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Theory of edge-state optical absorption in two-dimensional transition metal dichalcogenide flakes
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We develop an analytical model to describe sub-band-gap optical absorption in two-dimensional semiconduct-
ing transition metal dichalcogenide (s-TMD) nanoflakes. The material system represents an array of few-layer
molybdenum disulfide crystals, randomly orientated in a polymer matrix. We propose that optical absorption
involves direct transitions between electronic edge states and bulk bands, depends strongly on the carrier
population, and is saturable with sufficient fluence. For excitation energies above half the band gap, the excess
energy is absorbed by the edge-state electrons, elevating their effective temperature. Our analytical expressions
for the linear and nonlinear absorption could prove useful tools in the design of practical photonic devices based
on s-TMDs.
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I. INTRODUCTION

In the last decade, following the discovery of graphene [1],
research of two-dimensional (2D) materials has experienced
an explosive growth. A 2D material represents an atomically
thin solid flake, with optical properties qualitatively different
from its three-dimensional parent crystal [2,3]. One of the
largest families of 2D materials is that of the transition-metal
dichalcogenides (TMDs) that contains over 40 different forms,
either metallic or semiconducting [2]. TMDs have the general
formula MX2, where M represents a transition metal, (e.g.,
molybdenum or tungsten) and X represents a chalcogen (e.g.,
sulfur, selenium, or tellurium) [2,3]. Single-layer MX2 crystals
are quasi-2D structures, containing a plane of metal (M)
atoms covalently bonded between two planes of chalcogen (X)
atoms; see Fig. 1(a). In contrast to bulk semiconducting TMD
(s-TMD) crystals, their monolayers typically exhibit a direct
band gap at visible or near-infrared frequencies, making them
a suitable material for a range of photonic and optoelectronic
applications [2,4–6]. In a direct band-gap semiconductor,
with a pristine lattice and of infinite extent, photons with
energies lower than the band gap cannot excite direct interband
transitions; thus, single-photon absorption at these energies
does not occur. Recent experiments by several research
groups, however, have demonstrated both non-negligible linear
absorption at sub-band-gap photon energies as well as a
finite nonlinear optical response in a variety of s-TMDs,
including MoS2 [7,8], WS2 [9,10], and MoSe2 [11,12]. Liquid
phase exfoliated MoSe2-polymer composites, for example,
have been reported to exhibit >7% linear absorption in the
0.65–0.8-eV range [11], in spite of MoSe2 having a direct (in
monolayer form) and indirect (bulk) band gap of ∼1.5–1.58
and ∼1.1 eV, respectively [3,13].

Several mechanisms have been proposed to explain this
phenomenon. Supported by first-principles calculations, Wang
et al. suggested that a reduction in the MoS2 band gap
could be achieved by introducing crystallographic defect

states [14]. The authors also suggested that defects could
activate the material as a broadband saturable absorber [14].
We recently proposed that edge states contribute to sub-
band-gap absorption in s-TMDs [15,16]. This mechanism
is supported by earlier photothermal deflection spectroscopy
of MoS2 nanoflakes, where increased linear absorption at
sub-band-gap energies was observed for large MoS2 crystals
after lithographic texturing that increased the total amount
of edges in the sample [17]. The s-TMD flakes prepared by
liquid phase exfoliation (LPE)—a widely used technique for
the low-cost, mass manufacture of nanomaterials—also have
a high edge to surface area ratio, and are thus expected to
exhibit sub-band-gap states, supporting absorption of photons
with lower energies than the material band gap. Recent studies
have demonstrated that the sub-band-gap absorption in s-TMD
nanoflakes can be saturated, and exploited this effect in the
development of ultrafast lasers operating in near infrared,
corresponding to photon energies in the range 0.6–1.12 eV
[7–12,15]. While a growing body of experimental work con-
tinues to substantiate the process of sub-band-gap absorption
in s-TMDs, and practical applications of this phenomenon are
being leveraged in the field of photonics, theoretical analyses
are limited and the origin of sub-band-gap optical absorption
remains an open question. Here, we develop an analytical
theory, testing the hypothesis of edge-mediated absorption in
s-TMDs to explain the phenomenon of sub-band-gap saturable
absorption.

