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Quadratic band touching with long-range interactions in and out of equilibrium
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Motivated by recent advances in cold atomic systems, we study the equilibrium and quench properties of
two-dimensional fermions with quadratic band touching at the Fermi level, in the presence of infinitely long-range
interactions. Unlike when only short-range interactions are present, both nematic and quantum anomalous Hall
(QAH) states appear at weak interactions, separated by a narrow coexistence region, whose boundaries mark
second- and third-order quantum phase transitions. After an interaction quench, the QAH order exhibits three
distinct regions: persistent or damped oscillations and exponential decay to zero. In contrast, the nematic order
always reaches a nonzero stationary value through power-law damped oscillations, due to the interplay between
the symmetry of the interaction and the specific topology of the quadratic band touching.
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I. INTRODUCTION

Quantum quenches and nonequilibrium dynamics are pene-
trating into many fields of physics, including condensed matter,
cold atoms, high-energy physics, mesoscopic systems, etc.
[1,2]. Considering the nonequilibrium time evolution, not only
can one address fundamental questions related to equilibration
and thermalization, but reaching novel states of matter without
an equilibrium counterpart [3,4], such as Floquet topological
systems without an external drive [5], also becomes possible.

Strongly correlated systems with short-range interactions
contain plenty of rich physics, in spite of being notoriously
difficult to deal with in dimensions higher than one, especially
when driven out of equilibrium after a quantum quench. Mean-
field models, on the other hand, while easily solvable, neglect
the interesting physics of quantum fluctuations. Models with
long-range interactions bridge between them and combine
the best of the two by containing interaction terms, and
yet being exactly solvable in any dimension, at least in the
thermodynamic limit. Such models belong to the family of
Richardson-Gaudin models [6,7].

The Richardson-Gaudin models models are characterized
by infinitely long, global range interactions. Consequently,
the Mermin-Wagner theorem is not applicable and ordering
can take place independently of the dimensionality of the
problem. These models thus constitute the extreme opposite
limit of short-range interactions. It seems also plausible
that interacting models with power-law interactions [8,9]
may lead to phases and phase transition characteristics of
either short-range or infinite-range interacting models, which
adds to the importance of Richardson-Gaudin type models.
Last but not least, fermionic systems with infinitely long-
range interactions have recently been realized in cold atomic
systems. In cavity QED, a single cavity mode in an optical
resonator interacting with fermions can be eliminated [10–13]
to yield an effective Hamiltonian that describes the long-range
atom-atom interaction. An alternative method includes trapped
ions interacting with lasers [14,15].
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Quantum quenches in Richardson-Gaudin models have
been studied by focusing on the fate of a superconducting
state upon an abrupt change (i.e., quantum quench) of the
interaction parameter [16–20]. The ensuing dynamics is
expected to be universal due to the long relaxation time in cold
atomic systems, where such experiments were conducted. This
approach was also extended to the presence of multiple, fully
gapped order parameters developing on top of topologically
trivial noninteracting band structures [21–23].

Our goal here is to add another twist to the story by
considering time evolution in the presence of long-range
repulsive interactions around a quadratic band touching (QBT)
crossing point, carrying a Berry phase of 2π . Such systems
have been intensively studied in equilibrium and in the
presence of short-range interactions [24–27] that yield a
topologically ordered, quantum anomalous Hall state (QAH)
[28], which typically wins over the nematic phase. We find, in
contrast, that the nematic state competes successfully against
the QAH in the presence of long-range interactions, and
actually becomes more robust against quantum quenches than
QAH. We attribute the latter feature to the specific topology
of the noninteracting dispersion.

II. MODEL

The spinless model we focus on is the generalization of
that in Ref. [24] in the presence of long-range interactions.
The kinetic energy in the second quantized form is

H0 =
∑

p

εp
[
cos(2ϕp)Sx

p + sin(2ϕp)Sy
p

]
, (1)

where εp = p2/2m, m > 0 is the effective mass, and p and ϕp

are the radial and angular coordinates in two dimensions (2D).
Si

p = �+
p σi�p is a pseudospin operator acting in the particle-

hole channel, and is analogous to Anderson’s pseudospin
operator [29]. We have defined �+

p = (a+
p ,b+

p ), σ ’s are Pauli
matrices, and a+

p and b+
p are creation operators of electrons

with momentum p on two distinct sublattices [24,25,27]. The
resulting noninteracting spectrum describes a QBT at p = 0
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as ±εp and is characterized by a nontrivial Berry phase of 2π

