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Femtosecond plasmon and photon wave packets excited by a high-energy
electron on a metal or dielectric surface
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Swift electrons generate coherent transition radiation (TR) when crossing a material surface, as well as surface
plasmon polaritons (SPPs) when the material is metallic. We present analytical and numerical calculations that
describe the time- and space-dependent electric fields of TR and SPPs induced by 30–300 keV electrons on a
Drude metal surface. The generated SPPs form wave packets a few-hundred femtoseconds in duration, depending
on the material permittivity. High-frequency components close to the plasmon resonance are strongly damped,
causing the wave packets to shift to lower frequencies as they propagate further. TR is emitted to the far field
as ultrashort wave packets consisting of just a few optical cycles, with an intensity and angle dependence that
is determined by the material permittivity. The excitation reaches its peak amplitude within a few femtoseconds
and then drops off strongly for longer times. From a correlation between material permittivity and the calculated
emission behavior, we determine qualitative predictions of the TR evolution for any given material. The results
presented here provide key insights into the mechanisms enabling swift electrons to serve as nanoscale optical
excitation sources.
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I. INTRODUCTION

Electron-beam spectroscopies such as cathodolumines-
cence (CL) spectroscopy and electron energy-loss spec-
troscopy (EELS) have gained much attention in nanophotonics
research because of their ability to resolve optical excitations
with nanometer precision. Just like photons, electrons carry
electromagnetic fields, allowing them to optically excite
polarizable matter. In fact, due to their short de Broglie
wavelengths and correspondingly high momenta, electrons
can be used as a highly localized optical excitation source
with a spatial resolution unattainable using optical excitation
techniques [1–7]. Many advances have been made in the
theoretical descriptions of the interactions between electrons
and matter that generate radiation [1,8–13]. These electron-
light-matter interactions occur on the femtosecond time scale
and have only recently been studied in the time domain,
in an indirect way, using adapted electron microscopes that
combine EELS with synchronized ultrafast optical excitations
[14,15]. Most work thus far has focused on exploring the
frequency and momentum domains, measuring and simulat-
ing spectral responses. Accordingly, analytical theory and
simulation techniques have not been applied to investigate
the time evolution of CL processes in detail, although
time-domain simulation methods have been gaining traction
[16,17].

In this article, we develop a theoretical framework to study
the radiation excited by swift electrons impinging on a metallic
or dielectric surface. We investigate in detail the time evolution
of coherent excitation and emission of transition radiation
(TR) and surface plasmon polaritons (SPPs). We examine the
space, time, and frequency dependence of the electric fields
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of the moving electron and how they interact with matter to
generate radiation. We start by deriving the external fields of an
electron in a homogeneous medium, determining the time- and
position-dependent behavior of the electric-field components.
We then examine an electron impinging on a planar surface,
interacting with the medium to induce fields that produce
radiation emitted into the far field. The general formalism
is derived in frequency and momentum space, after which the
time and space dependence is obtained by Fourier transforming
the fields. First, we investigate SPPs and study the generation
and propagation of these excitations on the femtosecond time
scale, for metals described by a Drude dielectric response.
We determine the evolution of the SPP wave packet as it
propagates away from the point of excitation. We then explore
TR, which is composed of far-field emission characterized by
ultrashort wave packets that strongly depend on the emission
direction. We study both the time and frequency dependence
of TR and elucidate the interrelation between the material
permittivity and TR emission. This allows us to formulate
qualitative predictions of TR emission behavior.

II. ELECTRON EXTERNAL FIELD

A point charge moving with constant velocity in vacuum
possesses an electromagnetic field that represents an evanes-
cent source of radiation. Inside a homogeneous medium, the
field can be described quite simply, allowing us to study
both the time and spectral dependence of the electron field
components. We focus on an electron traveling in a straight-
line trajectory along the z axis, with a constant velocity
vector v = vẑ, passing by the origin R = z = 0 at time t = 0.
The direction perpendicular to the trajectory is denoted as
R = RR̂, with the position vector defined as r = (R,z). The
electron charge density is given by ρ(r,t) = −eδ(r − vt).
This can be Fourier transformed to (q-ω) space as ρ(q,ω) =
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−2πeδ(ω − q · v). In our derivations, we use Gaussian units
and follow the notation used in Ref. [1], but focus only on
the electric fields E (the magnetic field H can be obtained
using the Maxwell-Faraday equation). The equations take
into account retardation effects (c is finite and the electron
velocity can reach a sizable fraction of c). We also use linear
response theory, which assumes that the induced field is linear
with the external field of the electron and, consequently,
the photon emission probability scales as the square of the
external charge (−e for the electron). Maxwell’s equations
can be solved in momentum-frequency space, leading to the
following expression for the electric field of the moving
electron:

E(q,ω) = − 8π2ie

q2 − k2ε

(
k

c
v − q

ε

)
δ(ω − q · v), (1)

where ε is the permittivity of the homogeneous medium and
k = ω/c is the free-space wave number. The momentum q of
the electron field can be decomposed as q = (Q,qz), in com-
ponents perpendicular (Q) and parallel (qz) to the trajectory,
with qz = ω/v. The latter expression, which expresses energy
conservation for transfers of frequency and wave vector from
the electron to the material, is the nonrecoil approximation [1].
It holds for �q2/me � ω, which is valid for photon-energy
exchanges �ω � 1 MeV, as is usually the case in the study
of photonic nanostructures. Integrating E(q,ω) over the z

component of q results in

E(Q,z,ω) = 4πie

vε

q − vkε/c

q2 − k2ε
eiωz/v. (2)

