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We compute the ground-state correlation functions of an exactly solvable chain of integer spins, recently
introduced in [R. Movassagh and P. W. Shor, arXiv:1408.1657], whose ground state can be expressed in terms
of a uniform superposition of all colored Motzkin paths. Our analytical results show that for spin s � 2 there is a
violation of the cluster decomposition property. This has to be contrasted with s = 1, where the cluster property
holds. Correspondingly, for s = 1 one gets a light-cone profile in the propagation of excitations after a local
quench, while the cone is absent for s = 2, as shown by time dependent density-matrix renormalization group.
Moreover, we introduce an original solvable model of half-integer spins, which we refer to as Fredkin spin chain,
whose ground state can be expressed in terms of superposition of all Dyck paths. For this model we exactly
calculate the magnetization and correlation functions, finding that for s = 1/2, a conelike propagation occurs,
while for higher spins, s � 3/2, the colors prevent any cone formation and clustering is violated, together with
square root deviation from the area law for the entanglement entropy.
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I. INTRODUCTION

Locality plays a fundamental role in physical theories, with
far reaching consequences, one of them being the cluster
decomposition property (CDP) [1–3]. The CDP implies that
when computing at large distances expectation of products of
operators the product factorizes in the product of expectation
values, therefore sufficiently distant regions behave indepen-
dently. Of course, CDP requires that the ground state is a pure
state, while in the presence of a mixed or degenerate ground
state the CDP may not be preserved.

Another fundamental consequence related to locality is
given by the peculiar propagation of excitations. In particular,
once the system is subject to a local or global quench
the time evolution of the correlations shows a well defined
light-cone-like propagation [4]. For general lattice models
with short-range interactions locality and the presence of CDP
imply a bound, called the Lieb-Robinson bound [5], for the
commutator of two operators defined in different points of the
space. This result is, of course, equivalent to the existence
of a finite speed for the propagation of excitations [6–8]. This
gives rise to a light cone defining causally connected regions up
to exponentially small deviations. Actually, light-cone prop-
agation of connected correlations is expected when starting
from an initial state with exponential clustering [3,9–11]. On
the other hand, the presence of long-range interaction causes
the violation of the Lieb-Robinson bound and the presence of
power-law tails outside the light cone [12–17]. In this direction
the study of possible violations of the Lieb-Robinson bound
can be experimentally performed by means of interacting
trapped ions [18].

The appearence of nonexponentially small corrections
outside the cone signals nonlocal effects, which are induced by
the long-range interactions or couplings. Moreover, quantum
correlations are also signaled by entanglement. This lies at
the heart of the area law violation of the von Neumann

entropy for long-range interacting systems. Indeed, a variety
of cases [12,19–22], including a study of the nonlinear growth
after quenches [23], have been theoretically investigated.

Due to the latter arguments the study of nonlocal properties
and their consequences on the light-cone propagation in
addition to the violation of the area law are certainly at the
present date a very challenging field of research. Moreover,
since quantum spin chains can be used for universal quantum
computation and the efficiency may be related to the amount
of quantum entanglement [24], spin systems with more than
logarithmic entanglement entropy, as the ones we consider in
this paper, can be used for quantum computing even more
efficiently.

In this paper we intend to investigate if one can have
violation of CDP and absence of a light cone in the dynamics
for a local quantum theory, which is translationally invariant in
the bulk and it exhibits a nonlogarithmic violation of the area
law. Here we first consider the exactly solvable chain of integer
spins introduced in Ref. [25] for s = 1 and recently generalized
to larger-than-one integer spins [26]. The peculiarity of this
spin chain is that the ground state can be expressed in terms of
a superposition of all Motzkin paths which are “colored” for
s > 1 [27]. A (noncolored) Motzkin path is any path from the
point (0,0) to (0,L) with steps (1,0),(1,1),(1, − 1), where L

is an integer number. Any point (x,y) of the path is such that
x and y are not negative. The path is said to be colored when
the steps can be drawn with more (than one) colors.

The following facts motivated us to investigate CDP and
dynamics of correlations in this model: (i) the model is local;
(ii) the ground state is unique and it is a pure state made by a
uniform superposition of all the Motzkin paths; (iii) it exhibits a
logarithmic deviation from the area law for s = 1 and a square
root deviation for s � 2; and (iv) it can be written in terms of
spins-s Sα(j ) where j = 1, . . . ,L (L then being interpreted as
the number of spins) and α = x,y,z. For s = 1 the one-point
ground-state correlation functions were computed in Ref. [25],
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while the two-point correlation functions were reported in
Ref. [28].