[30].
The infinitely long-range interactions (both in real and

momentum space; see the Appendix) between the pseudospins
is

Hint = −
∑

i=x,y,z

gi

4N

(∑
p

Si
p

)2

, (2)

where N is the number of unit cells in the system. Simi-
lar interactions involving the sublattice degrees of freedom
have already been engineered in Ref. [13]. This interaction
represents the long-range generalization of Ref. [24]. Due
to the long-range nature of the interaction, distinct coupling
constants are possible for the different pseudospin compo-
nents, in contrast to the case of short-range interactions, which
allows only one, marginally relevant, coupling constant. Each
pseudospin interacts with all others in the momentum space, so
that the number of nearest-neighbor pseudospin components
in momentum space is infinity. This way, the self-consistent
mean-field theory becomes exact in the thermodynamic limit.

In this limit, the instabilities manifest themselves as finite
expectation values of the pseudospin operators. In particular,
similarly to the case of short-range interactions, a finite 〈Sz〉 =∑

p〈Sz
p〉/N order parameter breaks a discrete symmetry, gaps

out the full spectrum, and yields the quantum anomalous
Hall order. A state with a finite QAH order parameter is
topologically nontrivial, and yields a quantized Hall response
as σxy = ±e2/h, irrespective of the presence or absence of
nematic order. A finite 〈Sx,y〉 = ∑

p〈Sx,y
p 〉/N corresponds

to nematic order, and breaks the continuous U (1) rotational
symmetry of the spectrum by splitting the quadratic band
crossing into two linearly dispersing Dirac cones at finite
momentum, each carrying a Berry phase of π .

In principle, due to its structure, our model belongs
to the family of Richardson-Gaudin models. For arbitrary
interactions, however, it cannot be mapped to an effective
one-dimensional problem of the Richardson-Gaudin type, and
to the best of our knowledge, no exact solution is known for it.
This is because the ϕp appears in the kinetic energy part, and
can only be eliminated by a rotation around Sz, which would
then modify the nematic part of the interaction.

III. EQUILIBRIUM PHASE DIAGRAM

The physical order parameters appear also in the spectrum
through � = gz

∑
p〈Sz

p〉/2N and mx,y = gx,y
∑

p〈Sx,y
p 〉/2N .

The zero temperature ground-state energy of the system
contains the energy gain due to opening of the gaps and the
elastic terms as

E0 = −ρ

∫ W

0
dε

∫ π

0

dφ

π
ε̃ + �2

gz

+ m2
x

gx

, (3)

with ε̃ = √
ε2 + �2 + m2

x − 2εmx cos(φ), ρ = m/2π is the
density of states, and W is the high-energy cutoff. The order
parameters are obtained by minimizing it. For the sake of
simplicity, we assume that nematic order develops in the x
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FIG. 1. The weak-coupling phase diagram of Eqs. (1) and (2) for
gx � gy in the weak-coupling limit is shown in the left panel. For gy >

gx , gx should be replaced by gy . The blue dashed/green dashed-dotted
lines denote a second/topological third-order transition, respectively.
Right panel: Nematic (red) and QAH (blue) order parameters are
shown for ρgz = 1

2 in the coexisting region. The red dashed line
denotes the nematic gap without QAH, which is only a local minimum
of the ground-state energy compared to the coexisting solution.

direction. The gap equations are

[�,mx] = ρ

∫ W

0
dε

∫ π

0

dφ

π

[gz�,gx(mx − ε cos(φ))]

2ε̃
. (4)

Using a full lattice model would not alter our results qualita-
tively. For gx = gy , the angle of the order parameter remains
undetermined from the mean-field equations, and becomes
the Goldstone mode of the continuous rotational symmetry
breaking. For gx ≷ gy , the bare interaction itself breaks
the rotational symmetry and nematic order, breaking now a
discrete Z2 symmetry, develops only in the x/y direction,
respectively.

The phase diagram emerging from Eqs. (4) is shown in
Fig. 1, which is our first important result. For gz � gx , the
QAH phase suppresses nematic order, while in the opposite,
gx � gz situation, the nematic order wins. In between, two
phase boundaries are identified, corresponding to continuous
phase transitions. The gx = 4gz/(2 + ρgz) line in the weak-
coupling limit marks a second-order transition according to
Ehrenfest classification and separates the pure QAH state
from a coexisting QAH and nematic phase. The nematic
order parameter rises as mx ∼ √|g − gc|, and the ground-state
energy changes as E0 ∼ m4

x , so that its second derivative is
discontinuous.