The electron dispersion ω = qv lies outside the light cone
in free space ω = kc, so the electron does not radiate and the
electric field decays exponentially away from the trajectory.
In contrast, the electron velocity can exceed the speed of light
inside a material, so the electron can couple to excitations
in the medium, leading to the emission of Cherenkov radi-
ation; we will not study this here. Performing the Fourier
transform over Q to obtain the electric field in real space, we
obtain [1]

E(r,ω) = 2eω

v2γεε
eiωz/v

[
i

γε

K0

(
ωR

vγε

)
ẑ − K1

(
ωR

vγε

)
R̂

]
, (3)

where γε = 1/
√

1 − εv2/c2 is the Lorentz contraction factor
and Km are modified Bessel functions of the second kind [18]
(see also Chap. 14 of Ref. [19]). The fields diverge at the origin,
so close to the trajectory there is a large contrast in the field
strength. Further away from the trajectory, the field amplitude
decays with the Bohr cutoff (vγε/ω) as a characteristic decay
length [1,4]. Using Eq. (3), we can determine the spectral
components of the electric field at different points in space. To
determine the electric field as a function of time, we Fourier
transform Eq. (3) as

E(r,t) =
∫

dω

2π
E(r,ω)e−iωt . (4)

Direct numerical integration is used below for the fields
produced when the electron crosses an interface. For the swift
electron moving in vacuum (γε → γ ), the E(r,t) fields can
be determined directly from ρ(r,t) and the Liénard-Wiechert

potentials (see pp. 661–665 in Ref. [19]), leading to

E(r,t) = − γ

[R2 + γ 2(z − vt)2]3/2
[RR̂ + (z − vt)ẑ]. (5)

For illustration, we study an electron traveling through
vacuum, with an energy of 30 keV, corresponding to a velocity
of v = 0.328c = 98.45 nm fs−1. The results are displayed
in Fig. 1, with a schematic of the electron, the coordinate
system, and the field orientations as an inset in Fig. 1(a).
We present the evanescent decay of the field away from the
trajectory of the electron in Fig. 1(a), calculating the total
electric-field intensity (time integrated over the entire pulse)
as a function of radial distance R, for the two field components
ER and Ez. Notice that the electric field produced by the
moving electron diverges at its position, thus reflecting the
divergence of the expected value of the electric force that it
produces on a test point charge at an arbitrarily small separation
from it. Incidentally, this divergence of the real part of the
self-interaction is known to be removed by renormalization in
the calculation of the Lamb shift [20] or in a proper derivation
of the polarizability of a point particle [21]. In CL and EELS,
it also disappears because the transition probability is limited
to a value given by the imaginary part of the self-interaction
[1]. This asymptotic behavior of the fields is clearly visible
in Fig. 1(a), with a difference of eight orders of magnitude in
the intensity between R = 1 nm and R = 100 nm. The ER

field component, perpendicular to the trajectory, has a higher
intensity than the Ez component. The strong gradient in the
field intensity observed here is responsible for the very high
excitation resolution of electron-beam spectroscopies.

Figure 1(b) displays the electric-field components as a
function of time, for distances R = 10 nm and R = 100 nm
away from the electron trajectory. The Ez component is
asymmetric, while the ER component is symmetric, both
displaying a single oscillation. For a distance of R = 10 nm,
the field transient occurs within ∼2 fs, highlighting the
extremely short pulse felt by an observer close to the moving
electron. At R = 100 nm, the field amplitudes have decayed
by a factor 100 and the transient spreads out in time by a
factor 10. This is due to the fact that further away from the
trajectory, the distance between moving electron and observer
varies more slowly with time.

Figure 1(c) displays the electric field in the frequency
domain. Spectra for the two field components are presented
for R = 10 nm and the total intensity for R = 10 nm and R =
100 nm. The different field components display characteristic
spectral shapes, with Ez vanishing for small frequencies while
ER has a maximum. At R = 10 nm, the spectral range extends
well beyond 10 eV; at R = 100 nm, the intensity has decayed
by a factor 100 and the spectrum is confined to ∼1 eV
(∼242 THz).

These calculations show that an electron moving through
vacuum possesses an electric field that is characterized (at a
certain position) by ultrashort pulses, with energies extending
beyond 10 eV close to its trajectory. The field strength and
spectral content decay when moving further away. Since these
fields are evanescent, they cannot couple directly to far-field
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FIG. 1. Electric field produced by a 30 keV electron in vacuum.
(a) Total (time-integrated) electric-field intensity of the radial (ER ,
in blue) and vertical (Ez, in red) components, as a function of radial
distance to the electron trajectory R, displaying the diverging intensity
close to the electron trajectory at R = 0. The inset depicts a schematic
of the moving electron with the coordinate system and orientation of
the field components. We evaluate the electric fields for a given radial
distance R, height z, and time t or frequency ω. (b) Electric-field
amplitudes of the ER (blue) and Ez (red) components as a function of
time, for distances of R = 10 nm (thick lines) and R = 100 nm (thin
lines, amplitudes multiplied by 100), and with the minimum electron-
observer distance at t = 0. (c) Electric-field intensity in the frequency
domain, as a function of frequency and corresponding energy, for the
ER (blue), Ez (red), and Etot (black) components at a distance of
R = 10 nm, compared to the total intensity for R = 100 nm (gray,
multiplied by a factor of 100).

radiation. Next, we study an electron impinging on a dielectric
medium, leading to processes that can emit radiation.

e -

v
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FIG. 2. Schematic of the electron traversing the interface between
two media, presenting the coordinate system, as well as the permit-
tivities εj and surface currents hj on either side of the interface.

