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Photoemission spectra from reduced density matrices: The band gap in strongly correlated systems
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We present a method for the calculation of photoemission spectra in terms of reduced density matrices. We
start from the spectral representation of the one-body Green’s function G, whose imaginary part is related
to photoemission spectra, and we introduce a frequency-dependent effective energy that accounts for all the
poles of G. Simple approximations to this effective energy give accurate spectra in model systems in the weak
as well as strong correlation regime. In real systems reduced density matrices can be obtained from reduced
density-matrix functional theory. Here we use this approach to calculate the photoemission spectrum of bulk
NiO: our method yields a qualitatively correct picture both in the antiferromagnetic and paramagnetic phases,
contrary to mean-field methods, in which the paramagnet is a metal.
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I. INTRODUCTION

Photoemission is a powerful tool to obtain insight into the
electronic structure and excitations in materials. The interpre-
tation of the experimental data is, however, a complicated task.
Theory represents, hence, an essential tool for the analysis of
the experiments as well as prediction of material properties.
One of the most popular approaches in condensed-matter
physics is many-body perturbation theory (MBPT) based on
Green’s functions. Within the so called GW approximation
[1] to electron correlation, MBPT has become, over the last
two decades, the method of choice for the calculations of
quasiparticle band structures [2–7] and direct and inverse
photoemission spectra [8–13] of many materials improving
substantially over the results provided by static mean-field
electronic structure methods. However, GW suffers from
some fundamental shortcomings [14–19], and, in particular,
it does not capture strong correlation, unless one treats the
system in a magnetically ordered phase. In particular, many
paramagnetic insulators cannot be described correctly within
GW . A paradigmatic example is the case of paramagnetic
NiO, which is predicted to be a metal by GW . An alternative
approach based on Green’s functions that can treat strongly
correlated systems is dynamical mean-field theory (DMFT)
[20]. However the effort to make DMFT a fully ab initio
method is still ongoing [21]. Therefore, it is still desirable to go
beyond simple approximations to the self-energy [22–29] or
explore novel routes to calculate Green’s functions [30,31]. In
this context, promising results have been reported for model
systems by expressing the one-body Green’s function as a
continued fraction [32] as well as for solids [33] using reduced
density-matrix functional theory (RDMFT) [34]. The RDMFT
framework allows for the calculation of all the ground-state
expectation values as functionals of the one-body reduced
density matrix (1-RDM), provided that the functional is
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known. This, however, is in general not the case. In particular,
for spectral functions approximations have to be used.

In this work we derive an expression for the spectral
function, which is related to photoemission spectra, in terms
of reduced density matrices (RDMs). We show that simple
approximations, which require the knowledge of the lowest
n-body reduced density matrices (n-RDMs) only, can provide
accurate photoemission spectra in model systems for mod-
erate as well as for strong electron correlation. Our method
overcomes the main problem of mean-field theories and GW

in correlated solids: as we show with the example of NiO,
it correctly predicts this material to be insulating in both
the antiferromagnetic and paramagnetic phases. The paper is
organized as follows. In Sec. II we derive a new expression
for the spectral function in terms of RDMs, we discuss simple
approximations to it, and their physical meaning. In Sec. III
we illustrate, with the Hubbard model and the more realistic
example of bulk NiO, how these approximations perform.
Finally, in Sec. IV we draw our conclusions and perspectives.

II. THEORY

We start from the spectral representation of the time-ordered
Green’s function G at zero temperature, which reads

Gij (ω) =
∑

k

B
k,R
ij

ω − εR
k − iη

+
∑

k

B
k,A
ij

ω − εA
k + iη

, (1)

where εR
k = E0 − EN−1

k ,εA
k = EN+1

k − E0,B
k,R
ij = 〈�0|ĉ†j

|�N−1
k 〉〈�N−1

k |ĉi |�0〉,Bk,A
ij = 〈�0|ĉi |�N+1

k 〉〈�N+1
k |ĉ†j |�0〉,

with E0 and �0 the ground-state energy and wave function
of the N -electron system and EN±1

k and �N±1
k the kth state

energy and wave function of the (N ± 1)-electron system.
The superscripts R and A in Eq. (1) indicate the removal
and addition parts of G, respectively. In the following we
concentrate on the diagonal elements of G, which are related
to photoemission spectra. We choose to work in the basis
set of natural orbitals φi , i.e., the orbitals that diagonalize
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the 1-RDM, γ (x,x′) = ∑
i niφi(x)φ∗

i (x′), where 0 � ni � 1
are the occupation numbers and x = (r,s) is a combined
space-spin coordinate. Note that natural orbitals with ni = 0
are not uniquely defined. We fix them by assuming they
correspond to the noninteracting solution. In this basis
set

∑
k B

k,R
ii = ni and

∑
k B

k,A
ii = (1 − ni). Inspired by

the numerical effective-energy technique introduced in
Refs. [35,36] that was designed to speed up convergence of a
given spectral sum in the independent-particle framework, we
present here a many-body effective-energy theory (MEET) to
derive new expressions for the many-body spectral functions
in terms of RDMs. A separate treatment of removal and
addition spaces turns out to be crucial. Let us first concentrate
on the removal part. We define the effective energy δR

i (ω) by

GR
ii(ω) =

∑
k

B
k,R
ii

ω − εR
k

=
∑

k B
k,R
ii

ω − δR
i (ω)