In this paper, instead, we present analytical results for one-
point and two-point ground-state correlation functions for any
integer spins s, also for s � 2. In particular, we will focus our
attention on the connected correlation function

〈〈Sz(j )Sz(k)〉〉 ≡ 〈Sz(j )Sz(k)〉 − 〈Sz(j )〉〈Sz(k)〉 (1)

in order to see if CDP is preserved. Indeed, the uncon-
nected correlation may tend, for large distances |j − k|,
to a number different from zero, as happens in the pres-
ence of off-diagonal long-range order [29] (or in spin
models, e.g. in dimerized spin chains [30] and in the
Affleck-Kennedy-Lieb-Tasaki model (AKLT) model [31]),
but the connected one goes to zero in the presence of
CDP.

From our analytical results we conclude that there is
a violation of CDP: indeed, among others, we present a
closed-form expression for 〈〈Sz(j )Sz(L − j + 1)〉〉 valid for
L → ∞, showing that it tends to a nonzero value for s > 1,
but to zero for s = 1. We then correspondingly study by means
of time-dependent density-matrix renormalization group (t-
DMRG) [32] the dynamical propagation of excitations [33].
We show that the evolution of the magnetization, once the
ground state is perturbed by a local quench, exhibits a well
defined light-cone profile for spin s = 1. For s = 2 instead
the propagation is practically instantaneous and the cone
formation is absent. In order to check the validity of our results
we also calculate the magnetization spreading following the
inverse path, namely, by finding the ground state in the
presence of a local magnetic field and letting the system
evolve once the latter is removed. Also in this configuration
the colors, characteristic of the s = 2 case, allow a practically
instantaneous signal propagation.

In order to establish the generality of the previous results,
we then proceed by introducing and solving a model for half-
integer spins. This allows us to check if both the violation
of the CDP and the absence of the light cone for s > 1 are
related to the topological nature of the Motzkin paths and to
the integerness of the spins. This new model, which we may
refer to as the Fredkin model since its Hamiltonian can be
expressed in terms of Fredkin gates [34], has as ground state
a uniform superposition of all Dyck paths [27], opposite to
the integer case where the ground state is based on Motzkin
paths. A (noncolored) Dyck path is any path from the point
(0,0) to (0,L) (L here should be an even integer number) with
steps (1,1),(1, − 1). As for the Motzkin path, any point (x,y)
of the Dyck path is such that x and y are not negative. The
path is colored when the steps can be drawn with more than
one color with the same rule as in Ref. [26]. Deferring details
to the Appendices, one can write the Hamiltonian in terms of
half-integer spins s = 1/2,3/2, . . . (Appendix A) and compute
for general s the one-point and two-point correlation functions
(Appendix B) and the dynamics after a quantum quench. Our
results show that the von Neumann entropy exhibits just a
logarithmic violation of the area law for s = 1/2, while a
square root violation for s � 3/2. Furthermore for s = 1/2
CDP is preserved together with the presence of light cone in
the dynamics, while for s � 3/2 CDP is violated and the light
cone is absent.

II. SPIN MODELS, MAGNETIZATION, AND
CORRELATION FUNCTIONS

In what follows we start presenting our results for the
integer Motzkin model (both noncolored and colored) and
afterwards we will consider the half-integer Fredkin model.

A. Integer spin model (Motzkin model)

The integer-spin Motzkin Hamiltonian [25,26,28] can be
written as a local Hamiltonian made by a bulk contribution,

H0 = 1

2

q∑
c=1

L−1∑
j=1

{
P

(∣∣0j ⇑c
j+1

〉 − ∣∣ ⇑c
j 0j+1

〉)
+P

(∣∣0j ⇓c
j+1

〉 − ∣∣ ⇓c
j 0j+1

〉)
+P

(|0j 0j+1〉 − ∣∣ ⇑c
j⇓c

j+1

〉)}
(2)

plus a crossing term HX = ∑q

c 	=c̄

∑L−1
j=1 P(| ⇑c

j⇓c̄
j+1〉) and

a boundary term H∂ = ∑q

c=1[P(| ⇓c
1〉) + P(| ⇑c

L〉)], where
P(|·〉) denotes the operator |·〉〈·|, and |⇑〉 (|⇓〉) the integer
spin up (down), c,c̄ the colors from 1 to q ∈ Z+, and the spin
s being equal to the number of colors q.

