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Mixed s-sourcery: Building many-body states using bubbles of nothing
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We recently introduced the idea of s-sourcery [B. Swingle and J. McGreevy, Phys. Rev. B 93, 045127 (2016)], a
general formalism for building many-body quantum ground states using renormalization-group-inspired quantum
circuits. Here we define a generalized notion of s-sourcery that applies to mixed states and study its properties and
applicability. For our examples we focus on thermal states of local Hamiltonians. We prove a number of theorems
establishing the prevalence of mixed s-source fixed points, giving results for free fermion models, conformal
field theories, holographic models, and topological phases. Thermal double states (also called thermofield double
states) and the machinery of approximate conditional independence are used heavily in the constructions. For
a large class of models we provide an information theoretic argument for the existence of a local Hamiltonian
whose ground state is the thermal double state, and in some cases we construct such a Hamiltonian.
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I. INTRODUCTION AND DEFINITIONS

Many interesting states of matter cannot be built by acting
on a product state with a local unitary circuit of small depth. In
[1], we introduced a quantitative refinement to this obstruction
via a program which we call s-sourcery. The idea is, rather than
building the state all at once, to build the system hierarchically,
one scale at a time, with local unitaries. The label s specifies
the number of copies of the ground state of the system required
to double the system size with local unitaries. These unitaries
act on s copies of the system of linear size L, and the requisite
number of decoupled degrees of freedom (ancillae), initialized
in product states, to produce a single copy of the system of
linear size 2L.

A more highly entangled ground state requires larger s. (It
is conceivable that other resources in the ground state besides
entanglement may also require larger s.) In [1] we used this
point of view to prove the area law for entanglement entropy
of subregions for a large class of states matter, namely those
in d spatial dimensions with s < 2d−1.

A unitary map which doubles the system size in this way
is called a renormalization-group (RG) circuit. A practical
benefit to finding an RG circuit is that it can be used to
construct a multiscale entanglement renormalization ansatz
(MERA) network [2], an efficiently contractible tensor net-
work representation of the ground-state in question.

In this paper, we introduce the idea of mixed-state
s-sourcery. In particular, the goal is to extend the s-sourcery
construction of pure states of Ref. [1] to mixed states. We will
focus primarily on thermal states of local Hamiltonians. A
key message emerging from these results is that ground-state
techniques permit us to address thermal states as well. Hence,
the ground-state problem is rather more general than it might
at first appear.

Motivation. One motivation for the extension of s-sourcery
to mixed states comes from hopes of improving our under-
standing of transport of charge and energy and of nonequilib-
rium steady states in strongly correlated quantum many-body
systems (e.g., [3,4]). We are particularly interested in cases
where a quasiparticle description is not applicable. In such
cases, a tensor network representation of the full nonequilib-

rium steady state might enable efficient calculation of currents
and other physical properties. In a forthcoming companion
paper, some of the results in this work will be applied to that
problem to establish the existence of efficiently contractible
tensor networks for a broad class of nonequilibrium steady
states [5].

A skeptical reader might ask the following. Is not the
entanglement structure a delicate ground-state phenomenon
which will be washed out by finite temperature or by coupling
to a noisy environment? Why do we need quantum mechanics
in such a situation?

Indeed, in standard examples, one does not need to account
for long-range entanglement.1 However, the form of the
short-range entanglement is not altered by a low-enough
temperature, and it is crucial for the physics. For example, hy-
drodynamics (a classical description) may correctly describe
the long-wavelength and low-energy physics of a strongly
interacting conformal field theory at finite temperature, but
the transport coefficients entering the hydrodynamic equations
contain physics at and above the thermal scale where quantum
fluctuations remain important.

To be more precise, consider the density matrix for a locally
thermal state of some quantum fluid,

ρ � Z−1e− ∑
x βx (Hx−Jxvx ),

with Hx the Hamiltonian density, β−1
x a local temperature,

Jx a current density, and vx a local fluid velocity. It is
assumed that βx and vx vary slowly on the scale of the
thermal correlation length ξ . In the worst case, computing
averages in such a state is just as hard as a computing
averages in a quantum many-body ground state. (It may
be interesting to formulate a rigorous statement along these
lines.) In this language, the purpose of this line of work is
to show that states like ρ are not worst-case examples, but
rather that they are well approximated by a certain form,
with no long-range entanglement, which correctly captures
the short-range entanglement. This form is essentially a tensor

1See, however, Sec. VI B.
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network. Analogous to the way hydrodynamics separates low-
and high-energy physical processes, this representation factors
out the quantum mechanics: Entanglement and quantum
fluctuations are confined to clusters of size ξd .

Previous progress towards efficient representations of ther-
mal states of local quantum many-body systems includes [6]
(in the case of Hamiltonians made from commuting terms)
and [7]. In this context, one of our main results is that a
wide variety of thermal states have purifications which can
be prepared with a finite-depth quantum circuit. This implies
that thermal expectation values can be efficiently computed,
which is stronger than saying that such states have efficient
representations (quasipolynomial in system size number of
parameters).

Another motivation comes from the study of holographic
duality, specifically recent proposals relating the circuit com-
plexity of the boundary quantum state to the geometry of
the bulk black hole [8–10]. A major open question there
concerns the complexity of the thermal double state. This
is a state |T 〉12 on two copies of the system such such
tr2(|T 〉〈T |12) = e−H1/T /Z; i.e., |T 〉 is a purification of the
thermal density matrix. Such a state is supposed to be dual to
the so-called maximal analytic extension of the Anti–de Sitter
(AdS)-Schwarzchild black-hole geometry [11]. It describes an
entangled state of two conformal field theories. Our results
below provide the first rigorous bounds on the complexity of
such states.

A final, more abstract, motivation for this work is the
following general question. Can ground-state techniques be
usefully applied to thermal states? We argue that the answer
is emphatically yes and, in particular, that purifications of
thermal states can often be cast as ground states of local
Hamiltonians.2 To facilitate our analysis, we also make
heavy use of a relatively new technology in quantum many-
body physics, the machinery of approximate conditional
independence describing approximate quantum Markov states
(see, e.g., [13–16]). Such states have a special structure of
correlations that generalizes the classical notion of a Markov
chain [17], e.g., three systems A, B, and C such that A and C

are independent given B. In such cases, correlations between
A and C are, in essence, mediated by B, and the global state
of ABC takes a particularly simple form. We show that a wide
variety of thermal states of local Hamiltonians are of this type.

Plan. In the remainder of this section we introduce several
compelling notions of what it means for a density matrix to
be an s-source fixed point and discuss their properties, as
well as the relations between these definitions. In Sec. I B we
describe a strategy for constructing s = 0 RG circuits using
arrays of holes in space. Section II proves that a thermal
state of a local free fermion Hamiltonian is an s = 0 fixed
point. Section III uses our knowledge of the entanglement
entropy of subregions in a thermal state of a conformal field
theory (CFT) to constrain its mixed-s-sourcery index (i.e., s).
For the special case of CFTs with a classical gravity dual,
Sec. IV shows that s = 0 is built into the Ryu-Takayanagi
formula [18]. Section V incorporates our understanding of
s > 0 ground states to improve the locality properties of the

2Previous work in this direction is [12].

quantum circuits resulting from our construction. Section VI
analyzes topological gauge theories in various dimensions as
s-source fixed points, at T = 0 and T > 0. This analysis leads
us to conjecture that mixed-s > 0 is a condition for finite-
temperature quantum memory. Section VII discusses new
frontiers opened by this line of work and several applications
of our results. The appendixes collect some useful background
material.

A. Definition of mixed s-sourcery

In this section we present three definitions of mixed-state
s-sourcery in order of increasing generality. The most general
definition turns out to be the easiest to work with, at least
as far as the computations in this paper are concerned, but
all three seem to be useful for studying many-body mixed
states. Also, all three forms have the property that correlations
may be efficiently computed. We will discuss the relationships
between the various definitions afterward. First, we define the
basic notion of a quasilocal quantum channel.

A quasilocal quantum channel is a completely positive trace
preserving map N from states of system A to states of system
A′ with certain locality properties. It must be of the form

N (ρA) = tr(A′)c (U
†
AEρAσEUAE), (1.1)

where an environment E is introduced, the trace is over the
complement (A′)c of A′ in AE (we allow A′ to be bigger than
A so only a part of E is traced out), σE is a fixed local product
state, and UAE is a quasilocal unitary. In short, we may tensor
in extra degrees of freedom in a fixed local product state, act
with a quasilocal unitary, and then trace some of the extra
degrees of freedom back out. We often refer to such maps as
local channels. It will sometimes be necessary to specify the
range r of the quasilocal unitary (length scale beyond which
the terms in UAE decay faster than any power) in which case
we refer to an r-local channel.

Definition 1. Mixed s sourcery: Noisy. A sequence of states
{ρL} form a noisy s source fixed point if

ρ2L = V

⎛
⎝ρL ⊗ · · · ⊗ ρL︸ ︷︷ ︸

s times

⊗σ

⎞
⎠V †, (1.2)

where σ is a product state (the noise) and V is a quasilocal
unitary.

With the noisy definition the relationship between different
scales is required to be unitary, but we are allowed to inject
extra noise in the form of the state σ . However, no extra degrees
of freedom are allowed to be traced out so we may think of this
as a case where an environment is introduced which cannot be
traced out. This is the most restrictive definition of mixed-state
s-sourcery. Related definitions have been suggested in [19,20]
and in [21].

Definition 2. Mixed s-sourcery: Open. A sequence of states
{ρL} form an open s source fixed point if

ρ2L = N

⎛
⎝ρL ⊗ · · · ⊗ ρL︸ ︷︷ ︸

s times

⎞
⎠, (1.3)

where N is a quasilocal quantum channel.
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With the open definition the relationship between different
scales is no longer unitary but is allowed to be a more general
quantum operation. The difference between the open and noisy
definitions is simply that in the open definition we are allowed
to trace out part of the environment. Every noisy s-source
fixed point is also an open s-source fixed point; for example,
we can generate the noise σ using a local channel and then
apply the unitary transformation and the composition of these
two transformations is a quasilocal channel.

Definition 3. Mixed s-sourcery: Purified. A sequence
of states {ρL} form a purified s-source fixed point if
there exists a sequence of purifications {|√ρL〉12} with
tr2(|√ρL〉〈√ρL|12) = ρL and

|√ρ2L〉 = Ṽ

⎛
⎝|√ρL〉 ⊗ · · · ⊗ |√ρL〉︸ ︷︷ ︸

s times

⊗|0 · · · 0〉
⎞
⎠, (1.4)

where |0 · · · 0〉 is a product state of the appropriate size and Ṽ

is a quasilocal unitary on AsE.
A purified s-source fixed point is the most general form we

consider in this paper. Any open s-source fixed point is also a
purified s-source fixed point since we may simply hold onto
the environment which purifies the action of the channel at
each step. The difference is that in the purified case we do not
reuse an assumed-to-be-forgetful environment at each step; the
cost is a geometric buildup of the local dimension of order the
full Hilbert space dimension.3

When the sequence of states {ρL} are thermal states of
a local Hamiltonian, we will often refer to the purification
|√ρL〉12 as a thermal double state, and we denote it as |T 〉.
(In the field-theory literature such a state is also called a
thermofield double state, but we prefer the simpler moniker.)
The thermal double state is not unique: If |T 〉12 is any thermal
double state, then I1 ⊗ U2|T 〉12 is also a thermal double state
(with respect to system 1).

Some comments follow.
(i) As in [1], we are using the phrase “fixed point” loosely

to refer to the entire phase.
(ii) When making quantitative error estimates, we should

specify a maximum range for the local channels and/or local
unitaries in question.

(iii) More generally, the value of s may be scale dependent.
Depending on the range of the unitaries, some states, e.g., a
d = 1 free fermion metal at low T , will be s = 1 until the scale
of ξ = vF /T (vF is the Fermi velocity) is reached, at which
point it becomes s = 0.

(iv) The states {ρL} could be thermal states of the same
Hamiltonian on different system sizes or it could be useful to
let the Hamiltonian flow.