III. AN ELECTRON IMPINGING ON A PLANAR SURFACE

When an electron reaches and traverses the interface
between two media, it generates transition radiation (TR),
as well as surface plasmon polaritons (SPPs) in the case
of a metal. In general, the electric field can be described
by separating the contributions of the external field of the
electron in each medium (as if it were an infinite homogeneous
medium) and the field that is induced at the surface. The
induced field is created by surface charges and currents induced
by the approaching electron,

E = Eext
j + Eind

j .

Figure 2 depicts a schematic of the geometry studied here.
The induced field can be expressed in terms of the surface
currents hj as [1,10,22]

Eind(Q,z,ω) = −2πk

qzj

eiqzj |z|
(

hj − 1

k2εj

[Q,sign(z)qzj ]

×{[Q,sign(z)qzj ] · hj }
)

. (6)

Here, qzj =
√

k2εj − Q2 + i0+, where the square is chosen
to yield a positive real part. From the boundary conditions
(i.e., the continuity of the E and H components parallel to the
surface), it follows that the currents only have components of
parallel momentum Q and can be written as hj = Dμj Q̂. The
induced electric field takes the form

Eind
j (Q,z,ω) = 2π

kεj

Dμje
sign(z)iqzj z[−qzj Q̂ + sign(z)Qẑ],

(7)

where

D = 2ieQ/c

ε1qz2 + ε2qz1
, (8)

μ1 = ε1qz2 − ε1ω/v

q2 − k2ε2
− ε1qz2 − ε2ω/v

q2 − k2ε1
, (9)

and

μ2 = ε2qz1 + ε1ω/v

q2 − k2ε2
− ε2qz1 + ε2ω/v

q2 − k2ε1
. (10)

We can now combine the external and reflected fields
together to obtain the complete expressions for the electron
electric fields on both sides of the interface, for both field
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components. Recall from Eq. (2) that the external field contains
components q − vkε/c, with q = (Q,ω/v). We obtain the fol-
lowing expressions for E(Q,z,ω) = ER + Ez = ERQ̂ + Ezẑ:

ER = 4πie

vε1

Q

q2 − k2ε1
eiωz/v − 2π

kε1
qz1Dμ1e

−iqz1z, z < 0

(11a)

Ez = 4πie

vε1

ω
v

(
1 − v2

c2 ε1
)

q2 − k2ε1
eiωz/v − 2π

kε1
QDμ1e

−iqz1z, z < 0

(11b)

ER = 4πie

vε2

Q

q2 − k2ε2
eiωz/v − 2π

kε2
qz2Dμ2e

iqz2z, z > 0

(11c)

Ez = 4πie

vε2

ω
v

(
1 − v2

c2 ε2
)

q2 − k2ε2
eiωz/v + 2π

kε2
QDμ2e

iqz2z, z > 0.

(11d)

In order to obtain the fields as a function of space and time,
we Fourier transform back from (Q-ω) space:

E(r,t) =
∫

d2Q
(2π )2

eiQ·R
∫

dω

2π
e−iωtE(Q,z,ω). (12)

The integral over Q can be partially simplified by removing
the azimuthal component of Q to leave only the radial part,
so that we obtain a single integral over Q. This approach
differs between the two field components, since Ez contains
no vectorial component of Q, but ER does. We find for Ez that∫

d2Q
(2π )2

eiQ·R =
∫ ∞

0

Q

2π
dQJ0(QR),

while for ER ,∫
d2Q

(2π )2
eiQ·RQ̂ =

∫ ∞

0

Q

2π
dQiJ1(QR)R̂.

We apply these identities to Eq. (12), and further use
causality [E(ω) = E∗(−ω)], to reduce the fields to

Ez(r,t) =
∫ ∞

0

Q

2π
dQJ0(QR)

∫ ∞

0

dω

π
Re{e−iωtEz(Q,z,ω)}ẑ,

(13a)

ER(r,t) =
∫ ∞

0

Q

2π
dQJ1(QR)

×
∫ ∞

0

dω

π
Im{−e−iωtER(Q,z,ω)}R̂, (13b)

where Ez(Q,z,ω) and ER(Q,z,ω) are given by Eq. (11). Now
that we have derived this general formalism, these integrals
can be solved numerically to study SPP and TR generation.
From these equations, we can derive analytical expressions for
the electric-field components in the far field. We demonstrate
this in the following sections.

IV. SURFACE PLASMON POLARITONS

The excitation of surface plasmon polaritons by fast
electrons was discovered several decades ago [23–25] and

has since been demonstrated in a broad variety of experiments
[2,26–28]. In studying the excitation of SPPs, we can ignore
the external electric field as it decays evanescently and thus
does not generate radiation. In our formalism, plasmons are
revealed by the induced electric fields [Eq. (7)] and, more
specifically, they originate in the pole of the denominator
of D: ε1qz2 + ε2qz1 = 0. This equation leads to the plasmon
dispersion relation,

QSPP = k

√
ε1ε2

ε1 + ε2
. (14)

We now use the plasmon-pole approximation [1,10,29],
retaining only the contribution of the plasmon pole at Q =
QSPP. For large distances (R � λ), one can perform the
integral over Q from Eq. (13), allowing us to derive analytical
expressions for the fields of the SPPs. Using this method, D

becomes

D ≈ C

Q − QSPP
, (15)

where the denominator arises from a Taylor expansion around
the plasmon pole,

ε1qz2 + ε2qz1 ≈ −QSPP

(
ε1

qz2
+ ε2

qz1

)
(Q − QSPP)

= (Q − QSPP)

A
,

leading to

C = 2eiQA

c
.