The one-point and two-point correlation functions for s =
1 have been computed in Refs. [25,28]. Here, instead, we
present exact expressions for 〈Sz(i)〉 and 〈Sz(j )Sz(k)〉, for the
general colored case, namely, for any s � 1 (see Appendix B
for further details) determining, in this way, the connected
correlation functions. In the rest of the paper we will adopt the
following notation: we denote expectation values by 〈·〉M for
the integer spin model with the Motzkin ground state, and by
〈·〉D for the half-integer spin model with the Dyck ground state.

DefiningM(n)
hh′ as the number of colored Motzkin-like paths

between two points at heights h and h′ and linearly distant n

steps, from a combinatoric calculation the magnetization as a
function of the position is given by

〈Sz(j )〉M = (1 + q)

2M(L)

∑
h

M(j−1)
0h

(
q M(L−j )

h+1,0 − M(L−j )
h−1,0

)
, (3)

where M(L) ≡ M(L)
00 is the colored Motzkin number (explicit

expressions are given in Appendix B). Equation (3), which
is valid for any positive integer s, has been plotted in Fig. 1
(left side) and has been tested against exact diagonalization
results for small sizes and DMRG for larger ones. As shown in
Fig. 1, 〈Sz(j )〉 is an odd function of the position. The two-point
correlation function has been also analytically calculated and
reads as follows:

〈Sz(j )Sz(k)〉M = (1 + q)2

4M(L)

∑
h,h′

M(j−1)
0h

(
q M(k−j−1)

h+1,h′

−M(k−j−1)
h−1,h′

)(
q M(L−k)

h′+1,0 − M(L−k)
h′−1,0

)
− M(k−j−1)

M(L)

(q3 − q)

12

∑
h

M(j−1)
0h M(L−k)

h0 .

(4)

The last term of the previous equation, which vanishes for
s = q = 1, is actually responsible for the violation of the CDP
(see Appendix C).

155140-2



VIOLATION OF CLUSTER DECOMPOSITION AND . . . PHYSICAL REVIEW B 94, 155140 (2016)

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100

<
 S

z(k
) >

M

k

s=1
s=2

-1

-0.5

 0

 0.5

 1

 0  10  20  30  40  50  60  70  80  90  100

<
 S

z(k
) >

D

k

s=1/2
s=3/2

FIG. 1. Magnetization for integer (left) and half-integer (right)
spin cases for a chain of length L = 100.

Using Eqs. (1) and (4) we can compute the connected
correlation function, shown for j = 1 as a function of k in
the top part of Fig. 2. Analytical results in closed form can be
obtained for the boundary connected correlation functions:

〈〈Sz(1)Sz(k)〉〉M −→
k�1

(q − q3)

12

M(L−k)M(k−2)

M(L)
, (5)

〈〈Sz(j )Sz(L − j + 1)〉〉M −→
L�j

(q − q3)

12

M(L−2j )M(2j−2)

M(L)
.

(6)

In particular, for spin s = q = 2 we get

lim
L→∞

〈〈Sz(1)Sz(L)〉〉M = 1

2
lim

L→∞
M(L−2)

M(L)
 −0.034. (7)

These results show that CDP is violated for colored spin chains.

B. Half-integer spin model (Fredkin model)

For the half-integer spin case, with generic spin s = q − 1
2 ,

we introduce the following Fredkin model:

H0 = 1

2

q∑
c,c̄=1

⎧⎨
⎩

L−2∑
j=1

[
P

(∣∣ ↓c̄
j↑c

j+1↓c
j+2

〉 − ∣∣ ↑c
j↓c

j+1↓c̄
j+2

〉)

+P
(∣∣ ↑c̄

j↑c
j+1↓c

j+2

〉 − ∣∣ ↑c
j↓c

j+1↑c̄
j+2

〉)]

+
L−1∑
j=1

P
(∣∣ ↑c

j↓c
j+1

〉 − ∣∣ ↑c̄
j↓c̄

j+1

〉)⎫⎬⎭ (8)
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FIG. 2. Connected correlation functions, −〈〈Sz(1)Sz(k)〉〉, as a
function of k for integer (top, for 5 � k � L), and half-integer
(bottom, for 2 � k � L) spins for chains of length L = 100.

with the inclusion of a crossing term, analogous to the previous
one, HX = ∑q

c 	=c̄

∑L−1
j=1 P(| ↑c

j↓c̄
j+1〉), and a boundary term

H∂ = ∑q

c=1[P(| ↓c
1〉) + P(| ↑c

L〉)], where |↑c〉 is the half-
integer (c − 1

2 )-spin up and |↓c〉 the half-integer (c − 1
2 )-spin

down. A more general Hamiltonian of the Fredkin chains,
having the same ground-state, but different excited states, is
presented in Appendix A.

