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Pyrochlore oxides show several fascinating phenomena, such as the formation of heavy fermions and the
thermal Hall effect. Although a key to understanding some phenomena may be the Dzyaloshinsky-Moriya (DM)
interaction, its microscopic origin is unclear. To clarify the microscopic origin, we constructed a t2g-orbital
model with the kinetic energy, the trigonal-distortion potential, the multiorbital Hubbard interactions, and the LS

coupling, and derived the low-energy effective Hamiltonian for a d1 Mott insulator with the weak LS coupling.
We first show that lack of the inversion center of each nearest-neighbor V-V bond causes the odd-mirror
interorbital hopping integrals. Those are qualitatively different from the even-mirror hopping integrals, existing
even with the inversion center. We next show that the second-order perturbation using the kinetic terms leads to
the ferromagnetic and the antiferromagnetic superexchange interactions, whose competition is controllable by
tuning the Hubbard interactions. Then, we show the most important result: the third-order perturbation terms
using the combination of the even-mirror hopping integral, the odd-mirror hopping integral, and the LS coupling
causes the DM interaction due to the mirror-mixing effect, where those hopping integrals are necessary to obtain
the antisymmetric kinetic exchange and the LS coupling is necessary to excite the orbital angular momentum at
one of two sites. We also show that the magnitude and sign of the DM interaction can be controlled by changing
the positions of the O ions and the strength of the Hubbard interactions. We discuss the advantages in comparison
with the phenomenological theory and Moriya’s microscopic theory, applicability of our mechanism, and the
similarities and differences between our case and the strong-LS-coupling case.
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I. INTRODUCTION

The pyrochlore oxides [1] show several fascinating phe-
nomena, and the electronic states of some pyrochlore oxides
are categorized into a t2g-orbital system with the tetrahedral
sublattice structure under the trigonal-distortion potential.
One of the fascinating phenomena is the formation of heavy
fermions: in the paramagnetic metallic state of LiV2O4, the
low-temperature coefficient of the electronic specific heat
becomes about 0.42 J/mol K2, indicating the largest mass
enhancement in transition-metal compounds [2]. Another is
the thermal-Hall effect: in the ferromagnetic (FM) Mott
insulating state of Lu2V2O7, the temperature gradient leads
to the heat flow perpendicular to it [3]. As an example of the
pyrochlore oxides, let us consider the pyrochlore vanadates.
The V ions form a network of corner-sharing tetrahedra, and
each V ion and six O ions form an octahedron [1]; four V
ions of a tetrahedron correspond to the sublattice degrees of
freedom [see Fig. 1(a)], and the nearest-neighbor V ions are
connected by an O ion. Then, the t2g orbitals of the V ions, i.e.,
the dxz, dyz, and dxy orbitals, give the main contributions to
the bands near the Fermi level [4–6]. In addition, the trigonal
distortion reduces the symmetry group around a V ion, and
splits the t2g orbitals into the singlet a1g orbital and the doublet
e+
g and e−

g orbitals [Fig. 1(b)]; the a1g orbital and the e+
g and

e−
g orbitals correspond to the basis functions of the A1g and

the Eg irreducible representations, respectively.
A key quantity to understand some properties of the

pryrochlore oxides may be the Dzyaloshinsky-Moriya (DM)
interaction. The DM interaction [7,8] has been believed to
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be realized in the pyrochlore oxides because of lack of
the inversion center in each nearest-neighbor V-V bond of
a tetrahedron [9]. This realization was pointed out by the
phenomenological argument [9]: the authors of Ref. [9]
showed the possible components of the DM interaction without
the inversion center. This result may be correct because the
fitting of the spin-wave dispersions obtained in the inelastic
neutron scattering [10] for Lu2V2O7 suggests the finite DM
interaction, although this fitting was carried out in a rough
model and there is a controversy about the value of the DM
interaction for Lu2V2O7 [11]. In addition, the results for
CdCr2O4 [12,13] and Sm2Ir2O7 [14] suggest the finite DM
interaction in pyrochlore oxides. Moreover, the emergence
of the thermal-Hall effect may support the existence of the
DM interaction because the necessity of the DM interaction
was shown in several previous theoretical studies [3,15,16],
although these theoretical studies neglected the sublattice
degree of freedom in treating the DM interaction.

It is important to clarify the microscopic origin of the
DM interaction in pyrochlore oxides. This is because if
we clarify the microscopic origin, we can understand the
following four points. First, we can understand whether some
components of the DM interaction are truly finite. That cannot
be analyzed by the phenomenological argument [7] because
the phenomenological theory just determines the permissible
components from a symmetrical point of view. On the other
hand, the microscopic theory, such as Moriya’s microscopic
theory [8], determines the coefficients of the DM interaction,
expressed in terms of the parameters of the noninteracting
Hamiltonians and the interacting Hamiltonian. Second, the
microscopic theory can clarify how the electronic structure of
pyrochlore oxides leads to the DM interaction and how the
magnitude and sign of the DM interaction are controlled by
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FIG. 1. Schematic pictures of (a) a tetrahedron of four V ions
(blue circles), and (b) the splitting of the t2g orbitals under the trigonal-
distortion potential, �tri.

tuning the parameters of the system. Third, if we estimate
the parameters of the noninteracting Hamiltonians and the
interacting Hamiltonian by first-principles calculations such
as the local-density approximation, we can determine the DM
interaction appropriately including the material dependence
of the electronic structure. Fourth, if we proceed to study the
phenomena that may be related to the DM interaction, we can
more deeply understand the physics of those phenomena.

To clarify the microscopic origin of the DM interaction
in pyrochlore oxides, we constructed a t2g-orbital model with
the appropriate treatments of the orbital degrees of freedom,
lack of the inversion center of each V-V bond, the trigonal-
distortion potential, the multiorbital electron correlation, and
the spin-orbit coupling (SOC), and derived the low-energy
effective Hamiltonian for a d1 Mott insulator in the similar way
for Moriya’s microscopic theory [8]. We first show that due
to lack of the inversion center, the indirect hopping integrals
through the O 2p orbitals not only modify the values of
the direct hopping integrals, which are even-mirror, but also
induce the odd-mirror hopping integrals, which are missing
only in the direct hopping integrals. The appearance of the
odd-mirror hopping integrals is a microscopic effect of lack
of the inversion center. We next show the FM and the an-
tiferromagnetic (AF) superexchange interactions, derived by
the second-order perturbation using two even-mirror hopping
integrals or two odd-mirror hopping integrals. As the most
important result, we show that the DM interaction arises
from the mirror-mixing effect in the third-order perturbation
using the combination of the even-mirror hopping integral,
the odd-mirror hopping integral, and the LS coupling. In this
mirror-mixing effect, the role of those hopping integrals is to
induce the antisymmetric kinetic exchange, and the role of the
LS coupling is to activate the orbital angular momentum at
one of two sites. Those two roles are vital to get the DM-type
antisymmetric exchange interactions in the weak SOC because
in the nonperturbed states, the orbital angular momenta are
quenched and because the combination of the antisymmetries
of the kinetic exchange and the orbital angular momenta
of two sites is necessary. In addition, from the equation of
the coefficient of the DM interaction, we deduce how to
control its magnitude and sign by tuning the parameters of
the model. Then, we compare the present microscopic theory
with the phenomenological theory [9] for the DM interaction
in pyrochlore oxides, Moriya’s microscopic theory [8], and the
previous microscopic theory [17] in the strong SOC, and reveal
the similarities and differences. We also argue the applicability
of our mechanism to the DM interaction in solids with the weak
SOC.

In the remaining part of this paper, we explain how to con-
struct the appropriate t2g-orbital model for pyrochlore oxides,
derive the low-energy effective Hamiltonian for a d1 Mott
insulator with the weak SOC, discuss the correspondences
between our theory and several previous theories about the
DM interaction and the applicability of our mechanism, and
give the summary of our achievements. The construction of the
t2g-orbital model is explained in Sec. II. The model consists
of four Hamiltonians, and the detail of each Hamiltonian is
explained in each of Secs. II A, II B, II C, and II D, respectively.
The low-energy effective Hamiltonian is derived in Sec. III.
We derive the second-order perturbation terms in Sec. III A,
and the third-order perturbation terms in Sec. III B. We also
show the results of the rough estimations of the sign of the
second-order terms, the ratio of the leading third-order term
to the second-order terms, and the ratio of the secondary
third-order term to the leading term in Sec. III A, III B 1, and
III B 2, respectively. The correspondences with the previous
theories and the applicability are discussed in Sec. IV. We
summarize our results and their meanings in Sec. V.

II. MODEL

As an effective model of pyrochlore oxides, we introduce
the following total Hamiltonian, Ĥtot, with the chemical
potential term, μN̂ :

Ĥtot − μN̂ = ĤKE + Ĥtri + Ĥint + ĤLS − μN̂. (1)

Here ĤKE, Ĥtri, Ĥint, and ĤLS represent the kinetic energy of
the t2g-orbital electrons, the trigonal-distortion potential, the
t2g-orbital Hubbard interactions, the SOC for the t2g-orbital
electrons, respectively, and N̂ is

N̂ =
∑

i

∑
a=dxz,dyz,dxy

∑
s=↑,↓

ĉ
†
ias ĉias, (2)

with the site index i , the orbital index a, and the spin index
s. ĤKE, Ĥtri, Ĥint, and ĤLS are explicitly shown in Secs. II A,
II B, II C, and II D, respectively. μ is so determined that the
electron number per site is 1 for Lu2V2O7 or 1.5 for LiV2O4

for example.
In comparison with several previous theoretical studies [18–

21] of the pyrochlore oxides, a new point of this effective model
is an appropriate treatment of lack of the inversion center of
each nearest-neighbor V-V bond, resulting in an appropriate
treatment of orbital and sublattice degrees of freedom (for the
details see Sec. II A). It should be noted that although there is
a previous study [22] about the effects of lack of the inversion
center on the hopping integrals for V ions, its authors did not
consider the hopping integrals between the t2g-orbital electrons
arising from lack of the inversion center.

In the following, we use the unit � = c = 1.

A. ĤKE

To derive the kinetic energy of the t2g-orbital electrons for
pyrochlore oxides, we consider the nearest-neighbor hopping
integrals for the V t2g orbitals and derive these by adopting the
Slater-Koster method [23] to not only the direct hoppings but
also the indirect hoppings through the O 2p orbitals. As we
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derive below, ĤKE is given by

ĤKE = Ĥ0 + Ĥodd

=
∑
〈i, j〉

∑
a,b=dxz,dyz,dxy

∑
s=↑,↓

t
(even)
i j ;ab ĉ

†
ias ĉ jbs

+
∑
〈i, j〉

∑
a,b=dxz,dyz,dxy

∑
s=↑,↓

t
(odd)
i j ;abĉ

†
ias ĉ jbs, (3)

where
∑

〈i, j〉 represents the summation between the nearest-

neighbor sites, Ĥ0 represents the even-mirror hopping inte-
grals, t

(even)
i j ;ab , existing even with the inversion center of each

nearest-neighbor V-V bond, and Ĥodd represents the odd-
mirror hopping integrals, t

(odd)
i j ;ab, appearing only with lack of

the inversion center. The word “even-mirror” or “odd-mirror”
mean that the mirror symmetry about the plane including the
nearest-neighbor sites is even or odd, respectively; e.g., for a
xy plane including sublattices 1 and 2, the hopping integral
between the dxy orbitals is even about the mirror symmetry
of the xy plane (i.e., x → x, y → y, and z → −z) and the
hopping integral between the dxz and dxy orbitals is odd
because the former and latter behave like xy × xy ∝ x2y2z0

and xz × xy ∝ x2y1z1, respectively.
We first derive the contributions from the direct hoppings

between nearest-neighbor V ions. We derive only the hopping
integrals between V ions at sublattices 1 and 2 [i.e., l = 1
and 2 in Fig. 1(a)] because the others can be obtained from
these by permuting the coordinates x, y, and z, defined in
Fig. 1(a). For example, the direct hopping integrals between
sublattices 1 and 3 are obtained by replacing x, y, and z in
the direct hopping integrals between sublattices 1 and 2 by
y, z, and x, respectively, e.g., t

(direct)
dxz3dyz1 = t

(direct)
dyz2dxy1. Adopting

the Slater-Koster method [23] to the direct hopping integrals
between V ions at sublattices 1 and 2, which are located at
(x,y,z) = (0,0,0) and (1,1,0), respectively, we can express
the hopping integrals for the t2g-orbital electrons in terms of
three Slater-Koster parameters, Vddσ , Vddπ , and Vddδ:

t
(direct)
dxy2dxy1 = 3

4Vddσ + 1
4Vddδ, (4)

t
(direct)
dxz2dxz1 = 1

2Vddπ + 1
2Vddδ, (5)

t
(direct)
dyz2dyz1 = t

(direct)
dxz2dxz1, (6)

t
(direct)
dxy2dyz1 = 0, (7)

t
(direct)
dxy2dxz1 = 0, (8)

t
(direct)
dyz2dxz1 = 1

2Vddπ − 1
2Vddδ, (9)

t
(direct)
dxz2dyz1 = t

(direct)
dyz2dxz1, (10)

t
(direct)
dxz2dxy1 = 0, (11)

t
(direct)
dyz2dxy1 = 0. (12)

Since all the finite direct hopping integrals are even about the
mirror symmetry of the xy plane, the direct hoppings lead only
to the even-mirror hopping integrals.