The gx = 8gz/(4 + ρgz) weak-coupling line, on the other
hand, denotes a topological, third-order transition from the
phase with coexisting orders to a pure nematic state. The QAH
order varies as � ∼ |g − gc|, producing E0 ∼ �3 with a jump
in the third derivative. The third-order transition is charac-
teristic of the mean-field Dirac metal-insulator transition, as
noted already in Ref. [31]. A third-order topological transition
occurs also in the related long-range interacting model [7]. It
is an interesting feature of our model that not only nematic
order appears in the weak-coupling limit, but it also coexists

155134-2



QUADRATIC BAND TOUCHING WITH LONG-RANGE . . . PHYSICAL REVIEW B 94, 155134 (2016)

with QAH for vanishingly small couplings, in sharp contrast to
the case of short-range interactions [24]. In the noncoexisting
regions, the conventional weak-coupling forms are recovered
as � = 2W exp(−2/ρgz) and mx = 4W exp ( 1

2 − 4/ρgx).
We note that for models with weak short-range interactions

the couplings in the nematic and QAH channels are related
to each other, and there is essentially only a single coupling
constant. This is the crucial difference in our long-range
interacting model, which allows for different and unrelated
couplings for distinct ordering channels, e.g., gx,y,z. As a
result, the QAH always wins over nematic for the short-range
case in the weak-coupling limit, and the latter phase can
only appear for stronger couplings [24]. The order of the
transition is also different in the short-range and the long-
range cases, but its further analysis is beyond the scope of
our work.

IV. QUANTUM QUENCH

Having determined the equilibrium properties of H0 + Hint,
we turn to its behavior after an interaction quantum quench.
The model initially sits in the ground state for some coupling
parameters, which changes abruptly to some other value at t =
0. The ensuing dynamics is governed by the time-dependent
mean-field theory [16–19], yielding

∂tS
x
p = 2εp sin(2ϕp)Sz

p + gzS
z(t)Sy

p − gyS
y(t)Sz

p, (5a)

∂tS
y
p = −2εp cos(2ϕp)Sz

p + gxS
x(t)Sz

p − gzS
z(t)Sx

p , (5b)

∂tS
z
p = 2εp

[
cos(2ϕp)Sy

p − sin(2ϕp)Sx
p

]
+ gyS

y(t)Sx
p − gxS

x(t)Sy
p , (5c)

where Si(t) = ∑
p〈Si

p〉/N is the time-evolved order parameter
after the quench. The initial conditions at t = 0 are

⎛
⎜⎝

〈
Sx

p

〉〈
S

y
p
〉〈

Sz
p

〉
⎞
⎟⎠ =

⎛
⎜⎝

mx − εp cos(2ϕp)

−εp sin(2ϕp)

�

⎞
⎟⎠ × E−1

p , (6)

where Ep =
√

ε2
p + �2 + m2

x − 2εpmx cos(2ϕp).

Equations (5) are solved numerically using, e.g., a fourth-
order Runge-Kutta method. Since the full parameter space is
large due to the distinct coupling constants in Eq. (2) before
and after quench, we focus on the time evolution of the pure
QAH and nematic order parameters, when only their respective
coupling constants are present and quenched.

V. QAH QUENCH

In the pure QAH case with gx,y = 0, the phase variable
ϕp can be transformed away by a rotation around z for each
pseudospin, leaving us with an effective one-dimensional
model of the Richardson-Gaudin type [6], which depends
only on the momentum p, and which is exactly solvable.
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FIG. 2. The time evolution of the QAH (blue dashed) and nematic
(red solid) order parameters are shown, starting from � = 0.05W or
mx = 0.05W , corresponding to an initial coupling ρgz = 0.543 or
ρgx = 0.819, respectively, and ρW = 1. After the quench, ρgz,x =
2 (top panel), 0.7 (middle panel), and 0.1 (bottom panel). For the
latter, the steady-state value is indicated by a black dashed-dotted
from Eq. (8). The tiny oscillation superimposed on the temporal
decay arises from a finite cutoff, which is needed to make Sx,z(t = 0)
finite.