To determine the SPP electric fields in space as a function
of frequency, we can rewrite the frequency-domain part of
Eq. (13), making the plasmon pole explicit, and perform the
integral over Q,

ESPP(r,ω) ∝
∫ ∞

0
dQJm(QR)

f (Q,z,ω)

Q − QSPP

≈ 2π
i

2
f (QSPP,z,ω)H (1)

m (QSPPR), (16)

where H (1)
m is a Hankel function of the first kind. By combining

Eq. (16) with Eq. (11), we can consolidate an expression for
the frequency-dependent SPP fields in a relatively compact
way, and find

ESPP(r,ω) = 2πeiAQ2
SPP

ckεj

μje
sign(z)iqzj z

[
sign(z)iQSPP

×H
(1)
0 (QSPPR)ẑ + qzjH

(1)
1 (QSPPR)R̂

]
. (17)

This equation is applicable on both sides of the interface that
the electron traverses. As in the previous section, the final
step to obtain the time-dependent electric fields is to Fourier
transform over the frequency domain,

ESPP(r,t) =
∫ ∞

0

dω

π
Re{ESPP(r,ω)e−iωt }. (18)

We calculate the time- and frequency-dependent SPP
electric fields for a 30 keV electron impinging on a Drude
metal under normal incidence, with a permittivity described by
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FIG. 3. Dispersion relation of surface plasmon polaritons (SPPs)
for a Drude metal with �ωp = 1 eV and �η = 0.05 eV, displaying the
energy as a function of the SPP wave vector QSPP. Real (imaginary)
parts are represented as blue (red) curves for both complex QSPP

(dashed curves for Re{QSPP} and Im{QSPP}, as a function of real
energy in the vertical axis) and complex ω (solid curves for Re{�ω}
and −5 × Im{�ω}, as a function of real wave vector in the horizontal
axis). The diagonal dashed line denotes the light cone, while the
horizontal one indicates the energy of the SPP resonance frequency
ωSPP. The inset depicts the permittivity ε of the Drude metal as a
function of energy.

ε(ω) = εD(ω) = ε0 − ω2
p/(ω2 + iηω). The Fourier transform

is performed numerically by summing over energies in the
range �ω = 10−6 − 100 eV, divided into 106 steps. We choose
�ωp = 1 eV and �η = 0.05 eV. The corresponding plasmon-
dispersion relation is depicted in Fig. 3, the SPPs being excited
for frequencies ω � ωSPP = ωp/

√
2. We show representations

of both complex frequency and complex wave vector in the
dispersion relation.

The representation with real wave vector and complex
frequencies is well suited for pulsed excitations (i.e., such that
a single frequency is not well defined), in which the imaginary
part of the complex frequency describes the decay in time
[30]. In contrast, a quasimonochromatic, spatially delocalized
excitation is better represented by the real-frequency descrip-
tion, in which the imaginary part of the complex wave vector
accounts for propagation losses. These two representations
are very similar along most of the dispersion curve, except
near the SPP horizontal asymptote, where the complex wave-
vector picture describes a band bending followed by negative
dispersion, while the complex frequency picture fully retains
the asymptotic behavior. For the electron incident on a planar
surface, both representations are equivalent, depending on
which of the integrals (ω or Q) is performed earlier in Eq. (12).
In the expression of Eq. (18), the frequency remains real, as
we have chosen to carry out the wave-vector integral first. The
Im{ω} term is negative (as expected for e−iωt to decay for
t → ∞), so we multiply it by −5 to show it on the same scale
as the other quantities.

Figure 4(a) shows the time evolution of an SPP wave
packet, as observed for a height z = −10 nm above the metal
surface, at a radial distance R = 10 μm from the electron
trajectory (R � λ). After ∼30 fs, we clearly observe an
increase in amplitude and an oscillating wave packet that
then decays, for both field components. As expected for the

Time (fs)

-2

0

2

0 200 400

R=1 μm
R=10 μm (×20)
R=100 μm (×400)

(b)

(c)

Frequency (THz)

0

0.2

0.4

0.6

0.8

1 SPPω

R=1 μm
R=10 μm
R=100 μm

R=0.1 μm

0 100 200

Energy (eV)
0 10.4 0.60.2 0.8

Time (fs)

-100

0

100

0 100 200

(a)

ER

Ez R=10 μm

Drude Metal

SPPs

e 
(30 keV)
-

R
z=-10 nm

FIG. 4. Electric field of surface plasmon polaritons (SPPs)
excited by a 30 keV electron, propagating along the surface of a Drude
metal (same parameters as in Fig. 3). (a) Electric-field amplitudes of
the SPP wave packet, showing the ER (blue) and Ez (red) components
as a function of time, evaluated for a height 10 nm above the metal
surface and a distance R = 10 μm away from the electron impact
position (see inset). The time t = 0 corresponds to the electron
crossing the interface. (b) Comparison of the Ez SPP amplitude as a
function of time for a fixed height z = −10 nm at different distances
of 1 μm (red), 10 μm (blue, multiplied by 20), and 100 μm (green,
multiplied by 400). (c) Comparison of the intensities of the Ez SPP
field component in the frequency domain, each normalized to the
maximum value at the same distances as in (c). Data for R = 0.1 μm
(in black) are also presented. The SPP resonance frequency ωSPP is
indicated.