(v) Finally, the above definitions include and generalize
the ground-state definition given in [1].

3For example, every channel from n to n qubits can be obtained by a
unitary acting on n + 2n qubits (the 2n comes from the environment).
Since the number of qubits at step � of the growth process is 2d�, the
size of the environment at every growth step is proportional 2d�. The
geometric sum

∑
� 2d� counts the total number of environment qubits

used and is of order 2d�max , where N = 2d�max is the final number of
qubits.

We note that Hastings has proposed a definition of topolog-
ical order at finite temperature [22]: A state is not topologically
ordered when it can be obtained from a classical state (a
state diagonal in a local product basis) by acting with a local
channel. However, because a classical state can be long-range
correlated, Hastings’ notion of triviality is, in fact, stronger
than the s = 0 condition: s = 0 states are topologically trivial
by Hastings’ definition, but the reverse is not necessarily true.

B. Wormhole arrays and bubble-of-nothing arrays

In this section we explain the origin of our subtitle and
discuss in broad terms our approach. First we discuss the scope
of the work and then transition into a discussion of the key idea
of bubble-of-nothing arrays.

Although we focus on non-zero-temperature states for most
of the paper, mixed-state s-sourcery can be useful even for
zero-temperature pure states; in this sense the word “mixed”
is a bit of a misnomer, we are just using the distinction between
a local channel and a local unitary even when the output is pure.
The following example shows that, at least in the special case
of ground states which are pure, there is a distinction between
between noisy and open fixed points.

Symmetry-protected states are zero-temperature quantum
phases that are nontrivial only given a certain symmetry; here
nontrivial means that the system must pass through a phase
transition to reach a trivial product state. Symmetry-protected
states are defined to be short-range entangled in the sense
of having no topological entanglement entropy, no anyonic
excitations or excitations with fractional quantum numbers,
and no topological ground-state degeneracy. However, not
all symmetry-protected states can be produced from product
states using a short depth circuit. For example, integer quantum
Hall states (which are, in fact, not protected by any symmetry
but are simply protected) cannot be produced from product
states using a short depth circuit. Hence, they cannot be noisy
s = 0 fixed points (the “noise” would have to be pure in this
case). Nevertheless, all symmetry-protected states, including
those which are protected in the absence of any symmetry, are
open s = 0 fixed points.

The proof is simple. All such states |ψ〉 are invertible [1],
which means there is an inverse state |ψ−1〉 such that we
can produce |ψ〉|ψ−1〉 from a product state with a quasilocal
unitary. The channel then consists of an environment which
duplicates the original system, the above quasilocal unitary
which produces |ψ〉|ψ−1〉, and a tracing out of the environ-
ment. Since the system and environment are not entangled
after the quasilocal unitary acts, the output is a pure state of
the system.

In a little more detail, the notion of invertible states in [1] is
based on the following idea: The state of a gapped system may
be deformed into a product state by first deforming the state
to introduce an array of small holes into the system and then
expanding the holes until they consume the entire system. If
both steps can be done without closing the gap, then the state
of the system is equivalent to a product state.4 This was called

4In the case of symmetry-protected states, the process should also
respect the given symmetry at every step, so that the resulting circuit
commutes with the symmetry.
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FIG. 1. A two-dimensional (2D) state and its inverse state, connected by an array of wormholes. The wormholes expand until the system
is decomposed into an array of isolated molecules.

the wormhole array argument in [1] but from the point of
view of the state |ψ〉, it could be called the bubble-of-nothing
array argument. It is similar to an independent unpublished
construction due to Kitaev [23].

Given a gapped topological liquid, there are two possible
obstructions to deforming the system in the manner we require,
one associated with long-range entanglement and one associ-
ated with gapless edge or boundary states. For symmetry-
protected states, long-range entanglement is ruled out by
the assumption of the vanishing of the topological entropy,
the absence of anyons, etc. (we analyze this obstruction in more
detail in Sec. VI). However, even in the absence of long-range
entanglement, the system can possess edge states which make
the system with holes gapless. This prevents the holes from
being adiabatically expanded. However, as argued in [1], every
short-range entangled state has an inverse state such that the
combined system has no protected edge states. The coupling
of the system and its inverse can be depicted as a wormhole
connecting the system and its inverse, so the array of holes is
understood as an array of wormholes in this case, as depicted
in Fig. 1.

The wormhole/bubble-of-nothing array argument can be
described in precise terms as a construction or deconstruction
of the state using a cellular decomposition of space. For
example, starting from the full state in d dimensions, we first
remove the d cells to leave a (d − 1) skeleton. Then we remove
the (d − 1) cells to leave a (d − 2) skeleton, and so forth. At
the end of the procedure we are left with decoupled 0 cells
in a product state. The unitary time evolution which reverses
this procedure gives the desired hierarchical construction of
the state from product states (s = 0).

The preceding analysis was for gapped ground states of
local Hamiltonians, but very similar reasoning applies to short-
range correlated thermal states. In our discussion of CFTs at
finite temperature (Sec. III) we will give a detailed discussion
of the cellular construction of thermal states. We also discuss in
more detail in Sec. VI the precise manner in which long-range
entanglement represents a topological obstruction to this kind
of hierarchical reconstruction from product states. As we will
see, a virtue of this bubble-of-nothing array argument is that
it exposes physics content of the topological entanglement
entropy (TEE) terms in dimensions higher than two, i.e., gives
them an operational meaning.

C. Properties

Here we record some properties of mixed s source fixed
points.

1. Equivalence of open and purified for s = 0

We have seen that the noisy and open definitions need not
be be equivalent even at s = 0; i.e., there are s = 0 open fixed

points that are not also s = 0 noisy fixed points. However, the
purified and open definitions do agree at s = 0.

2. Mutual information growth

While a local channel can produce volume law entropy, it
cannot produce much correlation and entanglement as mea-
sured by the mutual information I (A,B) ≡ S(A) + S(B) −
S(AB). Given a subregion AR of size R in d spatial dimensions
it is true that

I
(
A2R,Ac

2R

)
� sI

(
AR,Ac

R

) + kRd−1. (1.5)

The constant k depends on the shape and is proportional to
the logarithm of the local dimension (having in mind that the
system is defined on a lattice or graph with a fixed local Hilbert
space).

The mutual information bound is proven using the Stine-
spring dilation of the local channel which performs the
mapping. Fix a region of interest (and use the channel variables
introduced above). The initial mutual information of the
enlarged system is s times the mutual information of the
chosen region (because initially we tensor in a product state
σE). The final mutual information of the enlarged system
is upper bounded by the initial mutual information plus an
area law’s worth of mutual information. This is because the
mutual information of U

†
AEρAσEUAE is bounded by the mutual

information of ρA plus an area law contribution due to UAE (σE

being a product state) [24]. Finally, since mutual information
decreases when regions are discarded, I (A,BC) � I (A,B), it
follows that the mutual information of the final state after the
partial trace over E is still bounded as claimed.

3. Induced map on local operators

Second, a local channel maps local operators to local
operators. Any channel has a (nonunique) Kraus representation
as

N (ρ) =
∑

α

MαρM†
α, (1.6)

where ∑
α

M†
αMα = 1. (1.7)

By switching to the “Heisenberg picture” for channels, we may
write

tr[ON (ρ)] = tr[N†(O)ρ] ≡
∑

α

tr(M†
αOMαρ). (1.8)
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If the channel is local, then the Kraus operators may be chosen
to be local,5 so the new operator N†(O) is local if the old
operator O is local. Hence, expectation values may still be
computed efficiently.

A toy example. Consider a linear array of L qubits. Suppose
each qubit experiences a dephasing channel of the form

D(ρ) = (1 − p)ρ + pZρZ. (1.9)

This channel has Kraus operators M1 = √
1 − p and M2 =√

pZ. The channel acting on the entire qubit array is D⊗L and
has 2L Kraus operators including√

1 − p
k√

p
L−k1 ⊗ · · · ⊗ 1 ⊗ Z ⊗ · · · ⊗ Z (1.10)

for all k and all possible permutations of the operators.
The conjugate channel (D⊗L)

†
, when acting on a local

operator O, will have most of the Kraus operators pair up
as M†

αMα and sum to 1 away from O. Near O a few remaining
Kraus operators do not precisely cancel and we obtain a new
local operator as the output of the conjugate channel acting on
O.

II. FREE FERMIONS AT FINITE TEMPERATURE ARE
s = 0

In this section we prove the following theorem. Given
any quadratic local fermion Hamiltonian of the form H =∑

x,y c
†
xhx,ycy (x and y are position labels; hx,y decays as

|x − y| → ∞), any thermal state of H with T > 0 is an s = 0
purified fixed point. The range of the required local channel is
given by the correlation length of the finite-temperature state.
The proof uses the machinery of thermal double states (also
called thermofield double states), so we first introduce the
necessary background.

Given a local Hamiltonian H the thermal state at tempera-
ture T is

ρ(T ) = e−H/T

Z
, (2.1)

where Z(T ) = tr(e−H/T ) is the partition function. This mixed
state of the system may be derived from a pure state by
introducing a second copy of the system. The thermal double
state,

|T 〉12 =
∑
E

√
e−E/T

Z
|E〉1|E〉2, (2.2)

has the property that

tr2(|T 〉〈T |) = ρ1 = ρ(T ). (2.3)

There are, in fact, many thermal double states; one infinite
family is obtained by taking |T 〉12 and acting with any unitary
of the form I1 ⊗ U2. It is sometimes convenient to partially fix

5Proof. The channel being local means that it has a purification with
a local unitary U . However, then Kraus operators can be taken to
be Mα = 〈α|U |0〉, where |0〉 is a reference state of the environment
and |α〉 is a large-enough set of basis states of the environment.
Taking matrix elements on the environment preserves the range of
the operator on the system, as long as the basis is local.

this freedom by demanding that |T 〉12 be a +1 eigenstate of a
swap operator which exchanges the two systems.

The key physical idea is this: Because |T 〉 has short-range
correlations, one might suspect that it could be construed as the
ground state of a gapped Hamiltonian. We now show that this is
the case for free fermion thermal states; a Hamiltonian whose
ground state is |T 〉 will be called a thermal double Hamiltonian.
The proof that all finite-temperature free fermion states are
purified s = 0 fixed points then follows by constructing a
family of thermal double Hamiltonians which interpolate
between temperature T and infinite temperature (where the
state is ultralocal).

For convenience we describe the construction in one
spatial dimension and for spinless fermions. None of these
simplifications are essential and the theorem is completely
general. The only assumptions are T > 0 and a local quadratic
Hamiltonian.

Consider a one-dimensional translation invariant chain of
fermions with Hamiltonian

H =
∑

k

εkc
†
kck. (2.4)

The momentum space operators ck are related to position space
operators via

ck =
∑

x

e−ikx

√
L

cx, (2.5)

with L the number of sites. Whether the spectrum of H is
gapped or gapless above the ground state, the corresponding
thermal state has decaying correlations. Introduce a second
copy of the system with fermion operators c̃k .

To get the main idea, focus for a moment on a single mode c

with energy ε. This mode should be occupied with probability
f (ε) = (eε/T + 1)−1, so we may write the relevant thermal
double state as

|T 〉 =
√

1 − f |n = 0〉|ñ = 1〉 +
√

f |n = 1〉|ñ = 0〉, (2.6)

where n = c†c and ñ = c̃†c̃. Note that we have implemented
a convenient particle-hole transformation so that each state in
the superposition has the same charge (the same eigenvalue
of n + ñ). It is convenient to defined rotated modes (not to be
confused with the dimension of space),

d =
√

f c +
√

1 − f c̃ (2.7)

and

d̃ = −
√

1 − f c +
√

f c̃, (2.8)

so that the thermal double state is simply |T 〉 = d†|vac〉.
The thermal double state is trivially the ground state of a

Hamiltonian of the form

hT = −d†d + d̃†d̃. (2.9)

Indeed, the ground state of this Hamiltonian simply has d

occupied and d̃ empty. Notice also that the gap is independent
of f , but, of course, locality has no meaning in this single-mode
example.