The electronic states at the edges of a nanoflake (edge
states) have been modeled to date using two approaches: first,
by focusing on the atomic structure of a particular edge and
computing the energy dispersion by means of a tight-binding
Hamiltonian with appropriate boundary conditions [19–23];
second, using density functional theory [24–30]. It has been
shown a few years ago [31] that the chalcogen-terminated
zig-zag edges are the most stable because they have lowest
energies without hydrogen saturation. We therefore expect
such edge types to be the most abundant in the dispersion of
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FIG. 1. (a) The s-TMD flakes are randomly distributed within a
host polymer matrix illuminated by infrared light with an excitation
energy below the material band gap. (b) The honeycomb lattice with
the on-site energies EA and EB terminated by the barrier along the
x axis, where EB becomes infinite. (c) The electronic band structure
of a single flake includes conduction, valence, and edge states. The
edge states are one-dimensional, i.e., the depicted momentum axis is
parallel to the flake’s edge. There are two mirror copies of these bands
in the first Brillouin zone (K and K ′ valley). For a given excitation
energy, two independent optical absorption channels are possible
in each valley corresponding to the valence-to-edge and edge-to-
conduction bands direct transitions. These transitions are shown by
red arrows, and the electrons and holes created are depicted by the
filled and empty circles, respectively; see also Fig. 6 in Ref. [18].
Each edge-state electron-hole pair accumulates a certain amount of
energy which after thermalization appears as an elevated temperature
for the edge-state electrons.

nonhydrogenated 2D TMDs. Moreover, such edges maintain
one-dimensional (1D) metallic states, as confirmed by ab
initio [26,30] and continuum-model [18] calculations. The
latter shows that the band structure of the purely dichalcogen-
terminated zig-zag edge can be well approximated by 1D bands
with linear dispersions, where electrons are propagating in
opposite directions in the K and K ′ valleys. Our model shown
in Figs. 1(b) and 1(c) mimics this behavior, but, in contrast
to the previous approaches, allows us to calculate the wave
functions and the Fermi’s golden-rule optical transitions from
and to the edge states analytically. In detail, we use an effective
Hamiltonian proposed in Ref. [32] but with a spatially depen-
dent band gap simulating the flake edge. A somewhat similar
model is known in the literature as a neutrino billiard [33].

The ab initio calculations reviewed above are able to
provide a quantitative description of the optical absorption of a
particular flake with a given edge type; however, experimental
measurements are typically preformed on an array of small
flakes, randomly oriented in a polymer, with different edge

types. We therefore need an effective model which focuses
on the most optically active metallic states supported by the
most stable chalcogen-terminated zig-zag edges. The model
may not be valid for isolated flakes that may not possess
metallic edge states. Nonetheless, it should provide a reliable
optical absorption estimate for a large ensemble of flakes,
where optically inert edge states are dominated by their active
counterparts. Focusing on the most important edge type allows
for explicit expressions for the linear and saturable optical
absorptions. The compromise for this simplification is the lack
of predictive power on the quantitative level.

The peculiarities of the edge-state absorption are depicted
in Fig. 1. In contrast to the two-band model for bulk
semiconductors [34], our approach involves three electron
subsystems. A one-dimensional edge-state electron subsystem
always remains in the metallic regime with the Fermi energy
determined by the bulk chemical potential. In contrast, the con-
duction and valence bands are in the semiconducting regime:
the valence band is occupied almost completely whereas the
conduction band is nearly empty. Subgap direct transitions
occur between the valence-band and edge states as well as
the edge and conduction-band states. The relative contribution
of these two transitions is determined by Pauli blocking and
depends on the relationship between the excitation frequency
and the Fermi level. We show that despite the complexity of the
model the saturable subgap absorption A� for s-TMD flakes
can be written in the conventional form [34]

A� = A

1 + �
�s

, (1)

where A is the relative linear absorption estimated by Eq. (17),
� is the incident fluence, and �s is the saturation fluence given
by Eq. (24). The absorption is defined as a ratio of the absorbed
radiation fluence to the incident fluence. In the rest of the paper,
we derive the analytical expressions for A and �s , and analyze
their behavior.

II. MODEL

From the point of view of the band theory, the difference
between semiconductor and vacuum can be described by
means of the band gap �: it is finite in the semiconducting
region but infinite outside, where no conduction is possible.
Let us consider a simple Hamiltonian derived for electrons
on a honeycomb lattice using the tight-binding approach
with the lattice constant a, the on-site energies EA,B , and
the nearest-neighbor hopping t⊥. Near the K corner of the
hexagonal first Brillouin zone, the Hamiltonian can be written
in the continuum limit as [35]

HK
0 =

(
EA −t⊥

√
3a
2 (k̂x − ik̂y)

−t⊥
√

3a
2 (k̂x + ik̂y) EB

)
,

where k̂x = −i∂x , k̂y = −i∂y are momentum operators. (The
Hamiltonian for the K ′ corner can be obtained by the
substitution k̂x → −k̂x .) This Hamiltonian can be rewritten
in a more instructive form given by [32]

HK
0 = const +

(
�
2 �v(k̂x − ik̂y)

�v(k̂x + ik̂y) −�
2

)
, (2)
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where const = (EA + EB)/2, � = EA − EB represents the
band gap, and −√

3at⊥/2 = �v, with �v = 1.1 eV × 3.193 Å
for MoS2 [32]. The gap can be either positive or negative
depending on the difference between the on-site energies EA,B .
The spin-orbit coupling is neglected here. It results in the
valley-spin locking which, in turn, can be used for the valley-
selective pump-probe spectroscopy with circularly polarized
light. Since we are dealing with the linear polarization, both
valleys contribute equally and the only effect of the spin-orbit
splitting is the spin-dependent band gap.

