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Readout of Majorana parity states using a quantum dot
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We theoretically examine a scheme for projectively reading out the parity state of a pair of Majorana bound
states (MBSs) using a tunnel-coupled quantum dot. The dot is coupled to one end of the topological wire but
isolated from any reservoir and is capacitively coupled to a charge sensor for measurement. The combined parity
of the MBS-dot system is conserved, and charge transfer between the MBS and dot only occurs through resonant
tunneling. Resonance is controlled by the dot potential through a local gate and by the MBS energy splitting due
to the overlap of the MBS pair wave functions. The latter splitting can be tuned from zero (topologically protected
regime) to a finite value by gate-driven shortening of the topological wire. Simulations show that the oscillatory
nature of the MBS splitting is not a fundamental obstacle to readout but requires precise gate control of the
MBS spatial position and dot potential. With experimentally realistic parameters, we find that high-fidelity parity
readout is achievable given nanometer-scale spatial control of the MBS and that there is a trade-off between
required precisions of temporal and spatial control. Use of the scheme to measure the MBS splitting versus
separation would present a clear signature of topological order and could be used to test the robustness of this
order to spatial motion, a key requirement in certain schemes for scalable topological qubits. We show how the
scheme can be extended to distinguish valid parity measurements from invalid ones due to gate calibration errors.
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I. INTRODUCTION

The elementary excitations of one-dimensional topological
superconductors are Majorana bound states (MBSs), equal to
their own antiparticles. This was first discovered by Kitaev [1]
and has spurred enormous interest [2–10] from the condensed-
matter community in the fundamental properties of this novel
phase of matter, as well as its potential applications in
topological quantum computation (TQC) [11–13]. One recipe
for MBSs involves a semiconducting nanowire with a strong
spin-orbit coupling, with induced superconductivity due to
proximity with an s-wave superconductor. With the application
of an external magnetic field of appropriate direction and
magnitude, a pair of MBSs appears at the ends of the
nanowire as edge modes [14–17]. As the MBSs are zero-
energy modes, the ground state is twofold degenerate. Several
reports have been made on experimental evidence [18–23]
about the existence of this type of MBS, although a complete
picture of the physics of systems hosting MBS, including
conclusive evidence of the topological nature of the observed
ground states, remains out of reach as of yet.

For the purposes of TQC, the degenerate MBS edge
modes can be labeled |0〉,|1〉 in the computational basis,
according to the parity of the many-body ground state, with
|0〉 (|1〉) referring to an even (odd) number of electrons.
A so-called topological gap protects these states from the
environment, providing an intrinsic, hardware-level protection
against decoherence [24]. A logical Majorana qubit is defined
as the joint state of two MBS pairs within a particular parity
manifold [25]. We shall focus on a single MBS pair here,
as readout of a logical qubit can be constructed from pair
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readouts. A bit-flip operation |0〉 ↔ |1〉 can be performed by
utilizing the unusual MBS property of non-Abelian anyonic
statistics. This involves braiding (physically exchanging the
positions of) the two particles. The details of braiding
operations were explored in Ref. [24], where it was also
shown that these operations, as implemented in a network
of quantum wires, benefit from topological error protection.
However, in order to obtain a universal set of operations, one
needs to supplement braiding with a set of quantum gates
that are not topologically protected [25–27]. Several proposals
exist for achieving universality, such as bringing the MBSs
close together to break topological protection and applying
phase gates [24,25] or coupling MBSs with conventional
qubits [28–30].

Additional challenges facing the realization of TQC are
state initialization and readout of the MBS parity states.
Following the methodology of the ν = 5/2 fractional quantum
Hall system [31,32], a creation/annihilation approach was
suggested by Alicea et al. [24], wherein a pair of MBSs is
created from the vacuum of the underlying quantum field,
braided to perform computation, and then fused (annihilated)
to create either vacuum or a finite-energy quasiparticle (i.e.,
a Dirac fermion), depending on the parity state of the MBSs.
The extra quasiparticle can be detected by some form of charge
measurement. There are also recent proposals for readout
based on monitoring the current-phase relation of a Josephson
junction hosting an MBS pair [14,33], coupling MBSs to
flux [28] or transmon [10,34,35] qubits, and coupling to charge
or spin states of quantum dots [29,30,36]. All of these methods
rely on some form of parity-to-charge conversion and also
necessarily take the MBSs out of the topologically protected
regime by breaking the degeneracy of the parity states. This can
be achieved by reducing the spatial separation of the two MBSs
so their wave functions overlap [24] or by using long-range

2469-9950/2016/94(15)/155417(9) 155417-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.155417


KAVEH GHARAVI, DARRYL HOVING, AND JONATHAN BAUGH PHYSICAL REVIEW B 94, 155417 (2016)

Coulomb control interactions [34,35] on a superconducting
island hosting the MBS. Charge-state coherence during the
parity-to-charge conversion operation is generally required.

