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Smearing of the quantum anomalous Hall effect due to statistical fluctuations of magnetic dopants
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The quantum anomalous Hall effect is induced by substitution of a certain portion x of Bi atoms in a BiTe-based
insulating parent compound by magnetic ions (Cr or V). We find the density of in-gap states N (E) emerging as a
result of statistical fluctuations of the composition x in the vicinity of the transition point where the average gap
Eg passes through zero. A local gap follows the fluctuations of x. Using the instanton approach, we show that,
near the gap edges, the tails are exponential ln N (E) ∝ −(Eg − |E|) and the tail states are due to small local
gap reduction. Our main finding is that, even when the smearing magnitude exceeds the gap width, there exists

a semihard gap around zero energy, where ln N (E) ∝ − Eg

|E| ln ( Eg

|E| ). The states responsible for N (E) originate
from local gap reversals within narrow rings. The consequence of the semihard gap is the Arrhenius, rather than
variable-range hopping, temperature dependence of the diagonal conductivity at low temperatures.

DOI: 10.1103/PhysRevB.94.155313

I. INTRODUCTION

Pairs of spin-degenerate chiral edge modes are implicit for
insulators with inverted band structures [1–3]. The minimal
model [2] which captures these modes is a 4 × 4 matrix
Hamiltonian acting in the basis of two spin and two orbital
states.

The origin of the quantum anomalous Hall (QAH) effect
[4] is breaking of the time-reversal symmetry induced by
magnetic order. As a result, the symmetry between the two
counterpropagating modes at the sample edges is lifted. With
a single chiral mode per edge, the Hall conductance of the
sample becomes nonzero, and the transport resembles the
conventional quantum Hall effect. Experimental studies [5–20]
on Cr-doped and V-doped layers of BiTe-based insulating
compounds confirm both the quantization of the Hall resistance
and the edge transport which accompany the buildup of the
magnetic order. Remarkably, resistance jumps observed in
Ref. [20] allow for monitoring the switching of magnetization.
The common feature of the data reported so far is that the
resistance exhibits Arrhenius behavior down to very low
temperatures.

For the QAH effect to be pronounced, the bulk of the sample
should be strongly insulating. On the other hand, the crossover
between a trivial and “topological” band structures takes place
as the gap passes through zero. Obviously, the smaller the gap,
the easier it is washed out by the disorder. More precisely, the
disorder gives rise to in-gap states. However, in the QAH effect,
the disorder is of a special type: Randomness in the positions
of magnetic ions causes the local fluctuations of the gap width.
For such fluctuations the energies near the gap center remain
unaffected. This is probably the reason why a robust QAH
effect is observed in experiments of several groups.

In the present paper we study quantitatively the smearing
of the gap due to statistical, and thus unavoidable, magnetic
disorder. We find that the states near the gap center are due
to the local reversals of the gap sign within narrow rings.
By employing the instanton approach [21,22] we specify
the shape of these fluctuations and the likelihood of their
occurrence, which determines the density of the in-gap states.
This density of states exhibits a semihard gap near zero
energy.

II. INSTANTON APPROACH

Due to the composition disorder, the local value of x, which
is the portion of magnetic ions, differs from the average,

x(r) = x + δx(r). (1)

Fluctuations δx(r) are Gaussian with a zero correlation radius,

〈δx(r)δx(r′)〉 = x(1 − x)

N0
δ(r − r′), (2)

where N0 is the concentration of Bi lattice sites in which the
substitution magnetic ions reside. It is natural to assume that
the local gap fluctuations �(r) are proportional to δx, i.e.,

�(r) = Eg(r) − Eg = α δx(r), α = dEg

dx
. (3)

It follows from Eq. (3) that the probability to find the
fluctuation �(r) is given by

P{�(r)} ∝ exp

[
− 1

2γ

∫
dr �2(r)

]
. (4)

where γ = α2

N0
x(1 − x).

According to the instanton approach [21,22], the density
of states with energy E corresponds to the maximum of the
functional P among all the fluctuations that create a level with
energy E. In application to the QAH effect, the wave function
�(r), corresponding to this level, is a two-component spinor,

�(r) =
(

ψe(r)
ψh(r)

)
, (5)

which satisfies the Schrödinger equation,

ĥ�(r)� = E�. (6)

The Hamiltonian ĥ�(r) is a standard Hamiltonian of the
minimal model Ref. [2] in which only one spin component
is retained. In conventional notations [2] it has the form

ĥ�(r) = A(k̂xσx + k̂yσy) + [Bk̂2 + Eg + �(r)]σz, (7)

where σx, σy , and σz are the Pauli matrices acting in the
pseudospin space. The relative sign of Eg and parameter B
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determines whether or not the chiral modes are the eigenstates
of this Hamiltonian in the presence of an edge [4].