We next derive the contributions from the indirect hoppings
through the O 2p orbitals. As we will show below, if we
appropriately treat the effect of lack of the inversion center of

V VO

(a)

V V

O

(b)

FIG. 2. Schematic pictures of a V-O-V bond (a) with and (b)
without the inversion center. Blue and orange circles denote V and O
ions, respectively. This angle deviation breaks the mirror symmetry
about the plane including the V ions.

each nearest-neighbor V-V bond, the indirect hoppings lead
to the odd-mirror hopping integrals, which are missing in the
direct hoppings. The position of the O ion of each V-O-V bond
deviates from the center; i.e., each V-O-V angle deviates from
180◦ [compare Figs. 2(a) and 2(b)]. In addition, this deviation
results in the four-sublattice structure of a tetrahedron because
V ions at sublattices 1, 2, 3, and 4 are different from each other;
for example, if we compare the lower layer of a tetrahedron
including sublattices 1 and 2 with the upper layer including
sublattices 3 and 4, we see the difference between the V ions
in the lower layer and the upper layer because the O ion for
V ions of sublattices 1 and 2 (sublattices 3 and 4) is located
below the lower layer (above the upper layer). To show that
the indirect hoppings lead to the odd-mirror hopping integrals
only with lack of the inversion center of each nearest-neighbor
V-V bond, we consider the case in which each V-O-V angle
slightly deviates from 180◦, i.e., the angle is 180◦ − 2θ [see
Fig. 2(b)], and derive the indirect hopping integrals between
V ions at sublattices 1 and 2 through the O ion. Because of the
same reason for the derivation of the direct hopping integrals,
we derive only the hopping integrals between sublattices 1
and 2. Since the indirect nearest-neighbor hopping integrals,
t

(indirect)
a2b1 , are given by

t
(indirect)
a2b1 =

∑
A=px,py ,pz

Va2AVAb1

�pd

, (13)

we need to derive the hybridizations between V t2g orbitals
and O 2p orbitals, Va2A and VAb1, for a V-O-V bond including
sublattices 1 and 2 by using the Slater-Koster method [23]. In
Eq. (13), we have neglected the orbital and θ dependence of
�pd , the crystalline-electric-field energy difference between
V t2g orbitals and O 2p orbitals, because this simplification is
sufficient for our purpose, i.e., showing the appearance of the
odd-mirror hopping integrals. VAb1 are obtained by adopting
the Slater-Koster method to the indirect hopping processes
between the V ion at (x,y,z) = (0,0,0) and the O ion at
(x,y,z) = ( 1

2 , 1
2 ,− 1

2 tan θ ) with two Slater-Koster parameters,
Vpdσ and Vpdπ :

Vpxdxy1 =
√

3

2
√

2
Vpdσ , (14)

Vpxdyz1 = −
√

3

2
√

2
θVpdσ + 1√

2
θVpdπ , (15)

Vpxdxz1 = −
√

3

2
√

2
θVpdσ , (16)
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Vpydxz1 = −
√

3

2
√

2
θVpdσ + 1√

2
θVpdπ , (17)

Vpydyz1 = −
√

3

2
√

2
θVpdσ , (18)

Vpydxy1 =
√

3

2
√

2
Vpdσ , (19)

Vpzdxz1 = 1√
2
Vpdπ , (20)

Vpzdyz1 = 1√
2
Vpdπ , (21)

Vpzdxy1 = −
√

3

2
√

2
θVpdσ + 1√

2
θVpdπ , (22)

where the O(θ2) terms are neglected. Similarly, we obtain
Va2A:

Vdxy2px
= −Vpxdxy1, (23)

Vdyz2px
= Vpxdyz1, (24)

Vdxz2px
= Vpxdxz1, (25)

Vdxz2py
= Vpydxz1, (26)

Vdyz2py
= Vpydyz1, (27)

Vdxy2py
= −Vpydxy1, (28)

Vdxz2pz
= −Vpzdxz1, (29)

Vdyz2pz
= −Vpzdyz1, (30)

Vdxy2pz
= Vpzdxy1. (31)

Combining Eqs. (14)–(31) with Eq. (13), we obtain the indirect
hopping integrals within the O(θ2) terms:

t
(indirect)
dxy2dxy1 = −3V 2

pdσ

4�pd

, (32)

t
(indirect)
dxz2dxz1 = − V 2

pdπ

2�pd

, (33)

t
(indirect)
dyz2dyz1 = t

(indirect)
dxz2dxz1 , (34)

t
(indirect)
dxy2dyz1 = θ

3V 2
pdσ − 2

√
3Vpdσ Vpdπ + 2V 2

pdπ

4�pd

, (35)

t
(indirect)
dxy2dxz1 = t

(indirect)
dxy2dyz1 , (36)

t
(indirect)
dyz2dxz1 = − V 2

pdπ

2�pd

, (37)

t
(indirect)
dxz2dyz1 = t

(indirect)
dyz2dxz1 , (38)

t
(indirect)
dxz2dxy1 = −t

(indirect)
dxy2dxz1 , (39)

t
(indirect)
dyz2dxy1 = −t

(indirect)
dxy2dyz1 . (40)

Those show that the deviation of the V-O-V angle from
180◦ leads to t

(indirect)
dxy2dyz1 , t

(indirect)
dxy2dxz1 , t

(indirect)
dyz2dxy1 , and t

(indirect)
dxz2dxy1 even

if the deviation angle θ is very small. The most important
difference between those hopping integrals and the others,
existing even for θ = 0◦, is the mirror symmetry about the

xy plane including sublattices 1 and 2: those are odd-mirror,
while the others are even-mirror. From a symmetrical point of
view, the odd-mirror hopping integrals are permissible only
without the inversion center because the mirror mixing occurs
only without the inversion center. Although for not small θ , the
deviation of the V-O-V angle affects not only t

(indirect)
dxy2dyz1 , t (indirect)

dxy2dxz1 ,

t
(indirect)
dyz2dxy1 , and t

(indirect)
dxz2dxy1 but also the other indirect ones, for the

higher-order effects of θ the symmetry of the hopping integrals
remains the same. Thus, the above derivation is sufficient to
show the appearance of the odd-mirror hopping integrals due
to the indirect hoppings through the O 2p orbitals under the
deviation of the V-O-V angle from 180◦.

By combining the direct hopping integrals and the indirect
ones, the kinetic energy of the t2g-orbital electrons for
pyrochlore oxides can be described by three parameters of
Ĥ0, i.e., t1, t2, and t3, and one parameter of Ĥodd, i.e., todd.
These parameters are related to the nearest-neighbor hopping
integrals for the t2g-orbital electrons. For example, those
relations for the plane including sublattices 1 and 2 are given
by

t1 = t
(direct)
dxy2dxy1 + t

(indirect)
dxy2dxy1 , (41)

t2 = t
(direct)
dxz2dxz1 + t

(indirect)
dxz2dxz1 = t

(direct)
dyz2dyz1 + t

(indirect)
dyz2dyz1 , (42)

t3 = t
(direct)
dyz2dxz1 + t

(indirect)
dyz2dxz1 = t

(direct)
dxz2dyz1 + t

(indirect)
dxz2dyz1 , (43)

todd = t
(indirect)
dxz2dxy1 = t

(indirect)
dyz2dxy1 = −t

(indirect)
dxy2dxz1 = −t

(indirect)
dxy2dyz1 . (44)

Those relations are more easily seen from Fig. 3. By choosing
t1, t2, t3, and todd appropriately, the Hamiltonian of Eq. (3)
can describe the kinetic energy for any pyrochlore oxides as
long as the main orbitals for low-energy excitations are the t2g

orbitals.

B. Ĥtri

The effect of the trigonal distortion on the t2g-orbital
electrons can be described by Ĥtri,

Ĥtri = −�tri

3

∑
i

∑
a=dxz,dyz,dxy

∑
b 
=a

∑
s=↑,↓

ĉ
†
ias ĉibs . (45)

By diagonalizing Ĥtri, we rewrite Ĥtri as

Ĥtri = −2�tri

3

∑
i

∑
s=↑,↓

ĉ
†
ia1gs

ĉia1gs

+ �tri

3

∑
i

∑
s=↑,↓

(
ĉ
†
ie+

g s
ĉie+

g s + ĉ
†
ie−

g s
ĉie−

g s

)
, (46)

where

ĉ
†
ia1gs

= 1√
3

(
ĉ
†
idxzs

+ ĉ
†
idyzs

+ ĉ
†
idxys

)
, (47)

ĉ
†
ie+

g s
= 1√

3

(
ĉ
†
idxzs

+ ωĉ
†
idyzs

+ ω2ĉ
†
idxys

)
, (48)

ĉ
†
ie−

g s
= 1√

3

(
ĉ
†
idxzs

+ ω2ĉ
†
idyzs

+ ωĉ
†
idxys

)
, (49)
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FIG. 3. Schematic pictures of (a) the even-mirror hoppings of Ĥ0 and (b) the odd-mirror hoppings of Ĥodd for the nearest-neighbor V ions
between sublattices 1 and 2 and the corresponding values. The color differences represent the sign differences of the wave function.

and

ĉia1gs = 1√
3

(
ĉidxzs + ĉidyzs + ĉidxys

)
, (50)

ĉie+
g s = 1√

3

(
ĉidxzs + ω2ĉidyzs + ωĉidxys

)
, (51)

ĉie−
g s = 1√

3

(
ĉidxzs + ωĉidyzs + ω2ĉidxys

)
, (52)

with ω = e− 2π
3 i = − 1

2 − i
√

3
2 and ω2 = e− 4π

3 i = − 1
2 + i

√
3

2 .
Thus, the effect of the trigonal distortion is splitting the energy
level of the t2g-orbital electron into the singlet a1g orbital and
the doublet e+

g and e−
g orbitals, as shown in Fig. 1(b).

Since the a1g orbital is the lower state for LiV2O4 and
Lu2V2O7 at low temperature, �tri > 0 is realized for these
pyrochlore vanadates. In principle, we can switch the lower
state from the a1g orbital to the e+

g and e−
g orbitals by

controlling the trigonal distortion.
If we express Ĥ0 and Ĥodd in terms of the creation and

annihilation operators for the a1g , e+
g , and e−

g orbitals, we
find the important difference between the even-mirror and
the odd-mirror hopping integrals. Namely, the even-mirror
hopping integrals for the t2g orbitals are expressed as the
intraorbital and the interorbital hopping integrals for the a1g ,
e+
g , and e−

g orbitals, while the odd-mirror hopping integrals
for the t2g orbitals are expressed as the interorbital hopping
integrals for the a1g , e+

g , and e−
g orbitals. Those properties for

the even-mirror and the odd-mirror hopping integrals are seen
from, respectively, the intraorbital hopping integrals for the
dxz orbital between sublattice 2 at i = 2 and sublattice 1 at
j = 1,

t2ĉ
†
2dxzs

ĉ1dxzs = t2

3

(
ĉ
†
2a1gs

+ ĉ
†
2e+

g s
+ ĉ

†
2e+

g s

)
× (

ĉ1a1gs + ĉ1e+
g s + ĉ1e+

g s

)
, (53)

and the odd-mirror hopping integrals between sublattice 2 at
i = 2 and sublattice 1 at j = 1,

todd
(
ĉ
†
2dyzs

ĉ1dxys + ĉ
†
2dxzs

ĉ1dxys − ĉ
†
2dxys

ĉ1dyzs − ĉ
†
2dxys

ĉ1dxzs

)
= todd

(
ω2ĉ

†
2a1gs

ĉ1e+
g s + ωĉ

†
2a1gs

ĉ1e−
g s − ωĉ

†
2e+

g s
ĉ1a1gs

−ω2ĉ
†
2e−

g s
ĉ1a1gs

)
. (54)

Understanding this difference is useful to understand the
physical meaning of the finite contributions in the low-energy
effective Hamiltonian (e.g., see Figs. 4 and 6).

C. Ĥint

Ĥint is given by four multiorbital Hubbard interactions, U ,
U ′, JH, and J ′:

Ĥint = U
∑

i

∑
a=dxz,dyz,dxy

ĉ
†
ia↑ĉ

†
ia↓ĉia↓ĉia↑

+U ′ ∑
i

∑
a=dxz,dyz,dxy

∑
b>a

∑
s,s ′=↑,↓

ĉ
†
ias ĉ

†
ibs ′ ĉibs ′ ĉias

− JH

∑
i

∑
a=dxz,dyz,dxy

∑
b>a

∑
s,s ′=↑,↓

ĉ
†
ias ĉ

†
ibs ′ ĉibs ĉias ′

+ J ′ ∑
i

∑
a=dxz,dyz,dxy

∑
b 
=a

ĉ
†
ia↑ĉ

†
ia↓ĉib↓ĉib↑, (55)

where
∑

b>a represents the restricted summation,
∑

b>a =∑
b=dyz,dxy

or
∑

b=dxy
or 0 for a = dxz or dyz or dxy , respec-

tively. These four parameters reduce to two, U and JH, if we
use J ′ = JH and U ′ = U − 2JH.