In this paper, we propose and theoretically model a readout
scheme that is relevant to the setup of MBSs tunnel coupled
to a quantum dot (QD). Previous theoretical work has demon-
strated the power and versatility of the MBS-QD system for
detecting the presence [37] and lifetime [38] of topological or-
der, gate-driven manipulation of topological qubits [29,30,36],
and coherent transfer to dot spin and dot charge states. In
a realization based on a top-gated two-dimensional electron
gas (2DEG), for example, the MBS-QD setup is natural and
could lead to a scalable architecture for topological qubits.
While parity measurement was mentioned in the MBS-QD
context [29], to our knowledge, no detailed study has been
conducted to validate the experimental feasibility of such a
readout scheme. Our setup involves an MBS pair, a QD isolated
from any reservoir, and a charge sensor to measure the QD
charge state. As there are no reservoirs present, the joint parity
state of the QD + MBS system is conserved. By reducing the
spatial separation of the two MBSs (e.g., with a set of keyboard
gates), the overlap of the MBS wave functions grows, resulting
in an energy splitting between the |0〉 and |1〉 states. This
splitting is oscillatory and has an exponential envelope versus
the MBS separation [1,39]. The QD level is tuned so that a
charge transition is on resonance with a target MBS energy
splitting, allowing MBS → QD charge transport to occur for
one parity state but not the other. Similar to other schemes, we
assume a coherent charge-transfer process. Finally, the charge
state of the QD is projectively measured with a charge sensor
such as a single electron transistor (SET) [40].

Numerical simulations with realistic system parameters
show that this setup can be used to map out the energy
splitting between the |0〉 and |1〉 states versus the spatial
separation of the MBS pair (or as a function of chemical
potential or external magnetic field). Such a signature has
been cited as “smoking-gun” evidence for topological order
and could also open avenues for studying the robustness of the
topological state to domain wall motion. The charge transfer
in our scheme can be performed on a fast time scale of <10 ns
with a high theoretical fidelity of >99%. These attributes can
be further improved but at a cost to the precision of voltage
and timing controls. The isolation of the QD from reservoirs
leads to a resonance in the tunneling probability versus gate
voltage that is typically very sharp and controlled only by the
tunneling rate. While this requires some fine-tuning of control
parameters, it is very effective at decoupling the MBSs and
QD when readout is not being performed.

This paper is organized as follows: In Sec. II, a model for
the MBS pair coupled on one end to a QD is presented. In
Sec. III, we show how this setup can be used to experimentally
determine the energy splitting between the MBS parity states
as a function of their spatial separation. The MBS parity
measurement is numerically studied and discussed in Sec. IV,
and concluding remarks are presented in Sec. V.

II. MODEL

Figure 1(a) schematically illustrates the proposed setup for
the initialization/readout scheme of the MBS parity state. A

FIG. 1. (a) Schematic of the proposed device. A bulk s-wave
superconductor is in close proximity to a semiconducting nanowire,
inducing superconductivity in the nanowire. With the application of
an axial (along x̂) magnetic field, a pair of MBSs appear at the ends
of the topological region. An array of keyboard gates can be used to
move MBS 1, tuning the MBS spatial separation from Li to Lf . MBS
2 is tunnel coupled to an isolated quantum dot (QD), with a tunneling
strength λ controlled by the gate voltage Vt . The chemical potential
of the QD can be tuned using the plunger gate voltage Vg . A charge
sensor reads out the charge state of the QD, shown here as a SET
with current ISET. (b) Schematic of the energy levels of the QD. U is
the charging energy, and the charge state is indicated on the left by
the number of electrons on the QD. Integer N is arbitrarily chosen
to be even. Spin states are indicated on the right, with spin singlets
(doublets) occurring for even (odd) charge states. A Zeeman splitting
δ is induced between the spin-1/2 states by the external magnetic
field. (c) The qualitative behavior of MBS energy splitting ε versus
the separation L is oscillatory with an exponential envelope.

semiconducting nanowire with a strong Rashba-type spin-orbit
coupling [41,42] is contacted by a bulk s-wave superconduc-
tor, resulting in proximity-induced superconductivity in the
nanowire. The application of an axial magnetic field �B = Bx̂

of appropriate magnitude results in a phase transition to the
topological regime [14], with a pair of MBSs emerging at the
edges of the topological region. Using an array of keyboard
gates located near one end of the nanowire, the chemical
potential in the nanowire can be manipulated to move the edge
of the topological region [24,43], thus tuning the separation
between the two MBSs from an initial value Li to a final value
Lf . The MBS at the other end of the nanowire is tunnel coupled
to an isolated QD defined inside the nanowire. The energy level
of the QD is controlled by the plunger gate voltage Vg , and the
strength of the tunnel coupling is controlled by Vt . In particular,
Vg can be tuned such that the energy required to change the
electron number on the dot matches the energy splitting of
the MBS, i.e., the resonant tunneling condition. A nearby
charge sensor, e.g., a SET or quantum point contact, couples
capacitively to the QD. A measurement of the sensor current
results in a projective measurement of the QD charge state on
a measurement time scale tm, typically microseconds [44,45]
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but as short as ∼400 ns [46]. Readout of the QD charge state
is the last stage of the MBS parity readout procedure, and tm
is assumed to be much longer than the time scale for QD ↔
MBS resonant tunneling, so the back-action from the charge
sensor on the tunneling process is assumed to be negligible.

The two MBSs are described by normalized second-
quantized operators γ , which follow the Majorana fermion
rules γi = γ

†
i and γ 2

i = 1 for i = 1,2. From these, we define
a nonlocal Dirac fermion, with annihilation and creation
operators f = (γ1 + iγ2)/2, f † = (γ1 − iγ2)/2. The MBS
parity state is encoded as a single fermionic mode |m〉, where
m ∈ {0,1} is the occupation number of the nonlocal Dirac
fermion.

A charge state with N electrons on the quantum dot, |N〉, is
associated with electrostatic energy EN . For even N , electrons
are paired and form the spin singlet state |S〉; for odd N the
excess electron gives an overall spin-up |↑〉 or spin-down |↓〉
state. A Zeeman splitting is induced for odd N via the applied
magnetic field �B. Figure 1(b) shows the QD energy-level
diagram.