The procedure of minimization of the functional Eq. (4)
with restriction Eq. (6) is conventionally carried out [21,22]
by introducing the Lagrange multiplier λ and searching for a
minimum of the auxiliary functional,

λ〈�|ĥ�(r)|�〉 + 1

2γ

∫
dr �2(r), (8)

with respect to �(r). The minimization yields

�(r) = −λγ (|ψe(r)|2 − |ψh(r)|2). (9)

The remaining task is to substitute Eq. (9) into the Schrödinger
equation, find ψe(r), ψh(r), substitute them into Eq. (9), and
evaluate P with extremal �(r) defined by Eq. (9).

III. ASYMPTOTIC SOLUTION OF THE INSTANTON
EQUATION

Assuming the azimuthal symmetry of �(r), the solutions
of Eq. (6) can be classified according to the angular momen-
tum: ψe(r) = iψm

e (ρ) exp(imφ), ψh(r) = ψm
h (ρ) exp[i(m +

1)φ], where ρ and φ are the radius and the azimuthal angle,
respectively. Then the system of equations for ψm

e (ρ) and
ψm

h (ρ) reads{
Eg − E − λγ

[∣∣ψm
e (ρ)

∣∣2 − ∣∣ψm
h (ρ)

∣∣2]}
ψm

e (ρ)

= A

(
∂

∂ρ
+ m + 1

ρ

)
ψm

h (ρ),

(10){
Eg + E − λγ

[∣∣ψm
e (ρ)

∣∣2 − ∣∣ψm
h (ρ)

∣∣2]}
ψm

h (ρ)

= A

(
∂

∂ρ
− m

ρ

)
ψm

e (ρ).

Here we dropped the term Bk̂2 in the Hamiltonian ĥ�(r) and
will incorporate it later, see Appendix A.

The solution of the system is straightforward when the
energy E is close to the band-edge (Eg − E) � Eg . Then we
have ψm

h � ψm
e so that the system Eq. (10) reduces to a single

equation,

A2

2Eg

∇2ψe(r) + λγ [ψe(r)]3 = (Eg − E)ψe(r). (11)

This is a standard instanton equation for a particle moving in a
white-noise random potential [21–24]. The radial size of this
instanton is ∼ [Eg(Eg − E)/A2]−1/2. Thus, the integral over
r in Eq. (4) is proportional to (Eg − E). The full expression
for the density of states in the tail reads

N (E) ∝ exp

[
−κ0

(
A2

γ

)
Eg − E

Eg

]
, (12)

so that the characteristic tail energy is given by Et = γEg

A2 .
The value of the numerical factor κ0 = 5.8 was established in
Refs. [23,24]. It originates from the solution of Eq. (11) with
zero angular momentum. Physically, the tail states are due to
local gap reductions as depicted in Fig. 1.
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FIG. 1. (a) Fluctuation states near the gap edges are due to
local reductions of the width of the gap caused by the composition
disorder. (b) To create an in-gap state with energy E, much smaller
than the gap width in one-dimensional two local gap reversals are
required. (c) In two dimensions, the angular motion tends to shift
the fluctuation levels away from the gap center. Thus, the fluctuation,
responsible for state E, represents a narrow ring of gap reversals with
radius ∝Eg/E.

The result Eq. (12) applies when the tail energy is much
smaller than the gap, i.e., for γ � A2. This result cannot be
used even as an order-of-magnitude estimate for the middle of
the gap. This is because the shape of the fluctuation �(r)
at |E| � Eg is dramatically different from a simple gap
reduction �(r), captured by Eq. (11). Below we demonstrate
that for |E| � Eg the expression for the density of states has
the form

N (E) ∝ exp

[
−κ1

(
A2

γ

)
Eg

|E| ln
Eg

|E|

]
. (13)

Singular energy dependence of | ln N (E)| reflects the fact that
the probability of the formation of a state near the gap center
is highly unlikely since the corresponding fluctuation requires
a local gap reversal.

To create a state exactly at E = 0 the gap should be negative
in the left half-space and positive in the right half-space
[25] (or vice versa). Naturally, such a fluctuation has a zero
probability. To have a finite probability, the fluctuation must
include two gap reversals, i.e., |�(r)| should exceed Eg inside
the fluctuation. To establish the shape of this fluctuation, we
start from a one-dimensional case when |�(r)| changes only
along the coordinate y, Fig. 1.

A one-dimensional version of the system Eq. (10) reads

{Eg − E − λγ [|ψe(y)|2 − |ψh(y)|2]}ψe(y)=A
dψh(y)

dy
,

(14)

{Eg + E − λγ [|ψe(y)|2 − |ψh(y)|2]}ψh(y)=A
dψe(y)

dy
.