The edge states along the x axis can be simulated by means
of a y-dependent gap �(y). We first solve the edge-state
spectral problem for K-valley HK

0 ψe = Eeψe and obtain the
eigenstate wave function ψe in the form

ψe = C exp

(
ikxx −

∫ y

0

�(y ′)dy ′

2�v

)(
1

−1

)
, (3)

where C is a normalization constant, and �(y) should change
its sign at y = 0 [36]. An edge along the y axis can be modeled
in a similar way by an x-dependent gap �(x). Since we aim for
an analytical derivation of the linear absorption and saturation
fluence, we simplify �(y) as

�(y) =
{
� > 0, y � 0 (semiconductor)
−∞, y < 0 (vacuum) . (4)

Equation (3) then reads

ψe =
√

�

2L�v
exp

(
ikxx − y�

2�v

)(
1

−1

)
, y � 0, (5)

which is normalized as

lim
W→∞

∫ L

0
dx

∫ W

0
dy(ψ†

eψe) = 1

and obeys the dispersion Ee = −�vkx . Due to Eq. (4), ψe

exponentially vanishes in the bulk because � > 0 at y � 0.
Note that ψe equals to zero at y < 0 but is finite at y = 0, i.e.,
it demonstrates a steplike behavior. This is because �(y) is
not a true electrostatic potential, as emphasized by Berry and
Mondragon [33], but a “staggered” one [20]. The staggered
potential depends on the sublattice, whereas true electrostatic
potential does not. Even if �(y) goes to infinity, it is not
equivalent to the hard-wall potential, where the wave function
must vanish at the border. For the K ′ valley, the solution of the
spectral problem results in the same dispersion Ee but taken
with an opposite sign; see Fig. 1(c). In contrast to a topological
quantum-Hall insulator [36], the edge states (5) exist in two
mirror copies in two valleys. To give an example, the edge-state
electrons in MX2 monolayers may experience intervalley
backscattering, i.e., the edge-state electron transport is not
topologically protected. It is worth emphasizing that our
conclusions do not depend on whether the edge is along the x

or y direction since the optical absorption is averaged over the
flake orientation.

The bulk conduction-band eigenwave functions for the K

valley are given by

ψc = 1√
LW

exp(ikxx + ikyy)

(
cos θ

2

sin θ
2 eiφ

)
, (6)

with the dispersion Ec =
√

(�vk)2 + �2/4, whereas the
valence-band wave functions read

ψv = 1√
LW

exp(ikxx + ikyy)

(
sin θ

2

− cos θ
2 eiφ

)
, (7)

with the dispersion Ev = −
√

(�vk)2 + �2/4. Here,

tan θ = 2�vk

�
, tan φ = ky

kx

.

The bulk states are normalized to unity on the rectangle 0 �
x � L, 0 � y � W .

The electron-photon interaction Hamiltonian for the K

valley is derived from Eq. (2) and is given by [37,38]

H int = evE0

2ω

(
0 e−iθE

eiθE 0

)
,

where E0, ω, and θE are the electromagnetic wave am-
plitude, frequency, and polarization angle correspondingly.
The valence-to-edge states transitions are described by the
following matrix element:

〈ψe|H int|ψv〉 = −
√

�

2�Wv

evE0

2Lω

×
(

cos
θ

2
eiφ−iθE + sin

θ

2
eiθE

)

× ei(kx−k′
x )L − 1

i(kx − k′
x)

e(iky− �
2�v

)W − 1

iky − �
2�v

. (8)

Here, (kx,ky) = k and k′
x are momenta components in the

bulk and at the edge, respectively. The valence-to-edge states
transition rate can be calculated as

gph
ev (ω) =

∑
kx ,ky ,k′

x

2π

�

∣∣H int
ev

∣∣2(
f (0)

v − f (0)
e

)

× δ[−�vk′
x +

√
(�vk)2 + �2/4 − �ω], (9)

where f (0)
v and f (0)

e are the Fermi-Dirac distributions for elec-
trons in the valence band and in the edge states, respectively
and |H int

ev |2 reads∣∣H int
ev

∣∣2 = lim
L,W→∞

|〈ψe|H int|ψv〉|2

= �

2�v

2π

LW
δ(kx − k′

x)

(
evE0

2ω

)2

× 1 + sin θ cos(φ − 2θE)(
�

2�v

)2 + k2
y

.

