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Boundary conditions at closed edge of bilayer graphene and energy bands of collapsed nanotubes
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Band structure is systematically studied in an effective-mass scheme in collapsed armchair and zigzag
nanotubes based on the model in which collapsed tubes are regarded as bilayer ribbons with closed edges.
Boundary conditions at closed edges, describing the connection of the envelope wave functions between the
bottom and top layers, are derived. Among electronic states in bilayers, which change sensitively depending on
the relative displacement of two layers, those having wave functions matching well with the obtained boundary
conditions, i.e., unaffected by the presence of closed edges, constitute important states near the Fermi level in
collapsed nanotubes.
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I. INTRODUCTION

A carbon nanotube is a cylindrically rolled-up graphene
sheet [1–4], which has been studied from viewpoints of
fundamental physics and applications. In a single-wall nan-
otube, electronic states are known to change from metallic
to semiconducting depending on its circumferential vector,
as predicted first by means of tight-binding models [5–14]
and also by an effective-mass scheme [15–17]. When a
nanotube has a large diameter, it has an additional stable
structure called collapsed nanotube. This has been shown both
experimentally [18–32] and theoretically [33–53]. A collapsed
nanotube can be regarded as a bilayer-graphene ribbon with
closed edges. The purpose of this work is to derive boundary
conditions at a closed edge of a bilayer graphene and to discuss
their roles in determining the band structure of collapsed
nanotubes.

The band structure of various collapsed nanotubes was
previously studied within an effective-mass scheme [54].
Calculated results show small and almost negligible effects
of interlayer interaction in chiral nanotubes except in the close
vicinity of nonchiral tubes such as armchair and zigzag. This
weak interlayer interaction in chiral nanotubes is a result of the
fact that interlayer hopping becomes negligibly small due to
cancellation caused by rapid and quasiperiodic variation of its
phase except in some special cases [55–60]. It is also related to
some of epitaxially fabricated graphenes in which each layer is
known to behave almost as a monolayer [61–71]. Further, the
electronic structure of twisted bilayer graphene with nearly
incommensurate lattice structure, both theoretically calcu-
lated [66,72–82] and experimentally observed [67,83–87],
shows a linear band dispersion near zero energy, suggesting
weak interlayer interaction.

On the other hand, the band structure is strongly affected
by interlayer interactions in zigzag and armchair nanotubes,
where cancellation does not take place. In these nonchiral
nanotubes it varies depending on the relative displacement of
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two layers in the flattened region [54], although calculations
were limited to only a few cases. Here, we perform a systematic
study for these nonchiral nanotubes, regarding them as bilayer
ribbons with closed edges, instead of introducing interlayer
interaction starting with a cylindrical nanotube as in the
previous work [54]. This ribbon model is ideal for revealing
the origin of characteristic features of electronic states in
these collapsed nanotubes. In fact, among energy bands of
bilayer graphenes, which drastically change as a function of
relative displacement of two graphene layers, those that remain
unaffected by the presence of closed edges, i.e., by boundary
conditions, are shown to constitute important states near the
Fermi level.

This paper is organized as follows: In Sec. II, an effective-
mass scheme is introduced based on a nearest-neighbor tight-
binding model. In Sec. III, boundary conditions at closed edges
are derived. In Sec. IV, the band structure of displaced bilayer
graphenes is discussed. In Sec. V, some examples of energy
bands of collapsed nanotubes are presented with emphasis on
relation to special features of reflection coefficients at closed
edges, to be discussed in Appendix B. In Sec. VI, discussion
and a short summary are given. In Appendix A, symmetry
of the effective potentials under time-reversal operation is
discussed. In Appendix B, the reflection coefficients at closed
edges and associated quantization into energy bands are
analytically investigated for some representative examples.

II. EFFECTIVE-MASS DESCRIPTION

We consider collapsed armchair and zigzag nanotubes.
Figure 1 shows schematic illustration of a cross section of
a collapsed tube with circumference L. In the central region
with width ∼ LF /2 the tube is flattened, forming a displaced
bilayer graphene with bottom and top layers, denoted by 1
and 2, respectively. The right-hand side of the bottom layer
with width ∼ LR is connected to the right edge of the top
layer and the left-hand side of the bottom layer with width
∼ LL is connected to the left edge of the top layer. We
set LC = LL + LR and LF + LC = L, and shall consider
the symmetric case LL = LR = LC/2 in explicit numerical
calculations presented below.

Before collapsing, each single-wall nanotube is specified
by chiral vector L = naa + nbb, where a and b are primitive
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FIG. 1. A schematic illustration of cross section of a collapsed
carbon nanotube. The (red) bottom and (green) top layers are denoted
as 1 and 2, respectively.

translation vectors shown in Fig. 2(a), na and nb are integers,
L = |L|, and |a| = |b| = a with lattice constant a = 0.246
nm. The nanotube is metallic for ν = 0 and semiconducting
for ν = ±1, where integer ν is defined by

na + nb = 3n + ν, (1)

with integer n [15–17]. The angle η between a and L is called
the chiral angle. An armchair nanotube has η = π/6 and L =
n(2a + b) or L/(

√
3a) = n with integer n, and is therefore

always metallic (ν = 0). On the other hand, a zigzag tube
has η = 0 and L = na or L/a = n, and can be metallic or
semiconducting depending on n. We consider the coordinates
(x,y) rotated around the origin by η such that the x axis is
always along the circumference of a nanotube.

In the bottom layer of the flattened region, a unit cell
contains two carbon atoms denoted by A1 and B1. Three
vectors connecting nearest-neighbor atoms are denoted by τ 1,
τ 2, and τ 3. The origin of the coordinates is chosen at a B

site, i.e., a B site is given by RB1 = na1a + nb1b and an A

site is RA1 = na1a + nb1b + τ with integer na1 and nb1 and
τ ≡ τ 1 = (a + 2b)/3. In the coordinate system (x ′,y ′) fixed
onto the graphene, we have a = a(1, 0), b = a(1/2,

√
3/2),

and τ = a(0, 1/
√

3). The amount of the displacement of the
top layer relative to the bottom layer is denoted by ξ , i.e.,
RB2 = na2a + nb2b + ξ and RA2 = na2a + nb2b + τ + ξ . As
a function of ξ ≡ |ξ |, the structure varies with period of

√
3a

in armchair tubes and with period of a in zigzag tubes.

τ

τ

ξ

τ

η

η=

η=π

Γ

FIG. 2. (a) The lattice structure and coordinate systems of a
displaced bilayer graphene. On the (red) bottom layer, carbon atoms
are denoted as A1 and B1 and on the (green) top layer as A2 and B2.
Their relative displacement is denoted by ξ . (b) The first Brillouin
zone and K and K ′ points in monolayer graphene.

In a tight-binding model, the wave function in layer j

(j = 1,2) is written as

ψj (r) =
∑

R=RAj

ψAj (R)φ(r − R) +
∑

R=RBj

ψBj (R)φ(r − R),

(2)

where φ(r) denotes a π orbital. In the monolayer region, the
amplitude ψ at atomic sites R = RA1 or RB1 satisfies

εψA1(RA1) = −γ0

∑
l

ψB1(RA1 − τ l), (3)

εψB1(RB1) = −γ0

∑
l

ψA1(BB1 + τ l), (4)

where γ0 is the hopping integral between nearest-neighbor
atoms (γ0 ∼ 3 eV). In the bilayer region, the same equation
is satisfied by ψA2(RA2) and ψB2(RB2) except that interlayer
hopping V (R,R′) is included, where V (R,R′) is nonzero only
when carbon atoms at sites R and R′ in different layers are
very closely located. Because π orbitals are symmetric within
each layer, V (R,R′) is a function of |R − R′|.

In the following, Hamiltonian and boundary conditions in
an effective-mass scheme will be derived from this nearest-
neighbor tight-binding model and exclusively used for actual
calculations of the band structure. This scheme itself is not
limited to tight-binding models, however. For states near the
Fermi level in the vicinity of K and K ′ points with wave
vectors K = (2π/a)(1/3, 1/

√
3) and K ′ = (2π/a)(2/3, 0),

respectively, the amplitudes are written as

ψAj (R) = eiχj
[
ei K ·RFK

Aj (R) + eiηei K ′ ·RFK ′
Aj (R)

]
, (5)

ψBj (R) = eiχj
[−ωeiηei K ·RFK

Bj (R) + ei K ′ ·RFK ′
Bj (R)

]
, (6)

with ω = exp(2πi/3) and χj being an arbitrary phase to
be appropriately determined later [17]. Envelope functions
FK

Aj (r), FK
Bj (r), FK ′

Aj (r), and FK ′
Bj (r) are assumed to be slowly

varying in the scale of the lattice constant. The effective-mass
scheme is valid and well reproduces electronic properties as
well as the band structure for energy range given by |ε| � γ0

[15–17].
In the monolayer region, the envelope functions at the K

point satisfy the Schrödinger equation [17]

HK
0 FK

1 (r) = εFK
1 (r), (7)

HK
0 = γ (σ · k̂), (8)

FK
1 (r) =

(
FK

A1(r)

FK
B1(r)

)
, (9)

where γ = √
3aγ0/2 is the band parameter, k̂ = (k̂x,k̂y) =

−i∇ is a wave-vector operator, and σ = (σx,σy) and σz

(introduced below) are the Pauli matrices. In the bilayer region,
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FIG. 3. A development map of a collapsed armchair nanotube. In the central region, the tube is flattened, forming a displaced bilayer
graphene with width LF /2 consisting of (red) bottom and (green) top layers, denoted by 1 and 2, respectively. The right-hand side of the bottom
layer with width LR is connected to the right edge of the top layer and the left-hand side of the bottom layer with width LL is connected to the
left edge of the top layer.

the Schrödinger equation becomes

HK FK (r) = εFK (r), (10)

HK =
(

HK
0 V K (ξ )

V K†(ξ ) HK
0

)
, (11)

FK (r) =
(

FK
1 (r)

FK
2 (r)

)
, (12)

where V K (ξ ) is a (2,2) matrix representing interlayer interac-
tion strongly dependent on the relative displacement ξ . For the
K ′ point, the time-reversal symmetry gives

HK ′
0 = σzHK∗

0 σz = γ (σ ∗ · k), (13)

V K ′
(ξ ) = σzV

K (ξ )∗σze
−2iχ12ei(K+K ′)·ξ , (14)

with

χ12 ≡ χ1 − χ2, (15)

as shown in Appendix A.