Without loss of generality, let the QD ground state consist
of an even number of electrons n. The minimal model of the
system consists of three fermionic modes: one each for spin-up
and spin-down excitation on the QD and one for the MBS
parity state. The charge on the QD is restricted to n, n + 1, or
n + 2 electrons, which is made possible by a suitable choice
for the gate voltage Vg . The n ↔ n + 1 charge transition of the
dot is later brought into resonance with the MBS and used for
parity readout. Charge transitions to the n − 1,n + 2 states,
however, are not resonant because of energy separations on
the order of the Coulomb charging energy, a few meV. This
justifies excluding the n − 1 state from the model. The n + 2
state corresponds to both spin modes on the QD being occupied
and is therefore included in the model, but its occupation
probability remains negligibly small. This minimal model
describes the system with an eight-dimensional Hilbert space,
which is sufficient to capture the relevant dynamics while also
being small enough for efficient numerical simulation.

The basis states are represented by |N,σ,m〉, where N ∈
{n,n + 1,n + 2}, σ ∈ {S,↑,↓}, m ∈ {0,1}. However, it must
be kept in mind that only the spin singlet is allowed for N =
n,n + 2, while for n + 1 the singlet is disallowed.

The Hamiltonian is composed of four terms: H = Hq +
Hs + Hm + Ht , where the first three terms are diagonal and
represent the dot charge, dot spin, and MBS energies, and
Ht represents the tunnel coupling between the QD and MBS,
which can depend on the spins of both systems. The dot charge
term is

Hq |N〉 = EN |N〉,
where the constant interaction [47] energy EN = −eVgN +
U
2 N (N − 1) is used. Vg is the voltage on the plunger gate, and
U is the Coulomb charging energy. The remaining terms are

Hs = δ

2
(|↑〉 〈↑| − |↓〉 〈↓|),

Hm = ε

2

(
f †f − 1

2

)
,

Ht = [λ↑(d↑ − d
†
↑) + λ↓(d↓ + d

†
↓)](f † + f ),

where δ = gμBB is the Zeeman energy of the dot spin, ε is the
MBS energy splitting (which depends on the MBS separation
L), dσ (d†

σ ) annihilates (creates) an electron with spin σ on the
dot, λσ is the strength of the spin-dependent dot-MBS tunnel
coupling, and f,f † describe the nonlocal fermion defined
previously. A matrix representation of the dσ ,f operators is
given in the Supplemental Material [48].

The spin polarization direction of the MBS depends on the
relative strengths of the spin-orbit field of the nanowire and
the Zeeman energy due to the external magnetic field [17,49].
If dominated by the Zeeman energy due to the axial magnetic
field, the MBS spin will be polarized along the ±x̂ (axial)
direction. By contrast, for the spin-orbit-dominated case, it will
be polarized along the ±ŷ direction (in-plane, perpendicular
to the nanowire axis). The MBS readout procedure is equally
applicable to both cases, as explained below.

The QD-MBS tunneling constant λσ depends on the spins
of both systems. An MBS spin along the ±x̂ direction is
only coupled to one spin state on the dot. Specifically, λ↓ =
λ,λ↑ = 0 for the −x̂ direction, and λ↑ = λ,λ↓ = 0 for the +x̂

direction. In contrast, an MBS spin along the ±ŷ direction
will couple to the two ±x̂ spins on the QD equally [30],
e.g., λ↑ = λ/

√
2 and λ↓ = −iλ/

√
2 for the −ŷ direction. For

a generic MBS spin polarization (used below), λσ will be
in between these two limiting cases. Spin rotations induced
by the nanowire spin-orbit interaction during the tunneling
process are neglected: Their effect is to give the tunneling spin
a component along ±ẑ, which can be captured by assuming
an arbitrary MBS spin polarization.

The MBS splitting ε is proportional to the overlap of
the MBS wave functions [1,39], which are localized at
the edges of the topological region. The wave functions
decay exponentially inside the topological region, with a
characteristic length ξ on the order of the phase coherence
length inside the nanowire. For L � ξ , the parity states
are sufficiently degenerate for topological protection of the
system. As L is shortened, the splitting oscillates within an
exponentially increasing envelope, as described in Ref. [39].
This is illustrated qualitatively in Fig. 1(c). In the regime
L � ξ , Ref. [39] gives the splitting as a function of L as

ε(L) ≈ �
2k̃F

e−2L/ξ

m∗ξ
cos k̃F L, (1)

where k̃F is the effective Fermi wave vector of the MBS wave
functions inside the nanowire and m∗ is the effective electron
mass. We show in the next section how a series of experiments
can be used to map out ε(L). Precise knowledge of this function
is required for the MBS parity readout scheme described in
Sec. IV.

III. MBS ENERGY SPLITTING

In Sec. III A, we describe how to measure the MBS splitting
ε at fixed L using resonant tunneling with the QD. In Sec. III B,
L is varied to show how the function ε(L) is mapped out.
Parameters relevant to InSb nanowires are used throughout
the paper, as listed in Table I. The results of this paper do not
depend strongly on the values of these parameters; rather, they
are chosen for their experimental relevance. We assume the
quantum dot charging energy is U = 5 meV, and an effective
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TABLE I. Fixed parameters used throughout the paper, chosen based on their relevance to experiments on proximitized InSb nanowires. T

is the temperature (kB is Boltzmann’s constant), B is the external axial magnetic field, m∗ is the effective electron mass (in units of free-electron
mass me), and g is the Landé factor on the QD. The fifth through tenth columns show energies in ascending order: the thermal energy kBT is
the lowest, followed by maximum MBS splitting ε∗, proximity superconducting gap 	, Zeeman splitting δ, chemical potential inside the InSb
nanowire μ, and QD charging energy U . The MBS parity readout procedure does not depend critically on these values and is feasible over a
large range of energy scales as long as the conditions kBT � 	 and kBT � |δ −

√
μ2 + 	2| hold.