= ni

ω − δR
i (ω)

. (2)

The effective energy δR
i (ω) accounts for all the poles of the

removal part of Gii , which is in principle possible since it is
frequency dependent. We now rewrite Eq. (2) as

δR
i (ω) = G̃R

ii(ω)

GR
ii(ω)

, (3)

where

G̃R
ii(ω) =

∑
k

〈�0|ĉ†i
∣∣�N−1

k

〉〈
�N−1

k

∣∣[ĉi ,Ĥ ]|�0〉
ω − εR

k

, (4)

where Ĥ is the many-body Hamiltonian. We can now introduce
another effective energy δ̃R

i (ω) that accounts for all the poles
of G̃R

ii(ω). Working out the equations one arrives at δ̃R
i (ω) =

˜̃GR
ii(ω)/G̃R

ii(ω), with

˜̃G
R

ii(ω) =
∑

k

〈�0|[Ĥ ,ĉ
†
i ]

∣∣�N−1
k

〉〈
�N−1

k

∣∣[ĉi ,Ĥ ]|�0〉
ω − εR

k

. (5)

This leads to

δR
i (ω) =

ñR
i

ω−δ̃R
i (ω)

ni

ω−δR
i (ω)

= ñR
i

ni

ω − G̃R
ii (ω)

GR
ii (ω)

ω − ˜̃GR
ii (ω)

G̃R
ii (ω)

, (6)

where

ñR
i = 〈�0|ĉ†i [ĉi ,Ĥ ]|�0〉. (7)

In principle, one could continue this procedure ad infinitum. In
practice, however, one has to truncate the series. This can be
done in various ways. Here we choose a truncation that guaran-
tees the exact results for the Hubbard dimer at 1/2 filling at all
orders, as we will discuss later. This is obtained by assuming
that at a certain order the poles of GR

ii,G̃
R
ii , . . ., expressed in

terms of the respective effective energies δR
i ,δ̃R

i , . . ., are the
same. The first two approximations to δR

i (ω) read

δ
R,(1)
i = ñR

i

ni

, (8)

δ
R,(2)
i (ω) = ñR

i

ni

ω − ñR
i

ni

ω − ˜̃nR
i

ñR
i

, (9)

where ˜̃nR
i = 〈�0|[Ĥ ,ĉ

†
i ][ĉi ,Ĥ ]|�0〉.

Similarly for the addition energies one can introduce an
effective energy δA

i (ω), and derive approximations. The first
two approximations to δA

i (ω) read

δ
A,(1)
i = ñA

i

1 − ni

, (10)

δ
A,(2)
i (ω) = ñA

i

1 − ni

ω − ñA
i

1−ni

ω − ˜̃nA
i

ñA
i

, (11)

where ñA
i = 〈�0|[ĉi ,Ĥ ]ĉ†i |�0〉, and ˜̃nA

i = 〈�0|[ĉi ,Ĥ ]
[Ĥ ,ĉ

†
i ]|�0〉. An important point to note is that for a given

natural orbital φi , removal and addition effective energies are
different: this is essential to open a gap, as we will illustrate
in the Hubbard model.

In the following we express δ
R/A,(n)
i , with n = 1,2 in

terms of RDMs. Let us consider the following many-body
Hamiltonian

Ĥ = Ĥ0 + V̂ =
∑

i

hij ĉ
†
i ĉj + 1

2

∑
ijkl

Vijkl ĉ
†
i ĉ

†
j ĉl ĉk, (12)

where ĉ
†
i and ĉi are the creation and annihilation oper-

ators in the basis of natural orbitals φi(x). Here hij =∫
dxφ∗

i (x)h(r)φj (x) are the matrix elements of the one-
particle noninteracting Hamiltonian h(r) = −∇2/2 + vext(r),
and Vijkl = ∫

dxdx′φ∗
i (x)φ∗

j (x′)vc(r,r′)φk(x)φl(x′) are the ma-
trix elements of the Coulomb interaction vc. Using the
Hamiltonian (12), we can evaluate the commutators appearing
in the expressions for ñ

R/A

i and ˜̃nR/A

i . For ñ
R/A

i we obtain the
following relations:

ñR
i = hiini +

∑
jkl

Vijkl	
(2)
klj i , (13)

ñA
i = hii(1 − ni) +

∑
j

(Vijij − Vijji)nj −
∑
jkl

Vijkl	
(2)
klj i ,

(14)

with 	
(2)
klj i = 〈�0|ĉ†i ĉ†j ĉl ĉk|�0〉 the matrix elements of the 2-

RDM. The expressions of ˜̃nR
i and ˜̃nA

i in terms of 1-, 2-, and
3-RDMs are given in Appendix A. Using Eqs (13), (14), (A1),
and (A2) we get the expressions of δ

R/A,(1)
i and δ

R/A,(2)
i in

terms of RDMs (see Appendix A).
The spectral function can then be written as

Aii(ω) = niδ
(
ω − δR

i (ω)
) + (1 − ni)δ

(
ω − δA

i (ω)
)
, (15)

which satisfies the sum rule
∫ ∞
−∞ dωAii(ω) = 1. Starting from

δ(2) one could, in principle, get complex poles because the
equations become nonlinear in the frequency. In this case
the sum rule is not satisfied. However, such complex poles
do not occur for δ(2), at least in the model systems we
studied. For higher-order approximations remedies such as
the regularization of unphysical poles could be envisaged (see
Ref. [36] for an example in the case of independent particles).
Our goal here is to derive simple and physically motivated
expressions for the spectral function, and this is obtained using
δ(1) and δ(2), as we will show later.