The edge-to-conduction-band transition rate differs from
Eq. (9) by the sign in front of the θE-dependent term and
by the filling factors. The corresponding generation rate reads

gph
ce (ω) =

∑
kx ,ky ,k′

x

2π

�

∣∣H int
ce

∣∣2

× δ[
√

(�vk)2 + �2/4 + �vk′
x − �ω]

(
f (0)

e − f (0)
c

)
,

(10)
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where ∣∣H int
ce

∣∣2 = lim
L,W→∞

|〈ψc|H int|ψe〉|2

= �

2�v

2π

LW
δ(kx − k′

x)

(
evE0

2ω

)2

× 1 − sin θ cos(φ − 2θE)(
�

2�v

)2 + k2
y

,

and f (0)
c stands for the conduction-band Fermi-Dirac distribu-

tion.
The flakes are randomly oriented, thus the relative optical

absorption is determined by the ratio between the θE-averaged
absorbed power �ω〈gph

ev + g
ph
ce 〉θE

and the incident radiation
power (cE2

0S)/(8π ) with S being the illuminated area. To sum
up over k′

x , kx , and ky we transform sums to integrals as

∑
kx ,ky ,k′

x

→
∫

dk′
xL

2π

∫
dkxL

2π

∫
dkyW

2π
.

The integral over k′
x is taken using the momentum conser-

vation represented above as δ(kx − k′
x). The integral over

kx is then taken using the energy conservation utilizing the
transformation

δ(
√

(�vk)2 + �2/4 ± �vkx − �ω)

= �
2ω2 + �2/4 + �

2v2k2
y

2�3ω2v

× δ

(
kx ∓ �

2ω2 − �2/4 − �
2v2k2

y

2�2ωv

)
.

We then substitute �vky = ε, Eω = �ω and obtain the relative
absorption of a single edge A1 in the form A1 = A+

1 + A−
1 ,

where A±
1 correspond to the v → e and e → c transitions,

respectively, and are given by

A±
1 = e2

�c

�vL

S

�

4Eω

∫ ∞

−∞
dε

(
1

E2
ω

+ 1

ε2 + �2/4

)
F±(ε).

(11)
Here, F±(ε) describe the corresponding occupations and are
given by

F+(ε) = 1

1 + exp
( − ε2+�2/4+E2

ω

2EωT0
− μp

T0

)
− 1

1 + exp
( − ε2+�2/4−E2

ω

2EωT
− μ

T

) , (12)

F−(ε) = 1

1 + exp
( ε2+�2/4−E2

ω

2EωT
− μ

T

)
− 1

1 + exp
( ε2+�2/4+E2

ω

2EωT0
− μn

T0

) . (13)

Here, we set different (fluence dependent) quasi Fermi levels
[39] μn and μp for the conduction and valence bands
correspondingly. The quasi Fermi levels μn and μp are both
equal to the equilibrium chemical potential μ as long as no
interband transitions occur and no photocarriers are excited.
These notations will be utilized in Sec. IV devoted to the

saturable absorption. Moreover, two temperatures have been
introduced: T0 is the lattice temperature for bulk electrons, and
T is the temperature for edge-state electrons which may differ
from T0 in some cases described in Sec. V.

We emphasize that Eq. (11) describes the optical absorption
of a single edge of a single flake for a given spin and valley
channel. The total absorption of a s-TMD dispersion or a
s-TMD-polymer composite should take into account different
spin and valley channels as well as the concentration of
flakes. It can be shown that the K ′-valley edge states result
in the same contribution to the absorption as Eq. (11). The
spin-split absorption channels give two different contributions
determined by the spin-dependent band-gap value � = �s ,
but we neglect the spin splitting for the sake of simplicity.
Moreover, we assume that the flakes are squares of the size d,
and all flakes are placed perpendicular to the light beam. To
sum up these contributions, we define an effective length as

Leff = �S with � = 4dgsvn2D, (14)

where 4d is the average perimeter of a flake, gsv = 4 is the
spin/valley degeneracy, and n2D is the number of monolayer
flakes per unit area of a composite film. The quantity � then
plays a role of the total effective length of monolayer flakes’
edges per unit area of a composite film. Assuming the size
of the flake to be of the order of 100 nm, the monolayer
flake concentration n2D ∼ 1011 cm−2, we estimate the effective
length to be of the order of 1 km for a 1 mm2 spot size. In order
to convert the absorption of a single edge (11) to the total
absorption of a composite we make the substitution L → Leff ,
i.e., A = A1(L → Leff). Equation (11) is the main result of
this work. It can be used to calculate the linear and nonlinear
absorption. We now elaborate on these two cases.