Upon a natural rescaling,

y = A

Eg

χ, ε = E

Eg

, ψe,h =
(

Eg

λγ

)1/2

�e,h, (15)
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it acquires a fully dimensionless form

{1 − ε − [|�e(χ )|2 − |�h(χ )|2]}�e(χ ) = d�h

dχ
,

(16)

{1 + ε − [|�e(χ )|2 − |�h(χ )|2]}�h(χ ) = d�e

dχ
.

The dimensionless length in Eq. (16) corresponds to a physical
decay length of the wave function in the middle of the
gap. Local gap reversals correspond to the regions of χ

where [|�e(χ )|2 − |�h(χ )|2] exceed 1. A formal reason why
there are no midgap fluctuation states is that for ε = 0
electron-hole symmetry requires |�e(χ )|2 = |�h(χ )|2, which
is incompatible with the decay of �e,h at χ → ±∞.

To find an asymptotic solution of the system at finite energy,
we make use of the smallness of parameter ε. As the first step,
instead of �e and �h, we introduce new functions,

�e(χ ) = C(χ ) cosh ϕ(χ ), �h(χ ) = −C(χ ) sinh ϕ(χ ),

(17)

after which the system takes the form

1 − ε − C(χ )2 = −
[

dϕ

dχ
+ tanh ϕ(χ )

(
dC

Cdχ

)]
,

(18)

1 + ε − C(χ )2 = −
[

dϕ

dχ
+ 1

tanh ϕ(χ )

(
dC

Cdχ

)]
.

Upon subtracting the two equations, we can express the
function C(χ ) in terms of ϕ(χ ) as follows:

C(χ ) = C0 exp

[
−ε

∫ χ

0
dχ ′ sinh 2ϕ(χ ′)

]
, (19)

where C0 is a constant. Substituting this expression back into
the system, we arrive at a closed differential-integral equation
for ϕ(χ ),

1 − C2
0 exp

[
−2ε

∫ χ

0
dχ ′ sinh 2ϕ(χ ′)

]
=− dϕ

dχ
+ε cosh 2ϕ.

(20)

In a zero order in ε � 1 the solution of Eq. (20) is a linear
function,

ϕ(χ ) = χ

b
, b = 1

C2
0 − 1

. (21)

Gap reversal, which corresponds to C0 > 1, is terminated at a
certain distance of χ = χε when ε cosh ϕ becomes big. This
yields

χε = b

2
| ln ε|. (22)

Importantly, the exponential term on the left-hand side of
Eq. (20) drops abruptly from 1 to 0 at the same χ = χε, or,
more precisely, in the domain |χ − χε| � 1.

The behavior of C(χ ) at |χ − χε| > 1 can be found by
taking into account that the C2

0 term in Eq. (20) is negligible
in this domain. Then it follows from Eq. (20) that the function
ϕ(χ ) saturates at the value of ϕ = ϕε such that ε cosh 2ϕε = 1.
Smallness of ε allows simplifying ϕε to 1

2 | ln ε|. This is exactly
the same value which one obtains upon substituting χε into

N(E)

Eg1−1 0

(a)

ln
Eg

E

|ψe|2

|ψh|2

lnN(E) ∝ Eg − |E|

lnN(E) ∝ Eg

|E|

χ

|Ψ(χ)|2

E

(b)

FIG. 2. (a) The density of the in-gap states due to the composition
disorder is shown schematically. Near the gap edges (the dashed
lines) it is a simple exponent, see Eq. (12), whereas near E = 0 it
represents a semihard gap Eq. (13). (b) The components ψe and ψh of
the spinor corresponding to the fluctuation state E � Eg are shown
schematically versus the dimensionless distance from the ring center.
Analytically, ψe is given by Eq. (23). The width of the ring exceeds
logarithmically the in-gap decay length at E = 0.

Eq. (21). The fact that ϕ(χ ) saturates at χ > χε suggests that
the function C(χ ) falls off exponentially as exp[−(χ − χε)]
at χ > χε as follows from Eq. (19). The behavior of ϕ(χ ) and
C(χ ) is depicted in Fig. 2.

Returning to dimensional units, we summarize our result,

�e(y) =
[

Eg

λγ

(
1 + 1

b

)]1/2

×
{

cosh
(Eg

Ab
y
)
, y < yE,(Eg

E

)1/2
exp

[−Eg

A
(y − yE)

]
, y > yE,

(23)

where

yE = A

Eg

χε = Ab

2Eg

ln
Eg

E
. (24)

The corresponding expression for ψh differs by replacement
of cosh by sinh. At y = yE the two expressions match within
a numerical factor.