We define D(n)
hh′ the number of colored paths between two

points at heights h and h′ and linearly distant n, which
never cross the ground, such that D(2n) ≡ D(2n)

00 = qnC(n),
where C(n) are the Catalan numbers (see Appendix B). The
magnetization is then found to be

〈Sz(j )〉D = q

2D(L)

∑
h

D(j−1)
0h

(
q D(L−j )

h+1,0 − D(L−j )
h−1,0

)
(9)

(the subscript D refers to Dyck ground state). The result,
Eq. (9), is plotted in the bottom part of Fig. 1, for spins s = 1/2
and s = 3/2. We can also calculate analytically the correlation
functions getting

〈Sz(j )Sz(k)〉D = q2

4D(L)

∑
h,h′

D(j−1)
0h

(
q D(k−j−1)

h+1,h′ − D(k−j−1)
h−1,h′

)

× (
q D(L−k)

h′+1,0 − D(L−k)
h′−1,0

) − D(k−j−1)

D(L)

× (q3 − q)

12

∑
h

D(j−1)
0h D(L−k)

h0 . (10)
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Also, in this case the last term which vanishes for q = 1,
i.e., s = 1/2, is responsible for the violation of the cluster
decomposition property. In particular, for j = 1, and 1 < k �
L, we get simply

〈〈Sz(1)Sz(k)〉〉D = (1 − q2)

12
pk

C
(

L−k
2

)
C

(
k
2 − 1

)
C

(
L
2

) (11)

which for q = 1 (spin s = 1/2) is exactly zero, since the spin
at the first site has to be ↑, no matter the rest of the chain. In
Eq. (11) pk = 1 for even k and pk = 0 for odd k. Putting k = L

and sending L → ∞ we have, however, a finite correlation

lim
L→∞

〈〈Sz(1)Sz(L)〉〉D = (1 − q2)

12

1

4
. (12)

More generally, the analytic expression for the correlators, in
the long L limit, and j � 1, are

lim
L→∞

〈〈Sz(j )Sz(L)〉〉D = (1 − q2)

12

C
(

j−1
2

)
2j+1

p(j+1), (13)

lim
L→∞

〈〈Sz(j )Sz(L − j + 1)〉〉D = (1 − q2)

12

C(j − 1)

4j
. (14)

We show therefore that, also in the half-integer spin chains,
for s � 3/2 the violation of the CDP occurs. The connected
correlation functions for s = 1/2 and s = 3/2 are plotted in the
bottom part of Fig. 2. In Appendix E we plot for comparison
static DMRG results for (i) the Heisenberg XXX Hamiltonian
with boundary magnetic term H∂ , for both spin 1/2 and 3/2;
and (ii) the AKLT model with bondary term H∂ , for spin s = 1.
The result is that in all these models CDP is preserved.

FIG. 3. Time evolution of 〈Sz(j,t)〉 − 〈Sz(j,0)〉 after switching
on a local field, 5Sz(j0): (a) on j0 = 2 of a spin s = 1/2 chain, (b) on
j0 = 1 of a spin s = 1 chain, (c) on j0 = 2 of a spin s = 3/2 chain,
and (d) on j0 = 1 of a spin s = 2 chain. The light cones are absent
for s = 3/2 and s = 2.

III. DYNAMICS

Motivated by the fact that CDP violation could give rise to
relevant dynamical properties [3,9–11], we study, by means
of t-DMRG, the time evolution of the previous models once
a local quench is performed. As we notice in Fig. 3, once
the colors are present, both for integer and half-integer cases,
the system does not exibit light-cone propagation. On the
contrary, for the single-colored cases (s = 1/2 and s = 1) a
clear signature of light cone is visible in the evolution of local
magnetization, after switching on a local field.

In Fig. 4 we report the results for the time evolution of the
magnetization after switching off a local field placed close to
the edge of the spin chain. Also in this case (as that shown in
the main text where a local field is switched on) the light cone
is present for s = 1/2 and s = 1, while it is absent for s = 3/2
and s = 2. We verified that also the connected z-z correlation
functions exhibith a similar behavior.