T B m∗ kBT ε∗ 	 δ μ U

(mK) (T) (me) g (μeV) (μeV) (meV) (meV) (meV) (meV)

50 0.75 0.014 50 4.3 20 − 50 0.5 2.0 2.0 5.0

superconducting gap of 	 = 0.5 meV opens in the regions of
the nanowire proximate to the superconductor. This value of
	 is chosen conservatively to pertain to experiments involving
Nb, which has a superconducting gap of 1.4 meV. No subgap
states (other than the twofold-degenerate MBS) are assumed
to exist at energies below 	. An external axial magnetic
field �B = Bx̂ of magnitude B = 0.75 T induces topological
order in the superconducting section of the nanowire, where
a chemical potential μ = 2 meV is assumed. The spin-orbit
energy in InSb nanowires is expected [41] to be in the range
0.25–1 meV, smaller than the Zeeman splitting δ = 2.0 meV
at B = 0.75 T. A temperature T = 50 mK is used. Thus, the
thermal energy kBT is much smaller than the superconducting
gap, kBT � 	, and also the topological gap, kBT � |δ −√

μ2 + 	2|. Under these conditions, the low-energy states
of the topological superconductor (i.e., the MBSs) are well
separated from all higher-energy states, including the bulk
superconducting states. The MBSs are therefore isolated from
the superconducting “lead.” As the quantum dot in our scheme
is also isolated from metallic leads, we assume that temperature
plays no role in the tunneling, which occurs between two
isolated two-level systems.

A. Fixed MBS separation

We fix the MBS pair separation so that the energy splitting
ε at a value ε∗ is smaller than the (proximity) superconducting
gap 	; hence, the MBS do not couple to the continuum of
quasiparticle states. The |1〉,|0〉 MBS parity states are then
at energies +ε∗/2, − ε∗/2, respectively. The gate voltage Vg

is tuned so that the number of electrons on the QD is n, as
measured by the charge sensor.

Consider an initial MBS parity state |1〉, so the initial
state of the system is |ψi〉 = |n,S,1〉. The process |n,S,1〉 ↔
|n + 1,σ,0〉 is resonant when ε∗ equals the energy cost 	En,σ

of the |n,S〉 → |n + 1,σ 〉 transition of the dot, with σ = ↑ or
↓. From the constant interaction model, we have 	En,σ =
−eVg + nU ± δ/2, where the Zeeman energy δ = gμBB

enters with a plus (minus) sign for σ = ↑(↓). Determining
ε∗ is based on finding the resonant gate voltage V ∗. The
value for the resonant gate voltage depends on the initial MBS
parity state: had we started with the other parity state |0〉, both
processes |n,S,0〉 ↔ |n + 1,σ,1〉 and |n,S,0〉 ↔ |n − 1,σ,1〉
would have been off resonance at the V ∗ mentioned above.
The first of the two processes is resonant at Vg = V ∗ + 2ε∗/e,
and the latter is resonant at Vg = V ∗ + δ/e − U/e. This allows
the MBS-dot setup to distinguish between the two MBS parity
states.

Note that, due to Zeeman splitting of the spin levels of the
QD, there are generally two possible values for V ∗, labeled V ∗

σ

for σ = ↑,↓. Without loss of generality, we focus on the lower
resonance voltage V ∗

↓ from this point onwards. Hence, we use
the shorthand notation λ to refer to λ↓, the tunnel coupling
strength to the spin-down state of the QD. For a generic MBS
spin-polarization direction, a second resonance voltage V ∗

↑ is
present at V ∗

↑ = V ∗
↓ + δ/e but is not used. The procedure can

be readily extended to the special case of spin polarization
along the ±x̂ axis, where only one resonant voltage is present:
V ∗

↓ for the direct −x̂ and V ∗
↑ for the +x̂ direction. We now

turn our attention to finding ε∗.
A procedure for determining ε∗ is depicted in Fig. 2

and comprises three steps: (i) The system starts in the state

FIG. 2. Procedure for determining ε for a fixed L: gate voltage Vg

and calculated probability of having n + 1 electrons on the quantum
dot �n+1 versus time. (a) and (b) show the case in which the MBSs and
dot are brought into perfect resonance for the optimal charge-transfer
time. (a) Vg is raised from the initial value V0 to the resonance value
V ∗

↓ = 20 μV and held there for the optimal duration T ∗ = 2.5 ns
before being returned to V0. The sequence is broken into three steps
[(i)–(iii)]. (b) The corresponding probability �n+1 goes from zero
to >99%. (c) and (d) show three cases involving miscalibration of
V ∗