III. BOUNDARY CONDITIONS

A development map of a collapsed armchair tube with
η = π/6 is shown in Fig. 3. In the left boundary region,
we set RB1 on line xL = √

3NLa, RB2 = RB1 + ξ , and
LL = √

3a lL. Then, the connection of the bottom layer to

the top layer gives

ψB2(RB2) = −ψA1[RB1 − lL(2a + b) + τ 2], (16)

ψB1[RB1 + lL(2a + b)] = −ψA2(RB2 + τ 2), (17)

where the amplitudes on the right-hand side are extrapolated
from the corresponding region. The negative sign corresponds
to the fact that the sign of the π orbital in the monolayer region
is opposite to that on the top layer because of the cylindrical
form of the closed edge. As has been previously discussed [54],
these give the following conditions for the envelope functions:

FK
2 (xL) = eiχσy FK

1 (x ′
L), (18)

FK ′
2 (xL) = eiχσy FK ′

1 (x ′
L), (19)

with x ′
L = xL − LL and

χ (ξ ) = χ12 − 2πξ√
3a

, (20)

where ξ = ξ (2a + b)/(
√

3a).
In nanotubes, states are specified by wave vector k (= ky)

along the axis direction. Then, the Schrödinger equation in the
monolayer region gives

FK
1k(x ′

L) = UK (−LL)FK
1k(xL), (21)

FK ′
1k (x ′

L) = UK ′
(−LL)FK ′

1k (xL), (22)
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FIG. 4. A development map of a collapsed zigzag nanotube.

where UK (x) and UK ′
(x) are (2,2) transfer matrices in the

monolayer region. Their explicit expressions are given in
Appendix B 1. Thus, we have

FK
2k(xL) = eiχσyU

K
L FK

1k(xL), (23)

FK ′
2k (xL) = eiχσyU

K ′
L FK ′

1k (xL), (24)

with UK
L ≡ UK (−LL) and UK ′

L ≡ UK ′
(−LL).

In the right boundary region, we set RB1 on line xR =√
3NRa, RB2 = RB1 + ξ , and LR = √

3a lR . The boundary
conditions are given by

ψA2(RB2 + τ 2) = −ψB1[RB1 + lR(2a + b)], (25)

ψA1[RB1 + lR(2a + b) + τ 2] = −ψB2(RB2), (26)

where the amplitudes on the right-hand side are again
extrapolated from the corresponding region. For the envelope
functions, the conditions are written as

FK
2 (xR) = eiχσy FK

1 (x ′
R), (27)

FK ′
2 (xR) = eiχσy FK ′

1 (x ′
R), (28)

with x ′
R = xR + LR . These give

FK
2k(xR) = eiχσyU

K
R FK

1k(xR), (29)

FK ′
2k (xR) = eiχσyU

K ′
R FK ′

1k (xR), (30)

with UK
R ≡ UK (LR) and UK ′

R ≡ UK ′
(LR).

The appearance of σy in the boundary conditions corre-
sponds to the fact that the A and B sublattices are exchanged

under the π rotation around an axis parallel to the y axis.
Furthermore, there is no mixing between the K and K ′ points,
corresponding to the fact that they are mapped onto different
points in the one-dimensional Brillouin zone [see Fig. 2(b)].

In the bilayer region, we have

(
FK

1k(xR)

FK
2k(xR)

)
=

(
UK

11 UK
12

UK
21 UK

22

)(
FK

1k(xL)

FK
2k(xL)

)
, (31)

where UK ≡ UK (xR − xL) is a (4,4) transfer matrix for given
k (= ky) and ε, which can easily be calculated once the bilayer
Hamiltonian is explicitly given. Eliminating the component of
the wave functions in the top layer, we have

( −1 UK
11 + eiχUK

12σyU
K
L

−eiχσyU
K
R UK

21 + eiχUK
22σyU

K
L

)(
FK

1k(xR)

FK
1k(xL)

)
= 0. (32)

The condition for the presence of a nontrivial solution gives
the energy band of a collapsed nanotube:

∣∣∣∣∣
−1 UK

11 + eiχUK
12σyU

K
L

−eiχσyU
K
R UK

21 + eiχUK
22σyU

K
L

∣∣∣∣∣ = 0. (33)

Formally, the same expression is obtained for the K ′ point
except that K is replaced with K ′.

Next, we consider the left boundary in zigzag tubes η = 0
illustrated in Fig. 4. Let RA1 and RB1 be on line xL = NLa,
RA2 = RA1 + ξ , RB2 = RB1 + ξ , and LL = lLa. Then, the
connection of the left boundary of the monolayer region to the
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left edge of the top layer of the bilayer region gives

ψA2(RA2) = −ψA1(RA1 − lLa), (34)

ψB2(RB2) = −ψB1(RB1 − lLa), (35)

ψA1(RA1 − (lL − 1)a + b) = −ψA2(RA2 + b), (36)

ψB1(RB1 − (lL − 1)a + b) = −ψB2(RB2 + b), (37)

where the amplitudes on the right-hand side are extrapolated
from the corresponding regions.

The above conditions give the following for the envelope
functions:

FK
2 (xL,y) = −ω+nLeiχ ′

σz FK ′
1 (x ′

L,y), (38)

FK ′
2 (xL,y) = −ω−nLeiχ ′′

σz FK
1 (x ′

L,y), (39)

with nL = NL + lL − 1, x ′
L = xL − lLa, and

χ ′(ξ ) = χ12 − 2πξ

3a
, χ ′′(ξ ) = χ12 − 4πξ

3a
, (40)

where we set ξ = ξ a/a. These show that the K and K ′ points
are exchanged with a phase dependent on the position xL

and the length of the monolayer region lL. This behavior
corresponds to the exchange of the K and K ′ points under the
π rotation around a line parallel to the y axis [see Fig. 2(b)].

At the right boundary, we set RA1 and RB1 be on line
xR = NRa, RA2 = RA1 + ξ , RB2 = RB1 + ξ , and LR = lR a.
Then, the connection gives

ψA2(RA2) = −ψA1(RA1 + lRa), (41)

ψB2(RB2) = −ψB1(RB1 + lRa), (42)

ψA1(RA1 + lRa + b) = −ψA2(RA2 + a + b), (43)

ψB1(RB1 + lRa + b) = −ψB2(RB2 + a + b), (44)

and then

FK
2 (xR,y) = −ω+nReiχ ′

σz FK ′
1 (x ′

R,y), (45)

FK ′
2 (xR,y) = −ω−nReiχ ′′

σz FK
1 (x ′

R,y), (46)

with nR = NR − lR − 1 and x ′
R = xR + lRa.

For states with k, the conditions are rewritten as

FK
2k(xL) = −ω+nLeiχ ′

σzU
K ′
L FK ′

1k (xL), (47)

FK ′
2k (xL) = −ω−nLeiχ ′′

σzU
K
L FK

1k(xL), (48)

FK
2k(xR) = −ω+nR eiχ ′

σzU
K ′
R FK ′

1k (xR), (49)

FK ′
2k (xR) = −ω−nReiχ ′′

σzU
K
R FK

1k(xR). (50)

Then, eliminating the components of the top layers, we have a
set of equations for FK

1k(xR), FK ′
1k (xR), FK

1k(xL), and FK ′
1k (xL).

The condition for the presence of a nontrivial solution gives∣∣∣∣∣∣∣∣∣

UK
L 0 0 ωnL−nRe−iχ ′′

σz

0 σz ωnL−nReiχ ′
UK ′

L 0

UK
R UK

11 UK
R UK

12 e−iχ ′′
σzU

K ′
11 e−iχ ′′

σzU
K ′
12

σzU
K
21 σzU

K
22 eiχ ′

UK ′
R UK ′

21 eiχ ′
UK ′

R UK ′
22

∣∣∣∣∣∣∣∣∣
= 0.

(51)

The band structure depends on ωnL−nR . We have

nL − nR = N − 3(NR − NL), (52)

with N = 2(NR − NL) + lL + lR , showing that ωnL−nR = ων ,
where integer ν is defined in Eq. (1). Therefore, the energy
bands of the collapsed tube naturally depend on whether the
tube is metallic or semiconducting before collapsing.

Equation (33) does not explicitly contain lattice constant a

or ratio L/a and the same is true of Eq. (51) except for integer
ν (=0,±1) determining whether a nanotube is metallic or
semiconducting before collapsing. This is, of course, the direct
result of the use of the effective-mass scheme. Energy bands of
collapsed nanotubes become a function of 2πγ/(γ1L), which
is the ratio between 2πγ/L characterizing the energy scale in
a cylindrical nanotube and γ1 characterizing that in a bilayer
graphene, and also a function of LF/L.

IV. INTERLAYER POTENTIAL

As has been previously shown, the effective interlayer
potential can be expressed as [54]

VK (r) =
(

V K
AA(r) V K

AB(r)

V K
BA(r) V K

BB(r)

)
(53)

for the K point, for example, with

V K
AA = e−iχ12

N

∑
RA1,RA2

1

2
[g(r − RA1) + g(r − RA2)]

×V (RA1,RA2)e−i K ·(RA1−RA2), (54)

V K
AB = −e−iχ12

ω−1e−iηN

∑
RA1,RB2

1

2
[g(r − RA1) + g(r − RB2)]

×V (RA1,RB2)e−i K ·(RA1−RB2), (55)

V K
BA = −e−iχ12

ωeiηN

∑
RB1,RA2

1

2
[g(r − RB1) + g(r − RA2)]

×V (RB1,RA2)e−i K ·(RB1−RA2), (56)

V K
BB = e−iχ12

N

∑
RB1,RB2

1

2
[g(r − RB1) + g(r − RB2)]

×V (RB1,RB2)e−i K ·(RB1−RB2), (57)

where 2N is the number of carbon atoms contained in a unit
cell of the nanotube and g(r) is the smoothing function which
varies smoothly in the range |r| � a and diminishes rapidly

155401-5



TAKESHI NAKANISHI AND TSUNEYA ANDO PHYSICAL REVIEW B 94, 155401 (2016)

for |r| � a. It should satisfy the condition

∑
RA

g(r − RA) =
∑
RB

g(r − RB) = 1, (58)

∫
g(r − RA)d r =

∫
g(r − RB)d r = 0, (59)

with 0 = √
3a2/2. We can use a Gaussian function g(r) ∝

exp(−r2/d2) with range d, for example. Then, actual numer-
ical calculations show that the effective potential becomes
independent of r for d � a. In the following, we can safely
assume that V K (r) is independent of r and depends only on
ξ . The interlayer potential for the K ′ point can be obtained
from VK , using the time-reversal symmetry as shown in
Appendix A.

In armchair tubes with η = π/6, we have

VK (ξ ) = e−iχ

(
u(ξ ) +i v(ξ )

−i w(ξ ) u(ξ )

)
, (60)

with real u(ξ ), v(ξ ), and w(ξ ), defined by

u(ξ ) = U(ξ ), (61)

v(ξ ) = U(ξ − 2a/
√

3), (62)

w(ξ ) = U(ξ + 2a/
√

3), (63)

where

U(ξ )=
∑
la ,lb

V (laa+lbb − ξ ) exp

[
−πila − 2πi

3

(
lb − la

2

)]
,

(64)

with integers la and lb. The time-reversal symmetry gives
VK ′ (ξ ) = VK (ξ ).

For actual numerical calculations, the interlayer hopping
integral V (R1,R2) is chosen as [78,79,88–93]

V (R1,R2) = αγ1

|t|2 exp

(
−|t| − c/2

δ

)
( p1 · t)( p2 · t)

− γ0 exp

(
− t − b

δ

)
[( p1 · u)( p2 · u)

+ ( p1 · v)( p2 · v)], (65)

where b is the distance between neighboring carbons in
graphene, given by b = a/

√
3, c is the lattice constant along

the c axis in graphite given by c/a = 2.72, and δ the decay
rate of the π orbital. Further, γ1 is the hopping integral be-
tween nearest-neighbor sites of neighboring layers in graphite
(γ1 ∼ 0.4 eV). Vectors p1 and p2 are unit vectors directed
along π orbitals at R1 and at R2, respectively, t is a vector
connecting the two sites, and u and v unit vectors perpendicular
to t and to each other. In the following numerical calculations,
we use parameters γ1/γ0 = 0.119, δ/a = 0.185, and α = 1.4.
Figure 5 shows the effective potentials u(ξ ), v(ξ ), and w(ξ )
for d/a = 1.