IV. ENTANGLEMENT ENTROPY

Finally, we report for completeness general results for
the von Neumann entropy. For integer spins the area law is
violated [26]. We find that for both integer and half-integer
chains the entanglement entropy does not follow the area law.
We find that the entropies for the Motzkin and the Fredkin
models, after a bipartition of the chain in two parts, [1,j ] and
[j + 1,L], are given by

SM = log2(q)〈hj 〉M + O(log2[j (L − j )]), (15)

SD = log2(q)〈hj 〉D + O(log2[j (L − j )]), (16)

FIG. 4. Time evolution of 〈Sz(j,t)〉 − 〈Sz(j,0)〉 after switching
off a local field, 5Sz(j0): (a) on j0 = 2 of a spin s = 1/2 chain, (b) on
j0 = 1 of a spin s = 1 chain, (c) on j0 = 2 of a spin s = 3/2 chain,
and (d) on j0 = 1 of a spin s = 2 chain. The cones are absent for
s = 3/2,2.
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namely, the leading contribution, for colored cases (q > 1) is
no longer a logarithmic term (see Appendix D). Remarkably
we show that, in both cases, the entanglement entropy has a
geometrical meaning, since the leading term is proportional
to the average height of the Motzkin paths (for the integer
case) and Dyck paths (for the half-integer case), measured
right at the bipartition position j . This quantity, in both cases,
is approximately given by

〈hj 〉 ≈
√

2j (L − j )

L
. (17)

V. SCALING OF THE ENERGY GAP

To conclude, we also report results for the finite-size scaling
of the gap �E = E1 − EGS where EGS = 0 is the ground-state
energy and E1 the energy of the first excited state. These
energies are obtained by performing static DMRG simulations
of systems with L up to 100 for s = 1/2 and s = 1 and up to
L = 60 for s = 3/2, 2. We kept at most 2000 DMRG states
and five finite size sweeps. We found that the gap scales as
� ∝ 1/Lc and, for those four spins, we always get c > 2.
In particular, our estimates are c = 2.9 ± 0.1 (s = 1/2), c =
2.7 ± 0.1 (s = 1), c = 3.8 ± 0.4 (s = 3/2), and c = 3.3 ± 0.3
(s = 2). We think that the analytic expression for c is different
for the Motzkin and Fredkin cases; still we conjecture that in
both cases c increases linearly with log q.

VI. CONCLUSIONS

We exactly computed the magnetization and the connected
z-z correlation functions of a local quantum spin chain, for
any integer spins, whose ground state can be represented
by a uniform superposition of all colored Motzkin paths.
Our analytical results show that, except for s = 1, for any
s � 2 there is violation of CDP and that the connected
correlation function 〈〈Sz(j )Sz(L − j + 1)〉〉 tends to a finite
value for L → ∞. Motivated by the violation of the clustering,
we studied the dynamics of magnetization and correlation

functions after a quench. We showed that for s = 1 one has
a light cone for the excitation propagations, while the cone is
absent for s = 2. We also introduced another solvable model
of half-integer spins, which we called Fredkin chain, whose
ground state is expressed in terms of uniform superposition of
colored Dyck paths. We exactly computed the magnetization
and the connected z-z correlation functions, finding that also
in this case CDP holds for s = 1/2, while it is violated
for s � 3/2. Analogously to the integer spin case, t-DMRG
indicates that there is a light cone for s = 1/2, while the cone
is absent for s = 3/2. We finally computed the von Neumann
entropy of the Fredkin model, showing a (nonlogarithmic)
square-root violation of the area law, and the scaling behavior
of the first gap. To conclude we observe that it would be
interesting studying the quantum transfer of states [35] via the
colored Motzkin and Fredkin spin chains considering as sender
and receiver the two spins at the edges. It is also worthwhile for
future investigations to systematically compare the dynamical
properties of spin models considered in this paper with those
of other spin chains where a global constraint is added to
Hamiltonians with local interactions.
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APPENDIX A: MODELS AND GROUND STATES

The Hamiltonians we consider can be written in the form

H = H0 + HX + H∂. (A1)

For the integer spin model (s = q) we define | ⇑c〉 = |c〉,
| ⇓c〉 = | − c〉 with c = 1,2, . . . ,q, where q ∈ Z+:

H0 = 1

2

q∑
c=1

L−1∑
j=1

{(∣∣0j⇑c
j+1

〉 − ∣∣⇑c
j 0j+1

〉)(〈
0j⇑c

j+1

∣∣ − 〈⇑c
j 0j+1

∣∣) + (∣∣0j⇓c
j+1

〉 − ∣∣⇓c
j 0j+1

〉)(〈
0j⇓c

j+1

∣∣ − 〈⇓c
j 0j+1

∣∣)
+ (|0j 0j+1〉 − ∣∣⇑c

j⇓c
j+1

〉)(〈0j 0j+1| − 〈⇑c
j⇓c

j+1

∣∣)}, (A2)

HX =
q∑

c 	=c̄

L−1∑
j=1

∣∣ ⇑c
j⇓c̄

j+1

〉〈 ⇑c
j⇓c̄

j+1

∣∣, (A3)