Now we generalize this construction to the multimode
system described by H . Let fk be the average occupation
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of level εk (Fermi function) and define

dk =
√

fkck +
√

1 − fkc̃k (2.10)

and

d̃k = −
√

1 − fkck +
√

fkc̃k. (2.11)

The thermal double Hamiltonian is taken to be

HT =
∑

k

(−d
†
kdk + d̃

†
k d̃k), (2.12)

so that its ground state,

|T 〉 =
∏
k

d
†
k |vac〉, (2.13)

is the thermal double state for ρ(T ).
As in the single-mode case, the gap of HT is constant

independent of T and system size L. However, it is not obvious
that HT is a local Hamiltonian. We now show that it is. Expand
HT in terms of the original modes to obtain

HT =
∑

k

[(1 − 2fk)c†kck − (1 − 2fk)c̃†c̃

− 2
√

fk(1 − fk)(c†kc̃k + c̃
†
kck)]. (2.14)

Expand each ck and c̃k in terms of position space operators to
construct the real space representation of HT ,

HT =
∑
x,y

[J1(x − y)c†xcy − J1(x − y)c̃†x c̃y

− J2(x − y)(c†x c̃y + c̃†ycx)], (2.15)

where

J1(x − y) = 1

L

∑
k

eik(x−y)(1 − 2fk) (2.16)

and

J2(x − y) = 1

L

∑
k

eik(x−y)2
√

fk(1 − fk). (2.17)

Now J1 is essentially just the correlation function of c
†
xcy

so it is exponentially decaying by assumption. J2 is a little
more complex, but it is also the Fourier transform of a
smooth function (provided T > 0), so it too will decay faster
than any power of |x − y|−1. In fact, both functions will
decay exponentially with some correlation length set by some
combination of the energy gap (if it exists) and the temperature.
For example, a finite-temperature metallic state would have
ξ (T ) = vF /T , where vF = ∂kεk|kF

. Hence, HT is a quasilocal
Hamiltonian with range ξ (the correlation length).

At infinite temperature all the fk = 1/2, so HT takes a
particularly simple form,

H∞ = −
∑

x

(c†x c̃x + c̃†xcx), (2.18)

which is ultralocal. The ground state of this Hamiltonian is
manifestly a product state in position space and can be obtained
from a product state of the c and c̃ variables by the action of an
ultralocal unitary which simply adds one particle in the mode
(cx + c̃x)/

√
2 for each x.

Since the gap of HT is independent of T and the range of
HT is bounded for any nonzero T , it follows that there is a
quasilocal unitary transformation mapping the ground state of
HT to the ground state of H∞. To construct this unitary we
use quasiadiabatic continuation [25–27]. Introduce a family of
Hamiltonians H (η) = HT/η with the property that H (1) = HT

and H (0) = H∞. H (η) has a uniform gap and range bounded
by ξ (T ) [assuming ξ (T ) is a decreasing function of T ], so the
quasiadiabatic generator

−iK(η) =
∫ ∞

−∞
dtF (t)eiH (η)t ∂ηH (η)e−iH (η)t (2.19)

(F is the usual filter function) is local by Lieb-Robinson.
Thus, the ground state of HT is related to a product

state by quasilocal unitary, as claimed. The thermal state is
obtained by tracing out the auxiliary c̃ system. This establishes
the theorem. Furthermore, the proof is constructive: The
quasilocal generator K(η) is explicitly computable from H (η)
once F is fixed.

A comment on locality. In our explicit free fermion
construction the range of the thermal double Hamiltonian
directly corresponded to the range of correlations in the
thermal state. This enabled the gap of the thermal double
Hamiltonian to be constant as a function of T . We might ask
an alternative question: Is there a thermal double Hamiltonian
with fixed-range interactions but with a gap that depends
on T and on the gap of the original Hamiltonian? Such a
construction would accommodate long-range correlations not
by increasing the range of a fixed gap Hamiltonian but by
decreasing the gap of a fixed-range Hamiltonian.

It is not at all clear that this can be accomplished, in general,
although it is amusing to note that the T = 0 state, where
correlations might actually be long-ranged, is, by assumption,
the ground state of a local Hamiltonian.

In the case of free fermions one can make partial progress
as follows. By expanding the function f (ε) in powers of ε/T

one can correctly capture the low-energy part of the thermal
state (meaning the occupation numbers of states near ε = 0
is correctly reproduced), but the high-energy states are not
correctly captured. In particular, states very far below and
above the Fermi level are much more softly occupied than
in the true thermal state. Depending on the question, this
approximation may or may not be valuable. In any event, using
1 − 2f ≈ ε

2T
and

√
f (1 − f ) ≈ 1

2 , we see that the effective
single-particle Hamiltonian

hk =
(

εk

2T
1
2

1
2 − εk

2T

)
(2.20)

is local with a velocity set by T . Alternatively, by multiplying
through by T (which does not change the ground state),
we obtain a Hamiltonian with a gap proportional to T . The
approximation may be improved by keeping more terms in the
expansion of f at the cost of increased nonlocality.

Case of free bosons. We explicitly studied the case of free
fermions, but free bosons yield the same result. Consider a
single bosonic mode b obeying [b,b†] = 1 with Hamiltonian
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H = ωb†b. The thermal state is

ρ(T ) =
∞∑

n=0

e−βωn

Z
|n〉〈n|, (2.21)

with Z = (1 − e−βω)−1. Introducing a second mode b̃, the
thermal double state is

|T 〉 = 1

Z

∞∑
n=0

e−βωn/2|n〉b|n〉b̃. (2.22)

This thermal double state can be interpreted as a two-mode
squeezed state,

|T 〉 = e−rbb̃+rb†b̃† |0〉|0〉, (2.23)

where tanh r = e−βω/2. One can further verify that the two-
mode squeezed state is the ground state of a Hamiltonian
quadratic in b and b̃ (this is because the squeezing unitary
implements a linear transformation among b, b†, b̃, and b̃†),
so the remainder of the fermion analysis can be immediately
applied.

III. CFTs AT FINITE TEMPERATURE ARE s = 0

In this section we establish the existence of an approximate
local channel for general thermal states of field theories. It
is inspired by the wormhole array argument described in
Sec. I B and by Petz’s reconstruction map for states saturating
strong subadditivity [17]. Here by CFT, we intend also gapped
CFTs, i.e., topological field theories. Essentially, we aim to
reconstruct the CFT thermal state from local data using a
sequence of local quantum channels. We prove the following
theorem: The thermal state of any CFT which is smoothly
connected to T = ∞ is an open s = 0 fixed point, where the
local channel has a range set by the thermal length.

The argument is valid for known CFTs in d = 1,2,3 but can
fail in higher dimensions due to a topological obstruction to
reconstruction which persists at finite temperature. We discuss
these topological obstructions in more detail later. For now,
note that most quantum critical points of physical interest have
d < 4 and the arguments given in this section apply.

The key input needed for the construction is the form of
the entanglement entropy for various regions. Given a CFT in
d + 1 spacetime dimensions, the construction succeeds if the
entropy of any region A of linear size � has the form

S(A) = c1|A| +
∫

∂A

[
c2 +

∑
i>2

cifi(K,R)

]
+ O(�de−�/ξ ).

(3.1)

The first term is a volume term, the second term is a local
integral over ∂A of polynomials of local curvatures (extrinsic
K and intrinsic R), and the final term is an exponentially
small correction (provided � � ξ ). If this form is obeyed, then
appropriate linear combinations of entropies will cancel the
volume and boundary terms, leaving only exponentially small
corrections.

The form (3.1) holds if the thermal state in question is
adiabatically connected to infinite temperature. That is because
at high temperature, the state may be constructed by a path

integral where the thermal circle is much smaller than other
length scales, including the size of the region; such a thin
path integral produces an S(A) of the form (3.1), and a phase
transition is required to change this form.

Zero-temperature gapped states also typically have the
form (3.1) of entanglement with c1 = 0, but with additional
subleading topological terms. Such terms, if present, interfere
with the cancellation of various entropies and can obstruct
the reconstruction from local data. When these terms survive
to finite temperature they may obstruct the reconstruction of
the finite-temperature state from local data. Constraints on the
associated crossover functions were studied in [28].

We note that if there is a pure state with the same
entanglement structure of not-too-large subregions as the
thermal state (as would follow if highly excited pure states
of the system generically locally thermalize), then this forbids
the terms which are odd under the orientation reversal of the
boundary, such as odd powers of the extrinsic curvature.

In the remainder of this section we assume (3.1) and use it
to construct the s-sourcery map. In the next section we show
that (3.1) holds for holographic CFTs. We return to its possible
violation in Sec. VI.

Briefly, the key idea is that the form (3.1) implies that
the components of a cellular decomposition of space (as
in the bubble-of-nothing construction) form an approximate
quantum Markov chain (see Sec. A 3 for a brief review). The
newly developed understanding of the consequences of such
approximate conditional independence [15,16] then implies
the existence of the required s = 0 channel.

A. CFT1+1

As an example consider a conformal field theory in 1 + 1
dimensions. The entropy of an interval of length � is (see, e.g.,
[29])

S(�) = c

3
ln

[
sinh(πT �)

πT a

]
, (3.2)

where a is a UV cutoff. One easily checks that S(�) has the
claimed form with c1 = πcT /3 and c2 = c

3 ln ( ξ

a
) (there is no

curvature term) when � � 1/T = 2πξ .
Now consider a cellular decomposition of space. We have

thickened 0-cells of size �0 and 1-cells of length �1. We also
allow a buffer region of size �b. All lengths are taken to be
larger than the correlation length and will be specified in more
detail shortly. The decomposition is shown in Fig. 2, where
the 0-cells are in black, the 1-cells are in red, and the buffer
region is blue.

The idea of the conditional independence construction is to
show that the 1-cells are independent of the 0-cells given the
buffer regions. If this is true, then we can stitch space together
using local channels because the state is an approximate
quantum Markov chain.

The quantity we need to evaluate is I = I (1-cells :
0-cells|buffer), where I (A : C|B) is the conditional mutual
information of A and C given B which takes the form
I (A : C|B) = S(AB) + S(BC) − S(B) − S(ABC).
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Fa�ened 0-cells (black) and 1-cells (red). All objects correspond to one-dimensional 
regions in the CFT; the differing shapes are guides to the eye to differen�ate the 
components. The black dots do not correspond to single sites in the UV regulated 
model but rather to chunks of the CFT of size roughly a few thermal lengths.

Buffer regions added between the 1-cells and 0-cells. If all lengths in the diagram are 
large compared to the thermal lengths, then the red 1-cells are independent of the 
black 0-cells given the blue buffer regions.

FIG. 2. Geometry of approximate conditional independence cal-
culation in d = 1.

Since all lengths are assumed to be larger than ξ (T ) = 1
2πT

,
the asymptotic form of S(A) given in (3.1) applies.6 First,
observe that the volume terms, c1|A|, cancel in I since we have
|AB| + |BC| − |B| − |ABC| = 0. Similarly, the area terms,
c2|∂A|, also cancel since the number of positive boundaries
cancels the number of negative boundaries. This means that the
only contribution which does not cancel is the exponentially
suppressed terms, O(�de−�/ξ ). Hence, we find that

I = O(Ncellse
−�/ξ ), (3.3)

where � = min{�0,�1,�b} and Ncells is the number of 1-cells
(proportional to system size L).

Demanding that I < ε requires taking � = ξ ln (Ncells
ε

),
which is only modestly larger than the correlation length
even for very large system sizes. Reference [15] then implies
that there exists a recovery channel which reconstructs
ρ1-cells,0-cells,buffer from ρ0-cells,buffer (which is approximately
a product state) using a local channel acting just on the
buffer region and the 1-cells. [16] shows that this channel
is independent of the state of the 0-cells. The 0-cells are
themselves obtainable from a local channel. Hence, the
entire thermal state of the CFT can be constructed from the
composition of two channels, one which instantiates the 0-cells
and one which builds in the 1-cells. This means that the thermal
state of the CFT is approximately s = 0.