For the derivations of the low-energy effective Hamiltonian
of the d1 Mott insulator in Sec. III, we rewrite Ĥint in terms
of the irreducible representations of the d2 states, where two
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(a)

(b)

FIG. 4. Schematic pictures of examples of the processes of the second-order perturbation by (a) using Ĥ0 and (b) using Ĥodd. Yellow circles
denote the electrons, and gray arrows denote the perturbations.

electrons exist per site:

Ĥint =
∑

i

∑
�

∑
g�

U�|i ; �,g�〉〈i ; �,g�|. (56)

Here � represents the irreducible representations, g� repre-
sents the degeneracy, U� are given by

UA1 = U + 2J ′, (57)

UE = U − J ′, (58)

UT1 = U ′ − JH, (59)

UT2 = U ′ + JH, (60)

and |i ; �,g�〉 are |i ; �,g�〉 = X̂
†
i�g�

|0,0〉 with

X̂
†
iA1

= 1√
3

(
ĉ
†
idxz↑ĉ

†
idxz↓ + ĉ

†
idyz↑ĉ

†
idyz↓ + ĉ

†
idxy↑ĉ

†
idxy↓

)
, (61)

X̂
†
iEu =

√
2

3

(
−ĉ

†
idxz↑ĉ

†
idxz↓ + 1

2
ĉ
†
idyz↑ĉ

†
idyz↓ + 1

2
ĉ
†
idxy↑ĉ

†
idxy↓

)
,

(62)

X̂
†
iEv = 1√

2

(
ĉ
†
idyz↑ĉ

†
idyz↓ − ĉ

†
idxy↑ĉ

†
idxy↓

)
, (63)

X̂
†
iT1ζ+ = ĉ

†
idxz↑ĉ

†
idyz↑, (64)

X̂
†
iT1ζ− = ĉ

†
idxz↓ĉ

†
idyz↓, (65)

X̂
†
iT1ζ0

= 1√
2

(
ĉ
†
idxz↑ĉ

†
idyz↓ + ĉ

†
idxz↓ĉ

†
idyz↑

)
, (66)

X̂
†
iT2ζ0

= 1√
2

(
ĉ
†
idxz↑ĉ

†
idyz↓ − ĉ

†
idxz↓ĉ

†
idyz↑

)
, (67)

X̂
†
iT1ξ+ = ĉ

†
idxz↑ĉ

†
idxy↑, (68)

X̂
†
iT1ξ− = ĉ

†
idxz↓ĉ

†
idxy↓, (69)

X̂
†
iT1ξ0

= 1√
2

(
ĉ
†
idxz↑ĉ

†
idxy↓ + ĉ

†
idxz↓ĉ

†
idxy↑

)
, (70)

X̂
†
iT2ξ0

= 1√
2

(
ĉ
†
idxz↑ĉ

†
idxy↓ − ĉ

†
idxz↓ĉ

†
idxy↑

)
, (71)

X̂
†
iT1η+ = ĉ

†
idyz↑ĉ

†
idxy↑, (72)

X̂
†
iT1η− = ĉ

†
idyz↓ĉ

†
idxy↓, (73)

X̂
†
iT1η0

= 1√
2

(
ĉ
†
idyz↑ĉ

†
idxy↓ + ĉ

†
idyz↓ĉ

†
idxy↑

)
, (74)

X̂
†
iT2η0

= 1√
2

(
ĉ
†
idyz↑ĉ

†
idxy↓ − ĉ

†
idyz↓ĉ

†
idyx↑

)
. (75)

D. ĤLS

ĤLS is given by the atomic SOC, the so-called LS coupling,
of the t2g-orbital electrons:

ĤSOC = iλLS

2

∑
i

∑
s

sgn(s)
(
ĉ
†
idyzs

ĉidxzs − ĉ
†
idxzs

ĉidyzs

)

+ iλLS

2

∑
i

∑
s

(
ĉ
†
idxzs

ĉidxy−s − ĉ
†
idxy−s ĉidxzs

)

− λLS

2

∑
i

∑
s

sgn(s)
(
ĉ
†
idyzs

ĉidxy−s − ĉ
†
idxys

ĉidyz−s

)
,

(76)

with λLS , the coupling constant, sgn(↑) = 1, sgn(↓) = −1,
−s =↓ for s =↑, and −s =↑ for s =↓. The LS coupling
is appropriate to take account of the SOC of electrons in
solid. This is because the SOC of electrons arises from the
relativistic effect near the nucleus; i.e., the correction to the
nonrelativistic treatment is necessary only when an electron
approaches the nucleus. Actually, we can describe even
the antisymmetric SOC for an inversion-symmetry-broken
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quasi-two-dimensional system near a surface or an interface
by using ĤLS and the appropriate hopping-integral terms such
as Ĥodd [24,25]; this successful description holds not only
for the effective single-orbital system, which is sufficiently
described by a Rashba-type SOC [26], but also the t2g-orbital
system, which is not described by the Rashba-type SOC. The
key to the successful description is the appropriate treatment
of orbital degrees of freedom of the SOC and the kinetic
energy.

ĤLS causes not only the interorbital excitations for the t2g

orbitals but also the excitations between the a1g orbital and the
e+
g or e−

g orbitals. The former is directly seen from Eq. (76),
and the latter can be seen by rewriting Eq. (76) in terms of the
creation and the annihilation operators of the a1g , e+

g , and e−
g

orbitals, Eqs. (47)–(52). The rewritten expression of Eq. (76)
becomes

ĤLS = iλLS

6

∑
i

∑
s

sgn(s)
[
(ω2 − 1)

(
ĉ
†
ie+

g s
ĉia1gs − ĉ

†
ia1gs

ĉie−
g s

)

+ (ω − 1)
(
ĉ
†
ie−

g s
ĉia1gs − ĉ

†
ia1gs

ĉie+
g s

)]

+ iλLS

6

∑
i

∑
s

[
(1 − ω)

(
ĉ
†
ie+

g s
ĉia1g−s − ĉ

†
ia1gs

ĉie−
g −s

)

+ (1 − ω2)
(
ĉ
†
ie−

g s
ĉia1g−s − ĉ

†
ia1gs

ĉie+
g −s

)]

− λLS

6

∑
i

∑
s

sgn(s)(ω2 − ω)
(
ĉ
†
ie+

g s
ĉia1g−s

+ ĉ
†
ia1gs

ĉie+
g −s − ĉ

†
ie−

g s
ĉia1g−s − ĉ

†
ia1gs

ĉie−
g −s

) + (others).

(77)

Here we have shown only the interorbital excitations between
the a1g orbital and the e+

g or e−
g orbital explicitly, and the

other terms have been written as (others). This is because
those explicitly shown terms are sufficient for the deriva-
tion of the low-energy effective Hamiltonian, explained in
Sec. III.

In addition, ĤLS connects the different irreducible repre-
sentations of the d2 states for Ĥint. This can be shown by
multiplying ĤLS and |i ; �,g�〉; for example,

ĤLS |i ; A1〉 = − iλLS√
3

(|i ; T1,ξ+〉 − |i ; T1,ξ−〉)

+ λLS√
3

(|i ; T1,η+〉 + |i ; T1,η−〉)

− iλLS

√
2√

3
|i ; T1,ζ0〉, (78)

ĤLS |i ; E,u〉 = iλLS

2
√

6
(|i ; T1,ξ+〉 − |i ; T1,ξ−〉)

+ λLS√
6

(|i ; T1,η+〉 + |i ; T1,η−〉)

+ iλLS

2
√

3
|i ; T1,ζ0〉, (79)

ĤLS |i ; T1,η±〉 = ∓ iλLS

2
|i ; T1,ξ±〉 + λLS√

3
|i ; A1〉

+ λLS√
6

|i ; E,u〉

− iλLS

2
√

2
(|i ; T1,ζ0〉 ∓ |i ; T2,ζ0〉), (80)

ĤLS |i ; T2,η0〉 = − iλLS

2
|i ; T1,ξ0〉

− iλLS

2
√

2
(|i ; T1,ζ+〉 − |i ; T1,ζ−〉). (81)

Thus, the LS coupling causes the excitations between the

different d2 multiplets; here we have assumed that JH and
J ′ are finite. As we will see in Sec. III B 2, this effect of the LS

coupling leads to a new contribution to the low-energy effective
Hamiltonian, which is missing in Moriya’s microscopic
theory [8].

Before going into the derivation of the low-energy effective
Hamiltonian, we will see the important differences between the
SOC expressed by the LS coupling and the SOC expressed
by the spin-gauge potential. If we consider the SOC in
a continuum, i.e., a system without lattice, the SOC can
be expressed in terms of the 2 × 2 spin-gauge potential
[27], (AS)α(r) = ∑

β Aβ
α(r)σβ (α,β = x,y,z) with the Pauli

matrices σβ :

ĤSOC = e

2m2
[∇V (r) × s] · p = e

2m2
AS(r) · p. (82)

This expression is also rewritten in terms of Aβ
α(r) and the

spin current [27]. In the spin-gauge-potential expression, the
spin and the site dependence of the SOC is included, and
the orbital dependence is neglected. Thus, the differences
between this expression and the LS-coupling expression are
about the site and the orbital dependence of the SOC. About
the site dependence, only the on-site component of the SOC
is sufficient to analyze the effects of the SOC in solids, i.e.,
the systems with lattice. This is because the relativistic effect
on the electrons in solids should be considered only near the
nucleus, and because even an effectively off-site SOC, such as
a single-orbital Rashba SOC [26], can be described by the SOC
expressed by the LS coupling and the appropriate kinetic terms
[24,25]. About the orbital dependence, its treatment in the spin-
gauge-potential expression is insufficient for solids. This is
because the orbital dependence arises from the orbital angular
momentum, and because the orbital angular momentum plays
significant roles in solids even with quenching of the orbital
angular momentum; the examples of the significant roles are
the anisotropies of the exchange interactions [8]. Actually,
in Sec. III B 1, we show the important role of the orbital
angular momentum in the intermediate states in the third-order
perturbation terms. Since we focus on not continua but solids
and a continuum cannot be connected to a solid due to a
crucial difference in translational symmetry, the SOC can be
more appropriately described by the LS coupling than by the
spin-gauge potential. The reason why the expression of the
spin-gauge potential becomes insufficient can be understood
that we cannot choose any specific gauge about spins in
the similar way to the magnetic field expressed by the
vector potential and charge current, because the spins are
nonconserved quantities due to the coupling of spin and orbital
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angular momenta; i.e., gauge invariance about spins does not
exist.

III. LOW-ENERGY EFFECTIVE HAMILTONIAN

In this section, we derive the low-energy effective Hamilto-
nian for a d1 Mott insulator in pyrochlore oxides by using the
similar perturbation theory to Moriya’s microscopic theory [8],
and show the results of the rough estimations about the derived
coefficients. In this derivation, we consider the d1 case for our
model, corresponding to case of Lu2V2O7 for example, and use
three assumptions. One is that the Hubbard interactions are so
large that the system becomes the d1 Mott insulator. Another
is that the trigonal-distortion potential is larger than the terms
of ĤKE and ĤLS . Due to those assumptions, the ground state of
our model is the Mott insulator, in which one electron occupies
the a1g orbital at each site. Furthermore, we can use Ĥint

and Ĥtri as the nonperturbative terms, and treat ĤKE and ĤLS

perturbatively. The other assumption is that U� for all � are
larger than �tri. Due to this, we can more easily treat the effects
of the nonperturbative terms because we can approximate

1
− 4�tri

3 −(Ĥint+Ĥtri)
as 1

−Ĥint
. If such approximation is not used,

the perturbation calculations become very difficult because
the d2 states diagonalizing Ĥint are not equal to the d2 states
diagonalizing Ĥtri. If we represents those three assumptions
as equations, the first one is U,U ′ 
 |t1|,|t2|,|t3|,|todd|,λLS ,
the second one is �tri 
 |t1|,|t2|,|t3|,|todd|,λLS , and the third
one is U� 
 �tri. If the inequality signs of these conditions
hold, the low-energy effective Hamiltonian derived under
the three assumptions remains the leading term. Thus, the
derived low-energy effective Hamiltonian is a ubiquitous
model for d1 pyrochlore oxides with the strong electron-
electron interaction, the positive trigonal-distortion potential,
and the weak SOC.

The derivations of the low-energy effective Hamiltonian
and rough estimations are explained as follows. In Sec. III A,
we calculate the second-order perturbation terms for our model
by using ĤKE twice; the term by using ĤLS twice is not
shown because that does not give the exchange interactions but
gives the interaction between the charge-density operators.

This calculation is application of Anderson’s theory [28] to
our model. We also estimate the sign of the coefficient of the
second-order terms as a function of JH

U
within the O( JH

U
) terms

in four limiting cases. In Sec. III B, we calculate the third-order
perturbation terms for our model by using ĤKE twice and ĤLS

once; the terms by using ĤKE once and ĤLS twice are zero. The
finite terms come from three terms, Ĥ KE−KE−LS

3rd , ĤLS−KE−KE
3rd ,

and Ĥ KE−LS−KE
3rd (for each definition, see Sec. III B). As

we will discuss in detail in Sec. IV, only Ĥ KE−KE−LS
3rd and

ĤLS−KE−KE
3rd are taken into account in Moriya’s theory [8], and

the present theory can take account of not only the contribution
included in Moriya’s theory [8] but also the contribution
neglected, Ĥ KE−LS−KE

3rd . In addition to the derivations, within
the O( JH

U
) terms, we estimate the ratio of the coefficient of

Ĥ KE−KE−LS
3rd + ĤLS−KE−KE

3rd to that of the second-order terms as
a function of the ratio of todd to A = t1 + t2 + t3 or B = t2 + t3
in four cases, differing from the four cases for the second-order
terms, and the ratio of the coefficient of Ĥ KE−LS−KE

3rd to that
of Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd as a function of �tri

U
in the same

four cases as those for the second-order terms. The former and
latter results are shown in Secs. III B 1 and III B 2, respectively.