III. LINEAR ABSORPTION

In the low-fluence limit we set the valence-band occupation
to one (completely filled) and the conduction band occupation
to zero (completely empty). Equation (11) can be then written
as

A±
1 (T ) = e2

�c

�vL

S

�

4Eω

∫ ∞

−∞
dε

(
1

E2
ω

+ 1

ε2 + �2/4

)

× 1

1 + exp
( ε2+�2/4−E2

ω

2EωT
± μ

T

) . (15)

In the intrinsic semiconductor limit (μ = 0) both terms A±
1 are

the same. In the limit of T = 0 Eq. (15) takes the form

A±
1 (0) = e2

�c

�vL

S

�

2Eω

[√
E2

ω ± 2μEω − �2/4

E2
ω

+ 2

�
arctan

(√
E2

ω ± 2μEω − �2/4

�/2

)]
. (16)

Equation (16) is applicable only when the square roots are
real; the corresponding terms should be set to zero otherwise.
Physically, vanishing absorption corresponds to the Pauli
blocking depicted in Fig. 2(a).

The total linear absorption of a composite can be obtained
by making the substitution L → Leff and is shown in Fig. 2(b)

155301-4



THEORY OF EDGE-STATE OPTICAL ABSORPTION IN . . . PHYSICAL REVIEW B 94, 155301 (2016)

0.2 eV

0 eV

0.35 eVμ =

(b)

Excitation energy (eV)

R
el

at
iv

e 
ab

so
rp

tio
n 

A
 (%

)

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8

infrared
light

infrared
light

K−valley

conduction band

K′−valley

conduction band

chemical potential

chemical potential

edge states

edge states

conduction band conduction band

(a)

(p−doping)

(n−doping)

valence band valence band

valence bandvalence band

FIG. 2. (a) The possible direct optical transitions at a given radi-
ation wavelength in doped samples. Since the bands are symmetric
there is no difference, whether the flakes are n or p doped. (b) Relative
linear optical absorption of a MoS2 dispersion at room temperature
computed from Eq. (15). The average flake size d = 90 nm and the
monolayer flake concentration n2D = 5.64 × 1011 cm−2 have been
deduced from Refs. [15,16] The band gap � = 1.8 eV and the
band parameter �v = 1.1eV × 3.193 Å are taken from Refs. [32,40].
The excitonic and direct valence-to-conduction interband transitions
relevant at the excitation energies near � are not taken into account.
The flakes are n doped with the chemical potential ranging from 0 to
0.35 eV. The spin-orbit splitting is neglected.

as a function of the excitation energy. To be specific,
we consider the n-doped samples (μ > 0). The opposite
case of μ < 0 results in the same behavior since the bands
are assumed to be symmetric with respect to E = 0 (the
middle of the band gap). At too low excitation energies (when
E2

ω + 2μEω − �2/4 < 0) the absorption vanishes. Increasing
the excitation energy, we first activate the transitions from
the edge states to the conduction band. This results in the
relative absorption of about 4% for the s-TMD composite we
consider. The absorption decreases slightly with the excitation
wavelength until the transitions from the valence band to
the edge states become activated at E2

ω − 2μEω − �2/4 > 0.
The dependence A(Eω) is therefore nonmonotonic due to the
different absorption channels opened at different Eω. Note
that the bands in real MX2 samples are spin split; therefore,
we expect each of two maxima in A(Eω) to split into two,
which results in a somewhat more complicated pattern. At
low doping (μ → 0) the two maxima merge into a single
absorption maximum that can also be seen in Fig. 2.

In order to estimate the absorption maximum by the order
of magnitude we consider Eq. (15) in the limit μ = 0 and
T = 0. The function has a maximum at Eω = 0.67 �. At this
excitation energy the total linear absorption of a composite
film can be estimated as

A ∼ 4e2

�c

�v

�
�, (17)

where � is defined in Eq. (14). The physical meaning is clear:
the absorption is larger for smaller � because the real-space
width of the edge state (5) is larger for smaller gaps. The
absorption is proportional to the total length of edges � (per unit
square) involved in the absorption. Substituting parameters
relevant for MoS2 [40], and using d ≈ 100 nm and n2D ≈
5 × 1011 cm−2 [15,16], we obtain the subgap absorption of the
order of 1%.