The solution Eq. (23) of the system of instanton equations
in 1D is, actually, sufficient to find the 2D density of states.
Compared to the system Eq. (14), the 2D instanton equations
contain the extra “centrifugal” terms ∝1/ρ. These terms create
an energy shift of ∼A/ρ and thus prevent the formation of the
fluctuation in-gap levels with small energies. For such levels
to exist, the double reversal of the gap sign should take place
within a ring with radius ρE , much bigger than the width,
see Fig. 1. Then the solutions of the system Eq. (14) near
the ring center are one dimensional with y = ρ − ρE . More
quantitatively, see Appendix B, with angular motion taken
into account, the energy levels of the ring-shape fluctuation
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are given by

Em = ±
[
A2

(
2m + 1

ρE

)2

+ E2

]1/2

, (25)

where the first term described the quantization of the angular
kinetic energy. The above equation suggests that, for level E

to exist, the minimal radius of the ring is A/|E|.
In the expression Eq. (4) for the density of states the integral

dr can be replaced by the integral 2πρEdy over the area of the
ring,

N (E) ∝ exp

[
− 1

2γ

(
2πρE

∫ ∞

−∞
dy �2(y)

)]
. (26)

The expression for magnitude of the fluctuation �(y) is given
by Eq. (9). Taking into account that the dominant contribution
to the integral over y comes from the domain |y| < yE , we get

N (E) ∝ exp

[
−2πλ2γρE

∫ yE

0
dy

[
ψ2

e (y) − ψ2
h (y)

]2
]
. (27)

Substituting Eq. (23) into Eq. (26) and taking into account that
the difference (ψ2

e − ψ2
h ) is constant for y < yE , we reproduce

the result Eq. (13) in which the constant κ1 should be identified
with a combination,

κ1(b) = π

(
1 + 1

b

)2

b. (28)

The dependence κ1(b) has a minimum at b = 1, where it is
equal to 4π . The value b = 1 corresponds to C0 = 21/2, which,
in turn, means that the most probable fluctuation corresponds
to a complete gap reversal, i.e., the gap is equal to −Eg at the
core of the fluctuation.

IV. DISCUSSION

The main outcome of our study is that, even when the
spins of magnetic dopants are fully aligned, the unavoidable
statistical fluctuations in their density (alloy disorder [26–29])
smear the gap Eg . In conventional semiconductor mixed
crystals this disorder is known to cause the tail in the optical
absorption and even turn a gapless semiconductor into a metal
[28]. The degree of smearing is governed by a dimensionless
material parameter,

ν = γ

A2
= x(1 − x)

A2N0

(
dEg

dx

)2

. (29)

For ν � 1 only a narrow energy interval |E − Eg| ∼ νEg

is affected by the disorder, see Eq. (12). As ν exceeds 1, it
might seem from Eq. (12) that the gap is completely washed
out. However, our result Eq. (13), see also Fig. 2, suggests
that, even for strong disorder, there is an almost hard gap near
E = 0 which exists in the domain |E| � Eg/ν. Probably, see
Appendix C, it is this hard gap that governs the temperature
dependence of the longitudinal resistance in the experiments
[5–20]. The scale of temperatures for the QAH effect is
known to be much lower than the Curie temperature. The fact
that the bulk gap in the QAH effect is narrow follows most

convincingly from Ref. [10] where the strong temperature-
dependent deviations from the quantized value of nondiagonal
resistance were observed in a high applied external field so that
they cannot be accounted for by the domain structure in the
sample. Moreover, the analysis in experimental paper Ref. [15]
indicates that the low-temperature behavior of the zero-field
diagonal conductivity is activational rather than the variable-
range hopping, which is consistent with the scenario of a hard
gap. To estimate the experimental value of parameter ν we
chose x = 0.1 as in most experiments, A = 3 eV Å (Ref. [4])
and α = 2.7 eV (Ref. [30]). With N0 = 5 × 1014 cm−2, we
got ν ≈ 0.5, suggesting that statistical disorder is relevant for
the QAH effect.

There are two principal issues that complicate quantitative
comparison of our predictions with experiment. First, we
used the simplest description of electron states based on
the Hamiltonian Eq. (7). This Hamiltonian, proposed in
Ref. [30], is believed to capture the low-energy excitations
after the pseudospin components ψe and ψh are identified
with symmetric and antisymmetric combinations of the top
and bottom surface states. However, the experiments were
performed on multilayer structures. It is unclear whether
the purely 2D description applies to them quantitatively.
Second, in realistic samples, the in-gap states due to the
magnetic disorder can be masked by the smearing due to
nonmagnetic impurities. In-gap states due to these impurities
do not “preserve” the energy E = 0. The only information
about the disorder in the QAH samples is the value of mobility
μ = 760 cm2 V−1 s−1, measured in Ref. [8] at a temperature
of 80 K, much higher than the Curie temperature of 15 K.
However, relating this mobility to the random potential, which
could be added to the Hamiltonian Eq. (7), is impossible, again,
due to the complex band structure of multilayers.