What is the actual channel? Both [15] and [16] are
nonconstructive, but it is known that for pure states the
transpose channel (see Sec. A 2) is within a square root of
being optimal [30]. Running the same argument for a thermal
double state then allows the use of the transpose channel as
the approximate reconstruction channel with a worse error of√

ε instead of ε (but this is a very modest worsening since
the range depends only on ln ε). Building on more recent
results, we give an explicit formula for a channel with the
desired properties in the discussion at the end of the paper. We

6The calculation S(many intervals) needed to obtain I may be
performed using the operator product expansion for the correlator
of twist fields on the torus. The geometry is such that the dominant
contribution comes from each pair of twist fields (associated to a
single interval) fusing to the identity.

also note that because the mutual information approximately
vanishes between the relevant regions, e.g., between different
parts of the buffer, the channels may all be taken to be local.7

We conjecture that this approximate local reconstruction
map can be completed to a quasilocal channel which exactly
reproduces the thermal state. This would imply that all thermal
states of CFTs are s = 0 (as expected). In the case of free
fermion CFTs we can prove this statement (previous section).

B. CFTd+1

The above argument generalizes immediately to higher
dimensions provided the higher-dimensional analog of (3.1) is
obeyed. The general procedure is to consider a fattened cellular
decomposition of space and assemble the state one step at a
time. For typical CFTs the conditional mutual information
still approximately vanishes.8 However, we must be cautious
in higher dimensions because of the possibility of corrections
to (3.1) coming from topological terms which persist to finite
temperature. For example, the 2-form toric code in d = 4 at
low temperatures has such obstructions [35], as we discuss in
detail below. This obstruction means that the 2-form toric code
remains s = 1 at finite temperature.

A more innocuous new wrinkle in d > 1 is the possibility
of regions whose boundaries have sharp corners. Such corners
produce additional universal singular terms [34,36] which
depend on the geometry of the corner. Like the (nonuniversal)
area terms, these corner terms cancel pairwise in the condi-
tional mutual information of the subcells. To be more precise,
if the system is gapless, then at zero temperature these corner
terms can involve logarithms of various subsystem sizes. Such
logarithms would only be expected to cancel up to an order one
constant; this is not sufficient for our construction. However,
if at finite temperature there is a decay of correlations set
by a thermal length, then the corner terms should involve
logarithms of the thermal length (instead of the subsystem
size) up to exponentially small corrections. In this case, our
claimed cancellation is valid for sufficiently large regions.

We illustrate the cellular construction in d = 2; the general
construction follows from it in a straightforward way. The
geometry is shown in Fig. 3. We begin with 0-cells which
being in a product state can be produced using a local
channel; call it N∅→0, so that ρ0-cells = N∅→0(·). (Note that
N∅→0 is a map from the empty set.) Next we verify that

7This mutual information condition is nontrivial. Consider the state
|0 · · · 0〉〈0 · · · 0| + |1 · · · 1〉〈1 · · · 1| and let A, B, and C be the cellular
regions discussed above and shown in Fig. 2. This state has the
property that the entropy of any region is 1, so I (A : C|B) = 0.
However, for any subregions b and b′ of the buffer I (b : b′) �= 0, so
while there is a channel to reconstruct ABC from AB and BC, this
channel does not factorize over the different buffer regions in Fig. 2.
Indeed, there are just two Kraus operators which measure {|0〉,|1〉}
and reattach the pieces as appropriate.

8This can again be seen from an operator product expansion point
of view except that now we must deal with extended twist fields
[31–34]. The dominant fusion channel is still to the identity; that is,
the twist field of each region prefers to annihilate with itself rather
than pairing with another twist field.
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FIG. 3. A region of the cellular decomposition in two dimensions. The middle figure shows the “buffer” regions between the 0-cells and
the 1-cells. The right figure shows the buffers between the 1-cells and 2-cells.

I0→1 = I (1-cells : 0-cells|buffer) ≈ 0 using (3.1). Approxi-
mate conditional independent implies that there exists a chan-
nel which approximately reconstructs the state ρ1-cells∪0-cells

from ρ0-cells (the buffer is present as well, but we always
absorb the buffer into the 1-cells for the purposes of the
latter parts of the construction.) Call the channel N0→1

so that ρ1-cells∪0-cells = N0→1(ρ0-cells). Finally, we verify that
I (2-cells : 0-cells ∪ 1-cells|buffer) ≈ 0 again using (3.1). This
gives a final channelN1→2 which satisfies ρ2-cells∪1-cells∪0-cells =
N1→2(ρ1-cells∪0-cells). The channels N∅→0, N0→1, N1→2 are
local, so the composite channel is also local but with a larger
range. Thus, we have

ρ(T ) = ρ2-cells∪1-cells∪0-cells ≈ N1→2{N0→1[N∅→0(·)]}, (3.4)

so thermal states of CFTs are s = 0 with range set by the
thermal length. The generalization to higher dimensions is
straightforward, but harder to visualize; the first step for D = 3
is shown in Fig. 4.

We again conjecture that the local channel which approx-
imately produces the thermal state can be completed to a
quasilocal channel that exactly produces the thermal state. This
conjecture is true for free fermion CFTs in any dimension. An

FIG. 4. The cellular decomposition in three dimensions. The 0-
skeleton is shown as large cubes; the 1 skeleton adds in the pink
prisms. The 2- and 3-cells are not shown.

argument analogous to the free fermion construction can be
constructed for finite-temperature free boson states as well.

One consequence of our results is that, for any CFT obeying
our entropy assumption, there exists a local Hamiltonian whose
ground state is approximately the thermal double state. The
Hamiltonian is local with a range set by the thermal length (or
correlation length). The above general information theoretic
arguments do not permit us to further constrain the form of such
a thermal double Hamiltonian, although in some special cases,
e.g., free fermions, we could say considerably more about
the complexity of the local terms. Some additional examples
and comments about thermal double Hamiltonians are given
in the discussion. Finally, note that a positive answer to our
conjecture about the existence of an exact quasilocal channel
would imply the existence of a quasilocal Hamiltonian whose
exact ground state is the thermal double state.

IV. HOLOGRAPHIC MODELS AT FINITE T ARE s = 0

In this section we give a demonstration that holographic
models are s = 0 when the state of the system is such that
geometry has an IR wall. This includes black holes, hydrody-
namic states in the context of the fluid/gravity correspondence,
and gapped states, e.g., the AdS soliton. The approach is
again to use approximate conditional independence. The
main technical point is that the Ryu-Takayanagi formula
[18] enables easy computation of entropies at leading order
in large N [gauge theory gauge group is, e.g., SU(N )].
However, we must be a little cautious since an order one
term in I (A : C|B) can still obstruct reconstruction. Thus,
we must also make an argument about the subleading terms
in the entanglement entropy; the argument uses the Faulkner-
Lewkowycz-Maldacena correction term [37].

The key result from the holographic computations of
entropy is that (3.1) is again obeyed up to O(1/N ) terms.
Thus, in the large N limit the state obeys approximation
conditional independence and the cellular decomposition used
above provides a framework to construct such a holographic
state.

We now explicitly show this for black-hole states including
an analysis of the subleading correction terms. Results for the
much more general setting of the fluid/gravity correspondence
will be presented in [38].

Sketch of holographic duality. For readers unfamiliar with
holographic duality [39–41] we very briefly sketch the needed
ideas. A less compact and more useful discussion can be
found in a number of reviews [42–47]. First we review the
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gravitational basics and then briefly discuss the duality and the
key dictionary entries translating between bulk and boundary.

For simplicity we consider pure Einstein gravity with
negative cosmological constant in D + 1 dimensions. D =
d + 1 is the spacetime dimension of the boundary field theory.
The dynamical field in the bulk is the metric gab; from the
metric we can construct various geometrical objects including
the Riemann curvature tensor Ra

bcd , the Ricci curvature tensor
Rab, the Ricci scalar R = gabRab, and the determinant of the
metric |g|. In terms of these objects the Einstein-Hilbert action
is

S = 1

2κ2

∫
dD+1x

√
|g|(R − 2�), (4.1)

where � < 0 is the cosmological constant and the coupling
constant is κ2 = 8πGN in terms of Newton’s constant. The
equations of motion following from this action are Einstein’s
equations in the absence of matter:

Rab − 1

2
Rgab + �gab = 0. (4.2)

Anti-de Sitter space with metric

ds2 = L2

r2
(−dt2 + dr2 + d �x2) (4.3)

solves the source-free Einstein equations provided � =
−fd/L

2, with fd a constant.
According to the holographic dictionary, this AdS space-

time is dual to the ground state of a conformal field theory
whose UV we may think of as residing at r = 0 (the boundary
of space). With the above coordinate system the xμ = (t,�x) can
be identified with coordinates in the boundary CFT, while r is a
coordinate for the emergent radial dimension. The meaning of
the duality is partially elucidated by matching symmetries.
Poincaré transformations on the CFT are represented on
the bulk coordinates as r → r and xμ → Aμ

ν xν + bμ. This
transformation is an isometry of the AdS metric. Similarly,
scale transformations in the CFT are represented on the bulk
coordinates as r → λr and xμ → λxμ, which is again an
isometry of the AdS metric.

If the CFT ground state is dual to empty AdS then more
general spacetimes are dual to excited states of the CFT. Note,
however, that not every CFT state has a nice geometrical
description; only special semiclassical states will be dual
smooth geometries in the bulk. The conditions on the CFT
for the existence of a nice gravitational dual are still not fully
understood, but a partial discussion may be found in the above
reviews.

Finally, we must specify how entropy in the boundary CFT
is to be encoded in the bulk. The answer is given by the
Ryu-Takayanagi prescription, which works as follows. Fix a
boundary region A whose entropy we wish to compute. Then
consider the set � of all bulk surfaces σ which have ∂σ = ∂A

and which are homologous to A (meaning the closed surface
obtained by gluing A and σ along their common boundary is
contractible). The entropy of region A is then

S(A) = min
σ∈�

|σ |
4GN

(4.4)

or the area of the minimal surface in Planck units. This formula,
which applies to Einstein gravity, generalizes the Bekenstein-
Hawking formula for black-hole entropy and is supported by
a great deal of evidence.

Conditional mutual information for black-hole states. Now
we turn to an actual calculation of the conditional mutual
information in a finite-temperature state of the CFT described
by a bulk black hole. The black-hole geometry is

ds2 = L2

r2

[
−f (r)dt2 + 1

f (r)
dr2 + d �x2

]
, (4.5)

where f (r) = 1 − (r/rh)d+1 and rh is the location of the event
horizon. The horizon position rh is related to the temperature
by T rh = d+1

4π
. One can easily verify that the above metric

again solves Einstein’s equations with the same negative
cosmological constant as for empty AdS.

Let us begin with the case of d = 1. The length of a minimal
geodesic associated to a boundary length � is proportional to
the entropy formula written above:

|σ�| ∝ ln sinh(πT �). (4.6)

To review how the minimal area formula works, consider now
two intervals of length � separated by a distance x; the intervals
may be taken to be [0,� and [� + x,2� + x]. There are two
competing minimal surfaces, σ1 which connects x = 0 to x =
� and � + x to 2� + x and σ2 which connects 0 to 2� + x

and � to � + x. The curve of minimum length for a given
x,� determines the entropy of the pair of intervals. There will
be a critical x such that σ2 dominates for x < xc, while σ1

dominates for x > xc. The curves have equal length at x = xc,
so xc is determined by

sinh[πT (2� + x)] sinh(πT x) = sinh2(πT �) (4.7)

to be xc = ln 2
2πT

in the limit � � 1/T . This computation
shows that the mutual information between the two intervals
is large for x < xc and then drops to zero at x = xc and
remains zero thereafter. The suddenness of the transition is an
artifact of the large-N limit which allows the classical gravity
approximation.