↓ and T ∗. (c) Voltage sequences with V trial = V ∗
↓ + 2 μV and T =

T ∗ − 1 ns (curve a), T trial = T ∗ and V trial = V ∗
↓ − 1 μV (curve b), and

V trial = V ∗
↓ and T trial = T ∗ + 1 ns (curve c). (d) Probabilities �n+1

corresponding to the sequences in (c). In all panels, the vertical dashed
lines show the optimal duration T ∗ for resonant charge transfer. The
following parameters are used: λ/h = 100 MHz, L = 1.12 μm, μ =
2 meV, B = 0.75 T. These correspond to ε∗ = 20 μeV.
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TABLE II. Tunneling rate λ/h, maximum sweep rates of gate voltage energy d(eVg)/dt and MBS splitting energy d(ε)/dt , and adiabaticity
condition estimates for three procedures discussed in the main text. “Calibration” refers to the procedure for finding ε∗(L) in Sec. III A; “Readout
1” refers to the MBS parity readout procedure discussed in detail in Sec. IV, and “Readout 2” refers to the procedure at the end of Sec. IV
with λ/h = 1 GHz. The probabilities of transitions between energy levels due to Vg,ε sweeps are calculated accurately in the numerical
TDSE simulations. The Landau-Zener formula exp(−2π) is used here to illustrate rough (order-of-magnitude) estimates of the adiabaticity
conditions. The dimensionless quantity  compares the level repulsion of the anticrossing energy levels with the rate of sweep of the energy
level. It is explicitly given in the column headers pertaining to transitions to higher-energy states due to Vg sweep (fifth column), ε sweep (sixth
column), and resonant dot-MBS state transfer (seventh column). A large number indicates a low probability of transition across the energy
gap, whereas a small number indicates a high transition probability. In the fifth and sixth columns, the probability of excitation of the MBS to
a state within the continuum of states above and below ±|	| is expected to be negligibly small; that is, the sweep rates given for Vg and ε are
well within the adiabatic regime. This is confirmed in our numerical TDSE simulations. In the seventh column, the sweep rate of Vg is fast
compared to the tunnel repulsion λ of the anticrossing resonant states |n,S,1〉,|n + 1, ↓ ,0〉, allowing an equal superposition to form with high
probability. Thus, Rabi oscillations can occur as described in Sec. III A.

λ/h d(eVg)/dt d(ε)/dt

(MHz) (meV/ns) (meV/ns)
(	 − ε)2

�d(eVg)/dt

(	 − ε)2

�d(ε)/dt

λ2

�d(eVg)/dt

Calibration 100 0.2 1.5 × 103 1.3 × 10−3

Readout 1 100 1.3 0.8 2.3 × 102 3.8 × 102 2.0 × 10−4

Readout 2 1000 1.3 0.8 2.3 × 102 3.8 × 102 2.0 × 10−2

|ψi〉 with Vg tuned to an initial value V0 and Vt at a large
negative value so that tunneling between the MBSs and QD
is suppressed. At t = 0, the tunnel coupling is turned on to
a value λ = h × 100 MHz by tuning Vt . Then, at t = 2 ns,
Vg is rapidly ramped up to a trial value V trial, such that
λ2 � �e|d(Vg)/dt | at all times t ; that is, the state evolution is
fast and nonadiabatic. This point is further discussed below.
(ii) Vg is held constant for the duration T trial and then
(iii) rapidly ramped down to its initial value. The tunnel
coupling is then turned off at t = 7 ns. Figure 2(a) shows Vg

versus time, with (V trial,T trial) = (V ∗,T ∗), the values which
produce resonant MBS-dot charge transfer for the chosen
system parameters. The corresponding probability for charge
transfer is shown in Fig. 2(b).

Rapid sweep of Vg and Rabi oscillations. Let us explore
the resonant state transfer process [Fig. 2(a)] in more detail.
Starting at V0, Vg is swept to V ∗

↓ . At this gate voltage, the
states |n,S,1〉 and |n + 1, ↓ ,0〉 anticross due to the tunnel
coupling λ. Note that Vg is swept rapidly compared to the
level repulsion λ, i.e., λ2 � �e|d(Vg)/dt |; however, it is
swept adiabatically slowly with respect to the continuum
of states above the proximity gap: |	 − ε|2 � �e|d(Vg)/dt |.
Therefore, the probability of exciting to higher-energy states
is negligibly small. This is shown quantitatively in Table II.

At the anticrossing point, the eigenstates of the system
are |±〉 = (

√
2)−1(|n,S,1〉 ± |n + 1, ↓ ,0〉). However, since

Vg was swept rapidly, the system stays in its initial state |ψi〉 =
|n,S,1〉 = (

√
2)−1(|+〉 + |−〉). A Rabi oscillation occurs in the

{|+〉,|−〉} subspace, and after time T ∗ the state of the system
is (

√
2)−1(|+〉 − |−〉) = |n + 1, ↓ ,0〉, up to an unimportant

global phase. The system stays in this state after a rapid sweep
of Vg away from the anticrossing point. Figure 2(b) shows the
simulated outcome of this process, obtained by numerically
solving the time-dependent Schrödinger equation (TDSE) to
find |ψ(t)〉, the system state at time t . The quantity of interest
is the probability of finding the dot in the n + 1 charge state
(with either spin), �n+1(t) = ∑

σ=↑,↓ |〈n + 1,σ,0|ψ(t)〉|2. It
can be seen that �n+1 goes from zero to >99%.