In conclusion, we point out that for a really strong disorder
ν � 1, the hard gap near E = 0 disappears. In this limit
one can neglect Eg in the Hamiltonian so that the problem
is reduced to disorder-induced smearing of a linear Dirac
spectrum. This problem has a long history [31–33] and
was addressed in relation to, e.g., d-wave superconductivity.
However, in the absence of an energy scale to compare the
disorder with, there is no definite answer.
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APPENDIX A: THE ROLE OF THE Bk2 TERM IN
THE HAMILTONIAN

In order to estimate the effect of the Bk2 term in the
Hamiltonian Eq. (7), we compare it to the linear term and
find the scale of momenta k ∼ A/B when this term becomes
important. In other words, the term Bk2 plays a dominant role
when the spatial scales in the problem are ∼B/A. On the other
hand, with logarithmic accuracy, the size of the fluctuation is
∼A/Eg . The ratio of the two scales yields a dimensionless
parameter BEg/A

2, which becomes progressively small as the
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gap decreases. More quantitative information about the role of
Bk2 can be obtained upon incorporating it into Eq. (20). Then
it takes the form

dϕ

dχ
= C2

0 exp

[
−2ε

∫ χ

0
dχ ′ sinh 2ϕ(χ ′)

]
− 1 + ε cosh 2ϕ

+BEg

A2

[(
dϕ

dχ

)2

− d2ϕ

dχ2

]
. (A1)

Similar to the steps in the main text, we neglect small terms
containing ε and substitute ϕ(χ ) = χ/b. This leads to the
following modified relation between parameters b and C0:

C2
0 = 1 + 1

b
−

(
BEg

A2

)
1

b2
. (A2)

Note that for the topological band structure, when the signs of
B and Eg are opposite, the last term in Eq. (A2) causes only
a slight increase in C0, which results in a small suppression
of the exponent in the density of states. On the contrary, for
a trivial band structure, this last term decreases C0, leading to
the enhancement of the density of states. Moreover, Eq. (A2)
suggests that this enhancement can be parametrically big when
the second and third terms closely compensate each other. For
such a compensation the width of the ring should be on the
order of the minimal length B/A. This, however, violates our
basic assumption that the shape of the fluctuation is dominated
by the inner part.

APPENDIX B: QUANTIZED LEVELS ON A RING WITH
AN INVERTED BAND GAP

Consider a gap-inverting fluctuation confined to a ring
ρ1 < ρ < ρ2. More specifically, the gap �(r) changes

in a radial direction as follows:

�(r) =
⎧⎨
⎩

�0, 0 < ρ < ρ1,

−�0, ρ1 < ρ < ρ2,

�0, ρ > ρ2.

(B1)

We assume for simplicity that the gap reversal is full. In the
domain ρ < ρ1, the in-gap solution of the system Eq. (10)
which is finite at the origin reads(

ψm
e (ρ)

ψm
h (ρ)

)
=

(
αIm+1(sρ)√
�0−E

�0+E
αIm(sρ)

)
, (B2)

where Im(z) is the modified Bessel function and s =
√

�2
0−E2

A
.

The corresponding solution for ρ > ρ2, which decays at ρ →
∞ can be expressed in terms of the Macdonald function as
follows: (

ψm
e (ρ)

ψm
h (ρ)

)
=

(
βKm+1(sρ)

−
√

�0−E

�0+E
βKm(sρ)

)
. (B3)

Within the ring, the solution is a linear combination of Im(sρ)
and Km(sρ),(

ψm
e (ρ)

ψm
h (ρ)

)
=

(
α1Im+1(sρ) + β1Km+1(sρ)√

�0+E

�0−E
[−α1Im(sρ) + β1Km(sρ)]

)
, (B4)

The gap inversion is reflected in the relative signs of the
components of the spinor inside and outside the ring. Four
unknown coefficients, α, β, α1, and β1 are related by the
continuity of the components of the spinors at ρ = ρ1 and
ρ = ρ2. The energy levels are determined from the condition
of consistency of the system, which reads

(
�0 − E

�0 + E

)
Km(sρ2)

Km+1(sρ2)
=

(
Im+1(sρ1)Km(sρ1) − �0−E

�0+E
Im(sρ1)Km+1(sρ1)

)
Im(sρ2) − 2�0

�0+E
Im+1(sρ1)Im(sρ1)Km(sρ2)(

Im+1(sρ1)Km(sρ1) − �0−E

�0+E
Im(sρ1)Km+1(sρ1)

)
Im+1(sρ2) + 2�0

�0+E
Im+1(sρ1)Im(sρ1)Km+1(sρ2)

.