In this geometry, it is convenient to choose χ (ξ ) = 0
because both Hamiltonian and boundary conditions contain
phase χ only, where χ is defined in Eqs. (20) and (15). The
Hamiltonian is written as

HK =
⎛
⎝ γ (σ · k̂) uσ0 + i

2 (v − w)σx − 1
2 (v + w)σy

uσ0 − i
2 (v − w)σx − 1

2 (v + w)σy γ (σ · k̂)

⎞
⎠, (66)

with (2,2) unit matrix σ0. Using unitary matrix

U = 1√
2

(
σ0 σ0

σ0 −σ0

)
, (67)

the Hamiltonian is transformed into

UHKU † =
⎛
⎝γ (σ · k̂) + uσ0 − 1

2 (v + w)σy − i
2 (v − w)σx

i
2 (v − w)σx γ (σ · k̂) − uσ0 + 1

2 (v + w)σy

⎞
⎠.

(68)

As shown in Fig. 5, we have u = γ1, v = 0, and w = 0
for ξ = 0. The effective Hamiltonian (66) becomes that of an
AA-stacked bilayer graphene with interlayer interaction γ1.
Equation (68) shows that the energy bands consist of two
copies of the band in monolayer graphene, one shifted in
energy by +γ1 and the other by −γ1.

When ξ/(
√

3a)= 1
3 , Fig. 5 shows that u=v=0, w/γ1 =1.

The effective Hamiltonian (66) becomes that of an AB-stacked

bilayer graphene with interlayer interaction γ1 multiplied by
extra phases +i or −i,

HK =
(

γ (σ · k̂) − i
2γ1σ−

i
2γ1σ+ γ (σ · k̂)

)
, (69)

with σ± = σx ± iσy . This occurs also for ξ/(
√

3a) = 2
3 ,

although the interlayer interaction is present between a
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FIG. 5. An example of interlayer potentials u(ξ ), v(ξ ), and w(ξ )
calculated numerically for the displacement in the armchair direction.

different pair because u = w = 0 and v = γ1 and therefore
the off-diagonal elements in the above Hamiltonian should be
exchanged with each other.

At the mid point ξ/(
√

3a) = 1
2 (mid-period), we have

w = v > 0 and u < 0. The numerical calculation gives u/γ1 =
−0.314 . . . and v/γ1 = w/γ1 = 0.655 . . . . Thus, the energy
bands for this mid-period structure consist of two independent
Weyl cones, as shown in Eq. (68). The cone at (ky,ε) =
(0, + γ1) in the AA stacking structure moves to (ky,ε) =
(+v/γ, − |u|), i.e., to the right-hand side in the ky direction
and to the negative energy region. The cone at (0, − γ1) in
the AA stacking structure moves to (−v/γ, + |u|), i.e., to the
left-hand side in the ky direction and to the positive energy
region. This is illustrated in Fig. 6.

In the regions 0 < ξ/(
√

3a)< 1
3 and 2

3 <ξ/(
√

3a)<1,
condition u(ξ )2 − v(ξ )w(ξ ) > 0 is satisfied because
v(ξ )w(ξ ) < 0 as shown in Fig. 5. There are two conelike
bands in the vicinity of zero energy at k = (±k0,0), with

k0 =
√

u2 − vw

γ
� γ1

γ
. (70)

In the following, we shall confine ourselves to the case 0 <

ξ/(
√

3a) < 1
3 for which v(ξ ) < 0 and w(ξ ) > 0. Extension to

the case 2
3 < ξ/(

√
3a) < 1 is straightforward.

Let us define

tan ψ1 = w

γk0 + u
, tan ψ2 = −v

γ k0 + u
, (71)

giving ψ1 > ψ2, because w > −v as shown in Fig. 5. Then,
wave functions corresponding to eigenstates of the velocity in

ε

ξ

ε

ξ

−

+

−γ

+γ

< = >

+γ γ−γ γ

− γ

γ

FIG. 6. The correspondence between the band structure of a
bilayer graphene with AA stacking and the mid-period displacement
in the armchair direction. Two linear bands given by the (red and
blue) solid lines survive in collapsed nanotubes.

the x direction are given as follows:

F(+)
+k0

(r) = 1

2

⎛
⎜⎜⎜⎝

+ sin ψ1 + i cos ψ2

+i cos ψ1 + sin ψ2

−i cos ψ1 + sin ψ2

+ sin ψ1 − i cos ψ2

⎞
⎟⎟⎟⎠e+i k0x, (72)

F(−)
+k0

(r) = 1

2

⎛
⎜⎜⎜⎝

+ sin ψ1 − i cos ψ2

+i cos ψ1 − sin ψ2

−i cos ψ1 − sin ψ2

+ sin ψ1 + i cos ψ2

⎞
⎟⎟⎟⎠e+i k0x, (73)

F(+)
−k0

(r) = 1

2

⎛
⎜⎜⎜⎝

− sin ψ1 − i cos ψ2

−i cos ψ1 − sin ψ2

−i cos ψ1 + sin ψ2

+ sin ψ1 − i cos ψ2

⎞
⎟⎟⎟⎠e−i k0x, (74)

F(−)
−k0

(r) = 1

2

⎛
⎜⎜⎜⎝

− sin ψ1 + i cos ψ2

−i cos ψ1 + sin ψ2

−i cos ψ1 − sin ψ2

+ sin ψ1 + i cos ψ2

⎞
⎟⎟⎟⎠e−i k0x, (75)

where (+) and (−) denote those with positive and negative
velocities, respectively. Then, the effective Hamiltonian in the
vicinity of k = (±k0,0) becomes

Heff =
(

+αxk̂x αyk̂y

αyk̂y −αxk̂x

)
+ βk̂y, (76)

with

αx = γ cos(ψ1 − ψ2), (77)

αy = 1
2γ (sin 2ψ1 + sin 2ψ2), (78)

β = 1
2γ (sin 2ψ1 − sin 2ψ2), (79)

where k̂x is measured from ±k0.
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TAKESHI NAKANISHI AND TSUNEYA ANDO PHYSICAL REVIEW B 94, 155401 (2016)

+−

ε ε

FIG. 7. A schematic illustration of tilted Weyl cones at zero
energy in bilayer graphene displaced in the armchair direction.
0 < ξ/(

√
3a) < 1

3 .

This Hamiltonian corresponds to a Weyl cone, tilted in the
negative ky direction and anisotropic. In fact, the energy bands
become

ε(kx,ky) = ±
√

α2
xk

2
x + α2

yk
2
y + βky. (80)

This is illustrated in Fig. 7. For the K ′ point, we should replace
β with −β, and the tilt direction becomes opposite.

The parameters characterizing the tilted Weyl cones are
shown in Fig. 8. With the increase of ξ , the position k0 of the
cone gradually decreases from γ1/γ and rapidly vanishes at
ξ/(

√
3a) = 1

3 . Furthermore, αx stays almost the same as γ ,
and αy increases almost linearly with ξ for small ξ , showing
significant anisotropy between the x and y directions. The
tilt parameter β increases slowly and remains smaller than αy .
Near ξ/(

√
3a) = 1

3 , the Weyl cone becomes almost symmetric
because αx ≈ αy � β, but it disappears at ξ/(

√
3a) = 1

3
because all the parameters vanish there.
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FIG. 8. The band parameters characterizing tilted Weyl cones at
zero energy in bilayer graphene displaced in the armchair direction.
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FIG. 9. Effective interlayer potentials v1(ξ ) and v2(ξ ) and
their phases φ1(ξ ) and φ2(ξ ) calculated numerically for zigzag
displacement.

In zigzag tubes with η = 0, we have

VK = e−iχ12

(
v1(ξ )e+iφ1(ξ ) v2(ξ )e+iφ2(ξ )

v2(ξ )e+iφ2(ξ ) v1(ξ )e+iφ1(ξ )

)
, (81)

with real v1(ξ ), v2(ξ ), φ1(ξ ), and φ2(ξ ) for the K point. The
time-reversal symmetry gives

VK ′ = e−iχ12e2πi(ξ/a)

(
v1(ξ )e−iφ1(ξ ) −v2(ξ )e−iφ2(ξ )

−v2(ξ )e−iφ2(ξ ) v1(ξ )e−iφ1(ξ )

)

(82)

for the K ′ point. In the above we have set ξ = ξ a/a.
Figure 9 shows v1(ξ ), v2(ξ ), φ1(ξ ), and φ2(ξ ) numerically

calculated. For ξ = 0, we have v1 = γ1 and v2 = 0, corre-
sponding to an AA-stacked bilayer with interlayer interaction
γ1. For ξ/a = 1

2 (mid-period), all the components become
real except a common phase factor and are numerically given
by v1/γ1 = 0.314 . . . and v2/γ1 = 0.655 . . . . In this case, the
Hamiltonian is block diagonalized into a pair of (2,2) matrices
and becomes

HK =
(HK

+ 0

0 HK
−

)
, HK ′ =

(
HK ′

+ 0

0 HK ′
−

)
, (83)

with

HK
± = HK

0 ± v1σ0 ± v2σx, (84)

HK ′
± = HK ′

0 ∓ v1σ0 ± v2σx, (85)

where the common phase factor χ12 = 0 is chosen. Thus,
the energy bands for the mid-period structure consist of two
independent cones, shifted in both energy and kx directions,
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exactly the same as those for ξ/(
√

3a) = 1
2 in the armchair

case, although the kx and ky directions are exchanged.

V. BAND STRUCTURE

A. Armchair nanotube

Figure 10 shows some examples of the band structure of the
bilayer graphene displaced in the armchair direction. As the top
layer is gradually displaced from ξ = 0 shown in Fig. 10(a),
the electronic states in the lower cone hybridize with upper
cone. As a result, an eye-shaped stateless region along the
kx direction is created near zero energy, and two tilted Weyl
cones are formed at zero energy, as mentioned above. These
cones shift toward kx = 0 with the increase in ξ as shown in
Figs. 10(b) for ξ/(

√
3a) = 1

12 and 10(c) for 1
4 .

When ξ/(
√

3a) = 1
3 corresponding to an AB-stacked bi-

layer graphene, these two Weyl cones merge at kx = 0 and two
parabolic bands consisting of bonding and antibonding states
touch at zero energy, as shown in Fig. 10(d). With the further
increase in the displacement, two crossing points reappear
on the plane kx = 0, as in Fig. 10(e) for ξ/(

√
3a) = 5

12 . The
crossing point with ky < 0 is shifted upward in energy and

that with ky > 0 is shifted downward. When ξ/(
√

3a) = 1
2

(mid period) shown in Fig. 10(f), two conelike bands shifted
in both energy and ky directions become independent of each
other. When we increase ξ from ξ/(

√
3a) = 1

2 to 1, the band
structure changes from Fig. 10(f) back to Fig. 10(a), as shown
in the insets.

This change in the band structure as a function of ξ

manifests itself in that of corresponding collapsed nanotubes.
By Eq. (33), we can determine kx in the bilayer region for given
k along the axis direction and energy. In fact, in the vicinity of
zero energy, electron wave with kx is reflected into −kx at the
right edge and that with −kx into kx at the left edge. Roughly
speaking, the energy bands ε(k) in collapsed nanotubes with
a wide flattened region are understood in terms of ε(kx,k) of
the corresponding bilayer with appropriately discretized kx ,
unless kx strongly depends on k.