transverse-magnetic (TM) polarized SPPs, Ez oscillates with
larger amplitude than ER . The wave packet has a duration
of a few-hundred femtoseconds, and considering the distance
R and the time of the onset, is propagating close to the
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speed of light. This is to be expected at large distances
and times, as the lowest-frequency components close to the
light line propagate with the lowest loss and the slower,
high-frequency components are strongly damped; see both
Im{�ω} and Im{QSPP} in Fig. 3. In Fig. S1 of the Supplemental
Material [31], we present the full time evolution and spectral
behavior over a 60 μm range.

In Fig. 4(b), we compare the time evolution of the SPP
wave packet at R = 1, 10, and 100 μm. The period of the
oscillations in the wave packet increases for further distances,
corresponding to the shift to lower frequencies. The wave
packet reaches its maximum amplitude within a single optical
cycle, as expected for the single-cycle excitation; see Fig. 1(b).
It then decays within ∼200 fs after the initial onset, the
duration determined by the damping rate η. In Fig. S2 of
the Supplemental Material [31], we compare the SPP wave-
packet evolution for different material parameters and electron
energies. Essentially, the electromagnetic field oscillates in
time with a characteristic period ∼1/ωp, and therefore all
the results reported here can be scaled appropriately for other
values of the plasma frequency. The attenuation introduced
through η affects the temporal extension of the field (increasing
|Im{ω}|) and, consequently, also the number of oscillations that
can be resolved.

To compare the time evolution to the spectral behavior, we
calculate the frequency-dependent fields in Fig. 4(c), where
data for a distance of R = 100 nm are also used. All spectra
have been normalized to their maximum: 5.1 × 1012, 5.7 ×
109, 7.4 × 106, and 2.3 × 104 V2 m−2 eV−2 for R = 0.1, 1,
10, and 100 μm, respectively. Close to the electron trajectory,
for R = 100 nm, the SPP spectrum is very sharp and peaks at
ωSPP. For larger distances, the spectrum broadens and shifts to
lower frequencies, as expected from the frequency-dependent
damping discussed above.

V. TRANSITION RADIATION

Transition radiation (TR) is a common form of radiation
excited by an electron interacting with matter, as it occurs
for any swift electron (or charged particle) crossing the
boundary between two different media [32–36]. A simple and
intuitive way to view TR is that the electromagnetic fields
of the electron are “in equilibrium” with their environment,
obeying the equations for a homogeneous medium outlined
above. If the two media are different, however, the fields of
the electron must have adjusted to the new electromagnetic
properties of the second material. This modification of the
fields as the electron transitions between the media is then
accompanied by radiation. Jackson describes TR as portions of
the electromagnetic field that must shake it off as radiation (see
pp. 646–654 in Ref. [19]). An alternate intuitive explanation
is provided by the method of image charges. The negatively
charged electron produces a positive image charge below the
surface, inducing an effective dipole normal to the surface
which vanishes and radiates when the electron passes through
the interface. This problem can be treated by describing
the field lines of two moving charges of opposite sign that
instantaneously stop (at the interface) or start (moving away
from the interface) [37–39]. More generally, the approaching
electron induces surface charges and currents which polarize

the atoms in the material close to the trajectory. These
polarization charges react and create an induced field which
can radiate out to the far field as transition radiation.

The emission actually must originate from the induced
field, just as for SPPs, since the homogeneous fields decay
evanescently away from the trajectory of the moving electron
and do not couple directly to far-field radiation, so we can
discount them in the derivation of the TR fields. Using the
general formalism derived for the single interface, we can
write the E(r,ω) fields, taking only the integral over Q from
Eq. (12) applied to the components of Eq. (11):

E(r,ω) =
∫ ∞

0

Q

2π
dQ

2π

kεj

Dμje
iqz1|z|

× [J0(QR)sign(z)Qẑ − iJ1(QR)qzj R̂]. (19)

TR is emitted to the far field, so taking the limit for large
distances, kr −→ ∞, we can evaluate the integral over Q for
the two different field components. Here we examine only the
upper hemisphere (z < 0, see Fig. 2), taken to be vacuum:

∫ ∞

0
dQJ0(QR)eiqz1|z|f (Q) ≈ −i

qz1

Q

eikr

r
f (Q), (20a)

∫ ∞

0
dQJ1(QR)eiqz1|z|f (Q) ≈ −qz1

Q

eikr

r
f (Q), (20b)

where the value of Q in the right-hand side of the equation is
determined by the emission direction (see below). Applying
this approximation to Eq. (19) leads to a compact expression
for the spectral components of the TR electric field:

ETR(r,ω) = i
qz1

k
Dμ1

eikr

r
(Qẑ + qzj R̂). (21)

The fields for the lower hemisphere can be obtained by
analogy, using the corresponding components from Eq. (11).
Making use of the geometrical relations between R, z, and r as
well as Q, qz1, and k, we can define an angle θ that determines
the emission direction with respect to the surface normal:
cos θ = qz1/k = z/r and sin θ = Q/k = R/r . Making use of
these relations, we can rewrite the vectorial part of Eq. (21) as

(Qẑ + qzj R̂) = k

(
R

r
ẑ + z

r
R̂

)
= kθ̂ .