By comparison, Figs. 2(c) and 2(d) pertain to the case of off-
resonance charge transfer. For the same value of the initial gate
voltage V0 as in Fig. 2(a), Fig. 2(c) shows Vg versus time when
V trial = V ∗

↓ + 2 μV and T = T ∗ − 1 ns (curve a), T trial = T ∗

and V trial = V ∗
↓ − 1 μV (curve b), and V trial = V ∗

↓ and T trial =
T ∗ + 1 ns (curve c). The corresponding �n+1 values are shown
in Fig. 2(d) and indicate significant decreases compared to
Fig. 2(b). The results indicate that the precision required for
external control of voltage and time should be at the 100 nV and
100 ps levels, respectively, for a transfer probability close to 1.
Both requirements can be satisfied with current technologies.

A small ripple oscillation can be seen in Figs. 2(b) and 2(d).
This is due to a finite off-resonant dot-MBS coupling when the
initial voltage V0 is not very far from the resonant voltage V ∗

↓ .
In Figs. 2(b) and 2(d), the V ∗

↓ − V0 is only 20 μV. In Sec. IV,
we use a much larger value, ∼1.3 mV, for this difference and
find that the ripple is no longer observed.

Measurement of ε∗. To determine V ∗
↓ and T ∗, one repeats

the sequence (i)–(iii) many times for each set of trial input
parameters, each time measuring the charge state of the dot
using the SET after step (iii). The frequency of the |n + 1〉
outcomes yields an estimate of �n+1. The parameter space
(V,T ) is then surveyed to find the resonant tunneling time
T ∗ = h/λ and resonant gate voltage V ∗

↓ . The MBS splitting is
given by

ε∗ = −eV ∗
↓ + nU − δ/2.

Mixture of parity states. The calibration procedure as
described here assumes the ability to reliably prepare the
MBS in a particular parity state. Suppose, instead, that one
can only prepare the MBS in a statistical mixture ρ =
p|0〉〈0| + (1 − p)|1〉〈1|. Then, due to the sharp dependence
of transition probability on Vg , the procedure is still effective
at measuring ε∗. We note that if V ∗

↓ is the resonant gate voltage
for the |1〉 → |0〉 parity transition process, then the |0〉 → |1〉
process will be resonant at Vg = V ∗

↓ + 2ε∗/e. Thus, one would
observe two peaks in �n+1(t) of height p and 1 − p, separated
by 2ε∗ along the Vg axis. Peaks corresponding to the spin-up
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state of the QD will generally be visible as well (for MBS spin
polarization not along x̂) at V ∗

↑ = V ∗
↓ + δ/e.

B. Energy splitting versus MBS separation

The procedure outlined in the previous section may be
repeated for a variety of L values using the keyboard gates,
thereby allowing the experimenter to map out the oscillatory
function ε(L). In the Supplemental Material, we estimate a
typical spatial period of the oscillations of ε to be ∼30 nm.
Therefore, reliably varying ε with a precision ∼100 neV
requires tuning L (e.g., using keyboard gates) with a precision
at the ∼1-nm level.

Empirical measurement of the function ε(L) is itself
desirable, as it is a direct test of the validity of Eq. (1). Indeed, in
Ref. [50], ε is measured for several devices of different lengths,
and an exponential envelope is observed in ε(L). Performing a
similar experiment in a single device with varying L would
provide stronger evidence for the nonlocal nature of the
MBS wave functions and the presence of topological order.
The search over the (V,T ) parameter space at each L point
can be speeded up by noting that T ∗ depends only on the
tunnel coupling strength λ (Supplemental Material), which
can be assumed to be constant, reducing the optimization to a
one-dimensional search for V ∗

↓ once T ∗ is known.
Along with the dependence of ε on MBS separation, the

dependence of ε on other physical parameters such as the
strength of the Zeeman field and the chemical potential may
be mapped out. Although only the L dependence is required
for our proposed readout scheme, the model for the MBS
system described in Ref. [39] may be empirically tested with
respect to several independent variables. Below, we describe
how knowledge of the function ε(L) may be used for readout
of the MBS parity state.

IV. PARITY READOUT

A. Initial state

The keyboard gates separate the two MBSs by Li = 5 μm
where the two parity states are degenerate to within 0.5 μeV �
kBT � 4.3 μeV, given the parameters we have chosen. From
data collected in the calibration procedure in Sec. III B, a
target readout length Lf for the topological wire is chosen.
At Lf , the MBS splitting ε(Lf ) is such that ε(Lf ) > ε(L)
for all L > Lf , so Lf corresponds to a local peak of the
function ε(L). For the numerical calculation of the TDSE,
we choose Lf = 0.775 μm, resulting in ε(Lf ) = 49 μeV. The
optimal gate voltage V ∗

↓ at Lf for resonance with the spin-
down dot state is assumed to be known based on the calibration
procedure above. Since Lf corresponds to a peak in ε(L),
resonance with the dot does not occur for L > Lf . The dot is
initially in the |n,S〉 state, where we have arbitrarily chosen
n = 20. The gate voltage Vg is initially held at a value V0 =
(1/e)U (n − 1/2), halfway between the (n + 1) ↔ n and n ↔
(n − 1) charge degeneracy points of the QD, so V ∗

↓ − V0 =
(1/e)(U/2 − δ/2 − ε) � 1.3 mV. To restrict the dot to the {|n〉,
|n + 1〉} charge states, it is necessary to keep Vg within the
range (n − 1)U + ε + δ/2 < eVg � eV ∗

↓ = nU − ε − δ/2 at
all times.