For ξ = 0 with AA stacking [shown in Fig. 10(a)], at kx = 0
and ky ≈ ±γ1/γ , there are two sets of states crossing at zero
energy with linear dependence on ky , i.e.,

εst (ky) = s γ |ky | + t γ1, (86)
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FIG. 10. Some examples of the band structure of a bilayer graphene displaced in the armchair direction. In each of the left figures, the
energy ε(k) is plotted against kx for positive ky with interval �ky = 0.05 × (γ1/γ ), and in right figures against ky for positive kx with interval
�kx = 0.05 × (γ1/γ ). The lattice structure is illustrated in the insets. (a) ξ/(

√
3a) = 0 or 1. (b) 1

12 or 11
12 . (c) 3

12 or 9
12 . (d) 4

12 or 8
12 . (e) 5

12 or 7
12 .

(f) 6
12 .
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with s = ±1 and t = ±1. As discussed in Appendix B 2, only
two states corresponding to +γ ky + γ1 and −γ ky − γ1 satisfy
the boundary conditions at the left and right edges in the limit of
narrow curved region LC/L � 1. The allowed linear bands are
denoted by solid lines in Fig. 6. With the increase of LC , these
bands are shifted to the right-hand side by (γ1/γ )(LC/LF ) ≈
(γ1/γ )(LC/L). A corresponding result in the opposite limit of
small LF /L has been obtained by perturbational treatment of
interlayer interaction in Ref. [54].

For ξ/(
√

3a) = 1
2 (mid-period) shown in Fig. 10(f), there

are two crossing bands having a linear dispersion for kx = 0,
shifted in both energy and wave vector ky . The correspondence
to the bands in the AA stacking is shown in Fig. 6. Among
these bands, two bands denoted by solid lines in Fig. 6(b)
satisfy the boundary conditions at both edges and survive in
the corresponding collapsed nanotube, although being shifted
toward k = 0 for nonzero LC .

For ξ/(
√

3a) = 1
3 with AB stacking structure shown in

Fig. 10(d), there are two parabolic bands ε±(ky) = ±γ 2k2
y/γ1,

touching together at zero energy for kx = 0. As shown in
Appendix B 3, only the conduction band ε+(ky) satisfies the

boundary conditions at the right and left edges, and the valence
band ε−(ky) does not. As a result, the conduction band bottom
remains at zero energy, while the valence band is shifted
downward, opening up a gap. The reason lies in the fact that
the wave functions of the bottom and top layers have opposite
signs for the conduction band, while they have the same sign
for the valence band. As already mentioned, the wave functions
of the π orbital changes its sign, when they are connected
through the circular monolayer region. This result has also
been obtained for small LF by a perturbational treatment of
interlayer interaction in Ref. [54].

In the region 0 < ξ/(
√

3a) < 1
3 , shown in Figs. 10(b)

and 10(c), in general, band gaps are opened between conduc-
tion and valence bands due to interlayer interactions. However,
this general feature can be strongly modified in narrow regions
of ξ for tubes with sufficiently large LF . This occurs due
to interferences between two tilted Weyl cones at (±k0,0),
where k0 is given in Eq. (70). As discussed in Appendix B 4,
the state with k0 is reflected into that with −k0 at the right edge
and that with −k0 into that with +k0 at the left edge. There
is no reflection within each of the +k0 and −k0 bands. When

-1

0

1

E
ne

rg
y 

(u
ni

ts
 o

f γ
1)

(a)

L/ 3a=48

LF/L=0.75

ξ

ξ

(b)

ξ

ξ

(c)

ξ

ξ

-2 -1 0 1 2

-1

0

1

Wave Number: k (units of γ1/γ)

E
ne

rg
y 

(u
ni

ts
 o

f γ
1)

(d)

ξ

ξ

-2 -1 0 1 2

Wave Number: k (units of γ1/γ)

(e)

ξ

ξ

-2 -1 0 1 2

Wave Number: k (units of γ1/γ)

(f)

ξ

ξ

FIG. 11. Calculated band structure of collapsed nanotubes with L/(
√

3a) = 48 and LF /L = 0.75 with displacement ξ in armchair direction.
Red dotted lines show linear dispersions at AA stacking and the change with the displacement.
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resonance condition k0LF = 2πj with integer j is satisfied, a
set of linear bands crossing at zero energy appears, i.e.,

ε±(k) = ±αy |k| + βk, (87)

where αy and β are shown in Fig. 8. These linearly crossing
bands can appear when LF > Lmin

F , with Lmin
F = 2πγ/γ1,

because k0 � γ1/γ as in Eq. (70). In the present case, we
have Lmin

F /(
√

3a) ≈ 26.4.
In the region 1

3 < ξ/(
√

3a) < 1
2 , shown in Fig. 10(e), band

gaps are opened between conduction and valence bands due
to interlayer interactions. However, because of the strong
asymmetry between positive and negative ky , some conduction
and valence bands may overlap in energy, making the collapsed
nanotube semimetallic.

Figure 11 shows some examples of calculated energy bands
of a collapsed nanotube with L/(

√
3a) = 48 and LF /L = 0.75

or LF /(
√

3a) = 36. Only the band structure near the K point
is shown, while that near the K ′ point is given by inversion
in the k direction. For ξ = 0 with AA stacking, shown in
Fig. 11(a), only a pair of a linearly crossing bands denoted by
the dotted lines survives while the other pair is destroyed.
These crossing bands are shifted by ∼ (γ1/γ )(LC/LF ) to
the positive k direction as has been discussed above. When
ξ/(

√
3a) is varied from zero to 1

2 , these bands continuously
change as shown by the dotted lines in Figs. 11(a)–11(f). Other
bands are understood roughly by appropriately discretized kx

in the band structure of the AA stacked bilayer.
With the increase of ξ , as shown in Fig. 11(b) corresponding

to ξ/(
√

3a) = 1
12 , for example, the crossing bands denoted by

the dotted lines split into conduction and valence bands by
a gap, and the collapsed tube becomes semiconducting. For
ξ/(

√
3a) = 1

4 shown in Fig. 11(c), the bands given by the
dotted lines overlap with other bands. In Figs. 11(b) and 11(c),
the gap separating conduction and valence bands is no longer
determined by those denoted by the dotted lines.

For ξ/(
√

3a) = 1
3 with AB stacking in the bilayer region,

shown in Fig. 11(d), the conduction-band minimum is at zero
energy, while the valence bands are lowered, thus forming a
band gap, as has been discussed above. For ξ/(

√
3a) = 5

12
shown in Fig. 11(e), nonzero band gap is formed for each
k value, but some of conduction and valence bands overlap
in energy, and therefore the tube becomes semimetallic. For
ξ/(

√
3a) = 1

2 (mid-period) shown in Fig. 11(f), a set of
crossing bands with near-linear dispersion is formed, although
the crossing point is shifted toward the negative-energy side
and toward the positive k direction. These correspond to two
linear bands shown in Fig. 11(a) for ξ = 0, as has been
discussed above (see also Fig. 6).

Figure 12 shows the band structures for (a) ξ/(
√

3a) =
0.17, (b) 0.19, and (c) 0.23, i.e., when ξ is in the range
between (b) and (c) of Fig. 11. The band gap disappears and
a set of linearly crossing bands is formed in the vicinity of
zero energy in Fig. 12(b). This is the result of interference
between two tilted Weyl cones at ±k0 discussed above. In fact,
for ξ/(

√
3a) = 0.19 in Fig. 12(b), we have γ k0/γ1 ≈ 0.73,

αx ≈ 0.96, αy ≈ 0.66, and β ≈ 0.21, according to Fig. 8.
For these values of the parameters, the condition k0LF = 2π

is satisfied and the linear-crossing bands in the vicinity of
zero energy shown in Fig. 12(b) are well reproduced by
Eq. (87).

B. Zigzag nanotube

Some examples of the band structure of bilayer graphenes
displaced in the zigzag direction are shown in Fig. 13. For
ξ = 0 corresponding to AA stacking shown in Figs. 13(a)
and 13(d), two conelike bands same as in monolayer graphene
are shifted in energy by ±γ1 and independent of each other.
As the top layer is displaced from ξ = 0 as in Figs. 13(b)
and 13(e) corresponding to ξ/a = 1

4 , two conelike crossing
bands interacting with each other are formed for ky = 0,
but the crossing energy is shifted in the direction opposite
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FIG. 12. Calculated band structure of collapsed nanotubes with L/(
√

3a) = 48, LF /L = 0.75 having armchair structures. The band gap
disappears and a set of linear-crossing bands emerges at zero energy for the displacement (b) ξ/(

√
3a) = 0.19.
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FIG. 13. Some examples of the band structure of a bilayer graphene displaced in the zigzag direction. In each of the left figures the
energy ε(k) is plotted against kx for positive ky with interval �ky(γ1/γ )−1 = 0.05, and in right figures against ky for positive kx with interval
�kx(γ1/γ )−1 = 0.05. The lattice structure is illustrated in the insets. (a) K and (d) K ′ point [ξ/a = 0/4 or 4/4]. (b) K and (e) K ′ point
[ξ/a = 1/4 or 3/4]. (c) K and (f) K ′ point [ξ/a = 2/4].

between positive and negative kx and between the K and
K ′ points. For ξ/a = 1

2 (mid-period) shown in Figs. 13(c)
and 13(f), these cones again become independent. In gen-
eral, we have εK (−kx,ky) = εK ′ (+kx,ky), εK (kx, − ky) =
εK (kx, + ky), and εK ′ (kx, − ky) = εK ′ (kx, + ky).

This change in the band structure as a function of ξ again
manifests itself in that of corresponding collapsed nanotubes.
In a collapsed zigzag nanotube, an electron wave with ±kx at
the K point is dominantly reflected into that with ∓kx at the
K ′ point having the same energy at the edges. The matching
conditions for the phase of the wave function given by Eq. (51)
determine kx and the corresponding energy as a function of
k. The dependence on k is not so strong in semiconducting
nanotubes and metallic nanotubes other than those with AA

stacked collapsed region. As a result, a very rough feature
of the energy bands is again understood in terms of εK (kx,k)
and εK ′ (kx,k) for discretized kx . The only exception occurs
in metallic nanotubes with AA stacking shown in Figs. 13(a)
and 13(d). In fact, as discussed in Appendix B 5, there appears
a pair of bands linear and crossing each other at k = 0 near
ε = ±γ1, for which kx satisfying Eq. (51) varies in proportion
to k with coefficient of the order of ±1.

Figure 14 shows some examples of calculated band struc-
ture for collapsed zigzag tubes with L/a = 72 and LF /L =
0.75. In collapsed metallic tubes with AA stacking structure,
given in Fig. 14(a), two pairs of linear-crossing bands are
present around ε ≈ ±γ1, and other bands are nearly parabolic
but shifted in the positive and negative k directions, thus
crossing each other at k = 0.

In collapsed semiconducting tubes with AA stacking, given
in Fig. 14(d), each band is symmetric with respect to k = 0
and linear bands are completely absent near k = 0. For 0 <

ξ/a < 1
2 , as shown in Figs. 14(b) and 14(e) for ξ/a = 1

4 , for
example, band gaps are opened near zero energy and collapsed
nanotubes become semiconducting irrespective of the value of
ν before being collapsed. For ξ/a = 1

2 (mid-period) shown in
Figs. 14(c) and 14(f), collapsed nanotubes become metallic
independent of ν in the case of LF /L = 0.75.