The interaction, however, here is of an “easy axis” type, e.g.,
−(Sz)2, in contrast to the usual “easy plane” interaction in the
BCS theory, which is −(Sx)2 − (Sy)2. In other words, the QAH
order parameter is always real and associated with breaking
of a discrete symmetry, whereas the BCS order parameter
breaks the continuous U (1) symmetry. Nevertheless, the
emerging picture resembles closely that of a quenched BCS
superconductor, and reveals three qualitatively distinct regions
in the temporal dynamics, as shown in Fig. 2. For large
final coupling, persistent, nondecaying oscillations show up
in the time dependence, and this phase-locked, self-induced,
synchronized oscillation can be used to realize an externally
nondriven Floquet topological phase, similarly to p-wave
superconductors [5]. For medium values of the final coupling,
the QAH order parameter reaches a time-independent steady-
state value through power-law decaying (∼ t−1/2) damped
oscillations, while for small quenches, an exponential decay to
zero occurs. Note that tiny additional oscillations of the form
sin(2Wt)/Wt are superimposed on the decay due to the finite
cutoff W , which is essential to keep the equilibrium Sz(t =
0) finite. These three regions are separated by dynamical
phase transitions [17,32]: The oscillation amplitude and the
asymptotic value of the order parameter vanish continuously
at the critical points.

VI. NEMATIC QUENCH

The quench of a pure nematic state with gy,z = 0, on the
other hand, is characterized by completely different behavior.
No dynamical phase transition occurs at all, and the time
evolution is characterized by damped oscillations with a much
faster decay when compared to the QAH case. This is due
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to the existence of low-energy excitations around the linearly
dispersing Dirac points, as visualized in Fig. 2. The crucial
difference with respect to previously considered quenches
in superconductors [17,33] occurs, however, for small finite
couplings. In this limit, the nematic order parameter does not
vanish but approaches a finite, time-independent stationary
value. This is best illustrated by completely switching off
the nematic coupling, in which case Eqs. (5) admit a simple
solution as

〈
Sx

p

〉 = mx[cos(2εpt) sin2(2ϕp) + cos2(2ϕp)] − εp cos(2ϕp)√
ε2

p + m2
x − 2εpmx cos(2ϕp)

,

(7)

yielding, after momentum integration, in the stationary state
when t → ∞,

Sx
st = ρmx

2
, (8)

with the superimposed power-law decay, ∼ρ cos(2mxt)/
m2

xt
3, obtained through the method of steepest descent. The

exponent of the power law differs both from those in s-wave
[34] or d-wave [33] superconductors, in spite of the latter also
possessing low-energy Dirac-like quasiparticles. This reflects
both the linearly dispersing Dirac cones and the nontrivial
2π Berry phase and results in heavily damped oscillations in
Fig. 2. Since no qualitative change occurs in the time evolution
of the order parameter with increasing final coupling, this
supports the idea [19] that both the final stationary value,
together with the ∼ t−3 decay, is a universal feature of the
nematic phase.

Equation (8) is our second main result. Its universality (i.e.,
W independence) implies that it is expected to hold in any
lattice model hosting a QBT. It is surprising for several reasons:
First, the nematic order is always suppressed for short-range
interactions in equilibrium [24], and although it competes with
QAH successfully for long-range interactions, it would be
naively expected to be more vulnerable to time dependence
of the interaction coupling, due to its low-energy excitations.
Second, the equilibrium low-energy thermodynamics of 2D
Dirac fermions is universal, no matter whether it is for
graphene [35], d-wave superconductors [36], or the present
nematic state. In sharp contrast, the dynamics after a quench
differs significantly from that of a d-wave BCS superconductor
[33] where the order parameter vanishes identically for small
quenches. We trace this difference back to the nontrivial,
noninteracting spectrum and its 2π Berry phase in Eq. (1),
as well as to the structure of the interaction, both of which
conspire to produce the nematic order. In contrast, d-wave
superconductivity is induced only by the symmetry of the
interaction [33] and is largely insensitive to the bare dispersion;
its stationary state therefore resembles closely that of an
s-wave superconductor.

Third, the survival of the nematic order does not simply
follow from energetics [17], namely, from comparing the
postquench energy of the system to that of an equilibrium
nematic state, to estimate its effective temperature. For an

interaction switch-off in the weak-coupling limit, the energy
considerations are identical to that in a d-wave superconductor,
where, in contrast to Eq. (8), the order parameter vanishes
[33]. In spite of the deduced effective temperature being
above the equilibrium critical temperature for the nematic
ordering, nematicity survives the quench. The essential dif-
ference between nematic and superconducting states lies in
the pseudospin structure. An initial pseudospin polarized state
in the x-y plane is driven by a pseudomagnetic field in the z

direction for a superconductor or by an in-plane hedgehoglike
field configuration from H0 for the nematic state. While the
former produces complete dephasing, the latter dephases only
partially, and still preserves some information of the initial
state.