IV. SATURABLE ABSORPTION

If the incident fluence � is close to the saturation fluence,
then the quasi Fermi energies μn and μp should be taken
into account. They can be calculated using the particle
conservation. On the one hand, the photocarrier concentration
in the conduction band due to the single-edge absorption is
nph = �A−

1 /Eω, where A−
1 is the edge-to-conduction-band

absorption; see Eq. (11). On the other hand, the same
concentration can be calculated for the thermalized electrons
as

nph =
∫

d2k

4π2

1

1 + exp
(√

(�vk)2+�2/4−μn

T0

)
≈ T0�

4π�2v2
e

μn−�/2
T0 . (18)

This approximation is valid as long as (�/2 − μn)/T0 � 1.
Thus, μn can be determined from

e
μn
T0 = 4π�

2v2

T0�

�A−
1

Eω

e
�

2T0 . (19)

The quasi Fermi energy for the valence band μp is calculated
in the same way using the photoexcited hole concentration
pph = �A+

1 /Eω and its thermalized version, which reads

pph =
∫

d2k

4π2

⎛
⎝1 − 1

1 + exp
(−

√
(�vk)2+�2/4−μp

T0

)
⎞
⎠

≈ T0�

4π�2v2
e− μp+�/2

T0 . (20)

Note that μp < 0. Hence, μp can be found from

e
− μp

T0 = 4π�
2v2

T0�

�A+
1

Eω

e
�

2T0 . (21)

Now, we employ Eqs. (12) and (13) assuming that

1

1 + exp
( − ε2+�2/4+E2

ω

2EωT0
− μp

T0

)
≈ 1 − exp

(
−ε2 + �2/4 + E2

ω

2EωT0
− μp

T0

)
,
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1

1 + exp
( ε2+�2/4+E2

ω

2EωT0
− μn

T0

)
≈ exp

(
− ε2 + �2/4 + E2

ω

2EωT0
+ μn

T0

)
,

and exclude μn,p using Eqs. (19) and (21). These approxi-
mations are standard for semiconductors: we substitute the
electron and hole Fermi-Dirac occupations by the correspond-
ing Boltzmann distributions. Note that the edge states are in
the metallic regime and therefore the Fermi-Dirac distribution
must be retained for this subsystem. To take the integral over
ε, we calculate the following expressions:∫ ∞

−∞

dε

E2
ω

exp

(
−ε2 + �2/4 + E2

ω

2EωT0
+ �

2T0

)

= 1

Eω

√
2πT0

Eω

exp

[
− (Eω − �/2)2

2EωT0

]
,

∫ ∞

−∞

dε

ε2 + �2/4
exp

(
−ε2 + �2/4 + E2

ω

2EωT0
+ �

2T0

)

= 2π

�
exp

(
� − Eω

2T0

)
Erfc

(
�√

8EωT0

)
,

where Erfc is the complementary error function. After some
algebra we obtain the saturable absorption in the form

A�
1 = A1(T )

1 + �
�s

1

, (22)

where A1(T ) = A+
1 + A−

1 is the linear absorption with A±
1

given by Eq. (15). The saturation fluence �s
1 can be found

from

1

�s
1

= πe2

�c

�
3v3L

E3
ωT0S

exp

[
− (Eω − �/2)2

2EωT0

]

×
[√

2πT0

Eω

+ 2πEω

�
e

�2

8EωT0 Erfc

(
�√

8EωT0

)]
. (23)

If we neglect the heating of the edge-state electrons, then we
can set T = T0 in Eq. (15), and A±

1 (T ) can be approximated by
A±

1 (0) given by Eq. (16). The nonlinear absorption A�
1 will be

then determined solely by the (1 + �/�s
1)−1 multiplier, as if it

is the standard two-band model [34]. In order to find the total
composite absorption we make the substitution L → Leff in
Eq. (22) and obtain our main result Eq. (1) with �s = �s

1(L →
Leff) and A = A1(L → Leff).

We show the composite nonlinear absorption A� in Fig. 3
at the telecommunication wavelength of 1550 nm (Eω = 0.8
eV). The incident fluence can be translated to the intensity as
I = �/τ with τ being the electron-hole recombination time
of about 10 ps; see Ref. [41]. The saturation fluence evaluated
from Eq. (23) in the excitation energy range 0.8–1.0 eV is of
the order of 10 μJ/cm2 that corresponds to the intensity of the
order of 106 J/(s cm2), relevant for the typical measurements
[11]. Equation (23) also suggests that the saturation intensity
increases dramatically at the excitation energies far from �/2.
Physically, the half of the band gap �/2 plays the same role
in our approach as the true band gap � in the conventional
two-band model [34]. The saturation is most efficient when