Some examples showing the dependence on LF /L are
presented in Fig. 15 for ξ/a = 1

2 (mid-period). In metallic
tubes with ν = 0 shown for LF /L = 0.1, 0.4, and 0.75 in
Figs. 15(a), 15(d), and 14(c), respectively, a gap first opens
up with the increase in LF /L, takes a maximum, and then
becomes smaller and vanishes. Only in the limit of small
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FIG. 14. Calculated band structure of collapsed nanotubes with LF /L = 0.75 having zigzag structures. (a)–(c) L/a = 72 (ν = 0). (d)–(f)
L/a = 71 (ν = −1).

LF /L, the band structure is close to that of a cylindrical tube
with a tiny gap at ε = 0.

For semiconducting tubes with ν = +1 shown in
Figs. 15(b) and 15(e) and with ν = −1 shown in Figs. 15(c)
and 15(f), the band overlapping present for LF /L = 0.75
persists even for smaller LF /L = 0.4, but eventually a band
gap opens for LF /L = 0.1, roughly corresponding to the
semiconducting zigzag tube. For sufficiently wide zigzag
tubes, the energy bands of collapsed case for ν = −1 are
obtained by inverting the energy axis for those with ν = +1,
although this correspondence is still not complete for L/a =
71 (ν = −1) and for L/a = 70 (ν = +1).

VI. DISCUSSION AND CONCLUSION

So far, we have completely neglected the presence of
curvature in the monolayer region corresponding to the closed
edge. A typical diameter of the curved region is estimated
(sometimes assumed) to be of the order of that in narrow
single-wall nanotubes according to various theoretical inves-
tigations [25,33–52]. Recent density-functional calculations
give diameter of about 0.854 nm [53], slightly larger than that

of a (6,6) single-wall nanotube. Effects of such curvature can
be described by a local shift in the wave vector or an effective
vector potential in the curved region in the effective-mass
scheme [17,94].

In a cylindrical nanotube, the curvature is represented by
an effective magnetic flux passing through the cross section,
which has opposite signs between the K and K ′ points,
resulting in a shift in the energy bands. The presence of small
shifts has long been known to be present in various first-
principles calculations in narrow single-wall nanotubes [5,6].
Combined with the presence of a trigonal warping of the
band in graphene [95], the curvature constitutes one important
origin leading to the so-called family behavior of optical
spectra [96–98]. In principle, effects of the curvature can be
included in our calculations once the actual form of the cross
section is established. This problem is left for a future study.

We have assumed that the relative displacement or sliding
of two layers can take any value in the bilayer region in a
collapsed nanotube. This is valid because first-principles cal-
culations in bilayer graphenes show that the energy difference
by sliding is much smaller than the average thermal energy at
room temperature [99,100]. Actually, AB, AA, displaced, and
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FIG. 15. Calculated band structure of collapsed nanotubes with ξ/a = 1
2 having zigzag structures. (a) (LF /L, ν) = (0.1, 0). (b) (0.1, −1).

(c) (0.1, +1). (d) (0.4, 0). (e) (0.4,−1). (f) (0.4, +1).

twisted stackings are reported to be present in bilayer graphene
with closed edges and the displacement may be changed by
annealing [101,102]. The band-structure change by sliding in
bilayer graphene may be observed experimentally by scanning
transmission spectroscopy or other techniques, although no
experiments have been reported yet.

We have performed a systematic study of electronic
states in collapsed nonchiral nanotubes such as armchair
and zigzag within an effective-mass scheme, regarding them
as bilayer ribbons with closed edges. Boundary conditions
at closed edges, describing the connection of the envelope
wave functions between the bottom and top layers, have been
derived. Among electronic states in bilayers, which change
sensitively depending on the relative displacement of two
layers, those having wave functions matching well with the
obtained boundary conditions constitute important states near
the Fermi level in collapsed nanotubes.

In fact, a perfect matching or mismatching of the wave
functions can occur at the closed edges for special states such
as those with linear dispersion and those corresponding to band
extrema near the Fermi level. Typical examples include the
appearance and disappearance of k-linear bands in armchair

tubes with AA stacking or half-period structure in the flattened
region, and in metallic zigzag tubes with AA stacking. The
lowering of the valence-band top in contrast to no influence
on the conduction-band bottom in the armchair tube with AB

stacking is another example.
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APPENDIX A: TIME-REVERSAL SYMMETRY

Under the time-reversal operation T , the amplitudes
ψAj (R) and ψBj (R) become their complex conjugate,
e−iλ′

ψAj (R)∗ and e−iλ′
ψBj (R)∗, respectively, with arbitrary

phase λ′. Because of the invariance under T , the amplitudes
e−iλ′

ψAj (R)∗ and e−iλ′
ψBj (R)∗ can be written as Eqs. (5)
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and (6) with FK
Aj , etc., being replaced with FKT

Aj , etc. Note that

e−i K ·R ∝ ei K ′ ·R and e−i K ′ ·R ∝ ei K ·R with appropriate phase
factors dependent on R [see Fig. 2(b)]. Explicitly, we have

(
FKT

1

FKT
2

)
= eiλ

(
e−2iχ1σz 0

0 e−2iχ2−iϕ(ξ )σz

)(
FK ′∗

1

FK ′∗
2

)
(A1)

in the displaced bilayer region, with ϕ(ξ ) = (K + K ′) · ξ and
λ = λ′ − η − (2π/3).

Obviously, FKT
Aj , etc., should satisfy the Schrödinger

equation same as FK
Aj , etc. Let us define the Hamiltonian for

the K point by

HK =
(H11 H12

H21 H22

)
. (A2)

Then, Eq. (A1) gives the corresponding Hamiltonian for the
K ′ point:

HK ′ =
(

e−2iχ1σz 0

0 e−2iχ2−iϕ(ξ )σz

)(H∗
11 H∗

12

H∗
21 H∗

22

)

×
(

e+2iχ1σz 0

0 e+2iχ2+iϕ(ξ )σz

)

=
(

σzH∗
11σz σzH∗

12σze
−2iχ12+iϕ(ξ )

σzH∗
21σze

+2iχ12−iϕ(ξ ) σzH∗
22σz

)
. (A3)

This gives σxH∗
11σz = γ (σ ∗ · k̂) for H11 = γ (σ · k̂) and the

same for H22. It is quite natural that only the interlayer
components of the Hamiltonian are affected by relative phase
χ12 and displacement ξ under the time reversal.

APPENDIX B: ELECTRON REFLECTION
BY CLOSED EDGES

1. Transfer matrix in monolayer region

First, we consider the transfer matrix in a monolayer region.
For given energy ε and wave vector ky satisfying |ky | � |ε|/γ ,
we have

UK (x) = 1

cos θM

(
cos(θM − kM

x x) isM sin(kM
x x)

isM sin(kM
x x) cos(θM + kM

x x)

)
,

(B1)

UK ′
(x) = 1

cos θM

(
cos(θM + kM

x x) isM sin(kM
x x)

isM sin(kM
x x) cos(θM − kM

x x)

)
,

(B2)

with

sM ≡ sgn(ε), sin θM ≡ γ ky

|ε| , kM
x ≡

√
ε2

γ 2
− k2

y. (B3)

In the case |ky | > |ε|/γ , only evanescent states are present and
the transfer matrix is given by

UK (x) = 1

sinh θM

×
(

sinh
(
θM + syκ

M
x x

)
isM sinh

(
κM

x x
)

isM sinh
(
κM

x x
)

sinh
(
θM − syκ

M
x x

)
)

,

(B4)

UK ′
(x) = 1

sinh θM

×
(

sinh
(
θM − syκ

M
x x

)
isM sinh

(
κM

x x
)

isM sinh
(
κM

x x
)

sinh
(
θM + syκ

M
x x

)
)

,

(B5)

with

sy ≡ sgn(ky), cosh θM ≡ γ |ky |
|ε| , κM

x ≡
√

k2
y − ε2

γ 2
.

(B6)
The transfer matrices satisfy

det UK = det UK ′ = 1, (B7)

σzU
K (ε)σz = UK (−ε), (B8)

σzU
K ′

(ε)σz = UK ′
(−ε). (B9)

The last two of the above give the symmetry under energy
inversion in some collapsed nanotubes, as will be shown in the
following.

2. Armchair displacement: AA stacking

In armchair nanotubes, the energy bands associated with
the K ′ point are related to those with the K point through
εK ′ (k) = εK (−k), and therefore we shall confine ourselves to
those with the K point in the following. When a collapsed
armchair nanotube has an AA stacking structure with ξ = 0 in
the flattened bilayer region, for which u = γ1 and v = w = 0,
the Hamiltonian becomes

HK =
(

γ (σ · k̂) γ1σ0

γ1σ0 γ (σ · k̂)

)
, (B10)

where we have chosen χ = 0 [see Eqs. (15), (20), and (66)
and Fig. 5]. Then, the boundary conditions are

FK
1k(xL) = σyU

K
L FK

2k(xL), (B11)

FK
1k(xR) = σyU

K
R FK

2k(xR). (B12)

Under unitary transformation

F̃
K = U FK, (B13)

with

U =
(

σz 0

0 −σz

)
, (B14)

the Hamiltonian is transformed into

H̃K = UHKU † = −HK. (B15)
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FIG. 16. (a) Schematic illustration of energy bands in an AA-
stacked bilayer graphene and in monolayer graphene. The region
in the vicinity of kx = 0 and ky = −γ1/γ is denoted by a dotted
ellipse. (b) A reflection process at the right boundary for the band
(s,t) = (−1, + 1), denoted by a (red) solid line in (a).

Further, the boundary conditions are transformed into

F̃
K

1k(xL) = σyU
K
L (−ε)F̃

K

2k(xL), (B16)

F̃
K

1k(xR) = σyU
K
R (−ε)F̃

K

2k(xR). (B17)

The above results show that the energy bands are symmetric
under energy inversion ε ↔ −ε.