The expression (15) looks similar to the one reported in
Ref. [33] in the context of RDMFT. In that case (referred
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to as DER in the following), however, removal and addition
energies are calculated in a different way, namely as functional
derivatives of the ground-state total energy with respect to the
occupation numbers. Our method, instead, is not bound to
RDMFT: it can be used with any approach that can provide
one with RDMs. It does therefore not require a total energy
that is a functional of occupation numbers. For example the
RDMs could be obtained from quantum Monte Carlo (see,
e.g., Refs. [37,38]).

The physical meaning of δ
R,(1)
i can be seen by combining

Eqs. (7) and (8). This gives a weighted average of all removal
poles of GR

ii , since one gets δ
R,(1)
i = ∑

k B
k,R
ii εR

k /
∑

k B
k,R
ii . In

other words δ
R,(1)
i is equal to the first moment of GR

ii(ω). Here
the nth moment is defined as μR

n,i = ∑
k B

k,R
ii (εR

k )n/
∑

k B
k,R
ii .

A similar relation can be derived for δ
A,(1)
i . It is worth pointing

out that δ
R/A,(1)
i , besides reproducing the correct number of

quasiparticle peaks, can also describe satellites, as we show
in Sec. III. Furthermore, the first and second moments of
the approximate Green’s function generated by δ

R/A,(2)
i are

equal to the first and second moments of the exact Green’s
function. For δ

R/A,(n)
i with n > 2 higher moments are involved

[39]. Thanks to the fact that the first moment μR
1,i of the

approximate Green’s function is equal to the exact one, the total
energy calculated using the one-body Green’s function is exact,
provided that the exact RDMs are used. Using the Galitskii-
Migdal equation, one can indeed express the exact total energy
in terms of μR

1,i and ni as E0 = ∑
i ni(μR

1,i + hii)/2.

III. RESULTS

In this section we show how the approximations derived
above work in practice.

A. Hubbard model

To test our method we apply it to the Hubbard model. The
important parameters of the model are the on-site Coulomb
interaction U and the hopping parameter −t . First, we test
our method using the exact RDMs, which can be calculated
for the Hubbard clusters considered here. For the Hubbard
dimer at 1/2 filling the method is exact for all δ(n) with n � 1.
The case with more sites at 1/2 filling is highly nontrivial.
For small rings, the simple approximation δ(1) suffices to give
an accurate spectrum at all interaction strengths, although it
tends to overestimate the band gap. When we consider larger
rings, at the level of δ(1), the spectral shape is still good, but
the overestimation of the band gap is more evident, as can
be seen in Fig. 1 (left panel) where we present the case of a
12-site ring. Furthermore we find that, for a fixed interaction
U , the ratio between the δ(1) band gap and the exact band
gap increases going from the one-dimensional (1D) to the
two-dimensional (2D) infinite Hubbard model (see Appendix
B) [40]; this suggests that the error of δ(1) in reproducing the
band gap increases with the dimensionality. One has to go to
δ(2) to partially correct this overestimation.

Also, away from 1/2 filling one has to go to δ(2) to have
overall better results, in particular in the atomic limit (see
Fig. 2). Note that, although the spectral profile given by δ(1) is
in good agreement with the exact spectrum at t = 1, as shown

FIG. 1. Spectral function for a 12-site Hubbard ring at 1/2 filling:
exact (EX) vs MEET with exact RDMs (δ(1) and δ(2)), MEET with
approximate RDMs (δ(1)

α ,α = 0.5), DER method (with α = 0.5), and
GW method. Peaks are broadened with a Lorentzian of width η = 0.1.

in Fig. 2, the analysis of the peaks in the energy range 0 <

ω < 5 has revealed a mixed quasiparticle/satellite character.
Moreover, in the atomic limit, the main peak at ω = 0 in the
exact spectrum is a superposition of a removal peak and an
addition peak. In this limit, δ(1) opens a band gap around
ω = 0, which is not present in the exact results. Using δ(2)

tends to correct these errors. This indicates that δ(1) is not a
good approximation in metallic systems.

There are two striking features of the results obtained
with our method: (i) there are satellites, even with a static
approximation (δ(1)), i.e., more energies than the number of
natural orbitals; (ii) there is a gap in the atomic limit (see
right panel of Fig. 1) without breaking the symmetry of the
system (i.e., without localizing the spins each on a site). The
first feature can be understood looking at the spectral weights
in the spectral function (15), which are ni for the removal
energies and 1 − ni for the addition energies. As long as the
occupation numbers are 0 or 1, as in the noninteracting case,

FIG. 2. Spectral function for a 6-site Hubbard ring at 1/6 filling:
exact (EX) vs MEET with exact RDMs (δ(1) and δ(2)). Peaks are
broadened with a Lorentzian of width η = 0.1.
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FIG. 3. Paramagnetic (left) and antiferromagnetic (right) bulk NiO: experimental photoemission spectrum [45] vs MEET spectrum (δ(1)
α ,α =