Now what about the actual computation of interest, the
conditional mutual information I (A : C|B)? A is a set of
intervals, each of length �0; B is a set of intervals surrounding
A, each of length �b; and C is a set of intervals, each of length
�1. The four entropies needed are S(AB), S(BC), S(B), and
S(ABC). S(ABC) is just the total thermal entropy (which
must be regulated in the planar limit we consider but is just
proportional to total system size). Following the two interval
calculations above, it may be verified that if �1,b,2 � 1/T then
the dominant geodesic is the one which which connects each
interval to itself. Then the conditional information per unit cell
(each unit cell contains one interval from A, two from B, and
one from C) is

I (A : C|B)

unit cell

= c

3
ln

{
sinh[πT (�0 + 2�b)] sinh[πT (�1 + 2�b)]

sinh2(πT �b)eπT (�0+�1+2�b)

}
,

(4.8)

155125-10



MIXED s-SOURCERY: BUILDING MANY-BODY STATES . . . PHYSICAL REVIEW B 94, 155125 (2016)

where c is the central charge (the large-N limit being a large-
c limit here). In the limit �0,b,1 � 1/T the above formula
reduces to

I (A : C|B)

unit cell
∼ ce−�/ξ , (4.9)

so taking � = ξ ln ( cNcells
ε

) suffices for small reconstruction
error.

Note that the holographic limit of large c causes a further
blowup in �, growing like ln(c). This is a relatively mild blowup
(e.g., c = 1010 only increases � by a factor of 10) but it is
likely suboptimal. We conjecture that this blowup is artificial
in the sense that there is a quasilocal channel of range ξ which
exactly produces the thermal state. To understand why the
factor of c appears, consider c copies of a free fermion CFT.
As we showed above, the free fermion system has a quasilocal
channel of range ξ which exactly reproduces the thermal state,
but if we wish to truncate this channel to a strictly local channel
and maintain small total error in trace norm, say, then this will
require a range that grows like ξ ln c because each copy must
be accurate to error ε/c so that the total error over all c copies
is ε. Hence, the c arises from the very stringent notion of
approximation employed.

Finally, while the geometric computation gives the leading
order in large c answer, there are also subleading in c terms
and the O(1) term must be analyzed since even an order one
term in I can obstruct the use of [15] and [16]. Now we
know in d = 1 from the general CFT computation that the
O(1) term is also exponentially small; for completeness let us
recall how this result is obtained holographically [37]. 1/c

corrections correspond to quantum corrections in the bulk
gravity theory and the first quantum correction to S(A) is
obtained by evaluating the entanglement entropy of the interior
of A ∪ σ (A) in the bulk. That is, we regard the bulk quantum
fields (metric, et cetera) as living in a fixed curved background
and evaluate their entanglement entropy in the bulk region
bounded by A and σ (A). Since the background geometry is
thermal and since the bulk fields are free to leading order, the
bulk entanglement will have the same cancellation properties
as the bulk area law entanglement.9

Finally, although we worked through the case of d = 1
in detail, the story is general to any dimension. Because of
the minimization involved in the large N contribution to the
entanglement and because the relevant minimal surfaces all
hug the horizon when the linear size is much greater than 1/T ,
it follows that (3.1) is obeyed. The first quantum correction can
also be controlled by studying the entanglement entropy of
bulk fields in the black-hole geometry (which typically leads
to decaying correlations). We defer a more complete analysis
to [38].

9More explicitly, since the bulk fields are free to leading order,
their state and hence their entropy is determined just by their two-
point correlation functions. These correlation functions are related
to boundary two-point functions, and the exponential decay of the
boundary two-point function implies the exponential decay of the bulk
two-point function. An exponentially decaying two-point function for
a free field implies the desired entropy form.

V. RG DECOMPOSITION OF s = 0 FIXED POINTS

While the examples considered above were ultimately
s = 0, the range of the channels/unitaries required grew with
increasing correlation length, e.g., as T → 0. In fact, there is
additional structure in the problem which may ameliorate this
situation. Said differently, the Petz and Fawzi-Renner (FR)
reconstruction results guarantee that the recovery map does
not depend on the state outside the buffer region [16], but do
not guarantee that the promised channel is local on the buffer
region itself.

The converse situation provides a useful illustration. Con-
sider a classical thermal state of a spin system: ρ = e−H/T /Z,
where by classical we mean H is diagonal in a product basis.
Such a density matrix is exactly Markov [I (A : B|C) = 0 for
any regions A,B,C], but can have long-range correlations if,
for example, we choose T to be the critical temperature for the
classical spin model. The resulting reconstruction channel in
this case is certainly not local on B.

A random channel with the allowed support grossly overes-
timates the mutual information between subsets of the buffer
region I (R1 ⊂ B,R2 ⊂ B) and their entanglement entropies
S(R ⊂ B). It is natural to propose a refinement of the FR results
which says that if the mutual information between subsets of
the buffer region I (R1 ⊂ B,R2 ⊂ B) vanishes (or is small)
then a local (approximately local) recovery channel R should
exist. Known forms of the recovery map [such as (A22)] have
a property that when ρB is factorized, then R is local.

Here we take an RG viewpoint and argue that the channels
exhibited above can be further decomposed into shorter-range
channels which, roughly speaking, implement conventional
zero-temperature renormalization until the scale 1/T is
reached. The basic picture is this: Many of the examples
considered above, e.g., CFTs, are s = 1 at T = 0. This is really
still a conjecture, but the evidence (numerical and analytical)
is almost overwhelming in favor of this conjecture.10 At
finite T the T = 0 RG structure is not immediately lost. A
manifestation of these facts is that the range of all our channels
diverge as T → 0.

However, this divergence of the range is a false problem.
On physical grounds what is happening is that the channels
constructed above can be obtained from a product of fixed
ranged channels and it is the number of terms in this product
which is diverging as T → 0. Nevertheless, because of the
local nature of the fixed-range channels and because the
number of terms in the product of channels is bounded by
ln(IR cutoff), calculation of local observables is still formally
efficient.

Once more, the physical picture is that we have approxi-
mately the ground-state circuit for scales small compared to

10For example, there are numerous numerical studies in one and
two dimensions, free-particle results, and controlled constructions for
special CFTs and certain nonconformal but scale-invariant critical
points. Moreover, many results about entropies including newer
results about the regulated Schmidt rank are consistent with the
existence of such an RG decomposition. Finally, recent conjectures
relating complexity and geometry in the context of AdS/CFT also
support the existence of an RG decomposition.
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1/T and a crossover to the finite-temperature physics beyond
1/T . In particular, each coarse graining raises the effective
temperature so that when the correlation length reaches the
lattice scale the state becomes completely short ranged and
the above discussion can be used to cap off the flow into a
product state.

Finite-temperature crossover from s > 0 to s = 0. The RG
structure can be illustrated using an analysis of the thermal
entropy. Recall that the spatial dimension is d, the temperature
is T , and the linear size is L. The UV energy scale is � and the
UV length is a. We consider a broad class of scale-invariant
theories described by two numbers: the dynamical exponent z

and the hyperscaling violation exponent θ . In such theories the
thermal correlation length is ξ (T ) ∼ T −1/z and the entropy is
S(L,T ) = cLdT

d−θ
z . CFTs have z = 1 and θ = 0.

We previously argued [48] that s = 2θ for the ground states
of such theories; the above analysis implies that the finite-
temperature state has s = 0, but the range of the required
unitary is of order ξ . The scaling structure further implies that
the range ξ unitary can be decomposed into ln(ξ/a) unitaries
of fixed range (range independent of T ). Let us now see how
the ground-state value of s persists until roughly the thermal
scale is reached.

We compare the entropy of a size-L system at temperature T

to the entropy of a size L/2 system at temperature 2zT [thermal
length ξ (2zT ) = ξ (T )/2]. The former is S(L,T ) = cLdT

d−θ
z ,

while the latter is

S(L/2,2zT ) = cLdT
d−θ

z
(2z)

d−θ
z

2d
= cLdT

d−θ
z 2−θ . (5.1)

Thus, the entropy obeys

S(L,T ) = 2θS(L/2,2zT ), (5.2)

so the entropy of s = 2θ copies at temperature 2zT and size
L/2 is equivalent to the entropy of a single copy at temperature
T and size L. The ground-state value of s emerges at finite
temperature as the number of copies of the thermal state needed
to match entropies after rescaling lengths by a factor of 2.

As the system shrinks it also heats up, and once the
temperature reaches the microscopic energy scale � the
thermal state will have a thermal length ξ of the order
of the microscopic cutoff a. The scaling theory no longer
correctly describes such high temperatures, but now our
general reconstruction results can be applied resulting in a
unitary with microscopic range which maps the system to a
product state. At this point the theory has fully crossed over to
s = 0.

In the above, in speaking about unitaries, what we have in
mind is a channel or a unitary acting on the thermal double
state. It is interesting to note, however, that in the ideal scaling
limit the Renyi entropies Sα ≡ 1

1−α
trρα also obey

Sα(L,T )
?= 2θSα(L/2,2zT ). (5.3)

For a mathematical CFT (z = 1,θ = 0) without a cutoff, this
is the statement that the density matrix depends only on the
product LT . Renyi entropies with small α are sensitive to the
physics at the short-distance cutoff, and, as such, the scaling
theory breaks down. An exact equality of the form (5.3) would
imply that the two states, L and 2θ copies of L/2, have the same

spectrum, an interesting statement that may be approximately
true.

Once more, the physical picture is this. Allowing a range ξ

unitary, it was shown that the thermal state is s = 0 for all z and
θ provided it is adiabatically connected to the high-temperature
limit. Allowing only fixed (microscopic)-range unitaries, the
thermal state crosses over from s = 2θ to s = 0 as it is
renormalized. On physical grounds such fixed-range unitaries
should exist, but in most cases they have yet to be constructed.
This construction is beyond the scope of this work, but is
an exciting direction for further work. Some systems where
progress has been made or can be made follow. Free-particle
techniques should allow such a construction in those models
[49–51]. There has been a recent proposal for a related
construction for thermal states of 1 + 1 CFTs using their
special symmetry properties [52]. Numerical constructions can
also be carried out in some cases. It would also be interesting
to extend the analysis of Ref. [53] to finite temperature.

VI. BUBBLE-OF-NOTHING ANALYSIS OF TOPOLOGICAL
GAUGE THEORIES

In this section we first review the obstructions to the bubble-
of-nothing array argument of Sec. I B presented by long-
range entanglement at T = 0. As representative examples, we
discuss p-form gauge theories in d spatial dimensions. These
topological obstructions prevent long-range entangled states
from being s = 0 at T = 0, but they are all s = 1 states [1].
Then we consider T > 0 and show that 1-form gauge theories
become s = 0 but 2-form gauge theories in d = 4 remain s = 1
at small but nonzero temperature. Because its topological order
survives at T > 0, the latter system is a robust self-correcting
quantum memory [22,35,54–58]. Our analysis indicates that
this is a general property of s > 0 finite-temperature fixed
points.

A. Obstruction theory at T = 0

We focus on Z2 p-form gauge theory in d dimensions. The
analysis can be extended to a wide variety of other kinds of
gauge theories. Such a gauge theory is a topological quantum
field theory which means it has a topologically protected
ground-state space on a manifold with nontrivial topology.
Even on a manifold with trivial topology where there is a
unique ground state, that ground state is long-range entangled
and cannot be deformed to a product state using a finite-depth
quantum circuit.

One way to see that the state is nontrivial is to attempt
to perform the cellular construction we used above for
other short-range correlated states. Indeed, correlations are
exponentially decaying in the ground state of a topological
field theory, so one might have hoped that (3.1) was valid, but
as we now discuss the appearance of certain topological terms
in the entropy foil the validity of (3.1).

According to [57], the entanglement entropy of a region
A in a p-form gauge theory (in the zero-correlation-length,
solvable limit) may be written as

S(A) = area law terms − γ (A), (6.1)
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where the topological term is

γ (A) =
p−1∑
k=0

(−1)p−1+kbk(∂A) (6.2)

and bk(∂A) is the kth Betti number of the boundary of
A. For example, for p = 1 the topological term is γ (A) =
b0(∂A), e.g., just the number of disconnected components in
the boundary of A. We will use these data to demonstrate
obstructions to reconstructing the state using the bubble-of-
nothing array argument.