A. Second-order perturbation terms

Before the actual derivation of the contributions from the
second-order perturbation terms, we explain what we should
do. The second-order perturbation term, Ĥ2nd, is generally
given by [29]

Ĥ2nd = 〈f|Ĥp
φ̂

E0 − Ĥnp
Ĥp|i〉 × |f〉〈i|. (83)

Here Ĥp represents the perturbation terms, Ĥnp represents the
nonperturbation terms, |i〉 and |f〉 represent the ground states
only with Ĥnp, E0 is the ground-state energy, and φ̂ is the
projection operator excluding the same-energy state [29]. In
our case, Eq. (83) between sublattices 1 and 2 at i = 1 and 2,
respectively, becomes

(Ĥ2nd)12 =
∑

s1,s2,s3,s4

〈
a

s3
1g,a

s4
1g

∣∣ĤKE
φ̂

− 4�tri
3 − (Ĥint + Ĥtri)

ĤKE

∣∣as1
1g,a

s2
1g

〉 × ∣∣as3
1g,a

s4
1g

〉〈
a

s1
1g,a

s2
1g

∣∣

≈
∑
i=1,2

∑
s1,s2,s3,s4

∑
�

∑
g�

〈
a

s3
1g,a

s4
1g

∣∣ĤKE|i ; �,g�〉〈i ; �,g�|ĤKE

∣∣as1
1g,a

s2
1g

〉
−E�

∣∣as3
1g,a

s4
1g

〉〈
a

s1
1g,a

s2
1g

∣∣, (84)

with |as1
1g,a

s2
1g〉 = ĉ

†
1a1gs1

ĉ
†
2a1gs2

|0,0〉. Here we have neglected the second-order term for ĤLS because that does not give the
exchange interactions, as described. The operator part |as3

1g,a
s4
1g〉〈as1

1g,a
s2
1g| can be expressed in terms of the charge-density and the

spin operators for the a1g orbital, e.g., |a↑
1g,a

↓
1g〉〈a↑

1g,a
↓
1g| = ( 1

2 n̂1 + ŝz
1)( 1

2 n̂2 − ŝz
2) or |a↑

1g,a
↓
1g〉〈a↓

1g,a
↑
1g| = ŝ+

1 ŝ−
2 . Thus, what we

should do is to express the right-hand side of Eq. (84) in terms of those operators, t1, t2, t3, todd, U , U ′, JH, and J ′.
We can calculate the right-hand side of Eq. (84) for our model in the similar way for Ref. [17]. As we will describe the detail

of the calculation in Appendix A, we can express Eq. (84) as follows:

(Ĥ2nd)12 = J AF
(

1
4 n̂1n̂2 − ŝ1 · ŝ2

) + J FM
(

3
4 n̂1n̂2 + ŝ1 · ŝ2

)
, (85)
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with

J AF = − 4

27

(t1 + 2t2 + 2t3)2

U + 2J ′ − 8

27

(t1 − t2 − t3)2 + 9t2
odd

U − J ′

− 4

9

(t1 + t2 + t3)2 + 2(t2 + t3)2 + 3t2
odd

U ′ + JH
, (86)

J FM = −4

9

(t1 − t2 − t3)2 + 9t2
odd

U ′ − JH
. (87)

Some of the processes of the second-order perturbation
are shown in Figs. 4(a) and 4(b). Thus, the second-order
perturbation terms give the AF and the FM superexchange
interactions. Since the superexchange interactions between
sublattices 1 and 2 are isotropic about the spin operators, the
superexchange interactions between the other two sublattices
are the same except the sign changes of t3 and todd.

Before the derivations of the DM interaction, we see
the relation between JH and the sign of J FM − J AF in a
rough calculation in order to understand when the dominant
superexchange interactions become FM or AF. In this rough
calculation, we use simple relations of the Slater-Koster
parameters [30] (Vddσ = −2Vddπ , Vddδ = 0, and Vpdσ =
−2Vpdπ ), and set J ′ = JH and U ′ = U − 2JH; then, we
analyze the sign of J FM − J AF within the O( JH

U
) terms in four

limiting cases, (i) |Vddπ | 
 |V 2
pdπ

�pd
|, (ii) |Vddπ | � |V 2

pdπ

�pd
|, (iii)

Vddπ ∼ −V 2
pdπ

�pd
, and (iv) Vddπ ∼ V 2

pdπ

�pd
. Those limiting cases

are sufficient for qualitative analyses of the JH dependence
of J FM − J AF because as results of the simple relations, the
direct and the indirect hopping integrals can be expressed by
Vddπ and

V 2
pdπ

�pd
, respectively, and because in combination with

J ′ = JH and U ′ = U − 2JH, J FM − J AF can be expressed in

terms of Vddπ ,
V 2

pdπ

�pd
, U , and JH. To estimate the order of critical

JH
U

for the boundary between the AF and FM interactions
in each limiting case, we assume that θ is so small that the
terms of the odd-mirror hopping integrals are negligible; if
we include the terms, the critical JH/U becomes smaller
because the terms assist the FM interactions [see Eq. (88)].
Setting J ′ = JH and U ′ = U − 2JH in Eqs. (86) and (87) and
expanding J FM − J AF in a power series about JH

U
within the

O( JH
U

) terms, we rewrite J FM − J AF as

J FM−J AF= 4

9U

{
(A+ B)2−2

(
JH

U

)[
(A − 2B)2 + 9t2

odd

]}
,

(88)

with A = t1 + t2 + t3 and B = t2 + t3. Then, by neglecting
the t2

odd terms, using the simple relations of the Slater-Koster
parameters, and considering the leading terms of J FM − J AF

in each limiting case, the leading terms in cases (i), (ii), (iii),
and (iv) are given by

J FM − J AF ∼ 1

9U
V 2

ddπ

(
1 − 50

JH

U

)
, (89)

J FM − J AF ∼ 100

9U

(
V 2

pdπ

�pd

)2(
1 − 8

25

JH

U

)
, (90)

J FM − J AF ∼ 121

9U
V 2

ddπ

(
1 − 2

121

JH

U

)
, (91)

FIG. 5. Relation between JH
U

and the sign of J FM − J AF in the
four limiting cases without the t2

odd terms within the O( JH
U

) terms for
J ′ = JH and U ′ = U − 2JH. J FM − J AF becomes AF or FM in the
red-line region or the blue-line region, respectively. Since J FM − J AF

is expressed by the power series of JH
U

, the results are meaningful
only for JH

U
< 1.

and

J FM − J AF ∼ 9

U
V 2

ddπ

(
1 − 2

JH

U

)
, (92)

respectively. Thus, the order of the critical JH
U

becomes O(0.01)
for case (i), O(1) for case (ii), O(10) for case (iii), and O(0.1)
for case (iv); those results are summarized in Fig. 5. Since case
(iv) may be the most realistic situation as pyrochlore vanadates
[4], the superexchange interactions for the d1 Mott insulator
in the pyrochlore vanadates are FM for a realistic value of JH

U
.

B. Third-order perturbation terms

As for the second-order perturbation terms, we start
to prescribe what we should calculate for the third-order
perturbation terms. The third-order perturbation terms for our
model are given by

Ĥ3rd = Ĥ KE−KE−LS
3rd + ĤLS−KE−KE

3rd + Ĥ KE−LS−KE
3rd

=
∑
n1,n2

〈f|ĤKE|n1〉〈n1|φ̂ĤKE|n2〉〈n2|φ̂ĤLS |i〉(
E0 − En1

)(
E0 − En2

) |f〉〈i|

+
∑
n1,n2

〈f|ĤLS |n2〉〈n2|φ̂ĤKE|n1〉〈n1|φ̂ĤKE|i〉(
E0 − En2

)(
E0 − En1

) |f〉〈i|

+
∑
n3,n4

〈f|ĤKE|n3〉〈n3|φ̂ĤLS |n4〉〈n4|φ̂ĤKE|i〉(
E0 − En3 )(E0 − En4

) |f〉〈i|,

(93)
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where Eni
represent the energies of |ni〉; as described, the

terms using ĤKE once and ĤLS twice become zero. We will
carry out the detailed calculation only for the third-order
perturbation terms between sublattices 1 and 2, (Ĥ3rd)12,
because the other third-order perturbation terms can be derived
from the result of (Ĥ3rd)12 by permuting x, y, and z; for
example, the terms between sublattices 1 and 3, (Ĥ3rd)13, is
obtained by replacing (ŝx

1 ,ŝ
y

1 ,ŝz
1) and (ŝx

2 ,ŝ
y

2 ,ŝz
2) in (Ĥ3rd)12

by (ŝy

1 ,ŝz
1,ŝ

x
1 ) and (ŝy

3 ,ŝz
3,ŝ

x
3 ), respectively. The important

differences among the three terms of (Ĥ3rd)12 in Eq. (93) are
about the intermediate states: in the first and the second term,
|n1〉 belongs to one of the d2-d0 or the d0-d2 states, such as
X̂

†
1A1

|0,0〉, and |n2〉 belongs to one of the d1-d1 states for
one a1g-orbital state and one e+

g - or e−
g -orbital state, such

as |as1
1g,e

+;s2
g 〉 = ĉ

†
1a1gs1

ĉ
†
2e+

g s2
|0,0〉; in the third term, |n3〉 and

|n4〉 belong to the d2-d0 or the d0-d2 states. Thus, in the first
and the second term, ĤLS causes the excitations between the
a1g orbital and the e+

g or e−
g orbital; in the third term, ĤLS

causes the excitations between the different-energy irreducible
representations of the d2 states for Ĥint.

In the following, we will calculate each term of (Ĥ3rd)12 in
Eq. (93).

1. ĤKE−KE−LS
3rd and Ĥ LS−KE−KE

3rd

We first calculate Ĥ KE−KE−LS
3rd and ĤLS−KE−KE

3rd for two
sites of sublattices 1 and 2. Since ĤLS−KE−KE

3rd is calculated
from ĤLS−KE−KE

3rd = (Ĥ KE−KE−LS
3rd )†, we explain the derivation

only for Ĥ KE−KE−LS
3rd . The derivation is divided into four steps

because Ĥ KE−KE−LS
3rd can be decomposed into the product of

two operators:

Ĥ KE−KE−LS
3rd =

∑
ge=+,−

Ĥ
a1g-ege

g

exch Ĥ
e
ge
g -a1g

excit , (94)

where

Ĥ
a1g -ege

g

exch =
∑
n1

〈f|ĤKE|n1〉〈n1|φ̂ĤKE|n2〉(
E0 − En1

) |f〉〈n2|, (95)

and

Ĥ
e
ge
g -a1g

excit = 〈n2|φ̂ĤLS|i〉(
E0 − En2

) |n2〉〈i|, (96)

with |i〉 = |as1
1g,a

s2
1g〉, |f〉 = |as3

1g,a
s4
1g〉, |n2〉 = |as1

1g,e
ge ;s ′

2
g 〉 or

|ege ;s ′
1

g ,a
s2
1g〉, and |n1〉 = |i ; �,g�〉. The first step is to derive

Ĥ
a1g -ege

g

exch . This is similar for the derivation of the second-order
perturbation terms. The second step is to derive Ĥ

e
ge
g -a1g

excit . This
is the calculation of the finite matrix elements of ĤLS for the
excitations between the a1g orbital and the e+

g or e−
g orbital.