0.65). The color map and the distribution f (ni) illustrate the occupation numbers ni that play a role into the spectrum for the reported energy
range.

for each ni one sees either a removal or an addition peak.
When, instead, 0 < ni < 1, then, for each ni one gets both a
removal and an addition peak. In other words, at the level of
δ(1), for each orbital one gets two energies. These two energies
are related by:

δ
A,(1)
i = δ

R,(1)
i − 1

ni(1 − ni)

∑
jkl

Vijkl	
(2)
c,klj i , (16)

where 	(2)
c is the correlation contribution to the 2-RDM

(see Appendix A). In the Hubbard dimer at 1/2 filling,
for example,

∑
jkl Vijkl	

(2)
c,klj i = −U/2

√
nbna , with na and

nb the occupation numbers of the bonding and antibonding
natural orbitals, respectively. In the atomic limit the occupation
numbers tend to 1/2, and therefore the spectral function
consists of one removal and one addition energy peak of equal
weight, each being a superposition of the bonding and the
antibonding component; the band gap is hence between two
peaks of the same component, and it equals U , as given by
Eq. (16). The GW approximation, instead, can open a gap only
between different components, i.e., it describes a quasiparticle
gap; it hence fails to describe the correlation gap in the Hubbard
dimer in the atomic limit.

Note that when the Hartree-Fock (HF) approximation is
used for the 2-RDM the effective energies δ

R/A,(1)
i are equal

to the removal/addition energies obtained with the HF self-
energy. However, since ni = 1 or 0, only one of the two appears
in the spectral function.

In real situations the exact RDMs are not known.
Here we focus on δ(1), since it requires only the knowl-
edge of the 1- and 2-RDMs, which can be obtained
within RDMFT. In this framework the 2-RDM is a func-
tional of the 1-RDM. This functional is not known,
but approximations are available. In this work we will
use the power functional 	(2)(x,x′; x,x′) ≈ γ (x,x)γ (x′,x′) −
γ α(x,x′)γ α(x′,x) where γ α(x,x′) = ∑

i n
α
i φi(x)φ∗

i (x′), with
0.5 � α � 1 [41].

First we test this approximation on the Hubbard model. In
Fig. 1 we report the results for a 12-site ring using α = 0.5. We
obtain good results (although the power functional does not

recover the particle-hole symmetry) and, in particular, the band
gap opens in the atomic limit without breaking the symmetry
[42]. We note that the gap strongly depends on the value of
α: it has its maximum value for α = 0.5 while it disappears
for α = 1, which corresponds to HF. For comparison we also
report the results obtained using GW and the DER method:
in the atomic limit these methods do not open any gap, unless
the symmetry of the system is broken [42]. This raises the
question whether the MEET, using the simple approximations
that are successful in the models, could also open the band gap
of a real Mott insulator.

B. Realistic systems: the example of NiO

We implemented our approach in a modified version of the
full-potential linearized augmented plane wave (FP-LAPW)
code ELK [43], with practical details of the calculations
following the scheme described in Ref. [41]. We apply the
method to bulk NiO, which is a prototypical strongly correlated
material. This system shows antiferromagnetic behavior below
the Néel temperature, and the photoemission spectrum is
similar for the paramagnetic and the antiferromagnetic phases
[44], with a band gap of about 4.3 eV [45]. Already at the
level of LSDA, the antiferromagnetic phase shows a band
gap, although too small, due to quasiparticle splitting. The
spectrum in this phase can be well described by GW [11,12]
as well as RDMFT using the DER method [33]. However, the
real challenge is to open a gap without symmetry breaking (see
Appendix C) as it should happen in the paramagnetic phase. To
this aim we model the paramagnetic phase as nonmagnetic. In
this case the gap is purely due to correlation, which LDA
and GW fail to describe. Our approach, instead, opens a
gap in both phases. This is shown in Fig. 3. Note that our
results for both phases are compared with experiment for the
antiferromagnetic phase [45]. This comparison is meaningful
since the observed photoemission spectrum of NiO is almost
unaffected by the magnetic phase transition [44]. For the
calculations we used the experimental lattice constants and the
power functional with the self-interaction correction proposed
by Goedecker and Umrigar [46]. For the power functional we
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FIG. 4. Paramagnetic bulk NiO: experimental photoemission
spectrum [45] vs MEET spectrum (δ(1)

α , with the power func-
tional, α = 0.65, and without screening (β = 1) and with screening
β = 0.8).

use the value α = 0.65, which has been suggested in literature
[41,47,48]. From the analysis of the occupation numbers it
emerges that the physics underlying the band gap opening in
the two phases is indeed different: in the antiferromagnetic
case it is mainly due to occupation numbers close to one
or zero, whereas in the paramagnetic phase it is mainly due
to occupation numbers around 0.5. This is in line with an
analogous analysis on the Hubbard dimer [42]. It still remains
to improve the band gap, which is overestimated in our method.
This finding is consistent with the results on large Hubbard
rings, which indicate that this overestimation is due to the use
of δ(1), and that the use of δ(2) might improve the spectrum
and the band gap. This would require approximations for the
3-RDM, which is beyond the scope of this paper. However,
we can get a rough estimation of the influence of δ(2) on the
spectrum of NiO by using an effective δ(1) in which some of
the effects due to δ(2) are included. Using the 12-site Hubbard
chain (for which both δ(1) and δ(2) can be calculated exactly)
we calculated the screening of δ(1) that reproduces the effect
of δ(2). The screening (which we call here β) depends on the
component of G (i.e., on the natural orbital) one is looking at,
and has been defined according to