H∂ =
q∑

c=1

(∣∣ ⇓c
1

〉〈 ⇓c
1

∣∣ + ∣∣ ⇑c
L

〉〈 ⇑c
L

∣∣). (A4)

For the half-integer spin model (s = q − 1
2 ) we define | ↑c〉 = |c − 1

2 〉, | ↓c〉 = | 1
2 − c〉 with c = 1,2, . . . ,q and

H0 = 1

2

q∑
c,c̄=1

⎧⎨
⎩

q∑
c′=1

L−2∑
j=1

[(∣∣↓c̄
j↑c

j+1↓c′
j+2

〉 − ∣∣↑c
j↓c′

j+1↓c̄
j+2

〉)(〈↓c̄
j↑c

j+1↓c′
j+2

∣∣ − 〈↑c
j↓c′

j+1↓c̄
j+2

∣∣) + (∣∣↑c̄
j↑c

j+1↓c′
j+2

〉

− ∣∣↑c
j↓c′

j+1↑c̄
j+2

〉)(〈↑c̄
j↑c

j+1↓c′
j+2

∣∣ − 〈↑c
j↓c′

j+1↑c̄
j+2

∣∣)] +
L−1∑
j=1

(∣∣↑c
j↓c

j+1

〉 − ∣∣↑c̄
j↓c̄

j+1

〉)(〈↑c
j↓c

j+1

∣∣ − 〈↑c̄
j↓c̄

j+1

∣∣)
⎫⎬
⎭, (A5)

HX =
q∑

c 	=c̄

L−1∑
j=1

∣∣ ↑c
j↓c̄

j+1

〉〈 ↑c
j↓c̄

j+1

∣∣, (A6)
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FIG. 5. (a) Example of a colored Motzkin path, with q = 3
colors, which corresponds to a particular Motzkin spin state |m(14)

p 〉 =
| ⇑1

1 02 ⇑2
3 ⇓2

4 05 ⇑3
6 ⇑1

7 08 ⇓1
9 010 ⇓3

11 ⇓1
12 ⇑2

13 ⇓2
14〉. (b) Example of a

colored Dyck path which corresponds to a particular Dyck spin state
|d (10)

p 〉 = | ↑1
1 ↑2

2 ↓2
3↑3

4 ↑1
5 ↓1

6 ↓3
7 ↓1

8 ↑2
9 ↓2

10〉.

H∂ =
q∑

c=1

(∣∣ ↓c
1

〉〈 ↓c
1

∣∣ + ∣∣ ↑c
L

〉〈 ↑c
L

∣∣). (A7)

A simplified half-integer spin model with the same ground
state but which requires less computational effort, can be
obtained from Eq. (A5), considering only the terms with
c′ = c, as in Eq. (8).

The ground states of these frustration-free Hamiltonians are
unique, made by simple superpositions of all Motzkin paths
for the integer case and all Dyck paths for the half-integer
one. Denoting | ⇑〉 by |/〉, | ⇓〉 by |\〉, and |0〉 by |−〉 one can
construct a Motzkin path (|m〉), while by using only |/〉 and
|\〉 one can construct a Dick path (|d〉). For colored paths, the
colors are such that they match for up-down couples of spins
at any height. Examples of those walks are shown in Fig. 5.
The ground states for the Motzkin and Fredkin Hamiltonians
can be written as follows:

|GS〉M = 1√
M(L)

∑
p

∣∣m(L)
p

〉
, (A8)

|GS〉D = 1√
D(L)

∑
p

∣∣d (L)
p

〉
, (A9)

where the sum runs over all possible paths allowed by the
length L and colors q, whose numbers are given by the colored
Motzkin number M(L) and the colored Catalan number D(L).

APPENDIX B: COMBINATORICS AND ALTERNATIVE
EXPRESSIONS FOR MAGNETIZATION AND

CORRELATION FUNCTIONS

Let us define pn = [1 − mod(n,2)] such that p2n+1 = 0
and p2n = 1, namely, selects only even integer numbers,
and

D(n)
hh′ = q(n+h′−h)/2

[(
n

n+|h−h′|
2

)
−

(
n

n+h+h′
2 + 1

)]

×pn+h+h′ , (B1)

where D(n)
hh′ are the number of colored Dyck-like paths (q the

number of colors) between two points with distance n and
heights h and h′. In particular,