The energy bands and the corresponding wave functions in
the bilayer region become

εst (k) = sγ k + tγ1, (B18)

Fstk(r) = 1

2

⎛
⎜⎜⎜⎝

1

seiθ

t

steiθ

⎞
⎟⎟⎟⎠ exp(ik · r), (B19)

with s = ±1, t = ±1, k=
√

k2
x+k2

y , kx = k cos θ , and ky =
k sin θ . Let us consider the bands in the vicinity of ky =
−γ1/γ , ε ≈ 0, and kx = 0, in particular, (s,t) = (−1, + 1)
as illustrated in Fig. 16 [the region surrounded by a dotted
ellipse in (a)]. As illustrated in Fig. 16(b), the incident wave
has kx < 0 and the reflected wave has −kx > 0 at the right
boundary x = xR . The wave function is written as

FR(r) =

⎛
⎜⎜⎜⎝

1

i +iδ

1

i e+iδ

⎞
⎟⎟⎟⎠e+ikxxR+ikyy

+ rR

⎛
⎜⎜⎜⎝

1

i e−iδ

1

i e−iδ

⎞
⎟⎟⎟⎠e−ikxxR+ikyy, (B20)

apart from normalization, where rR is the reflection coefficient
and

δ ≡ γ kx

γ1
< 0. (B21)

For this state, only evanescent states are present in
the monolayer region, and we have sy = −1, cosh θM ≈
sinh θM � 1, κM

x ≈ γ1/γ , ky ∼ −(γ1/γ ). Let us further con-
sider the case of small LR � γ /γ1. The transfer matrix is
approximated by

UR ≈
(

e−γ1LR/γ 0

0 e+γ1LR/γ

)
. (B22)

Then, the boundary conditions in Eq. (B12) become(
1

i e+iδ

)
e2ikxxR + rR

(
1

i e−iδ

)

=
(

eγ1LR/γ eiδ

i e−γ1LR/γ

)
e2ikxxR + rR

(
eγ1LR/γ e−iδ

i e−γ1LR/γ

)
. (B23)

These two equations are satisfied if and only if

rR = e+γ1LR/γ e+iδ − 1

1 − e+γ1LR/γ e−ıδ
e+2ikxxR . (B24)

The fact that the reflection coefficient is uniquely determined
from a set of two equations justify that reflection does not take
place into other bands with t = −1. For γ1LR/γ � |δ| � 1,
in particular, we have

rR ≈ exp

(
i
γ kx

γ1
− i

2γ 2
1 LR

γ 2kx

)
e2ikxxR . (B25)

At the left boundary, similarly, the reflection coefficient
becomes

rL ≈ exp

(
−i

γ kx

γ1
− i

2γ 2
1 LL

γ 2kx

)
e−2ikxxL . (B26)

The energy bands are given by the condition rLrR = 1 or

kxLF − 2
γ 2

1

γ 2kx

LC = 2πj, (B27)

with integer j , where we have used xR − xL = LF /2 and LR +
LL = LC . For the linear band corresponding to j = 0, we have

γ kx = −γ1

√
2LC

LF

, (B28)

where we have used the fact that kx < 0. Correspondingly,
with ky being replaced with k of the collapsed nanotube, the
energy levels become

ε = −γ

√
k2
x + k2 + γ1 ≈ −γ |k| + γ1

(
1 − LC

LF

)
. (B29)

This shows that the linear band given by ε = +γ k + γ1 is
shifted to the positive k direction by the amount proportional to
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LC/LF with the increase of the width of the curved monolayer
region. Because of the symmetry under energy inversion, the
completely same behavior is obtained for the band (s,t) =
(+1,−1).

For the band (s,t) = (−1, + 1) in the vicinity of ky =
+γ1/γ and ε ≈ 0, the incident wave has kx < 0 and the
reflected wave has −kx > 0 at the right boundary. The wave
function at the right boundary is written as

FR(r) =

⎛
⎜⎜⎜⎝

1

−i e−iδ

1

−i e−iδ

⎞
⎟⎟⎟⎠e+ikxxR+ikyy

+ rR

⎛
⎜⎜⎜⎝

1

−i e+iδ

1

−i e+iδ

⎞
⎟⎟⎟⎠e−ikxxR+ikyy, (B30)

apart from normalization. In a similar manner, we have

rR ≈ −e−iδe+2ikxxR ,

rL ≈ −e+iδe−2ikxxL . (B31)

These results show that the wave function should vanish in the
vicinity of both right and left boundaries. Therefore, states
with kx ≈ 0 having a near-linear band are not allowed in
the collapsed nanotube. The quantization condition rLrR = 1
gives

kx = 2πj

LF

, (B32)

with integer j , where j = 0 is not allowed. Because of the
symmetry under energy inversion, the completely same be-
havior is obtained for the band (s,t) = (+1, − 1). Figure 6(a)
schematically shows remaining linear bands for LC/L � 1.

3. Armchair displacement: AB stacking

Let us consider the case of ξ/(
√

3a) = 1
3 , for which

u = v = 0 and w = γ1. The effective Hamiltonian is given
by Eq. (69). The eigenenergies are given by

εst (k) =
{

2s ε(k) sin2(ψ/2) (t = +1);

2s ε(k) cos2(ψ/2) (t = −1),
(B33)

where the conduction bands are denoted by s = +1, the
valence bands by s = −1, the bands touching at ε = 0 by
t = +1, those split in energy by ±γ1 by t = −1, and

ε(k) =
√(γ1

2

)2
+ (γ k)2, tan ψ = 2γ k

γ1
. (B34)

The corresponding wave functions are given by

Fs,+1 =

⎛
⎜⎜⎜⎝

s cos(ψ/2)

eiθ sin(ψ/2)

−i s eiθ sin(ψ/2)

−i e2iθ cos(ψ/2)

⎞
⎟⎟⎟⎠eik·r , (B35)

Fs,−1 =

⎛
⎜⎜⎜⎝

s sin(ψ/2)

eiθ cos(ψ/2)

i s eiθ cos(ψ/2)

i e2iθ sin(ψ/2)

⎞
⎟⎟⎟⎠eik·r , (B36)

with θ = tan−1(ky/kx). In the vicinity of zero energy, ψ ≈
2γ k/γ1 and εs,+1(k) ≈ sγ 2k2/γ1.

Let us consider the case |kx | � |ky | � γ1/γ for the purpose
of determining whether the band touching ε = 0 survives in
the presence of closed edges. In the monolayer region, because
|ε| � γ |ky |, only evanescent waves are present and therefore
κM

x ≈ |ky | and θM � 1. Noting sM = s, we have

UR ≈
(

e+kyLR 0

0 e−kyLR

)
, UL ≈

(
e−kyLL 0

0 e+kyLL

)
.

(B37)

At the right edge, the incident wave has θ = (π/2) + δ

and the reflected wave θ = (π/2) − δ with δ � 1 for ky > 0.
Therefore, the wave function is written as

FR
s,+1(r) =

⎛
⎜⎜⎜⎝

s cos(ψ/2)

i eiδ sin(ψ/2)

s eiδ sin(ψ/2)

i e2iδ cos(ψ/2)

⎞
⎟⎟⎟⎠eikxxR+ikyy

+ rR

⎛
⎜⎜⎜⎝

s cos(ψ/2)

i e−iδ sin(ψ/2)

s e−iδ sin(ψ/2)

i e−2iδ cos(ψ/2)

⎞
⎟⎟⎟⎠e−ikxxR+ikyy, (B38)

with reflection coefficient rR . The boundary conditions in
Eq. (B12) give

(
s cos(ψ/2)

i eiδ sin(ψ/2)

)
e2ikxxR + rR

(
s cos(ψ/2)

i e−iδ sin(ψ/2)

)

=
(

e−kyLRe+2iδ cos(ψ/2)

i s e+kyLRe+iδ sin(ψ/2)

)
e2ikxxR

+ rR

(
e−kyLRe−2iδ cos(ψ/2)

i s e+kyLRe−iδ sin(ψ/2)

)
. (B39)

Only the first equation is important and gives

rR = − s − e−kyLRe+2iδ

s − e−kyLRe−2iδ
. (B40)

In the limit ε → 0, we have rR = s e2iδ , which becomes, in the
limit of δ → 0, rR = +1 for s = +1 and rR = −1 for s = −1.
The same result is obtained at the left edge. This shows that
a near-parabolic band touching zero energy survives for the
conduction band with rR ≈ +1, but does not for the valence
band with rR ≈ −1.

For kx ≈ 0, the wave functions become FA1
s,+1 ≈ s, FB1

s,+1 ≈
FB1

s,+1 ≈ 0, and FB2
s,+1 ≈ i, apart from normalization. According
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to Eqs. (5) and (6), the corresponding amplitudes in the tight-
binding model become

ψA1[RB1 + lR(2a + b) + τ 2] = sω−1eiχ1ei K ·RB1 , (B41)

ψB2[RB1 + ξ ] = −ω−1eiχ1ei K ·RB1 , (B42)

and ψB1 ≈ ψA2 ≈ 0, where we have used Eqs. (15) and (20).
This shows that the boundary condition (26) is satisfied for
s = +1 but not for s = −1. Namely, the wave functions are
smoothly connected between the top and bottom layers through
the curved monolayer region for the conduction band, but not
for the valence band. This is the reason for the lowering of the
valence band top, resulting in the band-gap opening.

To see bands away from zero energy, we next consider the
case ky = 0 for the band t = +1. We have θM = 0 and

UK
R =

(
cos(kM

x LR) i s sin(kM
x LR)

i s sin(kM
x LR) cos(kM

x LR)

)
. (B43)

At the right edge, the incident wave has kx > 0 for s = +1 and
kx < 0 for s = −1. Therefore, the wave function is written as

FR
s,+1(r) =

⎛
⎜⎜⎜⎝

s cos(ψ/2)

s sin(ψ/2)

−i sin(ψ/2)

−i cos(ψ/2)

⎞
⎟⎟⎟⎠e+ikxxR

+ rR

⎛
⎜⎜⎜⎝

s cos(ψ/2)

−s sin(ψ/2)

+i sin(ψ/2)

−i cos(ψ/2)

⎞
⎟⎟⎟⎠e−ikxxR . (B44)

After some manipulations, the boundary conditions (B12) give

rR = −s
sin ψ − i sin(kM

x LR) cos ψ

cos(kM
x LR) sin ψ − i s sin(kM

x LR)
e+2i kxxR .

(B45)

In the energy region close to zero energy, we have ψ ≈
2γ kx/γ1 � 1 and kM

x ≈ γ k2
x/γ1. Then, we have

rR = −s ei(1−s)kxLR/2e+2ikxxR . (B46)

Similarly, at the left edge, we have

rL = −s ei(1−s)kxLL/2e−2ikxxL . (B47)

The quantization condition rRrL = 1 gives(
LF + 1 − s

2
LC

)
kx = 2πj, (B48)

giving kx = 2πj/LF for s = +1 and kx = 2πj/L for s = −1,
with integer j . This shows that the valence band is quantized
into

εj = −
√(

γ1

2

)2

+ γ 2

(
2πj

L

)2

+ γ1

2
(j = 1,2, . . . ),

(B49)

ε

πγ γ

πγ γ

FIG. 17. A schematic illustration of low-lying bands in a col-
lapsed armchair nanotube with AB stacking structure in the flattened
region.

and the conduction band is

εj = +
√(

γ1

2

)2

+ γ 2

(
2πj

LF

)2

− γ1

2
(j = 0,1, . . . ).

(B50)

These results are schematically illustrated in Fig. 17 for the
case 2πγ/L � γ1, which explains the features of the bands
located near zero energy in Fig. 11(d).

In the energy region corresponding to the excited conduc-
tion and valence bands with t = −1, the curved monolayer
region has a large density of states and its effect cannot be
neglected for realistic LL and LR . Therefore, similar analysis
limited to small LL and LR is not so meaningful. Numerical
results in Fig. 11(d) show that clear “edge” states localized
in the monolayer region appear above the top of the lower
valence band in addition to bands associated with the excited
conduction and valence bands in the bilayer region. These
edge states are given by the (red) dotted line and the (green)
solid line having their maxima around ε/γ1 = −0.7 and −0.8.
These bands are nearly degenerate for sufficiently large LF ,
but split into bonding and antibonding states for small LF .