This helps to further simplify Eq. (21), which reduces to

ETR(r,ω) = iqz1Dμ1
eikr

r
θ̂ . (22)

We can rewrite this with a more explicit dependence on θ ,
finding a result very similar to that for the magnetic field as
derived in Ref. [1]:

ETR(r,θ,ω) = ik cos θDμ1
eikr

r
θ̂ . (23)

We can evaluate this expression for Q = k sin θ . The asymp-
totic part f (Q) of Eq. (20) can be used to obtain the TR
emission probability by integrating over the upper hemisphere,
leading to

�TR(ω) = 1

2π�k

∫ π/2

0
sin θdθ |k cos θDμ1|2. (24)
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Finally, Eq. (23) can also be used to determine the TR
electric field as a function of time by performing the Fourier
transform over frequency,

ETR(r,θ,t) =
∫ ∞

0

dω

π
Re{ETR(r,θ,ω)e−iωt }θ̂ . (25)

For a nondispersive medium, this can be simplified even
further, since there are no longer any frequency-dependent
components except for the e−iωt term. The integral over ω

then results in a δ(r − ct) term. In particular, for a perfect
electric conductor, the TR electric field in space and time
reduces to [38]

ETR(r,θ,t) = 2ev sin θ

rc

δ(r − ct)

1 − (
v
c

)2
cos2 θ

θ̂ . (26)

We evaluate Eq. (25) numerically, since it is generally
applicable for any material. We use a fixed distance r0 =√

2 μm from the origin (so that −z = R = 1 μm for θ = 45◦)
for different combinations of R and z to obtain a suitable
distribution of angles θ . We use a 30 keV electron impinging
on the same Drude metal as for the SPP calculation, with
�ωp = 1 eV and �η = 0.05 eV, summing over energies in
the range �ω = 10−6 − 100 eV, divided into 106 steps. We
find that a large range of energies is necessary to obtain good
convergence (�ω ∼ 100 eV), although the main features are
resolved even with a smaller range (�ω ∼ 10 eV). These values
are, however, related to the energy/frequency dependence of
the material permittivity. The larger the range in frequencies
over which ε displays features, the larger the range needed in
the calculation for good convergence.

Figure 5 displays the results of these time-resolved cal-
culations. Figure 5(a) presents the TR electric-field intensity
(on a log scale) as a function of the emission angle θ and
normalized time T = t − r0/c. Radiation emitted at the instant
the electron traverses the interface will reach the position of the
observer (at a distance r0) at the time T = 0, at which a sharp
increase in intensity is observed for all angles. Just as for the
SPPs, TR forms a very short electromagnetic wave packet that
travels through space. Comparing different angles, we clearly
observe different regimes. For angles up to ∼60◦, there are
distinct oscillations in the intensity, which propagate longer at
lower angles. For angles above ∼60◦, we no longer see these
oscillations, but instead see a uniform decay in intensity.

To study the time evolution in more detail, we directly
compare the time trace for different angles (denoted by the
horizontal white dashed lines), showing the TR electric-field
amplitude on a linear scale, in Fig. 5(b). The inset depicts
a schematic of the process, with the simple model of the
negatively charged electron inducing a positive mirror charge
that creates a vertical dipole. Indeed, the angular emission
pattern of TR displays two lobes (representing a cross cut
through a toroidal three-dimensional pattern), similar to the
emission from a vertical point dipole above the interface.
Examining the TR wave packets, it is obvious that for all
angles there is no discernible emission before T = 0. The
radiation only begins at T = 0, rising rapidly to a maximum
within a few femtoseconds, before decaying within ∼30 fs
(for the material parameters used here). TR thus consists of
extremely short-lived wave packets. Comparing the different
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FIG. 5. Electric field of transition radiation (TR) excited by a
30 keV electron, propagating away from the same Drude metal as
in Figs. 3 and 4, as a function of time. (a) The TR electric-field
intensity, shown on a logarithmic scale, as a function of the emission
angle θ and of the normalized time T = t − r0/c, with r0 = √

2 μm
the position at which the field is calculated for each angle [see inset
schematic in (b)]. (b) Comparison of the TR electric-field amplitude
as a function of the normalized time for four different emission angles,
corresponding to the dashed lines in (a). The inset depicts a schematic
of the TR excitation and emission process.

emission angles, we notice a variation in the maximum
amplitude, with the smallest and largest angles exhibiting a
lower intensity than those in between (by a factor ∼2–5).
This agrees with the expected dipolar emission pattern that
also exhibits low intensity for small and large angles with a
maximum in between. At small angles of emission, θ = 5◦
and 30◦, we observe clear oscillations in time, which have
a similar initial period before becoming out of phase after
the second optical cycle. For higher emission angles, θ =
60◦ and 80◦, the oscillations are strongly damped and the
time evolution displays a single slow decay from the initial
amplitude maximum.