δ
R,(1)
i = hii +

∑
j

Vijij nj + βi

ni

∑
jkl

Vijkl	
(2)
xc,klj i , (17)

where 	
(2)
xc,klj i = 	

(2)
klj i − ninj δikδjl is the exchange-correlation

part of the 2-RDM (see Appendix A). For most of the natural
orbitals that are responsible for the gap in the Hubbard model,
the values of βi are in the range 0 < βi < 1. Therefore, for the
calculation of the spectrum of NiO, we choose βi between 0
and 1 and assume it to be the same for each orbital. This leads
to a reduction of the band gap; in particular, with β = 0.8 the
spectral function of paramagnetic NiO is in better agreement
with experiment, as illustrated in Fig. 4. Further decreasing
β can eventually close the gap. These findings indicate that
one could envisage to include in an approximate way higher-
order terms using a proper terminating function. We have also
applied our method to other transition-metal oxides, such as
MnO, and we observe similar performances as in NiO.

IV. CONCLUSIONS AND PROSPECTIVES

In conclusion, we have derived an expression for the
spectral function in terms of RDMs. Simple approximations

can give accurate spectra for finite model systems in the weak
as well as in the strong correlation regime. In particular the
method correctly reproduces the atomic limit of Hubbard sys-
tems without breaking the symmetry of the system. We applied
a simple approximation depending only on the 1- and 2-RDMs
to bulk NiO within the computationally efficient RDMFT. Our
method produces qualitatively correct photoemission spectra
for the antiferromagnetic and paramagnetic phases, although
the band gap is overestimated. The study of the Hubbard
model indicates how this problem might be overcome in the
future. Our method indicates a promising way to approach the
problem of band gaps due to correlation effects in a relatively
simple manner.
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APPENDIX A: APPROXIMATIONS TO δ
R/A
i IN TERMS OF

REDUCED DENSITY MATRICES

In the following we give the expressions of ˜̃nR/A

i in terms
of RDMs. Using the Hamiltonian (12), we can evaluate the
commutators appearing in the definitions of ˜̃nR/A

i . We obtain
the following relations:

˜̃nR
i = h2

iini + hii

∑
jkl

(
Vijkl	

(2)
klj i + Vjkil	

(2)
ilkj

)

+
∑

jklk′l′
VjkilVilk′l′	

(2)
k′l′kj

+
∑

jklj ′k′l′
VjkilVij ′k′l′	

(3)
k′l′lj ′kj , (A1)

˜̃nA
i = h2

ii(1 − ni) + 2hii

∑
j

(Vijij − Vijji)nj

+ hii

∑
jkl

(
Vijkl	

(2)
klij + Vjkil	

(2)
likj

)

+
∑
jkl

(Viljk − Vilkj )Vjkilnl

+
∑

jklj ′k′
(Vij ′k′j − Vij ′jk′)(Vjkil − Vkjil)	

(2)
lk′kj ′

+
∑

jklj ′k′l′
Vij ′k′l′Vjkil	

(3)
lk′l′kjj ′ . (A2)

where 	
(2)
ijkl = 〈�0|ĉ†l ĉ†kĉj ĉi |�0〉 and 	

(3)
ijklmn =

〈�0|ĉ†nĉ†mĉ
†
l ĉk ĉj ĉi |�0〉 are the matrix elements of the

2-RDM and 3-RDM, respectively.
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Using Eqs (13), (14), (A1), and (A2) we get the expressions
of δ

R/A,(1)
i and δ

R/A,(2)
i in terms of RDMs. Here for simplicity

we give only the expressions of δ
R/A,(1)
i ; they read

δ
R,(1)
i = hii + 1

ni

∑
jkl

Vijkl	
(2)
klj i , (A3)

δ
A,(1)
i = hii + 1

1 − ni

⎡
⎣∑

j

(Vijij − Vijji)nj −
∑
jkl

Vijkl	
(2)
klj i

⎤
⎦.

(A4)

The 2-RDM can be explicitly decomposed in terms of Hartree
and exchange-correlation contributions, respectively, as
	

(2)
klj i = ninj δikδjl + 	

(2)
xc,klj i , or in terms of Hartree, exchange,

and the correlation contributions, respectively, as 	
(2)
klj i =

ninj δikδjl − ninj δilδjk + 	
(2)
c,klj i . In this case Eqs. (A3) and

(A4) can be rewritten as

δ
R,(1)
i = hii +

∑
j

Vijij nj + 1

ni

∑
jkl

Vijkl	
(2)
xc,klj i , (A5)

= hii +
∑

j

(Vijij − Vijji)nj + 1

ni

∑
jkl

Vijkl	
(2)
c,klj i (A6)

δ
A,(1)
i = hii +

∑
j

Vijij nj

− 1

1 − ni

⎡
⎣∑

j

Vijjinj +
∑
jkl

Vijkl	
(2)
xc,klj i

⎤
⎦ (A7)

= hii +
∑

j

(Vijij − Vijji)nj − 1

1 − ni

∑
jkl

Vijkl	
(2)
c,klj i .