4. Armchair displacement: Tilted Weyl cones

Let us consider the case 0 < ξ/(
√

3a) < 1
3 in a collapsed

armchair nanotube. The Hamiltonian for the K point is given
by Eq. (76). For ky ≈ 0, the transfer matrix in the monolayer
region is given by UR ≈ UL ≈ 1. The reflection at a closed
edge occurs only between different cones, i.e., from +k0

to −k0 and from −k0 to +k0. The reflection coefficients
are calculated using the wave functions (72)–(75) and the
boundary conditions (B11) and (B12). The coefficient for
reflection from +(k0 + kx) to −(k0 + kx) at the right edge
and that from −(k0 + kx) to +(k0 + kx) at the left edge are
given by

rR
−+ = +i e+2i (k0+kx )xR ,

rL
+− = −i e−2i (k0+kx )xL, (B51)

where kx is measured from +k0. The allowed bands are
determined by rR

−+rL
+− = 1, giving

(kx + k0)LF = 2πj (j = 1,2, . . . ). (B52)
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ε

= π

= π

FIG. 18. A schematic illustration of the energy band appear-
ing due to interferences between two tilted Weyl cones. 0 < ξ/

(
√

3a) < 1
3 .

The energy bands in the collapsed nanotube become

εj (k) = ±
√

α2
xk

2
j + α2

yk
2 + βk, (B53)

with kj = (2πj/LF ) − k0. This shows that linearly crossing
bands given by Eq. (87) appear when k0LF = 2πj . The
dispersion is illustrated in Fig. 18. The band parameters are
shown in Fig. 8.

5. Zigzag displacement: AA stacking

Let us consider the case ξ = 0 in a collapsed zigzag
nanotube. The Hamiltonian HK for the K point is given
by Eq. (B10) and HK ′ for the K ′ point is obtained from
Eq. (B10) by replacing σ with σ ∗, if we choose χ12 = 0, giving
χ ′ = χ ′′ = 0 [see Eq. (40)]. The corresponding energy bands
are illustrated together with those in the monolayer region in
Fig. 19. The boundary conditions become

FK
2k(xR) = −ω+nRσzU

K ′
R FK ′

1k (xR),

FK ′
2k (xR) = −ω−nRσzU

K
R FK

1k(xR),

FK
2k(xL) = −ω+nLσzU

K ′
L FK ′

1k (xL),

FK ′
2k (xL) = −ω−nLσzU

K
L FK

1k(xL). (B54)

In terms of unitary transformations

F̃K = UK FK, F̃K ′ = UK ′ FK ′ , (B55)

+γ

−γ

ε ε

FIG. 19. Energy versus wave vector in the AA stacked bilayer
graphene and the monolayer graphene. The region which we are
interested in is denoted by a dotted ellipse.

with

UK =
(+σz 0

0 −σz

)
, UK ′ =

(−σz 0

0 +σz

)
, (B56)

the Hamiltonians are transformed into

H̃K = UKHKU
†
K = −HK,

H̃K = UK ′HK ′U
†
K ′ = −HK ′ . (B57)

The boundary conditions are transformed into

F̃
K

2k(xR) = −ω+nRσzU
K ′
R (−ε)F̃

K ′

1k (xR),

F̃
K ′

2k (xR) = −ω−nRσzU
K
R (−ε)F̃

K

1k(xR),

F̃
K

2k(xL) = −ω+nLσzU
K ′
L (−ε)F̃

K ′

1k (xL),

F̃
K ′

2k (xL) = −ω−nLσzU
K
L (−ε)F̃

K

1k(xL). (B58)

The above results show that the energy bands are symmetric
under energy inversion ε ↔ −ε. Further, the energy bands
with t = +1 and −1 do not couple at the right and left closed
edges as will be clear in the following. In general, reflection
coefficients become (2,2) matrices, i.e.,

r̂R =
(

rR
KK rR

KK ′

rR
K ′K rR

K ′K ′

)
, r̂L =

(
rL
KK rL

KK ′

rL
K ′K rL

K ′K ′

)
. (B59)

We shall consider small ky and the energy region ε ≈ γ1

close to the upper Weyl cone t = +1, having εs(k) = sγ |k| +
γ1, in the following. This region is surrounded by a dotted
ellipse in Fig. 19. The wave functions are

FK
s (r) =

⎛
⎜⎜⎜⎝

1

seiθ

1

seiθ

⎞
⎟⎟⎟⎠eik·r , FK ′

s (r) =

⎛
⎜⎜⎜⎝

1

se−iθ

1

se−iθ

⎞
⎟⎟⎟⎠eik·r . (B60)

For an incident wave associated with the K point at the right
edge, reflected waves can be at the K and K ′ points. The wave
vector of the incident wave has kx > 0 for ε > +γ1 and kx < 0
for ε < +γ1. The wave function for the K point and that for
the K ′ point are written as

FR
sK (r) =

⎛
⎜⎜⎜⎝

1

seiθ

1

seiθ

⎞
⎟⎟⎟⎠eikxxR+ikyy + rR

KK

⎛
⎜⎜⎜⎝

1

−se−iθ

1

−se−iθ

⎞
⎟⎟⎟⎠e−ikxxR+ikyy,

(B61)

FR
sK ′ (r) = rR

K ′K

⎛
⎜⎜⎜⎝

1

−se+iθ

1

−se+iθ

⎞
⎟⎟⎟⎠e−ikxxR+ikyy, (B62)

with reflection coefficients rR
K ′K and rR

KK .

155401-19



TAKESHI NAKANISHI AND TSUNEYA ANDO PHYSICAL REVIEW B 94, 155401 (2016)

The boundary conditions (B54) give

rR
K ′K

(
1

−eiθ

)
e−ikxxR = −ω−nRσzU

K
R

×
[(

1

eiθ

)
eikxxR + rR

KK

(
1

−e−iθ

)
e−ikxxR

]
. (B63)

In the following, we shall consider the case that |ky | � |kx | or
|θ | � 1. Then, the transfer matrix can be expanded as

UR =
(

cos(kM
x LR) isM sin(kM

x LR)

isM sin(kM
x LR) cos(kM

x LR)

)

+ θM sin(kM
x LR)σz, (B64)

to the first order in θM ∝ ky , where

γ kx + γ1 = sMγ kM
x . (B65)

The reflection coefficients can be solved by expansion with
respect to ky :

rR
K ′K = r

R(0)
K ′K + r

R(1)
K ′K, rR

KK = r
R(0)
KK + r

R(1)
KK , (B66)

where r
R(0)
K ′K ∝ k0

y , r
R(1)
K ′K ∝ ky , etc. A straightforward calcu-

lation shows that r
R(0)
KK = 0 and r

R(1)
K ′K = 0. The results are

summarized as

r̂R ≈
(+ζ (LR) −ω+nR

−ω−nR −ζ (LR)

)
eisMkM

x LRe+2ikxxR , (B67)

with

ζ (x) ≡ (θ − sMθM ) sin(sMkM
x x). (B68)

The diagonal element corresponding to the reflection into the
same valley is proportional to ζ (LR) ∝ ky and therefore is
much smaller than the off-diagonal element corresponding to
the reflection into the different valley. Similar calculations give

r̂L ≈
(−ζ (LL) −ω+nL

−ω−nL +ζ (LL)

)
eisMkM

x LLe−2ikxxR . (B69)

Their product becomes

r̂Lr̂R ≈ eisMkM
x LC eikxLF

(
ω+ν ωnR [ζ (LR) + ωνζ (LL)]

−ωnR [ζ (LR) + ωνζ (LL)] ω−ν

)
. (B70)

For ky = 0, i.e., θ = θM = 0, off-diagonal elements identi-
cally vanish and the wave vector is quantized into

sMkM
x LC + kxLF = 2π

(
j ± ν

3

)
, (B71)

with integer j . Using Eq. (B65), we have

kx = 2π

L

(
j ± ν

3

)
− γ1

γ

LC

L
. (B72)

The quantization into integer multiple of 2π/L depending on
ν is exactly the same as in cylindrical nanotubes apart from a
shift proportional to LC/L.

For nonzero but small ky , we have the condition

ky = θkx = θMkM
x . (B73)

With the use of Eq. (B65), we have

θ − sMθM = sM

γ1

γ

ky

kxkM
x

. (B74)

Effects of nonzero but small ky strongly depend on ν = 0 or
ν = ±1. In fact, for ν = ±1 corresponding to semiconducting
nanotubes, the large diagonal elements of r̂Lr̂R are different
between the K and K ′ points. In this case, effects of the off-
diagonal elements appear in the eigenvalues of r̂Lr̂R in the
second order of ky . Therefore, the quantization conditions are
not affected to the first order in ky and the energy bands exhibit
a parabolic dependence on k. Explicit numerical calculations
seem to show that the coefficient of the term proportional to
k2 has the sign same as s, i.e., ∝ +k2 for ε > +γ1 and ∝ −k2

for ε < +γ1.

In the case of metallic nanotubes with ν = 0, on the other
hand, the diagonal elements of r̂Lr̂R are the same and effects
of the off-diagonal elements appear in the first order in ky . To
the first order, r̂Lr̂R is diagonalized as

r̂Lr̂R = eisMkM
x LC ei kxLF

(
ei[ζ (LR )+ζ (LL)] 0

0 e−i[ζ (LR )+ζ (LL)]

)
.

(B75)

−γ γ

+γ

−γ

ε

+γ γ −γ γ

+γ

−γ

ε

+γ γ

ν= ν= + −

FIG. 20. A schematic illustration of the band structure of a
collapsed zigzag tube having AA stacking structure in the flattened
region. (a) ν = 0. (b) ν = ±1.
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The quantization condition becomes

sMkM
x LC + kxLF ± [ζ (LR) + ζ (LL)] = 2πj. (B76)

These show that the quantized wave vectors vary linearly as a
function of ky for small ky with a coefficient dependent on the
band index j . For sufficiently small LC , we have

kx ≈
{− γ1

γ

LC

L
± ky (j = 0);

2πj

L
− γ1

γ

LC

L
± γ1

γ

LC

2πj
ky (j �= 0).

(B77)

The energy bands in the collapsed tube become

εj (k) =
{−γ

(
γ1

γ

LC

L
± k

)
(j = 0);

2πjγ

L
− γ1

LC

L
± γ1LC

2πj
k (j �= 0),

(B78)

to the first order in k. Explicit numerical calculations seem to
show again that the coefficient of the term proportional to k2

has the sign same as s, i.e., ∝ +k2 for ε > +γ1 and ∝ −k2 for
ε < +γ1. The energy bands for t = −1 can be obtained by the
energy inversion. The results of the above analysis show that
the band structure near k = 0 can be illustrated as in Fig. 20.
They can explain the main features of the results of explicit
numerical calculations in Sec. V [see Figs. 14(a) and 14(d)].
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[84] H. Schmidt, T. Lüdtke, P. Barthold, and R. J. Haug, Phys. Rev.

B 81, 121403 (2010).
[85] A. Luican, G.-H. Li, A. Reina, J. Kong, R. R. Nair, K. S.

Novoselov, A. K. Geim, and E. Y. Andrei, Phys. Rev. Lett.
106, 126802 (2011).

[86] I. Brihuega, P. Mallet, H. Gonzalez-Herrero, G. Trambly
de Laissardiere, M. M. Ugeda, L. Magaud, J. M. Gomez-
Rodriguez, F. Ynduraain, and J.-Y. Veuillen, Phys. Rev. Lett.
109, 196802 (2012).

[87] G.-H. Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro
Neto, A. Reina, J. Kong, and E. Y. Andrei, Nat. Phys. 6, 109
(2010).