0.35 eVμ =

0.2 eVμ =

J/cm2

J/cm2Φ   =  41.6 μ          s
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FIG. 3. Saturable optical absorption of a MoS2 composite at
Eω = 0.8 eV. The parameters are the same as in Fig. 2. The saturation
fluence is estimated from Eq. (23) with L → Leff , but Eq. (24) gives
nearly the same result for �s of about 40 μJ/cm2. It corresponds to
the intensity of a few MW/cm2 at the electron-hole recombination
time of the order of 10 ps; see Ref. [41].

the photocarriers are excited from and to the band edges. Our
model is entering into this regime when the excitation energy
is near �/2, as one can see from Fig. 1. At the excitation
energies much higher than �/2, the photocarriers are excited
far from the conduction- and valence-band edges and cannot
be described by a thermalized distributions (19) and (21). It is
instructive to consider the limit Eω = �/2 and subsequently
assume that � � T0. The second term in Eq. (23) can be

then approximated as πe
�

4T0 Erfc(
√

�
4T0

) ≈
√

4πT0
�

, and the final

formula for the composite saturation fluence reads

1

�s
∼ 4π

3
2 e2

�c

�
3v3�

E3
ω

√
�T0

, (24)

where Eω ∼ �/2. The absorption is therefore easier to saturate
at smaller gap � and longer effective edge length defined in
Eq. (14).

V. HOT ELECTRONS ON EDGES

The situation becomes more complicated at the excitation
energies higher than half the band gap (Eω > �/2) in the
intrinsic semiconductor regime (μ = 0). The energy necessary
to promote one edge-state electron to the conduction band (or
an edge-state hole to the valence band) is �/2. The question
we address in this section is what happens with the excess
energy Eω − �/2 after each excitation event.

As already shown in Fig. 1(c), two independent excitation
channels corresponding to the valence-to-edge and edge-to-
conduction-band transitions are opened. The valence-to-edge-
state transitions promote electrons to just above the Fermi level
at the same rate as the edge-to-conduction-state transitions
create holes just below the Fermi energy; see Fig. 1(c).
Effectively, these transitions lift an electron from an edge
state below μ to another edge state above μ. If the radiation
intensity is high enough (the excitation is faster than the
interband recombination), then this results in the generation
of electron-hole pairs within the edge-state subsystem. Since
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electron-electron collisions are very efficient in a one-
dimensional case the edge-state electron occupation quickly
thermalizes to a Fermi-Dirac distribution with an elevated
temperature. Thus, the excess energy is accumulated by the
edge-state electrons. Let us quantify this mechanism.

To calculate this temperature, we have to solve the energy
balance equation with respect to T :

δE + En + Ep = A1S�. (25)

The right-hand side of Eq. (25) is the absorbed energy which is
balanced with the energies δE, En, and Ep accumulated by the
thermalized edge, conduction-, and valence-band electrons.
The last two can be estimated as En ≈ A−

1 S��/2Eω and
Ep ≈ A+

1 S��/2Eω, where the same approximation as in
Eqs. (18) and (20) has been utilized. Physically, En (Ep) is
the product between the photoexcited electron (hole) number
A∓

1 �S/Eω and the typical energy ±�/2 in thermalized limit.
The energy pumped into the edge-state electron gas can be
calculated assuming that the occupation is already thermalized
and given by the Fermi-Dirac distribution function. The edge-
state electron-hole excitation energy is the difference between
the electron and hole energies within the edge-state band, as
shown in Fig. 1(c) by dashed lines. It can be written as

E(T ) =
∫ − μ

�v

−∞

dkxL

2π

−�vkx

1 + exp
(−�vkx−μ

T

)
−

∫ ∞

− μ

�v

dkxL

2π

−�vkx

1 + exp
(

�vkx+μ

T

)
= πT 2L

12�v
. (26)

Note that E(T ) does not depend on μ because of the linear
dispersion, hence δE is independent of μ as well and reads

δE = πL

12�v

(
T 2 − T 2

0

)
. (27)

Equation (25) is then written as

π
(
T 2 − T 2

0

)
12�v

L

S
=

(
1 − �

2Eω

)
�A1. (28)

Substituting L → Leff , A1 → A� we obtain the follow-
ing equation for the edge-state electron temperature in a
composite:

T 2−T 2
0 = 3�e2v2��

πcEω

1 − �/(2Eω)

1 + �/�s

×
∑
±

∫ ∞

−∞
dε

(Eω)−2 + (ε2 + �2/4)−1

1 + exp
( ε2+�2/4−E2

ω

2EωT
± μ

T

) . (29)