The third step is to combine those two results by using Eq. (94).
The fourth step is to combine the results for Ĥ KE−KE−LS

3rd and
ĤLS−KE−KE

3rd .
We begin with the first step. In the similar way for the

second-order perturbation terms, we can calculate Ĥ
a1g-ege

g

exch for
two sites of sublattices 1 and 2 for our model (for the details,
see Appendix B):

(
Ĥ

a1g -ege
g

exch

)
12 = J̃ AF

S ωn(ge)
[(

1
4 n̂1ô

ge

2 − ŝ1 · ŝoge

2

) + (
1
4 ô

ge

1 n̂2 − ŝoge

1 · ŝ2
)]

+ J̃ FM
S ωn(ge)

[(
3
4 n̂1ô

ge

2 + ŝ1 · ŝoge

2

) + (
3
4 ô

ge

1 n̂2 + ŝoge

1 · ŝ2
)]

+ J̃ AF
A ωn(ge)

[(
1
4 n̂1ô

ge

2 − ŝ1 · ŝoge

2

) − (
1
4 ô

ge

1 n̂2 − ŝoge

1 · ŝ2
)]

+ J̃ FM
A ωn(ge)

[(
3
4 n̂1ô

ge

2 + ŝ1 · ŝoge

2

) − (
3
4 ô

ge

1 n̂2 + ŝoge

1 · ŝ2
)]

, (97)

with

ô
ge

i =
∑

s=↑,↓
ĉ
†
ia1gs

ĉiege
g s , (98)

ŝoge

i = 1

2

∑
s,s ′=↑,↓

ĉ
†
ia1gs

(σ )ss ′ ĉiege
g s ′ , (99)

J̃ AF
S = − 4

27

(t1 + 2t2 + 2t3)(t1 − t2 − t3)

U + 2J ′

− 2

27

(t1 − t2 − t3)(4t1 + 2t2 + 2t3) + 9t2
odd

U − J ′

− 1

9

−4(t2 + t3)2 + (t1 + t2 + t3)2 − 6t2
odd

U ′ + JH
, (100)

J̃ FM
S = −1

9

(t1 − t2 − t3)2

U ′ − JH
, (101)

J̃ AF
A = 4

9

(t1 + 2t2 + 2t3)todd

U + 2J ′ + 2

9

(t1 − t2 − t3)todd

U − J ′

− 1

3

(t1 − 3t2 − 3t3)todd

U ′ + JH
, (102)

J̃ FM
A = − (t1 + t2 + t3)todd

U ′ − JH
, (103)

ωn(ge) =
{
ω2 for ge = +,

ω for ge = −.
(104)

Equation (97) shows three important properties of Ĥ
a1g-ege

g

exch .
First, as in the case with the second-order perturbation

terms, Ĥ
a1g-ege

g

exch has the FM-type and the AF-type interactions.
Second, in contrast to the second-order perturbation terms,

Ĥ
a1g -ege

g

exch includes the orbital-density operator, ôge

i , and the spin-
orbital-combined operator, ŝoge

i . The orbital-density operator
or the spin-orbital-combined operator is essentially different
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from, respectively, the charge-density operator, n̂i , or the
spin operator, ŝi , because the charge-density and the spin
operators should be defined for the product of the creation
and annihilation operators of an electron for the same orbital;
n̂i and ŝi for the a1g-orbital electrons are defined as

n̂i =
∑

s=↑,↓
ĉ
†
ia1gs

ĉia1gs , (105)

and

ŝi = 1

2

∑
s,s ′=↑,↓

ĉ
†
ia1gs

(σ )ss ′ ĉia1gs ′ , (106)

respectively. Due to this property, Ĥ
a1g -ege

g

exch cannot be regarded
as the simple superexchange interactions such as the second-

order perturbation terms. Third, Ĥ
a1g-ege

g

exch possesses not only
the symmetric terms, proportional to J̃ AF

S or J̃ FM
S , but also the

antisymmetric terms, proportional to J̃ AF
A or J̃ FM

A . Here the
terms for J̃ AF

S and J̃ FM
S have been referred to as the symmetric

terms because those are symmetric about site indices, 1 and 2;
the terms for J̃ AF

A and J̃ FM
A , which are antisymmetric about the

site indices, have been referred to as the antisymmetric terms.

In the second step, we calculate Ĥ
e
ge
g -a1g

excit from Eq. (96) using
Eq. (77). The calculated result is

Ĥ
e
ge
g -a1g

excit = − λLS

6�tri

∣∣a↑
1g,e

ge ;↑
g

〉{i(ωn(ge) − 1)〈a↑
1g,a

↑
1g| + [i(1 − ωm(ge)) − (ωn(ge) − ωm(ge))]〈a↑

1g,a
↓
1g|}

− λLS

6�tri

∣∣ege ;↑
g ,a

↑
1g

〉{i(ωn(ge) − 1)〈a↑
1g,a

↑
1g| + [i(1 − ωm(ge)) − (ωn(ge) − ωm(ge))]〈a↓

1g,a
↑
1g|}

− λLS

6�tri

∣∣a↑
1g,e

ge ;↓
g

〉{[i(1 − ωm(ge)) + (ωn(ge) − ωm(ge))]〈a↑
1g,a

↑
1g| − i(ωn(ge) − 1)〈a↑

1g,a
↓
1g|}

− λLS

6�tri

∣∣ege ;↑
g ,a

↓
1g

〉{i(ωn(ge) − 1)〈a↑
1g,a

↓
1g| + [i(1 − ωm(ge)) − (ωn(ge) − ωm(ge))]〈a↓

1g,a
↓
1g|}

− λLS

6�tri

∣∣a↓
1g,e

ge ;↑
g

〉{i(ωn(ge) − 1)〈a↓
1g,a

↑
1g| + [i(1 − ωm(ge)) − (ωn(ge) − ωm(ge))]〈a↓

1g,a
↓
1g|}

− λLS

6�tri

∣∣ege ;↓
g ,a

↑
1g

〉{[i(1 − ωm(ge)) + (ωn(ge) − ωm(ge))]〈a↑
1g,a

↑
1g| − i(ωn(ge) − 1)〈a↓

1g,a
↑
1g|}

− λLS

6�tri

∣∣a↓
1g,e

ge ;↓
g

〉{[i(1 − ωm(ge)) + (ωn(ge) − ωm(ge))]〈a↓
1g,a

↑
1g| − i(ωn(ge) − 1)〈a↓

1g,a
↓
1g|}

− λLS

6�tri

∣∣ege ;↓
g ,a

↓
1g

〉{[i(1 − ωm(ge)) + (ωn(ge) − ωm(ge))]〈a↑
1g,a

↓
1g| − i(ωn(ge) − 1)〈a↓

1g,a
↓
1g|}, (107)

with

ωm(ge) =
{
ω for ge = +,
ω2 for ge = −.

(108)

Equation (107) clearly shows that the LS coupling induces the excitations between the a1g orbital and the e+
g or e−

g orbital at

one of the two sites in the terms of Ĥ KE−KE−LS
3rd . More precisely, the terms proportional to i(ωn(ge) − 1) in Eq. (107) are induced

by the z components of the LS coupling, i.e., the LS couplings between the dxz and dyz orbitals; the terms proportional to
i(1 − ωm(ge)) are induced by the x components, i.e., the LS couplings between the dxz and dxy orbitals; the terms proportional to
(ωn(ge) − ωm(ge)) are induced by the y components, i.e., the LS couplings between the dyz and dxy orbitals.

In the third step, by combining Eqs. (97) and (107) with Eq. (94), we obtain (Ĥ KE−KE−LS
3rd )12:

(
Ĥ KE−KE−LS

3rd

)
12 = −

∑
ge=+,−

λLS

6�tri
i(ωn(ge) − 1)

[
2J̃ FM

S

(
n̂1Ŝ

z
2 + Ŝz

1n̂2
) − (

J̃ FM
A + J̃ AF

A

)(
Ŝz

1n̂2 − n̂1Ŝ
z
2

)]

−
∑

ge=+,−

λLS

3�tri
(ωn(ge) − 1)

(
J̃ FM

A − J̃ AF
A

)(
Ŝx

1 Ŝ
y

2 − Ŝ
y

1 Ŝx
2

)

−
∑

ge=+,−

λLS

6�tri
i(1 − ωm(ge))

[
2J̃ FM

S

(
n̂1Ŝ

x
2 + Ŝx

1 n̂2
) + (

J̃ FM
A + J̃ AF

A

)(
n̂1Ŝ

x
2 − Ŝx

1 n̂2
)]

−
∑

ge=+,−

λLS

3�tri
(1 − ωm(ge))

(
J̃ FM

A − J̃ AF
A

)(
Ŝ

y

1 Ŝz
2 − Ŝz

1Ŝ
y

2

)

−
∑

ge=+,−

λLS

6�tri
i(ωm(ge) − ωn(ge))

[
2J̃ FM

S

(
n̂1Ŝ

y

2 + Ŝ
y

1 n̂2
) + (

J̃ FM
A + J̃ AF

A

)(
n̂1Ŝ

y

2 − Ŝ
y

1 n̂2
)]

−
∑

ge=+,−

λLS

3�tri
(ωm(ge) − ωn(ge))

(
J̃ FM

A − J̃ AF
A

)(
Ŝz

1Ŝ
x
2 − Ŝx

1 Ŝz
2

)
, (109)
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where we have used the relations

2
(

1
4 n̂1ô

ge

2 − ŝ1 · ŝoge

2

) = |a↑
1g,a

↓
1g〉

〈
a

↑
1g,e

ge ;↓
g

∣∣ − |a↑
1g,a

↓
1g〉

〈
a

↓
1g,e

ge ;↑
g

∣∣ − |a↓
1g,a

↑
1g〉

〈
a

↑
1g,e

ge ;↓
g

∣∣ + |a↓
1g,a

↑
1g〉

〈
a

↓
1g,e

ge ;↑
g

∣∣, (110)

2
(

1
4 ô

ge

1 n̂2 − ŝoge

1 · ŝ2
) = |a↑

1g,a
↓
1g〉

〈
ege ;↑
g ,a

↓
1g

∣∣ − |a↑
1g,a

↓
1g〉

〈
ege ;↓
g ,a

↑
1g

∣∣ − |a↓
1g,a

↑
1g〉

〈
ege ;↑
g ,a

↓
1g

∣∣ + |a↓
1g,a

↑
1g〉

〈
ege ;↓
g ,a

↑
1g

∣∣, (111)

2
(

3
4 n̂1ô

ge

2 + ŝ1 · ŝoge

2

) = 2|a↑
1g,a

↑
1g〉

〈
a

↑
1g,e

ge ;↑
g

∣∣ + 2|a↓
1g,a

↓
1g〉

〈
a

↓
1g,e

ge ;↓
g

∣∣ + |a↑
1g,a

↓
1g〉

〈
a

↑
1g,e

ge ;↓
g

∣∣ + |a↑
1g,a

↓
1g〉

〈
a

↓
1g,e

ge ;↑
g

∣∣
+ |a↓

1g,a
↑
1g〉

〈
a

↑
1g,e

ge ;↓
g

∣∣ + |a↓
1g,a

↑
1g〉

〈
a

↓
1g,e

ge ;↑
g

∣∣, (112)

2
(

3
4 ô

ge

1 n̂2 + ŝoge

1 · ŝ2
) = 2|a↑

1g,a
↑
1g〉

〈
ege ;↑
g ,a

↑
1g

∣∣ + 2|a↓
1g,a

↓
1g〉

〈
ege ;↓
g ,a

↓
1g

∣∣ + |a↑
1g,a

↓
1g〉

〈
ege ;↑
g ,a

↓
1g

∣∣ + |a↑
1g,a

↓
1g〉

〈
ege ;↓
g ,a

↑
1g

∣∣
+ |a↓

1g,a
↑
1g〉

〈
ege ;↑
g ,a

↓
1g

∣∣ + |a↓
1g,a

↑
1g〉

〈
ege ;↓
g ,a

↑
1g

∣∣. (113)

Using the relations between each term of Eq. (107) and each
component of the LS coupling, described below Eq. (108), we
see from Eq. (109) that the z, x, and y components of the LS

coupling lead to, respectively, the z, x, and y components of
the DM interaction in Eq. (109).

Since (ĤLS−KE−KE
3rd )12 is calculated from Eq. (109) by

using the equality ĤLS−KE−KE
3rd = (Ĥ KE−KE−LS

3rd )†, we obtain
Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd after taking the summation about

ge = +,− using Eqs. (104) and (108):(
Ĥ KE−KE−LS

3rd

)
12 + (

ĤLS−KE−KE
3rd

)
12

= −D
(
Ŝ

y

1 Ŝz
2 − Ŝz

1Ŝ
y

2

) + D
(
Ŝz

1Ŝ
x
2 − Ŝx

1 Ŝz
2

)
, (114)

with

D = − 2λLS

�tri

(
J̃ FM

A − J̃ AF
A

)

= 2λLStodd

�tri

[
t1 + t2 + t3

U ′ − JH
− 4

9

t1 + 2t2 + 2t3

U + 2J ′

− 2

9

t1 − t2 − t3

U − J ′ + 1

3

t1 − 3t2 − 3t3

U ′ + JH

]
. (115)

This antisymmetric exchange interaction is the DM interac-
tion; as we will discuss in Sec. IV, the symmetry of the
finite components is consistent with the phenomenological
argument [9] based on Moriya’s rule [8]. Examples of
the finite contributions to Ĥ KE−KE−LS

3rd and ĤLS−KE−KE
3rd are

schematically shown in Figs. 6(a) and 6(b), respectively.
Before turning to the derivation of Ĥ KE−LS−KE

3rd , we remark
on several properties seen from the derived DM interaction
because those are useful to understand the microscopic origin
and ways to control it. First, from Eq. (109) and its dagger terms
with Eqs. (100)–(103), we deduce that the DM interaction
in Ĥ KE−KE−LS

3rd and ĤLS−KE−KE
3rd arises from the combination

of the antisymmetric terms of Ĥ
a1g -ege

g

exch and the terms of
Ĥ

e
ge
g -a1g

exch . This highlights the importance of the mirror-mixing
effect due to the combination of the antisymmetric kinetic
exchange using the even-mirror hopping integrals and the
odd-mirror hopping integral and the excitation of the LS

coupling between the a1g orbital and the e+
g or e−

g orbital
at one of the two sites. By a simpler argument, we can deduce
from Eq. (114) the importance of the multiorbital properties
and the mirror-mixing effect in the DM interaction, as we see
in Appendix C. Then, the combination of the antisymmetric
kinetic exchange and the excitation of the LS coupling is vital

to obtain the DM interaction in the weak SOC because both
give the antisymmetry between the two sites and because the
combination of those antisymmetries is necessary to obtain
the finite matrix elements of the perturbation terms between
|i〉 and |f〉 in Ĥ KE−KE−LS