[88] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[89] I. L. Spain, in Chemistry and Physics of Carbon, edited by

P. L. Walker Jr. and P. A. Thrower (Marcel Dekker, New York,
1973), Vol. 8, p. 1.

[90] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain,
and H. A. Goldberg, Graphite Fibers and Filaments, Vol. 5 of
Springer Series in Materials Science (Springer, Berlin, 1988).

[91] J. W. Mintmire and C. T. White, Carbon 33, 893 (1995).
[92] T. Nakanishi and T. Ando, J. Phys. Soc. Jpn. 70, 1647 (2001).
[93] S. Uryu, Phys. Rev. B 69, 075402 (2004).
[94] T. Ando, J. Phys. Soc. Jpn. 69, 1757 (2000).
[95] T. Ando, J. Phys. Soc. Jpn. 78, 104703 (2009).
[96] S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E.

Smalley, and R. B. Weisman, Science 298, 2361 (2002).
[97] M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore,

M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H.
Noon, C. Kittrell, J. Ma, R. H. Hauge, R. B. Weisman, and
R. E. Smalley, Science 297, 593 (2002).

[98] R. B. Weisman and S. M. Bachilo, Nano Lett. 3, 1235
(2003).

[99] Y. Shibuta and J. A. Elliott, Chem. Phys. Lett. 512, 146 (2011).
[100] Y.-W. Son, S.-M. Choi, Y. P. Hong, S. Woo, and S.-H. Jhi,

Phys. Rev. B 84, 155410 (2011).
[101] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev.

Lett. 102, 015501 (2009).
[102] D. Zhan, L. Liu, Y. N. Xu, Z. H. Ni, J. X. Yan, C. Zhao, and

Z. X. Shen, Sci. Rep. 1, 12 (2011).

155401-22

http://dx.doi.org/10.1016/S1567-1739(00)00008-0
http://dx.doi.org/10.1016/S1567-1739(00)00008-0
http://dx.doi.org/10.1016/S1567-1739(00)00008-0
http://dx.doi.org/10.1016/S1567-1739(00)00008-0
http://dx.doi.org/10.1103/PhysRevB.78.195403
http://dx.doi.org/10.1103/PhysRevB.78.195403
http://dx.doi.org/10.1103/PhysRevB.78.195403
http://dx.doi.org/10.1103/PhysRevB.78.195403
http://dx.doi.org/10.1016/j.carbon.2009.07.042
http://dx.doi.org/10.1016/j.carbon.2009.07.042
http://dx.doi.org/10.1016/j.carbon.2009.07.042
http://dx.doi.org/10.1016/j.carbon.2009.07.042
http://dx.doi.org/10.1380/ejssnt.2009.541
http://dx.doi.org/10.1380/ejssnt.2009.541
http://dx.doi.org/10.1380/ejssnt.2009.541
http://dx.doi.org/10.1380/ejssnt.2009.541
http://dx.doi.org/10.1103/PhysRevB.81.125414
http://dx.doi.org/10.1103/PhysRevB.81.125414
http://dx.doi.org/10.1103/PhysRevB.81.125414
http://dx.doi.org/10.1103/PhysRevB.81.125414
http://dx.doi.org/10.1103/PhysRevLett.106.155501
http://dx.doi.org/10.1103/PhysRevLett.106.155501
http://dx.doi.org/10.1103/PhysRevLett.106.155501
http://dx.doi.org/10.1103/PhysRevLett.106.155501
http://dx.doi.org/10.1063/1.4798588
http://dx.doi.org/10.1063/1.4798588
http://dx.doi.org/10.1063/1.4798588
http://dx.doi.org/10.1063/1.4798588
http://dx.doi.org/10.1103/PhysRevB.92.245429
http://dx.doi.org/10.1103/PhysRevB.92.245429
http://dx.doi.org/10.1103/PhysRevB.92.245429
http://dx.doi.org/10.1103/PhysRevB.92.245429
http://dx.doi.org/10.1103/PhysRevB.91.155420
http://dx.doi.org/10.1103/PhysRevB.91.155420
http://dx.doi.org/10.1103/PhysRevB.91.155420
http://dx.doi.org/10.1103/PhysRevB.91.155420
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1103/PhysRevB.66.073407
http://dx.doi.org/10.1103/PhysRevB.69.121410
http://dx.doi.org/10.1103/PhysRevB.69.121410
http://dx.doi.org/10.1103/PhysRevB.69.121410
http://dx.doi.org/10.1103/PhysRevB.69.121410
http://dx.doi.org/10.1103/PhysRevB.72.245403
http://dx.doi.org/10.1103/PhysRevB.72.245403
http://dx.doi.org/10.1103/PhysRevB.72.245403
http://dx.doi.org/10.1103/PhysRevB.72.245403
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/RevModPhys.79.677
http://dx.doi.org/10.1103/PhysRevB.76.155434
http://dx.doi.org/10.1103/PhysRevB.76.155434
http://dx.doi.org/10.1103/PhysRevB.76.155434
http://dx.doi.org/10.1103/PhysRevB.76.155434
http://dx.doi.org/10.1103/PhysRevB.91.035405
http://dx.doi.org/10.1103/PhysRevB.91.035405
http://dx.doi.org/10.1103/PhysRevB.91.035405
http://dx.doi.org/10.1103/PhysRevB.91.035405
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1016/j.ssc.2007.04.023
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1103/PhysRevLett.97.266405
http://dx.doi.org/10.1016/j.ssc.2007.03.050
http://dx.doi.org/10.1016/j.ssc.2007.03.050
http://dx.doi.org/10.1016/j.ssc.2007.03.050
http://dx.doi.org/10.1016/j.ssc.2007.03.050
http://dx.doi.org/10.1103/PhysRevLett.98.136801
http://dx.doi.org/10.1103/PhysRevLett.98.136801
http://dx.doi.org/10.1103/PhysRevLett.98.136801
http://dx.doi.org/10.1103/PhysRevLett.98.136801
http://dx.doi.org/10.1103/PhysRevB.75.214109
http://dx.doi.org/10.1103/PhysRevB.75.214109
http://dx.doi.org/10.1103/PhysRevB.75.214109
http://dx.doi.org/10.1103/PhysRevB.75.214109
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevLett.100.125504
http://dx.doi.org/10.1103/PhysRevLett.103.226803
http://dx.doi.org/10.1103/PhysRevLett.103.226803
http://dx.doi.org/10.1103/PhysRevLett.103.226803
http://dx.doi.org/10.1103/PhysRevLett.103.226803
http://dx.doi.org/10.1088/0022-3727/43/37/374007
http://dx.doi.org/10.1088/0022-3727/43/37/374007
http://dx.doi.org/10.1088/0022-3727/43/37/374007
http://dx.doi.org/10.1088/0022-3727/43/37/374007
http://dx.doi.org/10.1073/pnas.1105113108
http://dx.doi.org/10.1073/pnas.1105113108
http://dx.doi.org/10.1073/pnas.1105113108
http://dx.doi.org/10.1073/pnas.1105113108
http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1103/PhysRevLett.101.267601
http://dx.doi.org/10.1126/science.1171810
http://dx.doi.org/10.1126/science.1171810
http://dx.doi.org/10.1126/science.1171810
http://dx.doi.org/10.1126/science.1171810
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevLett.99.256802
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevB.76.201402
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevLett.101.056803
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1103/PhysRevB.84.035440
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1073/pnas.1108174108
http://dx.doi.org/10.1103/PhysRevB.86.155449
http://dx.doi.org/10.1103/PhysRevB.86.155449
http://dx.doi.org/10.1103/PhysRevB.86.155449
http://dx.doi.org/10.1103/PhysRevB.86.155449
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.85.195458
http://dx.doi.org/10.1103/PhysRevB.87.205404
http://dx.doi.org/10.1103/PhysRevB.87.205404
http://dx.doi.org/10.1103/PhysRevB.87.205404
http://dx.doi.org/10.1103/PhysRevB.87.205404
http://dx.doi.org/10.1103/PhysRevB.89.085408
http://dx.doi.org/10.1103/PhysRevB.89.085408
http://dx.doi.org/10.1103/PhysRevB.89.085408
http://dx.doi.org/10.1103/PhysRevB.89.085408
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1103/PhysRevB.81.161405
http://dx.doi.org/10.1103/PhysRevB.84.235439
http://dx.doi.org/10.1103/PhysRevB.84.235439
http://dx.doi.org/10.1103/PhysRevB.84.235439
http://dx.doi.org/10.1103/PhysRevB.84.235439
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevB.77.235403
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1103/PhysRevB.81.121403
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.106.126802
http://dx.doi.org/10.1103/PhysRevLett.109.196802
http://dx.doi.org/10.1103/PhysRevLett.109.196802
http://dx.doi.org/10.1103/PhysRevLett.109.196802
http://dx.doi.org/10.1103/PhysRevLett.109.196802
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1103/PhysRev.94.1498
http://dx.doi.org/10.1016/0008-6223(95)00018-9
http://dx.doi.org/10.1016/0008-6223(95)00018-9
http://dx.doi.org/10.1016/0008-6223(95)00018-9
http://dx.doi.org/10.1016/0008-6223(95)00018-9
http://dx.doi.org/10.1143/JPSJ.70.1647
http://dx.doi.org/10.1143/JPSJ.70.1647
http://dx.doi.org/10.1143/JPSJ.70.1647
http://dx.doi.org/10.1143/JPSJ.70.1647
http://dx.doi.org/10.1103/PhysRevB.69.075402
http://dx.doi.org/10.1103/PhysRevB.69.075402
http://dx.doi.org/10.1103/PhysRevB.69.075402
http://dx.doi.org/10.1103/PhysRevB.69.075402
http://dx.doi.org/10.1143/JPSJ.69.1757
http://dx.doi.org/10.1143/JPSJ.69.1757
http://dx.doi.org/10.1143/JPSJ.69.1757
http://dx.doi.org/10.1143/JPSJ.69.1757
http://dx.doi.org/10.1143/JPSJ.78.104703
http://dx.doi.org/10.1143/JPSJ.78.104703
http://dx.doi.org/10.1143/JPSJ.78.104703
http://dx.doi.org/10.1143/JPSJ.78.104703
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1078727
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1126/science.1072631
http://dx.doi.org/10.1021/nl034428i
http://dx.doi.org/10.1021/nl034428i
http://dx.doi.org/10.1021/nl034428i
http://dx.doi.org/10.1021/nl034428i
http://dx.doi.org/10.1016/j.cplett.2011.07.013
http://dx.doi.org/10.1016/j.cplett.2011.07.013
http://dx.doi.org/10.1016/j.cplett.2011.07.013
http://dx.doi.org/10.1016/j.cplett.2011.07.013
http://dx.doi.org/10.1103/PhysRevB.84.155410
http://dx.doi.org/10.1103/PhysRevB.84.155410
http://dx.doi.org/10.1103/PhysRevB.84.155410
http://dx.doi.org/10.1103/PhysRevB.84.155410
http://dx.doi.org/10.1103/PhysRevLett.102.015501
http://dx.doi.org/10.1103/PhysRevLett.102.015501
http://dx.doi.org/10.1103/PhysRevLett.102.015501
http://dx.doi.org/10.1103/PhysRevLett.102.015501
http://dx.doi.org/10.1038/srep00012
http://dx.doi.org/10.1038/srep00012
http://dx.doi.org/10.1038/srep00012
http://dx.doi.org/10.1038/srep00012