We also find that starting from an initial coexisting nematic
and QAH phase and switching off the interactions, the nematic
order survives according to Eq. (8) while the QAH vanishes.

We have so far focused on easy axis nematic quenches
with gx 	= 0 and gy = gz = 0, but our results apply equally to
easy plane nematic quenches with gx > gy > 0 and gz = 0,
when only a discrete symmetry is broken in equilibrium by
the nematic order and the ground-state energy possesses a
discrete number of minima. On the other hand, for gx = gy ,
a continuous symmetry is broken, the equilibrium ground-
state energy has a sombrero structure, with all of the minima
ending up being mixed after a quench. Consequently, the above
solution with only Sx 	= 0 is unstable with respect to any small
Sy,z additional order parameters.

VII. STEADY STATE

Based on these, we can construct the stationary state
phase diagram of the system, shown in Fig. 3. The stationary
values of the nematic and QAH order behave qualitatively
similarly, except for small quenches where only the nematic
order survives. The phase diagram pertaining to the QAH
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FIG. 3. The steady-state behavior of the order parameter is plotted
for the pure QAH (blue) and nematic (red) state, starting from either
� = 0.05W or mx = 0.05W in the respective channel. The green
dots denote the three qualitatively different regions of the QAH order
parameter. The dashed lines are the equilibrium order parameters
from the solution of Eqs. (4). The inset zooms into the weak-coupling
limit.
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state features two dynamical transitions at which the time
dependence changes qualitatively: The exponential decay to
zero for small quenches is replaced by damped and undamped
oscillations with increasing final interaction. In contrast, no
dynamical transition occurs for the nematic phase, and the time
dependence remains qualitatively the same throughout. We
have checked numerically that our phase diagram applies also
to other initial conditions as well. Our results remain valid for
short-range interactions for times shorter than the quasiparticle
energy relaxation time [16–18], set by the additional short-
range terms, similarly to the BCS case. Similar ideas apply to
a QBT in three dimensions (3D) [37], which is left for future
study [38].

VIII. SUMMARY

We have studied the interplay of nematic and QAH orders
around a 2D QBT point in the presence of long-range inter-
actions. In equilibrium, nematic order occupies a significant
portion of the phase diagram, and can even coexist with QAH
through a third-order quantum phase transition, before giving
way to QAH order via a second-order phase transition. After
a quantum quench, the gapped QAH order behaves similarly
to a BCS superconductor, and vanishes in the steady state for
small final couplings. Surprisingly, the gapless nematic order
survives any quenches and remains finite in the steady state,
due to the peculiar topology of the QBT, and defying the usual
reasoning based on energetics.
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APPENDIX: LONG-RANGE INTERACTION IN BOTH
REAL AND MOMENTUM SPACE

The infinitely long-range interaction term,

Hint = −
∑

i=x,y,z

gi

4N

(∑
p

Si
p

)2

, (A1)

also describes an infinitely long-range interaction in real
space. Si

p = �+
p σi�p is the analog of Anderson’s pseudospin

operator [29] with �+
p = (a+

p ,b+
p ) and not the pth Fourier

component of the spin operator. First, we Fourier transform
the field operators to real space as

�+
p = 1√

N

∑
r

�+
r exp(irp), (A2)

with �+
r = (a+

r ,b+
r ), where a+

r and b+
r are creation operators

of electrons in the rth unit cell on the two distinct sublattices,
respectively. Using this, we obtain∑

p

Si
p = 1

N

∑
r,r′,p

�+
r σi�r′ exp[ip(r − r′)]

=
∑
r,r′

�+
r σi�r′δr,r′ =

∑
r

�+
r σi�r =

∑
r

S i
r, (A3)

where S i
r = �+

r σi�r is the pseudospin operator in the rth unit
cell. This yields an infinitely long-range interaction between
the pseudospins in real space as

Hint = −
∑

i=x,y,z

gi

4N

(∑
r

S i
r

)2

= −
∑

i=x,y,z

gi

4N

∑
r,r′

S i
rS i

r′ . (A4)
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