FIG. 3. Readout procedure [stages (i)-(iii)] of the MBS parity
state as described in the text. The MBS is initially in the |1〉
parity state. (a) The MBS separation L [blue (dark gray)] and
the corresponding MBS splitting ε(L) (black) as predicted from
Eq. (1). (b) The gate voltage Vg [blue (dark gray)] and the calculated
probability of adding a charge to the dot �n+1 versus time (black).
The resonant gate voltage V ∗

↓ is known, obtained using the calibration
procedure given in Sec. III A. As Vg is tuned to V ∗

↓ , the probability of
finding n + 1 electrons on the dot rises from zero to a value greater
than 0.9999. Conversely, if the MBS initial state is |0〉, the maximum
�n+1 obtained is 0.004 (not shown). A charge readout of the dot then
constitutes a readout of the MBS parity state. A tunneling strength
λ/h = 100 MHz is used in the numerical calculations.

B. MBS parity readout procedure

With the system in its initial configuration, there are three
stages of the readout, labeled (i), (ii), and (iii) in Fig. 3. In
Fig. 3(a), the MBS separation L and the energy splitting
ε(L) are shown as a function of time. Figure 3(b) shows
the gate voltage Vg and the simulated probability �n+1(t) =∑

σ=↑,↓ |〈n + 1,σ,0|ψ(t)〉|2 with the MBSs initially in the |1〉
parity state. We consider each stage in turn.

Stage (i). The keyboard gates move the left MBS towards
the tunnel-coupled end so that the MBS separation is reduced
from Li = 5 μm to Lf = 0.775 μm. This is performed uni-
formly over a duration of 10 ns in our calculation. Table II
shows that the adiabaticity condition |	 − ε|2 � �|dε/dt |
is satisfied at all times, so the probability of coupling to
the continuum of quasiparticle states above and below 	 is
negligible. Note that this step could be carried out as much
as ∼100 times more slowly without affecting the results. The
process of moving the left MBS can possibly incur dephasing
errors within the |0〉,|1〉 parity basis. However, this does not
adversely affect the readout procedure in any regard, as the
readout is performed in the same parity basis. The parity
eigenstates are preserved under this transformation, as their
levels cross but do not couple. At the end of this stage, Vg

controlling the dot potential is rapidly switched from V0 to V ∗
↓ .

As discussed in Table II, this transition is rapid with respect
to λ (so Rabi oscillation occurs as explained in Sec. III A) but
adiabatic with respect to |	 − ε|, so there is negligible chance

155417-6



READOUT OF MAJORANA PARITY STATES USING A . . . PHYSICAL REVIEW B 94, 155417 (2016)

of excitation to higher-energy states. In our calculation the
voltage ramping time is 1 ns.

Stage (ii). The control parameters are held fixed for the
optimal tunneling time T ∗, which is 2.5 ns in the case simulated
here. With the MBSs initially in the |1〉 state, the |n,S,1〉 ↔
|n + 1, ↓ ,0〉 transition is on resonance, and an electron will
tunnel from the topological wire to the dot with transition
probability very close to 1 [Fig. 3(b)].

If, however, the MBS was initially in the |0〉 state, changing
the parity state will cost (rather than supply) an energy ε(Lf ).
The corresponding process, |n,S,0〉 ↔ |n + 1, ↓ ,1〉, is off
resonance; its resonant gate voltage is Vg = V ∗

↓ + 2ε/e. For
the |0〉 parity state then, the procedure illustrated in Fig. 3
would result in an electron transfer probability very close to
zero.

Stage (iii). In the reverse of stage (i), the gate voltage
is rapidly ramped back to V0, and the keyboard gates are
used to move the left MBS back to its initial position. Note
that, whereas sweeping Vg away from the resonance point is
necessary in order to prevent the electron from tunneling back
to the MBS, moving the left MBS with the keyboard gates is
not always required. It is included here to allow the system to
recover its initial configuration in case the cycle is repeated.
At this point, a charge measurement of the dot is performed
via the charge sensor, e.g., SET. A measurement outcome
of n + 1 indicates with high probability that the initial MBS
state was |1〉, while a measurement of n indicates with high
probability that the initial MBS state was |0〉. Hence, the dot
charge measurement amounts to a projective measurement in
the MBS parity basis.

C. Fidelity of readout

Using the parameters given previously and with ε(Lf ) =
49 μeV, the numerically obtained probability of finding n + 1
electrons on the dot after stage (iii) is greater than 0.9996
with the MBSs initially in |1〉. The probability of finding n

electrons is greater than 0.9999 with the MBSs initially in |0〉.
The readout scheme therefore allows the two MBS states to be
distinguished with a visibility up to 0.9996, defined simply as
the smaller of the two probabilities above. The term “readout
fidelity” is used interchangeably with this measure of visibility.
The residual error is dominated by the finite-voltage ramping
time: a faster ramp would increase the visibility. However, so
far we have not considered limitations on control precision
(discussed below), which in practice lead to lower fidelities.

D. Diabatic errors and readout time scale

The motion of the topological domain wall and its interac-
tion with the disorder potential in a finite-sized system can
potentially cause diabatic transitions to high-energy states
that will spoil the parity readout. In this paper, we have
assumed that diabatic errors do not occur. The dynamics of
MBS in the presence of a moving domain wall and disorder
potential have been theoretically studied [51–54], indicating
that diabatic errors can be avoided as long as the velocity
v of the moving domain wall is below some critical value
vc. Reference [51] calculates the condition for adiabatic and
phase-coherent manipulation of an MBS qubit (i.e., a stronger

criterion than strictly required for parity readout) as v �
vc = 2Emin/(�kF ) � 2α	/(�δ), where kF is the Fermi wave
vector and Emin is the value of the system gap at k = kF (i.e.,
the minimal eigenenergy of the appropriate Bogoliubov–de
Gennes Hamiltonian), α is the Rashba spin-orbit strength, 	

is the superconducting gap, and δ is the Zeeman energy. Using
the parameters in Table I, we calculate vc = 0.2–1.0 × 106

m s−1. In comparison, the motion of the domain wall in
the parity readout process [Fig. 3(a)] occurs at a velocity
v = 4.2 × 102 m s−1, so the above condition is satisfied. Based
on this, we conclude that the 25-ns sequence shown in Fig. 3
for the parity-dependent MBS → QD tunneling incurs no
diabatic errors. On the other hand, single-charge readout of the
QD state requires integration times in the range of 0.4 μs [46]
to 10 μs [45] or longer and bottlenecks the time scale of the
parity readout process.