In order to gain insight into this strong angle-dependent,
short-lived behavior, we calculate the TR electric field as a
function of frequency. Figure 6(a) shows the TR intensity as
a function of frequency and emission angle. The intensity is
limited to certain sections of θ -ω space. For the Drude metal
with �ωp = 1 eV, the permittivity approaches unity above
an energy of several eV, so the electron will not perceive a
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FIG. 6. Electric field of TR in the frequency domain, excited
by a 30 keV electron impinging on the same Drude metal as
in Figs. 3–5, evaluated at the same distance r0 = √

2 μm as in
Fig. 5. (a) TR electric-field intensity as a function of emission
angle θ and frequency/energy. The curved white line corresponds to
θ = arcsin(

√
εD). (b) Comparison of the TR electric-field spectra for

different emission angles, denoted by the horizontal dashed lines in
(a). The inset depicts a schematic of the TR excitation and emission
geometry. (c) Normalized TR electric-field intensity as a function
of emission angle, for the total integrated intensity (gray) and for
different frequencies, denoted by the vertical dashed lines in (a).

transition in that energy range. The intensity is also depleted
at the smallest and largest angles for most of the frequency
range. Examining Eq. (23), we find that it contains a cos θ

term and a sin θ term (due to Q), so ETR is expected to go
to 0 for angles close to 0 and π/2. Physically, these angles
correspond to either very small Q or qzj , indicating that the
light modes are more delocalized (in space) and the coupling

between the electrons and the impact region is smaller, leading
to lower TR intensity.

At low frequencies and large angles (grazing to the surface),
there is a broad and intense feature that occurs when the real
and imaginary parts of ε2 reach very large magnitudes (ε2 = εD

of the Drude metal). At small angles (close to the surface
normal), there is a sharp, bright peak that starts at ω = ωp and
then bends off to higher frequencies and larger angles before
disappearing around θ = 40◦. This feature occurs when |εD|
displays a sharp kink and can be a result of an accumulation
effect comparable to van Hove singularities [40,41]. The kink
in |εD| bears resemblance to divergences in the density of
states that lead to anomalies in optical absorption spectra. An
additional explanation, described by Ferrell [42] and Stern [43]
for metal foils, is that the incoming electron drives plasma
oscillations of electrons at the surface, which radiate at the
plasma frequency ωp. This emission is only expected when
Im{ε} is much smaller than 1, which is the case here. In the
Supplemental Material [31], we confirm that the effect indeed
disappears for increasing loss.

We attribute the sudden depletion of the TR intensity of
this feature for ω > ωp to the coupling strength between the
electron and the material becoming focused in the forward
direction, into the metal. The dispersion relation of the light
inside the metal is given by q = k

√
εD , while the parallel

wave vector of the emitted radiation is Q � q. The boundary
for coupling the energy into the metal instead of the far
field of the upper hemisphere should thus be determined by
sin θ = Q/k = √

εD , so θ = arcsin(
√

εD). We find excellent
agreement with the data, as confirmed by the curved solid white
line in Fig. 6(a), as well as later on in Fig. 7 and in Fig. S5 of
the Supplemental Material [31]. This explanation is consistent
with the behavior of the μ1 term [Eq. (9)] that appears
in Eq. (23): the first denominator q2 − k2εD goes to 0 for
q = k

√
εD , leading to the divergent behavior that we observe.

These results indicate that the frequency-dependent per-
mittivity of the Drude metal leaves a strong imprint on the
TR emission. We will study this dependence on permittivity
in more detail in Fig. 7. Additionally, we study the effect of
different material parameters and electron energies on the TR
emission explicitly in both the time and frequency domains in
Figs. S3–S5 of the Supplemental Material [31].

While we present extensive results for a Drude metal with
a characteristic bulk plasmon energy of 1 eV, the duration of
the emitted wave packets of both SPPs and TR depends on
η and ωp. For a constant ratio between these quantities the
pulse duration will be inversely proportional to ωp, so that
it becomes ∼15 times shorter for a prototypical Drude metal
such as aluminum for example.

In Fig. 6(b), we examine the corresponding spectra for the
same angles as shown in Fig. 5(b) (denoted by the horizontal
white dashed lines). For θ = 5◦, we note a low intensity but
a clear peak in the spectrum at the plasma frequency ωp.
For θ = 30◦, the spectrum is still dominated by this peak
that has moved to slightly higher frequencies, but there is a
noticeable increase at lower frequencies as well. We can now
say that the oscillations in time from Fig. 5 for small angles
correspond roughly to the plasma frequency. For larger angles,
the frequency of oscillations increases. For θ = 60◦, a broad,
decreasing spectral band is observed up to ∼2 eV (∼484 THz).
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FIG. 7. Dependence of TR on the material permittivity ε.
(a) Absolute value of the permittivity of the Drude metal (�ωp =
1 eV and �η = 0.05 eV), as a function of frequency/energy (in
blue) compared to the normalized total TR electric-field intensity
(integrated over all angles, in red) and the angle of maximum emission
intensity θmax (in green). The TR intensity spectrum is normalized to
the same maximum as |ε|, the vertical dashed line denotes the plasma
frequency, and the horizontal dashed line indicates |ε| = 1. The gray
dashed line corresponds to θ = arcsin(Q/k) ∼ arcsin(

√
ε). (b) Same

as for (a), but now for silicon, with a permittivity that displays typical
features of a dielectric but also contains a metallic region.

At θ = 80◦, a narrower spectral band is distinguished, falling
off well below 1 eV. These data correspond to the time
evolution that is observed at large angles, which does not
exhibit clear oscillations but instead a strongly decaying signal.

Examining the frequency extent of the spectra more closely,
they are most confined for the largest and smallest angles
[Figs. 6(a) and 6(b)], where the fields are more delocalized.
Correspondingly, the TR is more spread out in time. For angles
around θ = 50–70◦, the fields extend over a much wider range
of frequencies and are very localized in time, corresponding
to stronger coupling between the electrons and the impact
region. Combining the fields over all angles and determining
the far-field component, as described in Eq. (24), allows
one to calculate the emission intensity that can be measured
experimentally. This approach has shown excellent agreement
with multiple experiments on a variety of materials, including
metals and semiconductors [44–46].