Our cellular reconstruction procedure is defined using a
hypercubic lattice. We begin with 0-cells, the vertices of
the hypercubic lattice. There is one 0-cell per unit cell
of the lattice. Then come the 1-cells, the links of the lattice.
There are d 1-cells per unit cell. Going to the general case,
there are d!

(d−k)!k! k-cells per unit cell. We proceed as in the
previous discussion by attaching k-cells to the k − 1-skeleton
(the union of all q-cells with q < k). At each step we begin
with the k − 1 skeleton and end up with the k skeleton, but we
must also keep track of the intermediate buffer zones during
the reconstruction.

General argument for obstruction pattern. As we show via
examples, the general pattern is that the p-form gauge theory
has at most two obstructions; one occurs when going from
the p − 1-skeleton to the p-skeleton and one occurs when
going from the d − p − 1-skeleton to the d − p-skeleton.
If d = 2p, then these two obstructions collapse to one. The
obstructions are related by a duality transformation. Morally,
this happens because it is at these steps that one gains the
cycles on which to measure the charges of the topological
excitations by Gauss’ law. For example, for one-form gauge
theory (where the degrees of freedom are associated to the
links) in d = 2 once we have complete loops we can detect the
presence of fluxes. Whenever we would be able to detect a new
kind of topological charge after a step of the bubble-of-nothing
growth procedure, there must be an obstruction to the step. In
other words, there is an obstruction whenever we incorporate
new topological data into the state. We anticipate that this
purely mathematical statement can be verified in general by a
Mayer-Vietoris argument on the cells but have not completed
that analysis.

We now give a series of examples. The examples consist
of calculations of the conditional mutual information per unit
cell at each step of the cellular reconstruction. Obstructions
occur when the conditional mutual information does not
vanish. We focus exclusively on the topological terms since
all conventional local area law terms will cancel from the
conditional mutual information. Throughout, disks refer to d

disks or equivalently d-dimensional balls.
Example 1 (d = 2, p = 1).
(i) 0 → 1. A is a disk per unit cell, B is four disks per unit

cell, C is two disks per unit cell, AB is a disk per unit cell,
BC is two disks per unit cell, and ABC is the 1-skeleton. The
entropies per unit cell are S(AB) = −1, S(BC) = −2, S(B) =
−4, and S(ABC) = −1. The conditional mutual information
is I (A : C|B) = 2 and there is an obstruction.

(ii) 1 → 2. A is the 1-skeleton, B is an annulus per unit
cell, C is a disk per unit cell, AB is the 1-skeleton, BC is a
disk per unit cell, and ABC is the 2-skeleton, which fills 2D

space. The entropies per unit cell are S(AB) = −1, S(BC) =
−1, S(B) = −2, and S(ABC) = 0. The conditional mutual
information is I (A : C|B) = 0 and there is no obstruction.

Example 2 (d = 3, p = 1).
(i) 0 → 1. A is a disk per unit cell, B is six disks per unit

cell, C is three disks per unit cell, AB is a disk per unit cell,
BC is three disks per unit cell, and ABC is the 1-skeleton.
The entropies per unit cell are S(AB) = −1, S(BC) = −3,
S(B) = −6, and S(ABC) ≈ 0. Here is the meaning of ≈: The
1-skeleton indeed has a boundary, but it has one boundary for
the whole sample, so the Betti number per unit cell vanishes
in the thermodynamic limit.
The conditional mutual information is I (A : C|B) = 2 and
there is an obstruction.

(ii) 1 → 2. A is the 1-skeleton, B is three donuts per unit
cell, C is three disks per unit cell, AB is the 1-skeleton, BC

is three disks per unit cell, and ABC is the 2-skeleton. The
entropies per unit cell are S(AB) ≈ 0, S(BC) = −3, S(B) =
−3, and S(ABC) = −1. The conditional mutual information
is I (A : C|B) = 1 and there is an obstruction.

(iii) 2 → 3. A is the 2-skeleton, B is a shell per unit cell, C
is a disk per unit cell, AB is the 1-skeleton, BC is a disk per unit
cell, and ABC is the 3-skeleton. The entropies per unit cell are
S(AB) = −1, S(BC) = −1, S(B) = −2, and S(ABC) = 0.
The conditional mutual information is I (A : C|B) = 0 and
there is no obstruction.

Example 3 (d = 4, p = 2). For p = 2, γ (A) = b0(∂A) −
b1(∂A). Details of this calculation are organized into a table in
Appendix C . We must confess that we have had to infer the
value of one of the Betti numbers in this calculation [b0(∂�2)]
from our ansatz; the consistency of rest of the calculation is
still a strong check of the ansatz.

(i) 0 → 1. A is a 4-disk per unit cell, B is eight 4-disks per
unit cell, C is 4-disks per unit cell, and ABC is the 1-skeleton,
�1. The boundaries of the disks are simply connected and
the boundary of �1 is a four-dimensional generalization of
the “plumber’s nightmare”, which has b1(∂�1) � 0 per unit
cell and b1(∂�1) = d − 1 = 3. The entropies per unit cell are
S(AB) = 1, S(BC) = 4, S(B) = 8, and S(ABC) = 3. The
conditional mutual information is I

p=2
0→1(A : C|B) = 3 − 3 =

0 and there is no obstruction in p = 2 gauge theory. [In p = 1
gauge theory, the obstruction at this stage would be I

p=1
0→1(A :

C|B) = 3.]
(ii) 1 → 2. A is the 1-skeleton, B is six donuts per unit cell

(whose boundaries are each S2 × S1), C is six disks per unit
cell, and ABC is the 2-skeleton. The entropies per unit cell
are S(AB) = b0 − b1 = −3, S(BC) = 6, S(B) = 6 − 6 = 0,
and S(ABC) = −4. The conditional mutual information is
I

p=2
1→2(A : C|B) � 7 and there is an obstruction. [In p = 1

gauge theory there would be no obstruction here I
p=1
1→2(A :

C|B) = 0.]
(iii) 2 → 3. A is the 2-skeleton, B arises by intersecting

the 3-volumes with the faces and is four thickened four shells
per unit cell, C is four disks per unit cell, and ABC is the
3-skeleton, �3, which is everything minus the 4-volume filling.
The obstruction for p = 1 gauge theory would be I

p=1
2→3(A :

C|B) = −b0(∂�3) = −1. For p = 2, I2→3(A : C|B) = 0 and
there is no obstruction. [In p = 1 gauge theory there would be
an obstruction here, I

p=1
2→3(A : C|B) = 1.]
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(iv) 3 → 4. A is the 3-skeleton, B is a shell per unit cell,
C is a disk per unit cell, AB is the 3-skeleton, BC is a disk
per unit cell, and ABC is the whole space. The boundaries are
all simply connected in this case, so the entropies per unit cell
are S(AB) = 1, S(BC) = 1, S(B) = 2, and S(ABC) = 0. The
conditional mutual information is I (A : C|B) = 0 and there is
no obstruction.

B. Fate of obstructions at T > 0

The obstructions to an s = 0 reconstruction described
above arise from long-ranged entanglement in the ground state.
Such topological order is destroyed by the proliferation of
defects of the appropriate nature. For 1-form gauge theory, the
appropriate defects are particles; the topologically protected
degenerate ground states differ by the action of the holonomy
of these particles around topologically nontrivial curves
(Wilson loop operators). Any finite temperature introduces
a system-size-independent density of these particles, n(T ) ∝
e−�/T , where � is the energy gap. The obstruction persists
only for regions much smaller than the average spacing
between these particles, R � lq(T ) ≡ 1

n(T )1/d [54]. This is a
nice illustration of the discussion of Sec. V: For lengths smaller
than the interparticle spacing lq(T ), the system is s = 1, while
for longer lengths, it is s = 0.

The situation for (p � 2)-form gauge theory in d > 3 is
different [22,35,54–58]. (d > 3 is required because 2-form
gauge theory in d = 3 dimensions can be dualized to 1-form
gauge theory.) The defects which destroy the topological order
are large, closed strings (more generally, p − 1-dimensional
objects). On a generic space, they must be large (scaling with
system size) because they must wrap topologically nontrivial
one cycles. The Boltzmann factor therefore provides a system-
size-dependent suppression of the density of such defects.

The statistical mechanics of strings whose energy is
dominated by a tension term is governed by a Hagedorn
equation of state (e.g., [59–61]): The entropy at fixed energy
is linear in the energy, S(E) = aE, with a coefficient deter-
mined by the string tension. Therefore, the free energy F =
E − T S = (a − T )E. This Peierls-type argument implies a
transition at some “Hagedorn” temperature above which the
canonical ensemble in terms of strings breaks down. Above this
temperature, strings are condensed, and in the 2-form gauge
theory context, the topological order is destroyed. Conversely,
below the Hagedorn temperature, the entropic contribution is
overwhelmed by the tension, and the ensemble is dominated
by small strings. Hence, there is a temperature below which
the 2-form topological order persists. Evidence for such a
finite-temperature transition in 4D 2-form gauge theory has
been found in numerical work [58].

VII. DISCUSSION, CONJECTURES, AND QUESTIONS

In this paper we defined a new notion of mixed
s-sourcery which generalizes our previous pure state con-
struction to mixed states. We showed that a huge variety of
finite-temperature states of matter, including free particles
(Sec. II), conformal field theories (Sec. III), topological phases
(Sec. VI), and holographic states (Sec. IV) fall into our scheme.
We also argued for a further renormalization-group-inspired

decomposition of the local unitaries involved in the s-sourcery
construction (Sec. V).

A major theme of our work is the idea that thermal double
states, which are purifications of thermal mixed states, can
be cast as unique ground states of local Hamiltonians. To
give a general argument for this conclusion in models with
the right entropic properties, we used the rapidly advancing
machinery of approximate quantum conditional independence.
This technology is quite general, so we expect that it can be
applied much more widely.

In this final discussion section, we make some comments on
issues raised by our work. We also discuss a few applications
of this work and mention some open questions.

A. Form of local channel arising from approximate conditional
independence

In our calculations above, we focused on the infor-
mation theoretic conditions for approximate conditional
independence, namely the near vanishing of the condi-
tional mutual information I (A : C|B) = S(AB) + S(BC) −
S(B) − S(ABC). We did not give an explicit formula for
the channel which glued the system back together, except
in special cases, e.g., free-particle models. As reviewed in
Appendix A 3, such a general formula does exist in the
case when I (A : C|B) exactly vanishes, but this formula is
sufficiently complex that further work is needed to concretely
apply it to our problem. Furthermore, in most of the situations
we considered, the conditional mutual information did not
exactly vanish.

Recently, there has been considerable progress in exhibiting
explicit reconstruction maps for the case of approximate
conditional independence [62,63]. Here we quickly review
these works and explain how they may be used to construct
the channels we need. We also give a procedure to construct
thermal double Hamiltonians using the given channels.