3rd and ĤLS−KE−KE
3rd . In addition, the

importance of the mirror-mixing effect shows the importance
of the activation of the orbital angular momentum at one of the
two sites in the intermediate states in the perturbation terms.
This is because the orbital angular momentum is quenched in

the nonperturbed states, i.e., |i〉 and |f〉, and because Ĥ
a1g-ege

g

exch

and Ĥ
e
ge
g -a1g

exch cause the excitations between the a1g orbital and
the e+

g or e−
g orbital at one of the two sites (see Fig. 6); in the

degenerate e+
g and e−

g orbitals, the orbital angular momentum
is active, i.e., nonquenched. This important effect about the
orbital angular momentum cannot be taken into account if
the SOC is expressed in terms of the spin-gauge potential
(see Sec. II D). As we will discuss in more detail in Sec. IV,
the importance of the combination of the even-mirror and
the odd-mirror hopping integral was not revealed in Moriya’s
microscopic theory [8] due to choosing a single parameter
of the hopping integrals, and this microscopic origin of the
DM interaction highlights the microscopic role of lack of the
inversion center and the similarity to the microscopic origin in
the strong SOC [17]. Then, Eq. (115) shows that the coefficient
of the DM interaction in the weak SOC is given by the product
of a ratio of λLS to �tri and the difference between the FM

and the AF antisymmetric exchange interaction of Ĥ
a1g-ege

g

exch .
Thus, we can control the magnitude and sign of the DM
interaction by tuning the relative strength of the FM and the
AF exchange interactions (e.g., as a result of changing JH)
or by changing the magnitude and sign of todd (as a result
of changing the position of O ions). Those properties are
clearly seen from Figs. 7(a)–7(d); those figures are about
the results of the rough estimation of D

J FM−J AF within the

O( JH
U

) terms at J ′ = JH and U ′ = U − 2JH in four cases, (a)
A 
 B, (b) A � B, (c) A ∼ B, and (d) A ∼ −B, which are
different from the four limiting cases considered in Sec. III A
and III B 2. The detail of this estimation is described in
Appendix D.

2. ĤKE−LS−KE
3rd

We turn to the calculation of Ĥ KE−LS−KE
3rd for two sites

of sublattices 1 and 2. Since 〈n3|ĤLS |n4〉 in the third term

155139-12



MICROSCOPIC THEORY OF DZYALOSHINSKY-MORIYA . . . PHYSICAL REVIEW B 94, 155139 (2016)

(a)

(b)

(c)

FIG. 6. Schematic pictures of examples of the processes of (a) Ĥ KE−KE−LS
3rd , (b) Ĥ LS−KE−KE

3rd , and (c) Ĥ KE−LS−KE
3rd . Yellow circles denote the

electrons, and gray arrows denote the perturbations.

of Eq. (93) represents the matrix elements between the
different irreducible representations for the d2 states for
Ĥint, Ĥ KE−LS−KE

3rd can be obtained by using the results of

〈n4|ĤKE|i〉 and 〈f|ĤKE|n3〉 in the second-order perturbation
terms with 〈n3|ĤLS |n4〉, such as Eqs. (78) and (79). By com-
bining the contributions from every irreducible representation,

(a) (b) 

(c) (d) 
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FIG. 7. D

J FM−J AF as a function of todd
A

in (a) A 
 B or todd
B

in (b) A � B or (c) A ∼ B or (d) A ∼ −B for JH
U

= 0.1 (red lines) and 0.3 (blue

lines). D

J FM−J AF were estimated by considering the O( JH
U

) terms at J ′ = JH and U ′ = U − 2JH and setting λLS = 0.03 eV and �tri = 1 eV in
Eqs. (D3)–(D6). Those four cases are different from the four limiting cases considered in Figs. 5 and 8.
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(Ĥ KE−LS−KE
3rd )12 becomes

(Ĥ KE−LS−KE
3rd )12 = −D′(Ŝy

1 Ŝz
2 − Ŝz

1Ŝ
y

2

) + D′(Ŝz
1Ŝ

x
2 − Ŝx

1 Ŝz
2

)
,

(116)

with

D′ = 8λLS

9

todd(t1 + 2t2 + 2t3)

(U ′ − JH)(U + 2J ′)
+ 4λLS

9

todd(−t1 + 4t2 + 4t3)

(U ′ + JH)(U ′ − JH)

+ 8λLS

9

todd(t1 − t2 − t3)

9(U ′ − JH)(U − J ′)
, (117)

as derived in Appendix E. An example of the finite contribu-
tions to (Ĥ KE−LS−KE

3rd )12 is schematically shown in Fig. 6(c).
The DM interaction of Eq. (116) has the same symmetry as

Eq. (114), and gives another contribution to the DM interaction
between sublattices 1 and 2. As discussed in Sec. IV, this
contribution was missing in Moriya’s theory [8] because that
considered a special case of the Hubbard interactions, i.e.
U ′ = U and JH = J ′ = 0, in which the irreducible repre-
sentations merged into one state. However, the contribution
using the inter-d2-multiplet excitations is much smaller than
the contribution using the interorbital excitations between
the a1g orbital and the e+

g or e−
g orbital in our considered

case because D′
D

∼ O(�tri
U�

) is negligible in U� 
 �tri. If �tri

becomes not much smaller than U� , we should consider not
only the contribution from Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd but also

the contribution from Ĥ KE−LS−KE
3rd . More precise estimation of

D′
D

can be carried out by the rough calculation which is similar
to that for J FM − J AF in Sec. III A. Namely, D′

D
within the

O( JH
U

) terms for J ′ = JH and U ′ = U − 2JH is given by

D′

D
= �tri

U

(A + B)
(
1 + 2 JH

U

)
(A − 2B) + 6AJH

U

, (118)

and the leading terms in the the cases (a), (b), (c), and (d)
considered in Sec. III A, respectively,

D′

D
= −�tri

U

1 + 2 JH
U

5 + 6 JH
U

, (119)

D′

D
= 5�tri

2U

1 + 2 JH
U

1 + 12 JH
U

, (120)

D′

D
= −11�tri

U

1 + 2 JH
U

1 − 42 JH
U

, (121)

and

D′

D
= �tri

U

1 + 2 JH
U

1 + 6 JH
U

. (122)

The leading terms depend on �tri
U

in the way shown in Fig. 8. If
we set �tri = 1 eV and U = 3 eV (i.e., �tri

U
∼ 0.3) in Fig. 8(d),

we find that the effect of the D′ term is a small-magnitude
increase of the coefficient.

As the case with the remarks in Sec. III B 1, we deduce sev-
eral properties of the derived DM interaction from Eqs. (116)
and (117). First, the mirror-mixing effect is important even
for this derived DM interaction because the numerators of D′
consist of the products of the even-mirror and odd-mirror hop-
ping integrals: the DM interaction using the inter-d2-multiplet
excitations can be also understood as the mirror-mixing

effect. The similarity between Ĥ KE−KE−LS
3rd + ĤLS−KE−KE

3rd and
Ĥ KE−LS−KE

3rd can be more easily seen by rewriting Ĥ KE−LS−KE
3rd

as

Ĥ KE−LS−KE
3rd

= 1

2

∑
n3,n4

〈f|ĤKE|n3〉〈n3|φ̂ĤLS |n4〉〈n4|φ̂ĤKE|i〉(
E0 − En3

)(
E0 − En4

) |f〉〈i|

+ 1

2

∑
n3,n4

〈f|ĤKE|n4〉〈n4|φ̂ĤLS |n3〉〈n3|φ̂ĤKE|i〉(
E0 − En4

)(
E0 − En3

) |f〉〈i|.

(123)

Namely, the relation between the first and the second term
of Eq. (123) is similar to the relation between Ĥ KE−KE−LS

3rd

and ĤLS−KE−KE
3rd . Then, the magnitude and sign of D′ can be

controlled by varying JH or todd.

IV. DISCUSSION

In this section, we discuss four points in order to clarify
the meanings of our achievements. We first compare our
results of the DM interaction derived microscopically with the
result derived phenomenologically [9], and show what are new
findings of our study. We next compare our microscopic theory
formulated in this paper and Moriya’s microscopic theory [8],
and deduce the similarities and differences between them.
Then, we argue the general applicability of our mechanism
to the DM interaction in solids with the weak SOC. Finally, by
comparison with the previous result in the strong SOC [17],
we address the similarities and differences of the effects of the
LS coupling on the low-energy effective Hamiltonian.

We begin with the comparison with the phenomenological
theory [9] based on Moriya’s rule [8]. By adopting Moriya’s
rule to the symmetry of the pyrochlore crystal, we can
determine which terms of the DM interaction are permissible
under the symmetry. Since the result of this phenomenological
theory results from the symmetry, the finite components of the
DM interaction obtained in the microscopic theory should be
the same as that obtained in the phenomenological theory.
Our results of the finite components are consistent with
the results of the phenomenological theory [9]. Then, the
phenomenological theory cannot reveal the microscopic origin
of the DM interaction. On the other hand, our theory reveals
the microscopic origin: the microscopic origin is the mirror-
mixing effect by using the antisymmetric kinetic exchange
of the even-mirror hopping and the odd-mirror hopping and
the different-energy excitations of the LS coupling. In that
effect, the role of the inversion-center lacking for each V-V
bond is to induce the odd-mirror hopping integrals; since the
even-mirror hopping integrals exist even with the inversion
center, the inversion-center lacking is essential to obtain the
antisymmetric kinetic exchange. Moreover, our theory can
explain the microscopic reason why the mirror symmetry
plays important roles in the phenomenological theory: the
reason is that which plane’s mirror symmetry is broken is
linked with the kind of the permissible hopping integrals,
which is important to discuss the mirror-mixing effect. Then,
we highlight the close relation between the DM interaction
and the sublattice structure for pyrochlore oxides: if we
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FIG. 8. �tri
U

dependence of D′
D

in the four limiting cases considered in Fig. 5 for JH
U

= 0.1 (red lines) and 0.3 (blue lines).

consider the DM interaction in pyrochlore oxides, we should
simultaneously take account of the four-sublattice structure,
shown in Fig. 1(a), because the inversion-center lacking causes
not only the odd-mirror hopping but also the difference among
four V ions in a tetrahedron as a result of the differences in the
displacement of the O ion of each V-O-V bond. This relation
provides an important restriction on the theory analyzing the
DM interaction in pyrochlore oxides.

We next clarify the similarities and differences between
the present theory and Moriya’s microscopic theory [8]. In
Moriya’s microscopic theory, the SOC, one parameter of the
kinetic term, and one parameter of the interaction term are
considered, the third-order perturbation terms corresponding
to Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd in the present theory are cal-

culated, and the DM interaction is obtained by using the
excitations between the nondegenerate orbitals due to the
SOC; the one parameter of the kinetic term corresponds to
parameterizing all the hopping integrals by a single parameter;
the one parameter of the interaction term is U , corresponding
to a special case with U ′ = U and JH = J ′ = 0. On the
other hand, the present theory includes the much more
details of the kinetic term and interaction term, calculates not
only Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd but also another third-order

perturbation term, Ĥ KE−LS−KE
3rd , and obtains two different

contributions to the DM interaction; the contribution from
another is finite except the special case with U ′ = U and
JH = J ′ = 0. Roughly speaking, by setting t1 = t2 = t3 =
todd, U ′ = U , and JH = J ′ = 0, our theory reduces to Moriya’s
microscopic theory. Thus, the present theory reveals another
contribution to the DM interaction within the third-order

perturbation using the kinetic term twice and the SOC once as
a result of the difference in the four Hubbard interactions.
In addition, the present theory clarifies the microscopic
origin of why the inversion-center lacking is necessary to
obtain the DM interaction in the weak SOC as a result
of the difference in the hopping integrals: the inversion-
center lacking is necessary to get the antisymmetric kinetic
exchange by using the even-mirror hopping once and the
odd-mirror hopping once. Moreover, the present theory finds
the dependence of the coefficients of the DM interaction on the
typical four multiorbital Hubbard interactions. In particular,
the simple relation between the difference between the FM and
AF antisymmetric exchange interactions and the coefficient
obtained for Ĥ KE−KE−LS

3rd + ĤLS−KE−KE
3rd is revealed. Those

achievements develop our understanding of the physics of the
DM interaction and suggest how to control it.

