead-superconductor setups
[30,31]. These systems are found to exhibit signatures of MBSs
through measurements of the Seebeck coefficient as the energy
of the level in the dot varies, even in a weak-coupling regime.

In this work we study the thermoelectrical properties of an
MBS system coupled to two normal leads in the presence of a
thermal bias. The system between the leads is considered a 1D
topological superconductor nanowire containing the MBS at
its ends, which under suitable conditions could represent any
time-reversal symmetry-breaking topological superconductor,
such as a Kitaev chain [10]. We model the nanowire with an ef-
fective low-energy Hamiltonian hosting two MBSs, γ1 and γ2,
coupled between them with a strength εM (assumed known).
Using a Green’s function formalism, we study the thermo-
electric transport across the system, in two configurations: (i)
when both MBSs are connected to the leads and (ii) when only
one MBS is connected to the leads. The first configuration was
discussed in Ref. [28] for the case of zero chemical potential
(μ = 0) in contacts. Our findings agree with their results and
go further as the chemical potential varies. We find a small
Seebeck coefficient and vanishing small ZT over a broad range
of chemical potential and coupling εM at typical low exper-
imental temperatures. On the other hand, we find a sizable
violation of the WF law for the second configuration, which
leads to large values of thermoelectric efficiency, as measured
by the figure of merit. We also find an εM -independent
behavior of the thermal quantities with large εM values for
the same configuration. These features should be accessible in
experiments and may help provide additional insights into the
presence of behavior of MBSs in nanowire systems.

This paper is arranged as follows: Section II presents the
model and Hamiltonian used for obtaining the thermoelectric
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FIG. 1. Model setup of a 1D topological superconductor
nanowire hosting an MBS at both ends, connected to two metallic
leads at different temperatures. (a) Each MBS is coupled to its nearest
lead; (b) only one MBS is coupled to both leads simultaneously.

quantities. Section III reports the results and discussion; and
finally, concluding remarks are given in Sec. IV.

II. MODEL

We consider a two-MBS system, each located at the ends
of the nanowire and coupled to two metallic leads in two
different configurations, as shown schematically in Fig. 1. The
left lead L is kept at temperature T + �T and the right lead
R at temperature T , thus providing a temperature gradient
�T . We describe the system with a noninteracting Anderson
Hamiltonian within the second quantization framework and
consider it spin-independent because of the strong Zeeman
effect due to the applied magnetic field. The Hamiltonian is
given by [28]

H = Hleads + Hleads-MBS + HMBS , (1)

where Hleads describes the current leads, Hleads-MBS the cou-
pling between the leads and the MBS, and HMBS the isolated
MBSs. Each of them is given by

Hleads =
∑
α,k

εα,kc
†
α,kcα,k, (2)

HMBS = iεMγ1γ2, (3)

Hleads-MBS =
∑
α,k

tα,βγβcα,k + t∗α,βc
†
α,kγβ, (4)

where c
†
α,k (cα,k) creates (annihilates) an electron of momentum

k in lead α = L,R, and γβ creates one of the two MBSs (β =
1,2) and satisfies both {γβ,γβ ′ } = 2δβ,β ′ and γβ = γ

†
β , i.e., an

MBS is its own antiparticle. εM is the coupling between the two
MBSs due to a finite length of the wire. The terms tα,β are the
tunneling hoppings between lead α and MBS β. For the two
models shown in Fig. 1, the upper and lower panels consider
tL,1 = tR,2 �= 0 and tL,1 = tR,1 �= 0, respectively, with others
vanishing.

We obtain the transmission probability across the leads by
using the Green’s function formalism. In the linear response
regime, we can obtain the transmission by means of the

Fischer-Lee relation, given by

T (ε) = Tr[�̃LG̃a(ε)�̃RG̃r (ε)], (5)

with ε the energy of the electron tunneling from L to R, �̃α

being the coupling matrix of the lead α and G̃r (ε) [G̃a(ε)] the
retarded [advanced] Green’s function matrix given by

G̃r (ε) =
(〈〈γ1,γ1〉〉ε 〈〈γ1,γ2〉〉ε

〈〈γ2,γ1〉〉ε 〈〈γ2,γ2〉〉ε
)