(A8)

APPENDIX B: PERFORMANCE OF δ(1)
α IN 1D AND 2D

INFINITE HUBBARD MODELS AT HALF FILLING

In Fig. 5 (top and middle panels) the fundamental gap
�Eg , calculated using the MEET method (δ(1)

α ,α = 0.5,0.6),
is reported as a function of the interaction U for the 1D and
2D infinite Hubbard models at 1/2 filling. For the 1D system
the MEET results are compared to the exact Bethe-Ansatz
solution [49], whereas for the 2D system, they are compared
to our exact results for finite-size 2D Hubbard clusters and
the extrapolated results to the infinite 2D system. In the figure
we report only the range of U for which the 2D system is
an insulator. For each value of U,δ(1)

α can produce the correct
band gap by properly tuning α.

In the bottom panel of Fig. 5 we compare the ratio between
the δ(1)

α band gap and the exact band gap (�EMEET
g /�EEX

g )
for the two Hubbard models as a function of U : for a fixed U

this ratio increases with the dimensionality of the system. For
large U the ratio is similar for the two systems, since in both
cases the band gap tends to U .

FIG. 5. Deviation of the fundamental gap �Eg from U as a
function of U/(U + 4t) for the 1D (top) and 2D (middle) infinite
Hubbard models at 1/2 filling. Dashed and dotted lines are obtained
using the MEET method (δ(1)

α ,α = 0.5,0.6). The black solid line in
the top panel is the exact result derived from the Bethe-ansatz solution
[49]. The curve corresponding to �Eg = 0 is reported as reference.
The triangles, circles, and squares in the middle panel are finite-size
exact calculations for the 2 × 2, 4 × 2, and 4 × 3 2D Hubbard
clusters, respectively. The squares are the extrapolated values to the
infinite 2D system. In the bottom panel the ratio between the δ(1)

α band
gap and exact band gap (�EMEET

g /�EEX
g ) is reported as function of

U/(U + 4t). As a guide for the eye we reported �EMEET
g /�EEX

g = 1
with a thin dashed line.

APPENDIX C: NICKEL OXIDE WITH THE DER METHOD

In Fig. 6 we report the results for NiO obtained with the
DER method. In our calculations the Brillouin zone is sampled
by a mesh of 6 × 6 × 6 k points for the paramagnetic phase
and 4 × 4 × 4 k points for the antiferromagnetic phase. Both
samplings include the 	 point. Moreover, we used a smearing
width of 27 meV. In the antiferromagnetic phase the band
gap is better reproduced than within the MEET. This can be
understood by inspecting the expression for removal/addition
energies in the DER method [33]. Using the power functional
these energies are obtained as:

εR
i = −εA

i = ∂E[{nk},{φk}]
∂ni

∣∣∣∣
ni=1/2

= hii +
⎡
⎣∑

j

Vijij nj − αnα−1
i

∑
j

Vijjin
α
j

⎤
⎦

ni=1/2

. (C1)
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FIG. 6. Paramagnetic (left) and antiferromagnetic (right) bulk NiO: experimental photoemission spectrum [45] vs DER spectrum (with the
power functional, α = 0.65). The color map and the distribution f (ni) illustrate the occupation numbers ni that play a role into the spectrum
for the reported energy range.

This expression, which is the same for both removal and
addition energies, is similar to the expression for the removal
energies δ

R,(1)
i , which, with the power functional, reads

δ
R,(1)
i = hii +

∑
j

Vijij nj − nα−1
i

∑
j

Vijjin
α
j . (C2)

The difference between the two expressions resides in the
prefactor α in the last term on the right-hand side of Eq. (C1),
which is equal to one in Eq. (C2), and the use of ni = 1/2 in
Eq. (C1) instead of the value that minimizes the total energy
E[{nk},{φk}] [50], as in Eq. (C2). This tends to reduce the
band-gap width with respect to our method. Note that with
α = 1 (HF), the two methods coincide. In the paramagnetic
phase (which we model with a nonmagnetic phase), instead,
we found that the DER method does not open any gap. The
occupation numbers mainly involved in the band-gap region
lie around 0.5 as in the MEET, however the corresponding
energies accumulate in the band-gap region, whereas our
method displaces them and opens a gap. Note that our DER
results are different from the results reported in Ref. [51],
where the DER method is shown to open a gap for a proper
choice of the parameter α. However, contrary to us, the authors
of Ref. [51] use a shift of the k-point grid. With the shift of
the k-point grid the number of inequivalent k points in the
irreducible Brillouin zone is higher than in the case without
shift and the calculations should converge faster. However,
we found that this shift opens a gap even when used with
HF, which, instead, should give a metal for paramagnetic NiO
[52]. Moreover, a HF calculation without shift of the k-point
grid on a slightly deformed crystal (deformation of the order

of 10−9 relative to the lattice constant) yields a total energy
lower than the case without deformation (−1.58165 × 103 a.u.
vs −1.58138 × 103 a.u.), and a gapped spectral function very
similar to the one obtained with the DER method when the
shift of the grid is employed. Our analysis shows that these
small perturbations lead to symmetry breaking through orbital
ordering, and by consequence to the opening of a quasiparticle
gap. These findings suggest that the asymmetric shift of the
k-point grid used by Sharma et al. [51] plays an important
role in the appearance of a band gap in NiO and that there is
no contradiction between our results and the ones published
in Ref. [51]. It raises the question whether it is legitimate to
break the orbital symmetry to model a paramagnetic system at
zero temperature. This is clearly a very important issue, which
deserves further investigations but is beyond the scope of this
work.