In [63] the recovery problem is framed in a very general
setting. Consider two quantum states ρ and σ and a channel
N . The condition for approximate recoverability is phrased
in terms of the relative entropy, D(ρ‖σ ) = tr(ρ log2 ρ −
ρ log2 σ ). If D(ρ‖σ ) − D(N (ρ)‖N (σ )) ≈ 0, then there exists
a channelRN ,σ such thatRN ,σ (ρ) ≈ ρ. The precise theorem is

D(ρ‖σ ) − D(N (ρ)‖N (σ )) � −2 log2 F [ρ,RN ,σ (N (ρ))],

(7.1)

where F (ρ,σ ) = ‖√ρ
√

σ‖1 is the fidelity and where RN ,σ is
defined by

RN ,σ (X) =
∫ ∞

−∞
dt

π

cosh(2πt) + 1
σ 1/2−itN†

× [N (σ )−1/2+itXN (σ )−1/2−it ]σ 1/2+it . (7.2)

To apply this formalism to the case of three regions A, B, and
C with I (A : C|B) ≈ 0, let N = trA and let ρ = ρABC and
σ = ρAB ⊗ ρC . Now we compute

D(ρ‖σ ) − D(N (ρ)‖N (σ ))

= [−S(ABC) + S(AB) + S(C)]

− [−S(BC) + S(C) + S(B)]. (7.3)
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However, this expression, upon canceling the S(C) factors,
is I (A : C|B). Assuming I (A : C|B) ≈ 0, then (7.2) defines
an explicit recovery channel which undoes the action of trA
on ρABC . Furthermore, note that σ = ρAB ⊗ ρC depends only
on the marginals ρAB and ρC and not on the full state ρABC .
Hence, RN ,σ also depends only on the marginals and not on
the full state. Since N (ρABC) = ρBC , we have that

ρABC ≈ RN ,σ (ρBC), (7.4)

as desired.
Our demonstration of approximate conditional indepen-

dence thus shows that we can, in effect, “untrace out” the
system starting from nothing using a series of steps corre-
sponding to our cellular decomposition of space. Furthermore,
given the composite local channel which untraces out the
whole system, we may construct a local Hamiltonian for a
thermal double as follows. First, resolve the untracing out
channel into a Kraus representation. Second, introduce an
environment to realize the Kraus operators as the action
of a unitary transformation. Third, by conjugating with the
resulting unitary transformation, we may transform a trivial
Hamiltonian whose exact ground state is the initial product
state into a Hamiltonian whose ground state is a thermal double
state. It will be extremely interesting in the future to carry out
these steps for a variety of models.

B. Thermal double Hamiltonians

For a wide variety of physical systems, the preceding argu-
ments show the existence of a local, Hermitian Hamiltonian
HT whose ground state is approximately the thermal double
state |T 〉. However, the range of this Hamiltonian, in general,
has to grow as T decreased because the range is of order the
thermal length ξ . Moreover, the terms in the Hamiltonian can
be very many-body: At this level of generality we can only say
that each term must contain ∼ ξd or fewer operators.

Although this represents the best that our general informa-
tion theoretic arguments can do, with additional physical input
we can say more. For example, in the case of free particles
we constructed an HT consisting only of two-body terms of
range ξ . It is interesting to investigate more generally under
what conditions a long-ranged but few-body HT exists. For
example, given the thermal state of a CFT, we could ask for
several refinements, e.g., (1) an HT which is strictly short
ranged but does not have an energy gap or (2) an HT with an
energy gap which is long ranged but few body.

Simple example. These questions are largely open, but here
we give one example where progress is possible. Consider N

spin- 1
2 degrees of freedom with Pauli matrices Xi , Yi , and Zi .

A classical thermal state is a state of the form

ρ(T ) =
∑

s

e−h(s)/T

Z
|s〉〈s|, (7.5)

where s labels the spin configuration, Zi |s〉 = si |s〉 and h(s)
is a classical energy. This special class of thermal states is
generally interesting as the high-temperature limit of thermal
states of quantum spin systems.

A simple thermal double state for ρ(T ) is

|T 〉 =
∑

s

√
e−h(s)/T

Z
|s〉|s〉. (7.6)

Remarkably, if we define the isometry W : H → H ⊗ H by

W |s〉 = |s〉|s〉, (7.7)

then we see that

|T 〉 = W |ψ〉, (7.8)

where

|ψ〉 =
∑

s

√
e−h(s)/T

Z
|s〉 (7.9)

is a “square-root state” recently studied in [53].
There it was shown how to construct a local Hamiltonian

for which |ψ〉 is the exact ground state (see also [64]). When
the state ρ(T ) is short-range correlated it was shown that |ψ〉 is
s = 0, and when ρ(T ) corresponds to a classical critical point
it was shown that |ψ〉 is s = 1. These results immediately
imply that ρ(T ) is a purified s = 1 fixed point.

Let H denote a positive local Hamiltonian with H |ψ〉 = 0.
Then H1 = WHW † is a positive local Hamiltonian with
H1|T 〉 = WHW †W |ψ〉 = 0. However, |T 〉 is not the only
zero-energy state: Any state of the form |s〉|s ′〉 with s �= s ′
is also zero energy. To remedy this, define

H2 =
∑

i

I − ZiZ̃i

2
, (7.10)

where Z̃i refers to the second copy in the thermal double. H2

punishes states |s〉|s ′〉 with s �= s ′, so the total Hamiltonian

HT = H1 + H2 (7.11)

has as its unique ground state the thermal double state |T 〉.
We can similarly construct an RG circuit for |T 〉 from an RG
circuit for |ψ〉 using the isometry W .

The remarkable thing about these results is that the thermal
double Hamiltonian is local even when ρ(T ) has long-range
correlations. Of course, the thermal double Hamiltonian does
not have an energy gap when the correlations are long ranged.
While the classical states considered here are clearly very
special, they at least demonstrate that a strictly local few-
body thermal double Hamiltonian can sometimes exist. We
speculate that such local Hamiltonians exist more broadly;
after all, the two copies of the ground state (a zero-temperature
thermal double) are by assumption the ground state of a local
Hamiltonian and this is in some sense the hardest case.

C. Some further applications

Here we give two additional applications of our work, one
constructing a local dynamical evolution with the thermal as its
fixed point and one upper bounding the complexity of thermal
double states. These by no means exhaust the applications of
our results.

Thermal states as fixed points of local Lindblad evolution.
Using our results on approximate condition independence and
the existence of an approximate recovery map, we show that
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suitable thermal states of local Hamiltonians can be cast as
fixed points of an open system evolution equation, a Lindblad
equation.

Consider a d-dimensional disk Dx centered at position x

with radius a few thermal lengths. Let Rx be the recovery map
obtained from the trace map trDx

as discussed above. Assuming
the thermal state obeys (3.1), then Rx can be instantiated as a
local map acting in a neighborhood of Dx .

Rx maps the total system minus the disk to the total system,
so it is convenient to define a new map from the total system to
the total system. It is simply the composition of Rx and trDx

,

�x(σ ) = Rx

[
trDx

(σ )
]
. (7.12)

�x has two crucial properties: It obeys �x[ρ(T )] ≈ ρ(T ) and
it is local.

We wish to turn this into a dynamical map, that is, into a rule
for open system evolution. The Lindblad equation describes
general Markovian open system evolution; it is written as

∂tσ = L(σ ), (7.13)

where L is the Lindblad superoperator. Consider a Lindblad
superoperator defined by

L =
∑

x

(�x − Id). (7.14)

Then we compute

∂tρ(T ) = L[ρ(T )] =
∑

x

{�x[ρ(T )] − ρ(T )} ≈ 0, (7.15)

so ρ(T ) is an approximate fixed point of the flow generated
by L. With more work it should be possible to show that ρ(T )
is the unique fixed point and perhaps even bound the mixing
time; see [6].

Bounds on thermal double state complexity. Using the
existence of the recovery channel, we can provide an upper
bound on the state complexity of the thermal double state.
Recall that the state complexity is defined as the minimum
number of gates from a universal set needed to produce the state
of interest from a reference state. Since we have a procedure
for producing a thermal double state, we can give an upper
bound on its complexity.

To get the bound, suppose that the unitary which purifies
the action of the recovery channel is composed of blocks that
act on �d degrees of freedom at a time. To have small error, �

should be taken to be of order ξ ln L, where ξ is the thermal
length and L is the system size. The number of blocks is of
order a(L/�)d . The maximum complexity of a block acting on
�d degrees of freedom is of order eb�d

for some constant b that
depends on the gate set, the nature of the degrees of freedom,
and so forth. Hence, the total complexity obeys

complexity � a

(
L

�

)d

eb�d

. (7.16)

In d = 1 this expression is polynomial in L, while for d > 1
it is quasipolynomial in L, i.e., the ln is a polynomial in ln L.

By using the conjectured RG structure of the channel
(Sec. V) and a more refined notion of complexity which counts
gates weighted by their strength [9,65], we can produce a more
refined estimate of the complexity. Suppose that at each step

of the RG, e.g., going from size 2j a to size 2j−1a (a is a lattice
spacing), the RG circuit is generated by a quasilocal unitary
Uj = eiKj . The number of RG steps is nRG ∼ log2(ξ/a),
where ξ is the thermal length; starting from linear size L,
after nRG steps the system has size L2−nRG and all correlations
are ultralocal.

For concreteness, consider a system of qubits arranged
in d-dimensional array. Suppose that K = ∑

x,r Kx,r , where
Kx,r consists of mr terms supported on a disk of radius r

centered at x and each term is proportional to a product of Pauli
operators and has norm bounded by f (r)/mr for function f (r)
decreasing faster than any power of r at large r . Measuring the
complexity of Uj by the number and size (e.g., the norm) of
the terms in Kj gives an estimate,

complexity(Uj ) �
∑
x,r

mr︸︷︷︸
number

[
f (r)

mr

]
︸ ︷︷ ︸

size

=
∑
x,r

f (r) �
(

2j a

a

)d

f, (7.17)

where f ≡ ∑
r f (r) < ∞. Writing L = 2J a, the total com-

plexity is then bounded by

complexity �
J∑

j=J−nRG

2jdf = f

[
2d(J+1)

2d − 1
− 2d(J−nRG)

2d − 1

]
.

(7.18)

In terms of L, a, and ξ , this is

complexity � f

2d − 1

[
2d

(
L

a

)d

−
(

L

ξ

)d
]
. (7.19)

Because f may depend on temperature, this estimate does
not imply that the complexity of the thermal double is
monotonically decreasing with increasing T .

D. Conjectures and questions

(i) Especially given the connection to finite-temperature
quantum memory, it would be very interesting to find states
which are mixed s > 0. Such a state must necessarily be
somewhat exotic. In the ground-state s-sourcery paper, Haah’s
cubic code [66] played a starring role as an example with s = 2
[67]. Hence, it is natural to ask whether Haah’s code [66]
is mixed s = 0 at finite T . Haah’s code is like p > 1-form
gauge theory (in d > 3) in that the defects which mix the
topological sectors are supported on a locus of dimension
larger than zero (though less than one). In fact, the energy
barrier between sectors grows logarithmically with system size
[66,68,69]. However, at any finite temperature, the multiplicity
of such defects also grows rapidly with system size, and the
entropic gain favors a proliferation of the defects, resulting
in a system-size-independent memory lifetime of order e1/T 2

[70]. This suggests that the cubic code at any finite T

is adiabatically connected to T = ∞ and hence satisfies
the hypotheses of Sec. III. Very recently, [71] used other
techniques to show that Haah’s code is topologically trivially
in Hastings’ sense and, hence, indeed mixed s = 0. A set
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of phases with similar properties, in that the defects are not
particles which are free to move everywhere in the system,
are the “higher-spin spin liquids” of [72,73]. Are these mixed
s = 0? Another interesting class of examples to consider are
local Hamiltonians whose ground states violate the area law
(these examples are in one dimension) [74–76].

(ii) We conjecture that any two thermal states in the same
phase can be related by a local channel. So far, we proved
this for free fermion states. Is the thermal double construction
useful for answering this conjecture? A problem is that even
if there is family of gapped thermal double Hamiltonians,
this does not imply the channel statement since the starting
state (some particular thermal double state) need not factorize
between system and environment, as required in the channel
definition.

(iii) Under what conditions is the thermal double the
gapped ground state of a local Hamiltonian? Is the decay of
correlations enough to guarantee the existence of such a local
parent Hamiltonian?
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APPENDIX A: SOME RELEVANT QUANTUM
INFORMATION THEORY

1. Entropy bounds

Consider a mixed state ρ = ∑
i pi |i〉〈i| and let |√ρ〉 =∑

i

√
pi |i〉1|ĩ〉2 be a purification of ρ with the property that

|√ρ〉 is an eigenstate of the swap operator which exchanges
the two systems. Let us further suppose that the purified system
decomposes as AAcÃÃc, where A and Ac are a bipartition of
the first system and similarly for the tilde variables.