(B5)

The near-midgap levels with |E| � �0 appear only when
the conditions sρ1 � 1 and s(ρ2 − ρ1) � 1 are met. Under
these conditions Eq. (B5) allows serious simplifications. First,
using the asymptotes of the Bessel functions, the common
bracket in the numerator and denominator on the right-hand
side simplifies to

Im+1(sρ1)Km(sρ1) −
(

�0 − E

�0 + E

)
Im(sρ1)Km+1(sρ1)

≈ 1

2sρ1

(
2E

�0
− 2m + 1

sρ1

)
. (B6)

As the next step, we divide both sides by the ratio
Im(sρ2)/Im+1(sρ2) and take the large-ρ asymptotes. Then the
left-hand side takes the form

(
�0 − E

�0 + E

)
Km(sρ2)Im+1(sρ2)

Km+1(sρ2)Im(sρ2)
= 1 − 2E

�0
− 2m + 1

sρ2
. (B7)

The expressions in the numerator and denominator on the
right-hand side are equal to Eq. (B6) ± a small correction. The
asymptotic form of this correction is the following:

2�0

�0 + E
Im+1(sρ1)Im(sρ1)

Km(sρ2)

Im(sρ2)

≈ 2�0

�0 + E
Im+1(sρ1)Im(sρ1)

Km+1(sρ2)

Im+1(sρ2)
≈ 2e−2s(ρ2−ρ1)

2sρ1
.

(B8)

Upon combining Eqs. (B6)–(B8), the equation for the energy
levels reduces to

1 − 2E

�0
− 2m + 1

sρ2
= 1 − 4 exp[−2s(ρ2 − ρ1)]

2E
�0

− 2m+1
sρ1

. (B9)

For a narrow ring one can replace ρ1 and ρ2 in the denominators
by (ρ1 + ρ2)/2. Also, with accuracy E2/�2

0, one can replace s
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by �0/A. This leads to the following expression for the energy
levels:(

2E

�0

)2

=
[

2(2m + 1)A

�0(ρ1 + ρ2)

]2

+ 4 exp

[
−2

(ρ2 − ρ1)�0

A

]
.

(B10)

The right-hand side is the sum of contributions from the
quantized motion along the ring and quantized motion across
the ring as in Eq. (23).

APPENDIX C: TEMPERATURE DEPENDENCE OF
CONDUCTIVITY

Neglecting the energy dependence of the logarithm in
Eq. (13), we approximate the energy-dependent density of
states with

N (E) = N0 exp

(
−Eg

νE

)
, (C1)

where parameter ν is defined by Eq. (27). Assume that the
energy responsible for the transport is E0. The density of states
can be treated as a constant within a strip |E − E0| < νE2

0/Eg .
A typical distance between the localized states within the
strip is

r(E0) =
(

νE2
0N (E0)

Eg

)−1/2

. (C2)

Following the derivation of Mott’s law, we minimize the log-
resistance,

ln R(E0) = E0

T
+ 2r(E0)

ξ
, (C3)

corresponding to activation into the strip and tunneling
between the neighbors with respect to E0. Here ξ is the
localization radius. The condition of the minimum reads

1

T
= 1

(N0ξ 2)1/2

(
Eg

νE2
0

)3/2

exp

(
Eg

2νE0

)
, (C4)

where we have differentiated only the exponent in r(E0). Upon
expressing E0 from Eq. (C4) and substituting it back into
Eq. (C3), we find with logarithmic accuracy,

ln R(E0) = Eg

2νT

[
ln

Eg

νT

(
N0ξ

2Eg

ν

)1/2
]−1

. (C5)

The result Eq. (C5) applies when the logarithm is big. By
virtue of the same condition the activation term in Eq. (C4)
exceeds the tunneling term. Concerning the dimensionless
combination N0ξ

2Eg under the logarithm with localization
length ξ = A/Eg in the middle of the gap being disorder
independent, this combination is some unknown power of ν.
Thus, for ν ∼ 1, Eq. (C5) applies for T < Eg . We conclude
that, due to a rapid growth of the density of states away
from the gap center, the behavior of the resistance remains
Arrhenius even at low temperatures. This is consistent with
the observation in Ref. [15].

[1] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[2] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[3] B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802

(2006).
[4] C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C. Zhang, Phys.

Rev. Lett. 101, 146802 (2008).
[5] J. G. Checkelsky, J. Ye, Y. Onose, Y. Iwasa, and Y. Tokura, Nat.

Phys. 8, 729 (2012).
[6] C.-Z. Chang, J. Zhang, M. Liu, Z. Zhang, X. Feng, K. Li, L.-L.

Wang, X. Chen, X. Dai, Z. Fang, X.-L. Qi, S.-C. Zhang, Y.
Wang, K. He, X.-C. Ma, and Q.-K. Xue, Adv. Mater. 25, 1065
(2013).