In addition to studying the spectra for given angles, we can
determine the angular profile at different frequencies. This
is experimentally accessible, for example, by using angle-
resolved detection in combination with spectral filters. As for
spectral measurements, good agreement with theory has been
found for a variety of materials [46,47]. Figure 6(c) presents
the normalized intensity as a function of θ for the frequencies
corresponding to the vertical white dashed lines in Fig. 6(a),
as well as the total intensity summed over all frequencies. We
clearly observe the characteristic dipolar lobes, which vary in
orientation and width for different frequencies. As expected,
there are broader lobes at grazing angles for low frequencies
and narrower lobes close to the surface normal at ω = ωp.
For higher frequencies, the distribution moves back to higher
angles and becomes sharper.

Figure 7 examines the relation between TR emission and
material permittivity by comparing the absolute value of ε to
the total intensity (summed over all angles) and to the angle
of maximum intensity θmax, as a function of frequency/energy.
The incoming medium is vacuum. We first study the Drude
metal with �ωp = 1 eV and �η = 0.05 eV for a 30 keV
electron [Fig. 7(a)]. For low frequencies, |εD| and the total
intensity exhibit the same decreasing trend when approaching
ωp; the two then show opposite behavior in the frequency
range where |εD| < 1. θmax, meanwhile, displays the same
trend as εD across the whole frequency range, decreasing and
increasing in lockstep. We examine the angle θ = arcsin(

√
εD)

for frequencies ω > ωp, indicated by the gray dashed line. As
discussed above, this should indicate the boundary between
regions where the radiation is coupled in the backward
(upper hemisphere) or forward (into the metal) directions.
The resulting angle exhibits excellent agreement with θmax,
indicating that the sudden depletion of TR can indeed be
attributed to coupling into the metal. This is dependent on
the specific material permittivity; we confirm that there is
good agreement for different parameters in Fig. S5 of the
Supplemental Material [31].

In order to further explore these trends, we examine the
same variables for silicon in Fig. 7(b), again using a 30 keV
electron. In the �ω = 0–20 eV range, the permittivity εSi of sili-
con displays a strong double peak around 4 eV (∼967 THz) and
Re{εSi} < 0 from 4 to 16 eV (∼967–3869 THz). |εSi| and θmax

follow the same trend over the entire frequency range, while
the total TR intensity again exhibits the same trend as |εSi| for
frequencies where |εSi| > 1 and an opposite trend for frequen-
cies where |εSi| < 1. As for the Drude model, the minimum of
|εSi| and θmax corresponds to a peak in the total intensity.

Determining a direct relation between ε and all aspects
of the TR emission is difficult because ε appears multiple
times in the equations, but it is possible to get an intuitive
understanding of the behavior. Looking back at the definition
of TR, it is essentially a “reflected” field induced by the ap-
proaching electron that has to adapt to its new electromagnetic
environment. The term μj from the equations even bears some
resemblance to the Fresnel equations. Just as for reflection of
light, one can understand that the higher the contrast between
the two media, the more the field of the electron will have to
“shake off” components and induce a strong response [48].
The ratio between the permittivities of the two materials can
go both ways, however. What we observe in Fig. 7 is that for
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both |ε| � 1 and |ε| � 1, the TR intensity is high due to the
large contrast from 1. The angle of maximum emission θmax

consistently follows the same trend as |ε|. In Figs. S6 and S7 of
the Supplemental Material [31], we study this in more detail.

VI. CONCLUSIONS

We have determined that transition radiation and surface
plasmon polaritons excited by swift electrons are composed
of ultrashort, femtosecond time-scale wave packets. We have
studied the time, space, and frequency dependence of the
electric fields induced by the electron, both in vacuum and
when traversing a metallic or dielectric surface, providing
intuitive physical insight into these ultrafast processes. The
external field of the swift electron in vacuum comprises a single
oscillation, similar to a single optical cycle, and thus represents
an ultrabroadband optical excitation spectrum. In vacuum, the
fields evanescently decay away from the electron trajectory
and cannot directly couple to radiation. When impinging on
a polarizable material, however, the electron induces fields at
the surface that can radiate out to the far field.

We first studied the surface plasmon polaritons propagating
along the surface of a Drude metal, finding that the plasmon
wave packets are several-hundred femtoseconds in duration
(depending on the material parameters). The SPPs decay
rapidly and redshift in frequency as they propagate away from
the point of excitation. This redshift is due to the fact that
high-frequency components close to the plasmon resonance
are strongly damped.

We have also examined transition radiation, the far-field
emission which occurs when a charged particle traverses

the interface between two different media. Using the Drude
metal as an example, we find that TR wave packets are
strongly dependent on the emission angle and ultrashort in
duration, lasting only a few tens of femtoseconds (again
depending on the material parameters). The TR intensity and
emission-angle dependence is correlated with well-defined
trends in the permittivity of the material. Given the frequency
dependence of ε for a certain dielectric, the TR emission can
be qualitatively predicted.

The theoretical insights and predictions presented here
further our knowledge and understanding of electron-light-
matter interactions at the nanoscale and can be applied to study
fundamental physical processes occurring at the femtosecond
time scale.
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