Then, we argue the general applicability of our mechanism.
As we demonstrate below, our mechanism can explain the
emergence of the DM interaction in any solids for the weak
SOC if both the even-mirror hopping integral and the odd-
mirror hopping integral are permissible and if there are at
least two nondegenerate orbitals which are connected by the
LS coupling. To demonstrate this generality, we consider
two cases, a d-electron system in a cubic symmetry as a
high-symmetry case and a t2g-electron system in a tetragonal
symmetry as a low-symmetry case. In the cubic symmetry, the
five d orbitals split into the low-energy t2g orbitals and the
high-energy eg orbitals. Whichever partially occupied cases
[e.g., (t2g)1 or (t2g)3 configuration] we consider, the emergence
of the DM interaction can be explained as the mirror-mixing
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effect if the odd-mirror hopping integral between the t2g and
eg orbitals is permissible. This is because the LS coupling
connects the t2g and eg orbitals and because the mirror-mixing
effect using the even-mirror hopping integral, the odd-mirror
hopping integral between the t2g and eg orbitals, and the
LS coupling between them leads to the DM interaction,
whose magnitude is either O( t (even)t (odd)λLS

U�cub
) for U > �cub or

O( t (even)t (odd)λLS

�2
cub

) for U < �cub, with �cub, the energy difference

between the t2g and eg orbitals. This cubic case for the (t2g)3

configuration corresponds to, for example, CdCr2O4 [12] at
high temperature; here, we have neglected the effects of the
trigonal-distortion potential because that may be small in
AB2O4-type pyrochlore oxides (e.g., ∼0.1 eV for LiV2O4 [5]).
Then, in the tetragonal symmetry, the t2g orbitals, which are
degenerate in the cubic symmetry, split into the dxy orbital and
the degenerate dxz and dyz orbitals. The degenerate dxz and dyz

orbitals are low-energy for the c axis longer than the a and b

axes (i.e., c > a = b), while the dxy orbital is low-energy for
the shorter c axis (i.e., c < a = b). The DM interaction in this
tetragonal case can be also understood as the mirror-mixing
effect using the even-mirror hopping integral, the odd-mirror
hopping integral between the dxy orbital and the dxz or dyz

orbital, and the LS coupling between them; the magnitude
is either O( t (even)t (odd)λLS

U�tetra
) for U > �tetra or O( t (even)t (odd)λLS

�2
tetra

) for
U < �tetra, with �tetra, the energy difference between the dxy

orbital and the dxz or dyz orbital. For example, this tetragonal
case with c > a = b or c < a = b for the (t2g)3 configuration
corresponds to CdCr2O4 [12] at low temperature or ZnCr2O4

[31] at low temperature, respectively (the effect of the trigonal
distortion is neglected). Moreover, in the similar way, we can
understand the DM interaction in not only other d-electron
systems but also p-electron or f -electron systems with the
weak SOC. This is because even for the DM interaction in those
systems, the multiorbital properties and the mirror-mixing
effect remain important to get the two characteristic properties
of the DM interaction, as in the case of Appendix C. Thus,
our mechanism provides the general mechanism for the DM
interaction in solids with the weak SOC.

Finally, we compare the present theory in the weak-SOC
system with the previous microscopic theory [17] in the strong-
SOC system. In the latter theory, the low-energy effective
model is derived for a d5 Mott insulator in a quasi-two-
dimensional t2g-orbital Hubbard model on a square lattice with
the inversion-symmetry breaking of an ab plane, and the DM
interaction is obtained in the second-order perturbation, i.e.,
the same order of magnitude as the superexchange interaction.
The difference between the two theories is the order of the
perturbation to obtain the DM interaction. This can be under-
stood as the difference in the effect of the LS coupling: in a
weak-SOC system, the effect of the LS coupling can be treated
perturbatively, and the orbital angular momentum is quenched;
in a strong-SOC system, the nonperturbative treatment of the
LS coupling becomes necessary, and the effects of the LS

coupling causes the formation of the pseudospin as a result of
the addition of the spin and orbital angular momenta. Namely,
in the weak-SOC system, the combination of the second-
order perturbation using the kinetic terms and the one-shot
perturbation of the LS coupling is necessary to obtain the
DM interaction because the LS coupling activates the orbital

angular momentum, which is quenched in the nonperturbed
states, at one of the two sites; in the strong-SOC system, the
second-order perturbation using the kinetic terms is sufficient
because the orbital angular momenta are not quenched and
are not conserved quantities; i.e., the antisymmetry between
the orbital angular momenta at two sites can be realized
even in the nonperturbed states for the pseudospin. Then, the
similarity between the two theories is the origin of the DM
interaction, which is the mirror-mixing effect. Actually, the
coefficient of the DM interaction in the strong-SOC system
is given by the antisymmetric kinetic exchange, using the
even-mirror hopping once and the odd-mirror hopping once;
in the quasi-two-dimensional t2g-orbital Hubbard model on a
square lattice, the inversion-symmetry breaking of an ab plane
induces the odd-mirror nearest-neighbor hoppings between the
dyz and dxy orbitals along the x direction and between the dxz

and dxy orbitals along y direction due to the similar mechanism
for the present theory (to see the similarity, compare the
derivations in Sec. I of the Supplemental Material of Ref. [25]
and Sec. II A of this paper). The above comparisons show that
the DM interaction in solids can be understood in a unified way
in the microscopic theories for the multiorbital models with
the LS coupling, in which the effects of the inversion-center
lacking are appropriately treated in the kinetic energy.

V. SUMMARY

In summary, we constructed the t2g-orbital model for py-
rochlore oxides, derived the low-energy effective Hamiltonian
for the d1 Mott insulator with the weak SOC, and clarified the
microscopic origin of the DM interaction. First, the t2g-orbital
model was constructed by considering four terms: (1) the
kinetic energy for not only the even-mirror hopping integrals,
which exist even with the inversion center of each nearest-
neighbor V-V bond, but also the odd-mirror hopping integrals,
which appear only without the inversion center due to the
indirect hoppings through the O-2p orbitals, (2) the trigonal-
distortion potential, (3) the t2g-orbital Hubbard interactions,
and (4) the LS coupling. The main difference between this and
the previous t2g-orbital models [18–21] is the existence of the
odd-mirror hopping integrals. Then, the low-energy effective
Hamiltonian for the d1 Mott insulator, where one electron
occupied the a1g orbital per site, was derived from the second-
order perturbation terms using the nearest-neighbor hopping
integrals twice and from the third-order perturbation terms
using the hopping integrals twice and the LS coupling once;
the second-order perturbation terms give the FM and the AF
superexchange interactions, and the third-order perturbation
terms give the DM interactions, whose symmetry is the
same for the phenomenological theory [9]. The derived DM
interactions consist of two contributions: one, corresponding to
the DM interaction considered in Moriya’s microscopic theory
[8], arises from the combination of the interorbital excitation
of the LS coupling between the a1g and the e+

g or e−
g orbital

and the antisymmetric kinetic exchange, using the even-mirror
hopping once and the odd-mirror hopping once; the other,
which was missing in Moriya’s microscopic theory [8], arises
from the combination of the different-energy d2-multiplet
excitation of the LS coupling, and the even-mirror hopping
integral and the odd-mirror hopping integral. The latter
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contribution appears except the special case with U ′ = U and
JH = J ′ = 0; the former contribution is dominant as long as
the interactions are larger than the trigonal-distortion potential.
The coefficients of those contributions revealed not only the
importance of the mirror-mixing effect, but also the methods to
control the DM interaction. One method is to tune the magni-
tude and sign of the odd-mirror hopping integral by changing
the positions of the O ions; another is to tune the AF and the FM
interactions by changing the t2g-orbital Hubbard interactions.

Those achievements develop our understanding of the DM
interaction in the weak SOC. In addition, our results showed
the restriction on the theories studying the DM interaction
in pyrochlore oxides: for such study, we should appropriately
treat the four-sublattice structure of the V ions. Moreover, since
we can apply the present theory to other multiorbital systems
with the weak SOC, the present theory provides the general
formalism to study the DM interaction in solids with the weak
SOC.
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APPENDIX A: DERIVATION OF EQ. (85)

In this appendix, we derive Eq. (85) from Eq. (84) for our
model. Equation (85) is derived by calculating the contribution
from each |i ; �,g�〉 in Eq. (84), and the calculation from each
contribution is similar to the calculation for a single-orbital
system [28]. First, the contribution from |i ; �,g�〉 = |i ; A1〉
becomes

− 4

27

(t1 + 2t2 + 2t3)2

U + 2J ′

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
. (A1)

In this calculation, we first calculated the finite terms of
〈i ; A1|Ĥ0 + Ĥodd|as1

1g,a
s2
1g〉 for i = 1,2 and s1,s2 =↑ , ↓, and

then expressed the contribution by using the finite matrix
elements, EA1 = U + 2J ′, and the corresponding operator part
|as3

1g,a
s4
1g〉〈as1

1g,a
s2
1g|. By the similar calculations, we obtain the

contributions from the other |i ; �,g�〉: the contributions from
|i ; �,g�〉 = |i ; E,u〉, |i ; E,v〉, |i ; T1,ξ±〉, |i ; T1,η±〉, |i ; T2,ζ0〉,
|i ; T1,ξ0〉, |i ; T2,ξ0〉, |i ; T1,η0〉, and |i ; T2,η0〉 are, respectively,

− 2

27

(t1 − t2 − t3)2 + 9t2
odd

U − J ′

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
, (A2)

− 2

9

(t1 − t2 − t3)2 + 9t2
odd

U − J ′

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
, (A3)

− 2

9

(t1 − t2 − t3)2 + 9t2
odd

U ′ − JH

(
1

2
n̂1 ± ŝz

1

)(
1

2
n̂2 ± ŝz

2

)
, (A4)

− 2

9

(t1 − t2 − t3)2 + 9t2
odd

U ′ − JH

(
1

2
n̂1 ± ŝz

1

)(
1

2
n̂2 ± ŝz

2

)
, (A5)

− 8

9

(t2 + t3)2 + t2
odd

U ′ + JH

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
, (A6)

− 2

9

(t1 − t2 − t3)2 + 9t2
odd

U ′ − JH

(
1

4
n̂1n̂2 − 2ŝz

1 ŝ
z
2 + ŝ1 · ŝ2

)
, (A7)

− 2

9

(t1 + t2 + t3)2 + t2
odd

U ′ + JH

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
, (A8)

− 2

9

(t1 − t2 − t3)2 + 9t2
odd

U ′ − JH

(
1

4
n̂1n̂2 − 2ŝz

1 ŝ
z
2 + ŝ1 · ŝ2

)
,

(A9)

and

− 2

9

(t1 + t2 + t3)2 + t2
odd

U ′ + JH

(
1

4
n̂1n̂2 − ŝ1 · ŝ2

)
, (A10)

and the contributions from |i ; �,g�〉 = |i ; T1,ζ±〉, |i ; T1,ζ0〉
are zero for (Ĥ2nd)12. Combining the contributions from all
|i ; �,g�〉 for i = 1, 2 with Eq. (84), we obtain Eq. (85) with
Eqs. (86) and (87).

APPENDIX B: DERIVATION OF EQ. (97)

In this appendix, we derive Eq. (97). This derivation is similar to the derivation of Eq. (85), described in Appendix A, because
Eq. (95) can be rewritten as

(
Ĥ

a1g -ege
g

exch

)
12 ≈

∑
i=1,2

∑
�

∑
g�

∑
n2

∑
s3,s4

〈
a

s3
1g,a

s4
1g

∣∣ĤKE|i ; �,g�〉〈i ; �,g�|ĤKE|n2〉
−E�

∣∣as3
1g,a

s4
1g

〉〈n2|, (B1)

with
∑

n2
= ∑

s1,s2

∑
|n2〉=|as1

1g,e
ge ;s2
g 〉,|ege ;s1

g ,a
s2
1g〉. Namely, we should calculate the contributions from every |i ; �,g�〉 to (Ĥ

a1g-ege
g

exch )12 in

the similar way for the second-order perturbation terms except taking care of the difference between |as1
1g,a

s2
1g〉 and |as1

1g,e
ge ;s2
g 〉 or

between |as1
1g,a

s2
1g〉 and |ege ;s1

g ,a
s2
1g〉. The calculated result for |i ; �,g�〉 = |i ; A1〉 becomes

− 4

27

(t1 + 2t2 + 2t3)[ωn(ge)(t1 − t2 − t3)]

U + 2J ′

[(
1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
+

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]

+ 4

9

todd(t1 + 2t2 + 2t3)ωn(ge)

U + 2J ′

[(
1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
−

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]
. (B2)

As the case with the derivation of Eq. (85), we first calculated the finite terms of 〈i ; A1|ĤKE|as1
1g,e

ge ;s2
g 〉 and 〈i ; A1|ĤKE|ege ;s1

g ,a
s2
1g〉

for i = 1,2 and s1,s2 =↑ , ↓, and then expressed the contribution in terms of those matrix elements and the operators. Then, the
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calculated result for � = E is

−
{

1

27

(t1 − t2 − t3)[ωn(ge)(2t1 − 2t2 + t3) − 6t2] − 9ωm(ge)t2
odd

U − J ′

+ 1

9

(t1 − t2 − t3)[ωn(ge)(2t1 + 2t2 + t3) + 2t2] + 3(ωn(ge) − 1)t2
odd

U − J ′

}[(
1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
+

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]

−
{

1

9

todd[ωm(ge)(t1 − t2) + (3 − 4ωm(ge))t3]

U − J ′ + 1

9

todd[(1 − ωn(ge))(t1 − t2) + (2ωm(ge) − 5)t3]