This equation can be solved with respect to T numerically
using the method of iterations (the method of consecutive
approximations). The result is demonstrated in Fig. 4, where
absorption and edge-state carrier temperature are shown for
different excitation energies. If Eω = �/2, then the solid and
dashed curves coincide, and heating of the edge-state electrons
(solid curve) can be neglected. If Eω > �/2, then the excess
energy Eω − �/2 is pumped into the edge-state electron
subsystem and its temperature can reach 0.1 eV (∼1200 K).
The high temperature makes the edge states evenly populated
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FIG. 4. (a) Saturable absorption in the intrinsic limit (μ = 0)
at different excitation energies Eω � �/2. The dashed curves
correspond to the simplified model where the edge-state electron
temperature remains constant. The solid curves take into account
the energy pumping due to the processes shown in Fig. 1(b). At
the excitation energies higher than �/2, the deviation between the
solid and dashed curves is clearly visible. (b) Edge-state electron
temperature vs fluence computed from Eq. (29).

in kx space that results in less electrons excited from the edge
states to the conduction band and less empty space available
for the electrons coming from the valence band. Hence, the
elevated temperature slightly reduces absorption, as shown in
Fig. 4.

VI. CONCLUSION AND OUTLOOK

In conclusion, we have developed a simple model to
qualitatively describe edge-state mediated absorption in s-
TMD flakes and s-TMD-polymer composites. We show that
the appropriate description must involve a three-level system,
in contrast to the conventional two-band model routinely used
for semiconductors [34]. At excitation energies near �/2, the
linear absorption of a s-TMD composite can be estimated using
Eq. (17), while the saturation fluence is given by Eq. (24).
The band structure parameters in Eqs. (17) and (24) can
be calculated [32,42] or measured [40]. Our estimates of
linear and saturable absorption agree, to within one order of
magnitude, with existing saturable absorption measurements
performed on WS2 [9] and MoSe2 [11,12] composites. We
stress that this work does not aim at a quantitative analysis of
specific samples. For this, the following should be considered.
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(1) Due to the spin-orbit splitting in the valence band, the
band gap is different for each spin channel. Strictly speaking,
we have four terms in the absorption, A+

↑ , A−
↑ , A+

↓ , and
A−

↓ , instead of two A± considered here. The nonmonotonic
dependence of the linear absorption on the excitation energy
shown in Fig. 2 becomes more complicated once we take into
account the spin splitting.

(2) The light beam is assumed to be normal to the flakes. The
plane of incidence is therefore not well defined; consequently,
our model is insensitive to s and p polarization. This is not
the case in real MX2 composites where flakes are randomly
oriented within the host polymer matrix. The quantitative
model should therefore include averaging not only over the
azimuthal polarization angle θE performed here but also over
the polar angle, as described in Ref. [43].

(3) The majority of the experimental examples of s-TMDs
for ultrafast photonics exploit ultrasonic or shear assisted LPE
of their bulk crystals [44]. Such dispersions and composites
mostly contain few-layer crystals [7,11,16]. In our model, we
assume that the interlayer coupling is weak for the flakes
produced by LPE, and any thin N-layer flake can be viewed as a
stack of N monolayers, without such coupling. This approach
works well for graphene [45], but a quantitative model for
s-TMDs should address this more carefully.

(4) Our formula for saturation fluence Eq. (23) is not
reliable for excitation energies far from �/2. This is because
at such energies the photocarriers are excited far from the band
edges and cannot be described by a thermalized distribution
used here. In order to improve the reliability of the model a
nonthermalized distribution for conduction- and valence-band
photocarriers should be employed.

(5) To calculate the hot electron temperature, we assume
that there is no energy dissipation at the time scale of the

incident pump pulse duration or the electron-hole recombina-
tion process, whichever is shorter. A quantitative model should
include an additional term in the energy balance equation (25)
to take into account energy relaxation.

(6) The model neglects defects in crystals completely. These
defects could result in an additional nonsaturable term in
Eq. (1) for the nonlinear absorption A�.

As an outlook we propose the following experiment to
verify our model. Our theory predicts that the edge-state
optical absorption increases with the ratio of the total edge
length to area of the composite film. The crystallographic
faults, impurities, and other bulk defects cannot result in such
behavior. Thus, reducing the size of flakes but keeping their
mass concentration constant we can increase the edge-state
contribution to the total absorption and hence distinguish
between the edge and bulk effects.

In addition to MX2 flakes, our model could be applied to
other hexagonal nanostructured composites, e.g., boron nitride
(h-BN) monolayers, where the band-gap size � = 3.92 eV
and the band-gap parameter �v = 2.33 eV × 2.174 Å [46].
This results in lower edge-state absorption, but the optimum
excitation energy Eω ≈ �/2 lies in the visible region, near the
wavelength of 630 nm, suggesting h-BN may also be a suitable
platform for the design of nonlinear composite-based devices
in the visible spectral range.
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