In our calculations we did not use any shift of the k-point
grid and we checked that our results are converged with respect
to the number of k points. We have also checked whether there
is a starting point dependence. However starting from LDA or
LDA+U yields the same conclusions. Note that in LDA+U we
do not break the spin symmetry, therefore the eg bands are only
shifted to higher energy and well separated by the t2g bands,
but they remain degenerate.

Of course the case of NiO is only one example, and this does
not mean that the DER method does not open a gap in other
paramagnetic transition metal oxides without breaking any
symmetry. For example, in the case of MnO, the DER method
opens a gap for certain values of α in the power functional
[51]. We checked that this is the case also without a shift of
the k-point grid.
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[44] O. Tjernberg, S. Söderholm, G. Chiaia, R. Girard, U. O.

Karlsson, H. Nylén, and I. Lindau, Phys. Rev. B 54, 10245
(1996).

[45] G. A. Sawatzky and J. W. Allen, Phys. Rev. Lett. 53, 2339
(1984).

[46] S. Goedecker and C. J. Umrigar, Phys. Rev. Lett. 81, 866
(1998).

[47] N. N Lathiotakis, S. Sharma, J. K. Dewhurst, F. G. Eich, M. A.
L. Marques, and E. K. U. Gross, Phys. Rev. A 79, 040501(R)
(2009).

[48] A. Putaja and E. Räsänen, Phys. Rev. B 84, 035104 (2011).
[49] E. H. Lieb, and F. W. Wu, Phys. Rev. Lett. 20, 1445 (1968).
[50] Note that in practice in the ELK code only the exchange-

correlation contribution is evaluated at ni = 1/2.
[51] Y. Shinohara, S. Sharma, S. Shallcross, N. N. Lathiotakis,

and E. K. U. Gross, J. Chem. Theory Comput. 11, 4895
(2015).

[52] B. Szpunar, Acta Phys. Pol. A 84, 21 (1993).