U − J ′

}

×
[(

1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
−

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]
, (B3)

the calculated result for � = T1 is

−
{

1

9

(t1 − t2 − t3)[−ωm(ge)(t1 − t2) + t3] + 3(1 − ωm(ge))t2
odd

U ′ − JH
+ 1

9

(t1 − t2 − t3)[−(t1 − t2) + ωm(ge)t3] + 3(ωm(ge) − 1)t2
odd

U ′ − JH

}

×
[(

3

4
n̂1ô

ge

2 + ŝ1 · ŝoge

2

)
+

(
3

4
ô

ge

1 n̂2 + ŝoge

1 · ŝ2

)]

−
{

1

9

todd[ωn(ge)(2t1 + 4t2 + 7t3) − (5t1 + t2 − 5t3)]

U ′ − JH
+ 1

9

todd[ωn(ge)(7t1 + 5t2 + 2t3) + (5t1 + t2 − 5t3)]

U ′ − JH

}

×
[(

3

4
n̂1ô

ge

2 + ŝ1 · ŝoge

2

)
−

(
3

4
ô

ge

1 n̂2 + ŝoge

1 · ŝ2

)]
, (B4)

and the calculated result for � = T2 is

−
{

2

9

ωn(ge)[−2(t2 + t3)2 + t2
odd]

U ′ + JH
+ 1

9

(t1 + t2 + t3)[−ωm(ge)(t1 + t2) − t3] + (2 − 3ωn(ge))t2
odd

U ′ + JH

+ 1

9

(t1 + t2 + t3)[−(t1 + t2) − ωm(ge)t3] − (2 + 5ωn(ge))t2
odd

U ′ + JH

}[(
1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
+

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]

+
{

2

3

ωn(ge)todd(t2 + t3)

U ′ + JH
− 1

9

todd[−ωn(ge)(2t2 + 3t3) − (3t1 + t2 + 3t3)]

U ′ + JH
− 1

9

todd[ωn(ge)(3t1 − t2) + (3t1 + t2 + 3t3)]

U ′ + JH

}

×
[(

1

4
n̂1ô

ge

2 − ŝ1 · ŝoge

2

)
−

(
1

4
ô

ge

1 n̂2 − ŝoge

1 · ŝ2

)]
. (B5)

Combining all the above contributions with Eq. (B1) and carrying out some algebra with the equality, such as ωm(ge ) + ωn(ge) = −1,
we finally obtain Eq. (97) with Eqs. (100)–(103).

APPENDIX C: ARGUMENT FOR THE IMPORTANCE OF
THE MULTIORBITAL PROPERTIES AND

MIRROR-MIXING EFFECT

In this appendix, we argue the importance of the multior-
bital properties and mirror-mixing effect in the DM interaction.
For that argument, we focus on the first term of Eq. (114),
i.e., −D(Ŝy

1 Ŝz
2 − Ŝz

1Ŝ
y

2 ). This term shows two differences in
comparison with the Heisenberg-type interaction: one is about
whether the interaction is odd about some coordinates or
even about all; the other is about whether the interaction is
antisymmetric or symmetric. Those two properties distinguish
the DM interaction from the Heisenberg-type interaction in
general. To obtain the odd and antisymmetric superexchange
interaction, the multiorbital properties become vital because
only the interorbital hopping integral becomes odd about some
coordinates (the intraorbital hopping integrals are even about
all the coordinates). For the case of the first term of Eq. (114),
we need the hopping integral behaving as an odd function
about y and z and an even function about x. Such hopping
integral is obtained by the hopping integral between the dxz

and dxy orbitals because the dxz and dxy orbitals behave like
xz and xy, respectively. Then, the odd dependence of this
hopping integral can hold in the superexchange interactions if
we use this odd number of times. Since we should use another
hopping integral to put the electron moved by this back into the
initial site, the combination of the odd-mirror hopping integral
and even-mirror hopping integral is necessary. Furthermore,
we need the SOC to put the electron back into the initial
(ground-state) orbital (for the case considered in this paper,
move from the e±

g orbital to the a1g orbital). Thus, the
multiorbital properties and mirror-mixing effect is important
to obtain the DM interaction.

APPENDIX D: DETAILS OF THE ROUGH ESTIMATION
OF D

JFM−JAF

In this appendix, we see the details of how to obtain the
results shown in Figs. 7(a)–7(d). The results are obtained as
follows. First, by setting A = t1 + t2 + t3, B = t2 + t3, J ′ =
JH, and U ′ = U − 2JH in Eq. (115) and expanding D as the
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power series of JH
U

within the O( JH
U

) terms, we express D as

D = 12λLStodd

9U�tri

[
(A − 2B) + 6A

JH

U

]
. (D1)

Second, by combining this equation with Eq. (88), we
obtain

D

J FM − J AF
= 3λLStodd

�tri

(A − 2B) + 6 JH
U

(A + B)2 − 2 JH
U

[
(A− 2B)2 + 9t2

odd

] .

(D2)

Third, to understand the rough dependence of D
J FM−J AF on JH

U

and todd
A

or todd
B

, we consider four cases about A and B, i.e.,
A 
 B, A � B, A ∼ B, and A ∼ −B. Fourth, by calculating
the leading terms of D

J FM−J AF in each case, the leading terms in
A 
 B, A � B, A ∼ B, and A ∼ −B are given by

D

J FM − J AF
= 3λLS

�tri

todd

A

1 + 6 JH
U

1 − 2 JH
U

(
1 + 9 t2

odd
A2

) , (D3)

D

J FM − J AF
= −6λLS

�tri

todd

B

1

1 − 2 JH
U

(
4 + 9 t2

odd
A2

) , (D4)

D

J FM − J AF
= −3λLS

2�tri

todd

B

1 − 6 JH
U

2 − JH
U

(
1 + 9 t2

odd
A2

) , (D5)

and

D

J FM − J AF
= λLS

6�tri

todd

B

1 + 2 JH
U

JH
U

(
1 + t2

odd
A2

) , (D6)

respectively. By using those equations and setting λLS =
0.03 eV and �tri = 1 eV, we obtain the results shown in
Figs. 7(a)–7(d).

APPENDIX E: DERIVATION OF EQ. (116)

In this appendix, we derive Eq. (116). For this derivation,
we first rewrite the third term of Eq. (93) for sublattices 1
and 2 as

(
Ĥ KE−LS−KE

3rd

)
12 ≈

∑
i=1,2

∑
�,�′(
=�)

∑
g�,g�′

∑
s1,s2,s3,s4

〈
a

s3
1g,a

s4
1g

∣∣ĤKE|i ; �,g�〉
−E�

〈i ; �,g�|ĤLS |i ; �′,g�′ 〉

× 〈i ; �′,g�′ |ĤKE

∣∣as1
1g,a

s2
1g

〉
−E�′

∣∣as3
1g,a

s4
1g

〉〈
a

s1
1g,a

s2
1g

∣∣. (E1)

This shows that (Ĥ KE−LS−KE
3rd )12 for our model can be derived by combining the contributions from every term of |i ; �′,g�′ 〉.

Those contributions can be calculated by using the matrix elements, 〈as3
1g,a

s4
1g|ĤKE|i ; �,g�〉 and 〈i ; �′,g�′ |ĤKE|as1

1g,a
s2
1g〉, which

have been calculated in the second-order perturbation terms, and the matrix element, 〈i ; �,g�|ĤLS |i ; �′,g�′ 〉, which is obtained
by using the relation, such as Eqs. (78)–(81). Namely, the contribution from |i ; �′,g�′ 〉 = |i ; A1〉 is

2

9

λLStodd(t1 + 2t2 + 2t3)

(U ′ − JH)(U + 2J ′)

{
(1 − i)

[(
1

2
n̂1 + ŝz

1

)
ŝ+

2 − s+
1

(
1

2
n̂2 + ŝz

2

)]
+ (1 + i)

[
ŝ−

1

(
1

2
n̂2 − ŝz

2

)
−

(
1

2
n̂1 − ŝz

1

)
ŝ−

2

]}
, (E2)

the contribution from |i ; �′,g�′ 〉 = |i ; E,u〉 is

1

9

iλLStodd(t1 − t2 − t3)

(U ′ − JH)(U − J ′)

[(
1

2
n̂1 + ŝz

1

)
ŝ+

2 − ŝ+
1

(
1

2
n̂2 + ŝz

2

)
+

(
1

2
n̂1 − ŝz

1

)
ŝ−

2 − ŝ−
1

(
1

2
n̂2 − ŝz

2

)]

+ 2

9

λLStodd(t1 − t2 − t3)

(U ′ − JH)(U − J ′)

[(
1

2
n̂1 + ŝz

1

)
ŝ+

2 − ŝ+
1

(
1

2
n̂2 + ŝz

2

)
−

(
1

2
n̂1 − ŝz

1

)
ŝ−

2 + ŝ−
1

(
1

2
n̂2 − ŝz

2

)]
, (E3)

the contribution from |i ; �′,g�′ 〉 = |i ; E,v〉 is

−1

3

iλLStodd(t1 − t2 − t3)

(U ′ − JH)(U − J ′)

[(
1

2
n̂1 + ŝz

1

)
ŝ+

2 − ŝ+
1

(
1

2
n̂2 + ŝz

2

)
+

(
1

2
n̂1 − ŝz

1

)
ŝ−

2 − ŝ−
1

(
1

2
n̂2 − ŝz

2

)]
, (E4)

the contribution from |i ; �′,g�′ 〉 = |i ; T1,ξ±〉 is[
2

9

iλLStodd(t1 + 2t2 + 2t3)

(U + 2J ′)(U ′ − JH)
− 1

9

iλLStodd(t1 − t2 − t3)

(U − J ′)(U ′ − JH)
+ 1

3

iλLStodd(t1 − t2 − t3)

(U − J ′)(U ′ − JH)
± 1

9

λLStodd(−t1 + 4t2 + 4t3)

(U ′ + JH)(U ′ − JH)

]

×
[(

1

2
n̂1 ± ŝz

1

)
ŝ∓

2 − ŝ∓
1

(
1

2
n̂2 ± ŝz

2

)]
, (E5)

the contribution from |i ; �′,g�′ 〉 = |i ; T1,η±〉 is[
2

9

λLStodd(t1 + 2t2 + 2t3)

(U + 2J ′)(U ′ − JH)
+ 2

9

λLStodd(t1 − t2 − t3)

(U − J ′)(U ′ − JH)
± 1

9

iλLStodd(−t1 + 4t2 + 4t3)

(U ′ + JH)(U ′ − JH)

][
±

(
1

2
n̂1 ± ŝz

1

)
ŝ∓

2 ∓ ŝ∓
1

(
1

2
n̂2 ± ŝz

2

)]
,

(E6)
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the contribution from |i ; �′,g�′ 〉 = |i ; T2,ζ0〉 is

1

9

λLStodd(−t1 + 4t2 + 4t3)

(U ′ − JH)(U ′ + JH)

{
(1 − i)

[(
1

2
n̂1 + ŝz

1

)
ŝ+

2 − ŝ+
1

(
1

2
n̂2 + ŝz

2

)]
+ (1 + i)

[
ŝ−

1

(
1

2
n̂2 − ŝz

2

)
−

(
1

2
n̂1 − ŝz

1

)
ŝ−

2

]}
, (E7)

the contribution from |i ; �′,g�′ 〉 = |i ; T1,ξ0〉 is

1

9

iλLStodd(2t1 + t2 + t3)

(U ′ + JH)(U ′ − JH)

[(
1

2
n̂1 + ŝz

1

)(
1

2
n̂2 − ŝz

1

)
+ ŝ+

1 ŝ−
2 − ŝ−

1 ŝ+
2 −

(
1

2
n̂1 − ŝz

1

)(
1

2
n̂2 + ŝz

2

)]
, (E8)

the contribution from |i ; �′,g�′ 〉 = |i ; T2,ξ0〉 is

1

9

iλLStodd(2t1 + t2 + t3)

(U ′ + JH)(U ′ − JH)

[(
1

2
n̂1 + ŝz

1

)(
1

2
n̂2 − ŝz

1

)
− ŝ+

1 ŝ−
2 + ŝ−

1 ŝ+
2 −

(
1

2
n̂1 − ŝz

1

)(
1

2
n̂2 + ŝz

2

)]
, (E9)

the contribution from |i ; �′,g�′ 〉 = |i ; T1,η0〉 is

−1

9

iλLStodd(2t1 + t2 + t3)

(U ′ + JH)(U ′ − JH)

[(
1

2
n̂1 + ŝz

1

)(
1

2
n̂2 − ŝz

1

)
+ ŝ+

1 ŝ−
2 − ŝ−

1 ŝ+
2 −

(
1

2
n̂1 − ŝz

1

)(
1

2
n̂2 + ŝz

2

)]
, (E10)

the contribution from |i ; �′,g�′ 〉 = |i ; T2,η0〉 is

−1

9

iλLStodd(2t1 + t2 + t3)

(U ′ + JH)(U ′ − JH)

[(
1

2
n̂1 + ŝz

1

)(
1

2
n̂2 − ŝz

1

)
− ŝ+

1 ŝ−
2 + ŝ−

1 ŝ+
2 −

(
1

2
n̂1 − ŝz

1

)(
1

2
n̂2 + ŝz

2

)]
, (E11)

and the contributions from |i ; �′,g�′ 〉 = |i ; T1,ζ±〉,|i ; T1,ζ0〉 are zero for (Ĥ KE−LS−KE
3rd )12. Combining those results with Eq. (E1),

we obtain Eq. (116) with Eq. (117).
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