[7] X. Kou, M. Lang, Y. Fan, Y. Jiang, T. Nie, J. Zhang, W. Jiang,
Y. Wang, Y. Yao, L. He, and K. L. Wang, ACS Nano 7, 9205
(2013).

[8] C.-Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K.
Li, Y. Ou, P. Wei, L.-L. Wang, Z.-Q. Ji, Y. Feng, S. Ji, X. Chen,
J. Jia, X. Dai, Z. Fang, S.-C. Zhang, K. He, Y. Wang, L. Lu,
X.-C. Ma, and Q.-K. Xue, Science 340, 167 (2013).

[9] J. G. Checkelsky, R. Yoshimi, A. Tsukazaki, K. S. Takahashi,
Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat. Phys.
10, 731 (2014).

[10] X. Kou, S.-T. Guo, Y. Fan, L. Pan, M. Lang, Y. Jiang, Q.
Shao, T. Nie, K. Murata, J. Tang, Y. Wang, L. He, T.-K. Lee,
W.-L. Lee, and K. L. Wang, Phys. Rev. Lett. 113, 137201
(2014).

[11] C.-Z. Chang, W. Zhao, D. Y. Kim, H. Zhang, B. A. Assaf, D.
Heiman, S.-C. Zhang, C. Liu, M. H. W. Chan, and J. S. Moodera,
Nature Mater. 14, 473 (2015).

[12] A. Kandala, A. Richardella, S. Kempinger, C.-X. Liu, and N.
Samarth, Nat. Commun. 6, 7434 (2015).

[13] M. Mogi, R. Yoshimi, A. Tsukazaki, K. Yasuda, Y. Kozuka,
K. S. Takahashi, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett.
107, 182401 (2015).

[14] X. Kou, L. Pan, J. Wang, Y. Fan, E. S. Choi, W.-L. Lee, T. Nie, K.
Murata, Q. Shao, S.-C. Zhang, and K. L. Wang, Nat. Commun.
6, 8474 (2015).

[15] A. J. Bestwick, E. J. Fox, X. Kou, L. Pan, K. L. Wang, and D.
Goldhaber-Gordon, Phys. Rev. Lett. 114, 187201 (2015).

[16] C.-Z. Chang, W. Zhao, D. Y. Kim, P. Wei, J. K. Jain, C. Liu, M.
H. W. Chan, and J. S. Moodera, Phys. Rev. Lett. 115, 057206
(2015).

[17] S. Grauer, S. Schreyeck, M. Winnerlein, K. Brunner, C.
Gould, and L. W. Molenkamp, Phys. Rev. B 92, 201304(R)
(2015).

155313-6

https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1126/science.1133734
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.96.106802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1103/PhysRevLett.101.146802
https://doi.org/10.1038/nphys2388
https://doi.org/10.1038/nphys2388
https://doi.org/10.1038/nphys2388
https://doi.org/10.1038/nphys2388
https://doi.org/10.1002/adma.201203493
https://doi.org/10.1002/adma.201203493
https://doi.org/10.1002/adma.201203493
https://doi.org/10.1002/adma.201203493
https://doi.org/10.1021/nn4038145
https://doi.org/10.1021/nn4038145
https://doi.org/10.1021/nn4038145
https://doi.org/10.1021/nn4038145
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1126/science.1234414
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1038/nphys3053
https://doi.org/10.1103/PhysRevLett.113.137201
https://doi.org/10.1103/PhysRevLett.113.137201
https://doi.org/10.1103/PhysRevLett.113.137201
https://doi.org/10.1103/PhysRevLett.113.137201
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/nmat4204
https://doi.org/10.1038/ncomms8434
https://doi.org/10.1038/ncomms8434
https://doi.org/10.1038/ncomms8434
https://doi.org/10.1038/ncomms8434
https://doi.org/10.1063/1.4935075
https://doi.org/10.1063/1.4935075
https://doi.org/10.1063/1.4935075
https://doi.org/10.1063/1.4935075
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1038/ncomms9474
https://doi.org/10.1103/PhysRevLett.114.187201
https://doi.org/10.1103/PhysRevLett.114.187201
https://doi.org/10.1103/PhysRevLett.114.187201
https://doi.org/10.1103/PhysRevLett.114.187201
https://doi.org/10.1103/PhysRevLett.115.057206
https://doi.org/10.1103/PhysRevLett.115.057206
https://doi.org/10.1103/PhysRevLett.115.057206
https://doi.org/10.1103/PhysRevLett.115.057206
https://doi.org/10.1103/PhysRevB.92.201304
https://doi.org/10.1103/PhysRevB.92.201304
https://doi.org/10.1103/PhysRevB.92.201304
https://doi.org/10.1103/PhysRevB.92.201304


SMEARING OF THE QUANTUM ANOMALOUS HALL EFFECT . . . PHYSICAL REVIEW B 94, 155313 (2016)

[18] E. O. Lachman, A. F. Young, A. Richardella, J. Cuppens, H. R.
Naren, Y. Anahory, A. Y. Meltzer, A. Kandala, S. Kempinger,
Y. Myasoedov, M. E. Huber, N. Samarth, and E. Zeldov, Sci.
Adv. 1, e1500740 (2015).