D(n) ≡ D(n)
00 = qn/2C

(n

2

)
pn (B2)

with C(n) = 2n!
n!(n+1)! the Catalan numbers, and

D(n)
h0 = q(n−h)/2 h + 1

n+h
2 + 1

(
n

n+h
2

)
pn+h (B3)

and D(n)
0h = qhD(n)

h0 . Let us also define

M(n)
hh′ =

�(n−|h′−h|)/2�∑
�=0

(
n

2� + |h′ − h|
)
D(2�+|h′−h|)

hh′ (B4)

the number of colored Motzkin-like paths between two points
at heights h and h′. In particular,

M(n) ≡ M(n)
00 =

�n/2�∑
�=0

q�

(
n

2�

)
C(�). (B5)

For q = 1, the one-color case, M(n) are the Motzkin numbers.
We can now calculate the magnetization 〈Sz(j )〉 along the

chains and the correlations 〈Sz(j )Sz(k)〉, whose expressions
are given by Eqs. (3) and (4), and (9) and (10) of the main text.
We can equivalently write those quantities in terms of average
height or height-height correlations as follows. For the integer
spin chain (s = q) we have the following magnetization:

〈Sz(j )〉M = (1 + q)

2M(L)

∑
h

h
(
M(j )

0hM
(L−j )
h0

−M(j−1)
0h M(L−j+1)

h0

)
, (B6)

while for half-integer spin chain (s = 2q−1
2 ) it reads

〈Sz(j )〉D = q

2D(L)

∑
h

h
(
D(j )

0hD
(L−j )
h0 − D(j−1)

0h D(L−j+1)
h0

)
. (B7)

The correlation function for integer and half-integer spin chains, for k > j , can be written as follows:

〈Sz(j )Sz(k)〉M = (1 + q)2

4M(L)

∑
hh′

hh′[M(j )
0hM

(k−j )
h,h′ M(L−k)

h′0 − M(j )
0hM

(k−j−1)
h,h′ M(L−k+1)

h′0 − M(j−1)
0h M(k−j+1)

h,h′ M(L−k)
h′0

+M(j−1)
0h M(k−j )

h,h′ M(L−k+1)
h′0

] − M(k−j−1)

M(L)

(q3 − q)

12

∑
h

M(j−1)
0h M(L−k)

h0 , (B8)
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〈Sz(j )Sz(k)〉D = q2

4D(L)

∑
hh′

hh′[D(j )
0hD

(k−j )
h,h′ D(L−k)

h′0 − D(j )
0hD

(k−j−1)
h,h′ D(L−k+1)

h′0 − D(j−1)
0h D(k−j+1)

h,h′ D(L−k)
h′0 + D(j−1)

0h D(k−j )
h,h′ D(L−k+1)

h′0
]

− D(k−j−1)

D(L)

(q3 − q)

12

∑
h

D(j−1)
0h D(L−k)

h0 . (B9)

We have compared our analytic results against DMRG and nu-
merical exact diagonalization. Examples of such a comparison
can be seen in Fig. 6 which shows perfect agreement between
analytics and numerical exact diagonalization.

APPENDIX C: VIOLATION OF THE CLUSTER
DECOMPOSITION

Let us consider correlation between two sites far apart. For
instance, let us consider the site j close to the left end of the
chain and k far apart, close to the other end on the right-hand
side of the chain, and send |k − j | → ∞. We observe that the

 0
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Exact Diag.

FIG. 6. Connected correlation function 〈Sz(1)〉M〈Sz(k)〉M −
〈Sz(1)Sz(k)〉M for the Motzkin chain with s = 2, from the analytic
expressions given by Eqs. (B6) and (B8) [or equivalently by Eqs. (3)
and (4) of the main text] and numerical exact diagonalization (upper
panel), and 〈Sz(1)〉D〈Sz(k)〉D − 〈Sz(1)Sz(k)〉D for the Fredkin chain
with s = 3/2, from the analytic expressions given by Eqs. (B7)
and (B9) [or equivalently by Eqs. (9) and (10) of the main text]
and numerical exact diagonalization (lower panel). In both cases the
length of the chain is L = 10.

first terms in Eqs. (4)–(10) of the main text satisfy the cluster
decomposition principle. The violation of the clustering is due
to the second terms in those equations:

〈〈Sz(j )Sz(k)〉〉M ≡ (〈Sz(j )Sz(k)〉M − 〈Sz(j )〉M〈Sz(k)〉M )

−→
|k−j |�1

M(k−j−1)

M(L)

(q − q3)

12

×
∑

h

M(j−1)
0h M(L−k)

h0 , (C1)

〈〈Sz(j )Sz(k)〉〉D ≡ (〈Sz(j )Sz(k)〉D − 〈Sz(j )〉D〈Sz(k)〉D)

−→
|k−j |�1

D(k−j−1)

D(L)

(q − q3)

12

∑
h

D(j−1)
0h D(L−k)

h0 .