In the above analysis we have ignored the interaction
of the domain wall motion with the disorder potential,
which may itself cause diabatic transitions to high-energy
states [54]. Such undesirable effects need to be mitigated
by using a slower motion of the left MBS. As mentioned
above, this can be done up to ∼100 times slower without
seriously affecting our numerical results. In doing so, one
must keep in mind the upper limit to the time scale of MBS
manipulation imposed by quasiparticle poisoning [55,56] (i.e.,
the lifetime of the parity states). A tight upper bound �100 ns
would pose very serious challenges for MBS parity readout.
However, experimental evidence on this front is encouraging,
as measurements have indicated (nontopological) bound-state
parity lifetimes exceeding 10 ms in proximitized Al-InAs
nanowire devices [57] and ∼1 min in NiTiN Cooper-pair
boxes [58].

E. Bias in parity readout due to miscalibration

Throughout the readout operation [stages (i)–(iii)], it was
assumed that the calibration of ε(L) performed in Sec. III B
is valid. Drift or noise in the applied voltage or pulse
timing will cause miscalibration errors and bias the charge
measurement outcome in favor of n over n + 1 (see Fig. 2),
i.e., a bias towards detecting |0〉 over |1〉 for the MBS parity.
However, a straightforward modification of our scheme allows
for distinguishing a calibration error from a genuine |0〉
outcome. This is done by appending a second readout operation
involving the n − 1 charge state of the QD.

Starting with Vg at V0 = (1/e)U (n − 1/2), i.e., halfway
between the (n + 1) ↔ n and n ↔ (n − 1) charge degener-
acy points of the QD, two parity-to-charge conversions are
attempted: First, |n,S,1〉 → |n + 1, ↓ ,0〉, by using the res-
onance at gate voltage V ∗

↓ = V0 + (1/e)(U/2 − δ/2 − ε), as
described previously. Subsequently, the |n,S,0〉 → |n − 1, ↓
,1〉 transition is made resonant at Vg = V0 + (1/e)(−U/2 +
δ/2 + ε). Then, the charge sensor is used to perform a
charge readout of the QD. The following outcomes can be
distinguished: n + 1 electrons indicate with high probability
that the initial MBS state was |1〉, while n − 1 indicates |0〉.
The outcome n indicates that neither transition took place (i.e.,
a calibration error), thus providing an in situ test for the validity
of the readout procedure.
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F. Sensitivity to precision of control

For the system parameters chosen in our simulations, the
MBS separation L must be controlled within approximately
1 nm in order to maintain an accuracy >99% in distinguishing
the parity outcomes. The tolerance can be improved by about
a factor of 3 by choosing parameters at the edge of the
topological phase region that correspond to an about 3 times
longer period for the MBS energy oscillations; however, such
a case is far less typical. Alternatively, the effect of tunnel
broadening may be exploited to reduce the sharpness of the
resonance condition and increase robustness. For example, we
solved the TDSE again with a tunnel coupling strength of 1
GHz, corresponding to “Readout 2” in Table II. This shows
that the stronger tunnel coupling allows a tolerance of ±4 nm
in the precision of the MBS location while still maintaining a
readout fidelity of ∼97% at the cost of reducing T ∗ by a factor
of 10. However, a 4-nm error in the case of the 100-MHz tunnel
coupling yields a dramatically lower visibility of ∼3%. Hence,
there is a trade-off between the required precision of spatial
control of the MBS separation versus the timing precision of
gate voltage control.

V. CONCLUSIONS

We examined theoretically a protocol to read out the
parity of an MBS pair in a topological superconductor using
an isolated quantum dot. The MBS pair is brought from a
well-separated (topologically protected) state to a spatially
overlapping (unprotected) state in which there is a finite-energy
splitting; one MBS is then resonantly tunnel coupled with the

quantum dot. The MBS parity state is projectively measured
by a charge measurement of the quantum dot, and we showed
that this can be accomplished, in principle, with high fidelity.
It is straightforward to extend this to the readout of a logical
qubit based on two MBS pairs. This protocol fits naturally into
the MBS-dot system, which could be a powerful and versatile
setting for achieving scalable control of topological qubits.

As an intermediate step, we discussed a calibration proce-
dure for mapping out the MBS energy splitting versus sepa-
ration ε(L). A similar experiment is performed in Ref. [50],
where an exponential envelope is observed, strongly indicating
the presence of topological order. Our setup allows for this
experiment to be performed in a parity-protected manner, so
that one can test the robustness of the MBS parity state against
the gate-driven motion of the topological domain wall. As with
any projective measurement, the readout protocol can also
be used to prepare the MBS into a desired parity eigenstate.
The key for both readout and state preparation is that parity
eigenstates should be preserved under adiabatic motion of the
topological wire.
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