[19] Y. Feng, X. Feng, Y. Ou, J. Wang, C. Liu, L. Zhang, D. Zhao,
G. Jiang, S.-C. Zhang, K. He, X. Ma, Q.-K. Xue, and Y. Wang,
Phys. Rev. Lett. 115, 126801 (2015).

[20] M. Liu, W. Wang, A. R. Richardella, A. Kandala, J. Li, A.
Yazdani, N. Samarth, and N. P. Ong, Sci. Adv. 2, e1600167
(2016).

[21] B. I. Halperin and M. Lax, Phys. Rev. 148, 722 (1966).
[22] J. Zittartz and J. S. Langer, Phys. Rev. 148, 741 (1966).
[23] D. J. Thouless and M. E. Elzain, J. Phys. C 11, 3425 (1978).
[24] E. Brezin and G. Parisi, J. Phys. C 13, L307 (1980).
[25] A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein,

Phys. Rev. B 50, 7526 (1994).

[26] Z. I. Alferov, E. L. Portnoi, and A. A. Rogachev, Sov. Phys.
Semicond. 2, 1001 (1969).

[27] S. D. Baranovskii and A. L. Efros, Sov. Phys. Semicond. 12,
1328 (1978).

[28] N. N. Ablyazov, M. E. Raikh, and A. L. Efros, Pis’ma Zh. Eksp.
Teor. Fiz. 38, 103 (1983).

[29] A. L. Efros and M. E. Raikh, in Optical Properties of Mixed
Crystals, edited by R. J. Elliot and I. P. Ipatova (Elsevier Science,
Amsterdam, 1988), p. 133.

[30] R. Yu, W. Zhang, H.-J. Zhang, S.-C. Zhang, X. Dai, and Z. Fang,
Science 329, 61 (2010).

[31] M. P. A. Fisher and E. Fradkin, Nucl. Phys. B 251, 457
(1985).

[32] P. A. Lee, Phys. Rev. Lett. 71, 1887 (1993).
[33] A. A. Nersesyan, A. M. Tsvelik, and F. Wenger, Phys. Rev. Lett.

72, 2628 (1994).

155313-7

https://doi.org/10.1126/sciadv.1500740
https://doi.org/10.1126/sciadv.1500740
https://doi.org/10.1126/sciadv.1500740
https://doi.org/10.1126/sciadv.1500740
https://doi.org/10.1103/PhysRevLett.115.126801
https://doi.org/10.1103/PhysRevLett.115.126801
https://doi.org/10.1103/PhysRevLett.115.126801
https://doi.org/10.1103/PhysRevLett.115.126801
https://doi.org/10.1126/sciadv.1600167
https://doi.org/10.1126/sciadv.1600167
https://doi.org/10.1126/sciadv.1600167
https://doi.org/10.1126/sciadv.1600167
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRev.148.722
https://doi.org/10.1103/PhysRev.148.741
https://doi.org/10.1103/PhysRev.148.741
https://doi.org/10.1103/PhysRev.148.741
https://doi.org/10.1103/PhysRev.148.741
https://doi.org/10.1088/0022-3719/11/16/012
https://doi.org/10.1088/0022-3719/11/16/012
https://doi.org/10.1088/0022-3719/11/16/012
https://doi.org/10.1088/0022-3719/11/16/012
https://doi.org/10.1088/0022-3719/13/12/005
https://doi.org/10.1088/0022-3719/13/12/005
https://doi.org/10.1088/0022-3719/13/12/005
https://doi.org/10.1088/0022-3719/13/12/005
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1103/PhysRevB.50.7526
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1126/science.1187485
https://doi.org/10.1016/0550-3213(85)90272-X
https://doi.org/10.1016/0550-3213(85)90272-X
https://doi.org/10.1016/0550-3213(85)90272-X
https://doi.org/10.1016/0550-3213(85)90272-X
https://doi.org/10.1103/PhysRevLett.71.1887
https://doi.org/10.1103/PhysRevLett.71.1887
https://doi.org/10.1103/PhysRevLett.71.1887
https://doi.org/10.1103/PhysRevLett.71.1887
https://doi.org/10.1103/PhysRevLett.72.2628
https://doi.org/10.1103/PhysRevLett.72.2628
https://doi.org/10.1103/PhysRevLett.72.2628
https://doi.org/10.1103/PhysRevLett.72.2628