155141-8

https://doi.org/10.1103/PhysRevB.87.121111
https://doi.org/10.1103/PhysRevB.87.121111
https://doi.org/10.1103/PhysRevB.87.121111
https://doi.org/10.1103/PhysRevB.87.121111
https://doi.org/10.1103/PhysRevB.87.075121
https://doi.org/10.1103/PhysRevB.87.075121
https://doi.org/10.1103/PhysRevB.87.075121
https://doi.org/10.1103/PhysRevB.87.075121
https://doi.org/10.1103/PhysRevB.80.155115
https://doi.org/10.1103/PhysRevB.80.155115
https://doi.org/10.1103/PhysRevB.80.155115
https://doi.org/10.1103/PhysRevB.80.155115
https://doi.org/10.1103/PhysRevB.76.165126
https://doi.org/10.1103/PhysRevB.76.165126
https://doi.org/10.1103/PhysRevB.76.165126
https://doi.org/10.1103/PhysRevB.76.165126
https://doi.org/10.1103/PhysRevLett.99.266402
https://doi.org/10.1103/PhysRevLett.99.266402
https://doi.org/10.1103/PhysRevLett.99.266402
https://doi.org/10.1103/PhysRevLett.99.266402
https://doi.org/10.1103/PhysRevLett.93.126406
https://doi.org/10.1103/PhysRevLett.93.126406
https://doi.org/10.1103/PhysRevLett.93.126406
https://doi.org/10.1103/PhysRevLett.93.126406
https://doi.org/10.1103/PhysRevB.79.235114
https://doi.org/10.1103/PhysRevB.79.235114
https://doi.org/10.1103/PhysRevB.79.235114
https://doi.org/10.1103/PhysRevB.79.235114
https://doi.org/10.1103/PhysRevB.86.235113
https://doi.org/10.1103/PhysRevB.86.235113
https://doi.org/10.1103/PhysRevB.86.235113
https://doi.org/10.1103/PhysRevB.86.235113
https://doi.org/10.1103/PhysRevA.75.032505
https://doi.org/10.1103/PhysRevA.75.032505
https://doi.org/10.1103/PhysRevA.75.032505
https://doi.org/10.1103/PhysRevA.75.032505
https://doi.org/10.1063/1.3249965
https://doi.org/10.1063/1.3249965
https://doi.org/10.1063/1.3249965
https://doi.org/10.1063/1.3249965
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1103/PhysRevLett.96.226402
https://doi.org/10.1063/1.3089567
https://doi.org/10.1063/1.3089567
https://doi.org/10.1063/1.3089567
https://doi.org/10.1063/1.3089567
https://doi.org/10.1103/PhysRevB.86.081102
https://doi.org/10.1103/PhysRevB.86.081102
https://doi.org/10.1103/PhysRevB.86.081102
https://doi.org/10.1103/PhysRevB.86.081102
https://doi.org/10.1103/PhysRevLett.103.176404
https://doi.org/10.1103/PhysRevLett.103.176404
https://doi.org/10.1103/PhysRevLett.103.176404
https://doi.org/10.1103/PhysRevLett.103.176404
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevLett.80.2389
https://doi.org/10.1103/PhysRevLett.80.2389
https://doi.org/10.1103/PhysRevLett.80.2389
https://doi.org/10.1103/PhysRevLett.80.2389
https://doi.org/10.1103/PhysRevLett.93.096401
https://doi.org/10.1103/PhysRevLett.93.096401
https://doi.org/10.1103/PhysRevLett.93.096401
https://doi.org/10.1103/PhysRevLett.93.096401
https://doi.org/10.1103/PhysRevB.85.155131
https://doi.org/10.1103/PhysRevB.85.155131
https://doi.org/10.1103/PhysRevB.85.155131
https://doi.org/10.1103/PhysRevB.85.155131
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevLett.107.166401
https://doi.org/10.1103/PhysRevB.89.085425
https://doi.org/10.1103/PhysRevB.89.085425
https://doi.org/10.1103/PhysRevB.89.085425
https://doi.org/10.1103/PhysRevB.89.085425
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.110.146801
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevLett.99.156404
https://doi.org/10.1103/PhysRevLett.99.156404
https://doi.org/10.1103/PhysRevLett.99.156404
https://doi.org/10.1103/PhysRevLett.99.156404
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1088/1367-2630/14/1/013056
https://doi.org/10.1088/1367-2630/16/11/113025
https://doi.org/10.1088/1367-2630/16/11/113025
https://doi.org/10.1088/1367-2630/16/11/113025
https://doi.org/10.1088/1367-2630/16/11/113025
https://doi.org/10.1103/PhysRevB.74.205124
https://doi.org/10.1103/PhysRevB.74.205124
https://doi.org/10.1103/PhysRevB.74.205124
https://doi.org/10.1103/PhysRevB.74.205124
https://doi.org/10.1103/PhysRevLett.110.116403
https://doi.org/10.1103/PhysRevLett.110.116403
https://doi.org/10.1103/PhysRevLett.110.116403
https://doi.org/10.1103/PhysRevLett.110.116403
https://doi.org/10.1103/PhysRevB.12.2111
https://doi.org/10.1103/PhysRevB.12.2111
https://doi.org/10.1103/PhysRevB.12.2111
https://doi.org/10.1103/PhysRevB.12.2111
https://doi.org/10.1103/PhysRevB.82.041103
https://doi.org/10.1103/PhysRevB.82.041103
https://doi.org/10.1103/PhysRevB.82.041103
https://doi.org/10.1103/PhysRevB.82.041103
https://doi.org/10.1103/PhysRevB.85.085126
https://doi.org/10.1103/PhysRevB.85.085126
https://doi.org/10.1103/PhysRevB.85.085126
https://doi.org/10.1103/PhysRevB.85.085126
https://doi.org/10.1063/1.4904313
https://doi.org/10.1063/1.4904313
https://doi.org/10.1063/1.4904313
https://doi.org/10.1063/1.4904313
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1038/nature11770
https://doi.org/10.1103/PhysRevB.78.201103
https://doi.org/10.1103/PhysRevB.78.201103
https://doi.org/10.1103/PhysRevB.78.201103
https://doi.org/10.1103/PhysRevB.78.201103
https://doi.org/10.1063/1.4926327
https://doi.org/10.1063/1.4926327
https://doi.org/10.1063/1.4926327
https://doi.org/10.1063/1.4926327
http://elk.sourceforge.net
https://doi.org/10.1103/PhysRevB.54.10245
https://doi.org/10.1103/PhysRevB.54.10245
https://doi.org/10.1103/PhysRevB.54.10245
https://doi.org/10.1103/PhysRevB.54.10245
https://doi.org/10.1103/PhysRevLett.53.2339
https://doi.org/10.1103/PhysRevLett.53.2339
https://doi.org/10.1103/PhysRevLett.53.2339
https://doi.org/10.1103/PhysRevLett.53.2339
https://doi.org/10.1103/PhysRevLett.81.866
https://doi.org/10.1103/PhysRevLett.81.866
https://doi.org/10.1103/PhysRevLett.81.866
https://doi.org/10.1103/PhysRevLett.81.866
https://doi.org/10.1103/PhysRevA.79.040501
https://doi.org/10.1103/PhysRevA.79.040501
https://doi.org/10.1103/PhysRevA.79.040501
https://doi.org/10.1103/PhysRevA.79.040501
https://doi.org/10.1103/PhysRevB.84.035104
https://doi.org/10.1103/PhysRevB.84.035104
https://doi.org/10.1103/PhysRevB.84.035104
https://doi.org/10.1103/PhysRevB.84.035104
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1021/acs.jctc.5b00661
https://doi.org/10.1021/acs.jctc.5b00661
https://doi.org/10.1021/acs.jctc.5b00661
https://doi.org/10.1021/acs.jctc.5b00661
https://doi.org/10.12693/APhysPolA.84.21
https://doi.org/10.12693/APhysPolA.84.21
https://doi.org/10.12693/APhysPolA.84.21
https://doi.org/10.12693/APhysPolA.84.21