(C2)

In particular, for j = 1, and 1 < k � L, for the half-integer
case we get simply

〈〈Sz(1)Sz(k)〉〉D = (q − q3)

12

D(L−k)D(k−2)

D(L)

= (1 − q2)

12
pk

C
(

L−k
2

)
C

(
k
2 − 1

)
C

(
L
2

) (C3)

which for q = 1 (spin s = 1/2) is identically equal to zero,
since the spin at the first site has to be ↑, no matter the rest
of the chain. If we now put k = L and send L → ∞ we have
a finite correlation given by Eq. (12) in the main text and,
more generally, one can calculate the correlators with j � 1
or site-symmetrical correlations as shown in Eqs. (13) and (14)
of the main text.

Analogously, for the integer spin case we get

〈〈Sz(j )Sz(L)〉〉M −→
L�j

(q − q3)

12

M(L−j−1)M(j−1)

M(L)
(C4)

together with Eqs. (5) and (6) of the main text. In particular,
for spin s = q = 2 we get a finite boundary connected
correlation at infinite distance, limL→∞ 〈〈Sz(1)Sz(L)〉〉M =
1
2 limL→∞ M(L−2)

M(L)  −0.034.

APPENDIX D: ENTANGLEMENT ENTROPY AND
VIOLATION OF THE AREA LAW

Let us consider a bipartition of the chain [1,j ], [j + 1,L],
after Schmidt decomposition, and defining

PM (j,h) = M(j )
0hM

(L−j )
h0

M(L)
, (D1)

PD(j,h) = D(j )
0hD

(L−j )
h0

D(L)
(D2)
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FIG. 7. Connected correlators 〈〈Sz(1)Sz(k)〉〉 in (upper panel)
Heisenberg XXX model with spins s = 1/2 and 3/2, and (lower
panel) AKLT model with spin s = 1.

the entanglement entropies for the two cases can be written as
follows:

SM = −
∑

h

PM (j,h) log2[q−hPM (j,h)], (D3)

SD = −
∑

h

PD(j,h) log2[q−hPD(j,h)]. (D4)

Let us define

S = S0 + δS (D5)

and one can verify that

S0
M = −

∑
h

PM (j,h) log2 [PM (j,h)], (D6)

S0
D = −

∑
h

PD(j,h) log2 [PD(j,h)] (D7)

fulfill the area law with standard logarithmic corrections. The
terms which produce the violation of the area law, instead, are

δSM = log2(q)
∑

h

hPM (j,h) = log2(q) 〈hj 〉M, (D8)

δSD = log2(q)
∑

h

h PD(j,h) = log2(q) 〈hj 〉D, (D9)

FIG. 8. Time evolution of 〈Sz(j,t)〉 − 〈Sz(j,0)〉, for the
dimerized-frustrated model [30] (with δ = 0.8 and α = 0 following
the notation in Ref. [30]), after switching on a local field, 5Sz(j0), at
j0 = 0.

namely, the leading term of the entropy, which violates the area
law, is proportional to the average height of the Motzkin paths
(for the integer case) and the average height of the Dyck paths
(for the half-integer case), measured right at the bipartition

position j . In both cases 〈hj 〉 ≈
√

2j (L−j )
L

.

APPENDIX E: COMPARISON WITH OTHER
SPIN MODELS

As we stressed in the main text CDP violation is given only
when the connected correlation function

〈〈Sz(j )Sz(k)〉〉 = 〈Sz(j )Sz(k)〉 − 〈Sz(j )〉〈Sz(k)〉 (E1)

goes to finite value different from zero, for large |j − k|
distance. Crucially the presence of edge states [31] in spin
models could give rise to finite value for large distances of the
unconnected correlator 〈Sz(j )Sz(k)〉 but the CDP still holds. In
order to prove that, in Fig. 7 we calculate, by means of DMRG,
the connected correlation function for different models. In the
upper panel of Fig. 7, Eq. (E1) is plotted for the Heisenberg
XXX model both for s = 1/2 and for s = 3/2. It is clearly
visible that the correlator goes to zero irrespectively of the
s value. The same behavior is observed in the lower panel
where the AKLT model for spin s = 1 having edge states is
treated [36]. Finally, in Fig. 8 we plot the time evolution of
the magnetization for the dimerized frustrated model diplaying
long-distance entanglement [30] finding that, even if weak, a
light-cone-like propagation is present.
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