, (6)

where 〈〈A,B〉〉ε denotes the Green’s function between operator
A and operator B in the energy domain and Ga(ε) = [Gr (ε)]†.
We find the transmission coefficients for the two setups shown
in Fig. 1, namely, models A and B, in what follows. These
transmission expressions are TA(ε) for model A and TB(ε) for
model B are and given by [32,33]

TA(ε) = 4�2
(
ε2 + ε2

M + 4�2
)

(ε2 + 4�2)2 + ε2
M

(
ε2
M − 2(ε2 − 4�2)

) , (7)

TB(ε) = 4ε2�2

[(ε + εM )(ε − εM )]2 + 4ε2�2
, (8)

where � is the energy-independent coupling strength between
the nanowire and the leads for the symmetric case in the wide
band limit, where tα,β ≡ t0 for all nonvanishing cases, and
� = π |t0|2ρ0, ρ0 being the contact density of states.

As for thermoelectric quantities, we consider the system
in the linear response regime, with a temperature difference
�T between the two leads. In this scenario we can write the
charge and heat current, Icharge and Iheat, respectively, in terms
of a potential difference �V as [34]

Icharge = −e2L0�V + e

T
L1�T, (9)

Iheat = eL1�V − 1

T
L2�T, (10)

where e is the electron charge and

Ln(μ) = 1

h

∫ (
−∂f̄ (ε,μ)

∂ε

)
(ε − μ)nT (ε)dε, (11)

where μ and f̄ (ε,μ) are the Fermi energy and Fermi distri-
bution function, respectively, and h the Planck constant. The
Seebeck coefficient S (or thermopower) relates the temperature
difference �T and the potential difference �V caused when
the charge current vanishes:

S(μ) = −�V

�T
= − 1

e T

L1

L0
. (12)

The electrical conductance G(μ) and thermal conductance
κ(μ) are defined as the ratio between the charge current and
the potential difference when �T vanishes for the first and as
the ratio between the heat current and the temperature gradient
when the charge current vanishes for the latter. From Eqs. (9)
and (10), both conductances are given by

G(μ) = −Icharge

�V
= e2L0, (13)

κ(μ) = −Iheat

�T
= 1

T

(
L2 − L2

1

L0

)
. (14)
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FIG. 2. (a, c) Electrical and (b, d) thermal conductances, both as
a function of the Fermi energy μ. (a) and (b) correspond to model A
in Fig. 1; (c) and (d), to model B.

Equation (14) considers only the electronic contribution
to the thermal conductance; It assumes that the phononic
contribution is negligible in the low-temperature regime (few
kelvins) typical of the systems.

In order to quantify the efficiency of our MBS thermoelec-
tric setups, we calculate the dimensionless figure of merit ZT ,

ZT = S2GT

κ
, (15)

as a function of the structure parameters.

III. RESULTS

A. Electrical and thermal conductance

In what follows we assume a background temperature
of T = 10 K, well below typical superconductor critical
temperatures [35]. We use � as a useful energy scale and set
it to a characteristic experimental value, � = 10 meV, which
leads to kBT ∼ 10−1�, where kB is the Boltzmann constant.

For the two setups shown in Fig. 1, models A and B, Fig. 2
shows the electrical conductance G and thermal conductance
κ , in units of e2/h and π2k2

BT /3h, respectively. Figures
2(a) and 2(b) show G and κ for model A, and Figs. 2(c)
and 2(d) show G and κ for model B. In both models, the
conductance reaches the maximum value G(μ = 0) = e2/h

when the overlapping parameter εM between the two MBSs
vanishes. The maximum G occurs whenever the chemical
potential of the leads is resonant with the MBSs, as shown
by solid black lines. The nonvanishing conductance signals
the presence and entanglement of the MBSs at both ends,
differentiating this regime from ordinary fermionic uncoupled
modes expected to yield zero conductance. For model A when
the εM is turned on, such that 0 < εM � kBT , the conductance
shows the same behavior, as the central resonance cannot
discern the MBS splitting and yields the same maximum
magnitude located at μ ≈ 0. When εM � kBT , there is first a
drop in amplitude in the conductance and then, after εM ∼ �, a
clear splitting of the central resonance. For model B, however,
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FIG. 3. Wiedemann-Franz law ratio, in units of the Lorenz
number �0, for (a) model A and (b) model B in Fig. 1. The horizontal
dotted-dashed gray line corresponds to the universal maximum value
of 4.19 �0 [23].

the central resonance is split into a central narrow dip at
μ = 0 and two side peaks at ±εM , which reach the same
magnitude G(μ = ±εM ) = e2/h in this symmetric coupling
case, �L = �R = �. The splitting of the central resonance
into two side peaks is very evident for εM � �, with a broad 0
near μ = 0. Note that both electrical and thermal conductances
show the same qualitative behavior, except for a very subtle
difference close to the antiresonance located at μ = 0, as will
be seen later.

Similar characteristics of the electrical conductance have
been discussed in Ref. [36], as a function of the wire length L.
By comparison, we can observe that a large (short) L means
a weak (strong) MBS overlap εM in our model, as one would
expect from εM ∝ exp[−L/ξ ], where ξ is the superconducting
coherence length.

B. Wiedemann-Franz law

Let us now explore the fulfillment of the WF law in both
geometries by plotting the ratio κ(μ)/G(μ)T in Fig. 3(a) for
model A and in Fig. 3(b) for model B, in units of the Lorenz
number �0. For model A we observe a near-negligible violation
of this law, as the κ/GT ratio is a constant up to the sixth
decimal place. Note that G(μ)T > κ(μ) (in �0 units) is always
fulfilled for any εM , and only the shape of the curves changes
for εM � � and εM � �, as shown in Fig. 3(a). We emphasize
that although this deviation from WF is small, it is well within
the numerical accuracy of the calculation. For model B, on
the other hand, the WF law is fulfilled for εM = 0, but for
any εM �= 0, the violation of the law is observed in a narrow
range of μ, rising rapidly to the maximum value ∼4.19�0 for
εM � kBT at μ = 0, as shown in Fig. 3(b). This phenomenon
is a consequence of the antiresonance in the conductance,
similar to those reported in molecules [23] and quantum dots
[37]. This drastic violation of the WF law has not been reported
before for systems hosting MBSs.
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FIG. 4. Seebeck coefficient as a function of μ and εM . Upper and
lower panels refer to model A and model B in Fig. 2, respectively.
Note that S in model B can be three orders of magnitude larger than
in model A geometry.

C. Thermoelectric efficiency

In order to quantify the thermoelectric efficiency of the
two geometries, we plot the Seebeck coefficient (S) and figure
of merit (ZT ) in Figs. 4 and 5, respectively. These figures
display the vanishing of S and ZT at μ = 0, independent
of the εM values [S(μ = 0) = ZT (μ = 0) = 0]. The sign of
S with respect to μ depends on the εM value for model A,
so that for μ ≤ 0 we get S(μ) ≤ 0 with |εM | ≤ �, but for
|εM | > �, S changes the sign of μ. A similar behavior can
be seen for μ ≥ 0. On the other hand, in the lower panel in
Fig. 4 (model B) the sign of S is essentially independent of
εM , so that μ/S(μ) ≤ 0 is always obtained, regardless of μ and
εM . Note, however, that S = 0 for μ = 0 and/or εM = 0, in
sharp contrast to the behavior of model A. Besides, the εM gap
shown around εM = 0 is proportional to the temperature (not
shown). We propose to use the measurement of these features
as a signature of the presence of MBSs.

From the upper panel in Fig. 5, we can easily see that model
A is not thermoelectrically efficient, since ZT → 0 (∼10−7)
over the entire parameter domain. In contrast, the lower panel
in Fig. 5, for model B, shows that the system can be considered

FIG. 5. ZT as a function of μ and εM . Upper and lower panels
refer to model A and model B in Fig. 2, respectively. Note the sizable
ZT in model B over the window �μ ∼ 0.002� ∼ 20 μeV.

thermoelectrically efficient, as ZT is close to unity at least in
two narrow μ ranges near 0. It is interesting that the high ZT

value is independent of εM for |εM | � kBT .

IV. CONCLUSIONS

We have studied the thermoelectric transport through a
nanowire hosting MBSs when a temperature gradient is
applied. We find that when only one end of the nanowire
is connected to normal metal leads sustaining a thermal
gradient, the ZT figure of merit approaches 1 for small
deviations of the chemical potencial away from 0. Although
experiments to explore this phenomenon would require control
of �μ ∼ 20 μeV, they would provide unique signatures of
MBS in these systems.
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