Then we have the following bound:

I (A,Ac) � S(AÃ). (A1)

This bound may be interpreted as saying that the combined
entropy of A and its corresponding region in the purifying
second system bounds the mutual information in the original
mixed state.

The lower bound is a consequence of strong subadditivity,
purity, and the swap invariance of the two systems. We
use overall purity to exchange various systems for their
complements:

I (A,Ac) = S(A) + S(AÃÃc) − S(ÃÃc). (A2)

Strong subadditivity is used to write

S(AÃÃc) � S(AÃ) + S(ÃÃc) − S(Ã). (A3)

Combining these two formulas leads to the desired bound,

I (A,Ac) � S(A) − S(ÃÃc) + S(AÃ) + S(ÃÃc) − S(Ã)

= S(AÃ), (A4)

where in the last step we used S(A) = S(Ã).

One might also hope for an upper bound of some type, but
there seem to be some some obstacles to obtaining a useful
bound (due to the freedom to act with an arbitrary unitary on
the purifying system). On the other hand, if the thermal double
state can be chosen to be the ground state of a local Hamiltonian
with an energy gap, then the entanglement entropy is almost
certainly bounded by an area law.

2. Review of reversibility

Given a quantum channel E and a state σ , we can always
construct another channel RE,σ such that

RE,σ [E(σ )] = σ. (A5)

If E has Kraus representation given by {Mk}, then R has a
Kraus representation given by

R : {σ 1/2M
†
kE(σ )−1/2}. (A6)

This channel is called the transpose channel or Petz channel
[17,30,77–79]. The cyclicity of the trace guarantees that the
channel R is trace preserving:

tr[R(ρ)] =
∑

k

tr[σ 1/2M
†
kE(σ )−1/2ρE(σ )−1/2Mkσ

1/2]

=
∑

k

tr[E(σ )E(σ )−1/2ρE(σ )−1/2] = tr(ρ). (A7)

Acting with R on E is also easily seen to reproduce the state
σ since the internal factors of E(σ )−1/2 cancel with the input.

Note that while R is defined with respect to E and a
particular state σ , the hope, in an error-correcting context,
say, is that R recovers not just σ but also high-probability
pure states from the ensemble represented by σ .

For example, consider the toric code [80] and suppose that
E is a dephasing channel [see (1.9) above] acting on a single
link. Let σ = P

4 be the normalized ground-state projector
(suppose the system is on a torus with four ground states).
The Kraus operators of E are M1 = √

1 − p and M2 = √
pZ,

so the action of E on σ is

E(σ ) = (1 − p)
P

4
+ p

ZPZ

4
. (A8)

The (generalized) inverse of this state is simple since the two
terms are block diagonal and do not interfere; the result is

E(σ )−1 = 4

1 − p
P + 4

p
ZPZ. (A9)

Turning to the recovery channel, the Kraus operators are

M̃i = σ 1/2M
†
i E(σ )−1/2 = P

2
Mi

(
2√

1 − p
P + 2√

p
ZPZ

)
.

(A10)

This gives

M̃1 = P (A11)

and

M̃2 = PZ, (A12)
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so R acting on E(σ ) is

R
[

(1 − p)
P

4
+ p

ZPZ

4

]
= (1 − p)

P

4
+ p

P

4
= P

4
.

(A13)

However, this is not true just for P but for any ground state.
Let |0〉〈0| be a particular pure ground state. Then

R[E(|0〉〈0|)] = R[(1 − p)|0〉〈0| + pZ|0〉〈0|Z] = |0〉〈0|.
(A14)

This is a toy version of the construction demonstrating the
existence of an error recovery channel for the toric code.

3. Review of quantum Markov chains

Here we review the physics of quantum Markov chains;
see, e.g., [17]. We say a tripartite state ρABC forms a
quantum Markov chain if the conditional mutual information
I (A : C|B) = S(AB) + S(BC) − S(B) − S(ABC) vanishes.
Classically, this would imply that the probability distribution
factorizes, p(a,b,c) = p(a,b)p(b,c)

p(b) , so that A is independent

of C given B: p(a,c|b) = p(a,b,c)
p(b) = p(a,b)

p(b)
p(b,c)
p(b) . What is the

quantum version of this statement?
Notice that strong subadditivity implies that I (A : C|B) �

0, so states with I (A : C|B) = 0 saturate strong subadditivity.
Suppose ρABC saturates strong subadditivity and consider a
generic perturbation ρABC → ρABC + δρABC . Demanding that
the trace of the perturbed state be 1 gives tr(δρABC) = 0.
Now consider the variation of I (A : C|B) and use δS(σ ) =
−tr(δσ ln σ ) − tr(δσ ) = −tr(δσ ln σ ). We find

δI (A : C|B) = tr(δρABC[− ln ρAB − ln ρBC + ln ρB

+ ln ρABC]), (A15)

but I (A : C|B) must remain positive for all δρ so the linear
term in the variation must vanish,

ln ρABC = ln ρAB + ln ρBC − ln ρB, (A16)

which is the quantum analog of p(a,b,c) = p(a,b)p(b,c)
p(b) . Note

that expressions like − ln ρBC should be understood as
−IA ⊗ ln ρBC as appropriate. Also, beware that the various
entanglement Hamiltonians ln ρ ··· here need not commute.

What about reconstruction? In the classical case we can
exactly reconstruct p(a,b,c) from p(a,b) and p(b,c) if the
conditional mutual information is zero. The reconstruction is
Bayes’ rule,

p(a,b,c) = p(c|a,b)p(a,b) →︸︷︷︸
I=0

p(c|b)p(a,b)

= p(b,c)p(a,b)

p(b)
. (A17)

The quantum analog of this statement is Petz’s recovery
channel.

Consider a quantum channel trC which maps ABC to AB

by simply tracing out C. This is a valid quantum operation,
namely throwing away a system. What is the transpose channel
(see previous subsection) of the channel trC relative to σABC =
ρA ⊗ ρBC? The Kraus operators (they are not square matrices)

of trC are

Mc = 〈c|, (A18)

so the Kraus operators of the Petz channel R (which maps AB

to ABC) are

MR
c = ρ

1/2
A ρ

1/2
BC |c〉ρ−1/2

A ρ
−1/2
B . (A19)

Note how ρA cancels out, leaving

MR
c = ρ

1/2
BCρ

−1/2
B |c〉. (A20)

These Kraus operators depend only on ρBC .
Let us compute the action of R on a state σAB . Using the

Kraus operators just derived we have

R(σAB) =
∑

c

ρ
1/2
BCρ

−1/2
B |c〉σAB〈c|ρ−1/2

B ρ
1/2
BC . (A21)

The sum over c can be performed immediately to yield IC =∑
c |c〉〈c|, so the channel action is

R(σAB) = ρ
1/2
BCρ

−1/2
B σABρ

−1/2
B ρ

1/2
BC , (A22)

which is the Petz map. Note the similarity to the classical
reconstruction formula (A17). One can verify that R(ρAB) =
ρABC using the properties of the quantum Markov chain.

We emphasize one point: Every pair E,σ defines a recovery
channel that reverses the action of E on σ . What is highly
nontrivial here, and essential for the constructions in the main
text, is that the Petz map does not depend on the state of the
whole system but only on the state of the marginals. Combined
with the vanishing of the mutual information, this demonstrates
that the channels above are local.

The recent developments in this field were initiated by
Fawzi and Renner [15], who showed that if I (A : C|B) ≈ 0,
then there is an approximate recovery map which acts only on
B → BC. Furthermore, it was later shown [16] that this map
is independent of ρA, meaning that not only does it not act on
the A system, the B → BC map is also independent of the
state on A. This is the machinery we use in our construction.

APPENDIX B: ANOTHER CONSTRUCTION OF THERMAL
DOUBLE HAMILTONIANS

This section starts from an idea of Klich and Feiguin [12],
which, in turn, was derived from the earlier literature on what
we now call “square-root states”. Given a Hamiltonian H and a
thermal state ρ(T ) = exp(−H/T )/Z, [12] shows that we can
immediately produce a “Hamiltonian” with the thermal double
state as its exact ground state. There are two caveats: The
Hamiltonian may not be local and is definitely not Hermitian.

Introduce a second copy of the system and suppose that the
degrees of freedom reside on sites labeled by r (r = 1, . . . ,L).
Supposing each site consists of a finite-dimensional Hilbert
space of dimension χ , then the infinite-temperature thermal
double state is simply

|∞〉 =
(

1√
χ

∑
i

|ii〉
)L

. (B1)
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This state is the unique ground state of

H∞ =
∑

r

Hr,∞ =
∑

r

(1 − |�〉〈�|r ), (B2)

where

|�〉 = 1√
χ

∑
i

|ii〉. (B3)

The finite-temperature thermal double state can be obtained
from |∞〉 by applying the square root of ρ(T ),

|T 〉 = [
√

ρ(T ) ⊗ 1]|∞〉 = (

√
e−βH

Z
⊗ 1)|∞〉. (B4)

One easily checks that tracing out the auxiliary degrees of
freedom reproduces ρ(T ).

|T 〉 is itself the exact ground state of a set of non-Hermitian
constraints given by

H̃r,T = (e− H
2T ⊗ 1)Hr,∞(e

H
2T ⊗ 1). (B5)

The Hamiltonian H̃T = ∑
r H̃r,T has integer spectrum and

exactly annihilates the thermal double state, but it is potentially
nonlocal and not Hermitian. Regarding the nonlocality, if

correlations in the thermal state are short-ranged, then we
might expect H̃T to have range set by the correlation length.

A Hermitian and frustration-free Hamiltonian which also
has the thermal double state as its ground state is

HT =
∑

r

H̃
†
r,T H̃r,T . (B6)

Unfortunately, the spectrum of this Hamiltonian is not under
immediate control. Furthermore, the class of Hamiltonians

H
(A)
T =

∑
r,r ′

H
†
r,T Ar,r ′Hr ′,T , (B7)

with A
†
r,r ′ = Ar ′,r and Ar,r ′ � 0 (or some similar condition to

guarantee H
(A)
T � 0), all annihilate the thermal double state.

The freedom to choose the set {Ar,r ′ } could be helpful in
gapping out the spectrum of H

(A)
T .

Toric code. To illustrate one possible use of the above
ansatz, consider the case of the toric code. The Hamiltonian is

H = −
∑

v

Av −
∑

p

Bp, (B8)

TABLE I. Cellular decomposition of R4.

M per u.c. ∂M per u.c. b0(∂M)

per u.c.

b1(∂M)

per u.c.

obstructions

A0→1 Σ0 = one Bd ∂Bd = Sd−1 1 0
Ip=1
0→1 = 2d − (d + 1) = d − 1,

C0→1 d × Bd d × Sd−1 d 0

B0→1 2d × Bd 2d × S3 2d 0
Ip=2
0→1 = −2d + (d + 1) − (d − 1) = 0,

ABC0→1 Σ1 plumber’s nightmare 1/L d − 1

A1→2 Σ1 plumber’s nightmare 1/L d − 1
Ip=1
1→2 = − + + y0 ∼ 0,

C1→2 2-faces × Sd−1 0

B1→2

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
3

⎞
⎠

⎛
⎝ d
3

⎞
⎠

⎛
⎝ d
3

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝ d
2

⎞
⎠

⎛
⎝

⎛
⎝ d

2

⎞
⎠

⎞
⎠

⎛
⎝ d
2

⎞
⎠

donuts × Sd−2 × S1

Ip=2
1→2 = −y0 − (d − 1) + + y1 = −3 + 6 + y1

?
= 7

ABC1→2 Σ2 plumber’s nightmare y0 ∼ 1/L y1

A2→3 Σ2 plumber’s nightmare 1/L y1
Ip=1
2→3 = −y0 − 4 + z0 + 1 ∼ z0 − 3 = 0

C2→3 = 4 3-volumes × Sd−1 0

B2→3 intersections of

3-volumes and 2-

skeleton

4 × Sd−3 × S2 = 4 ×
S1 × S2

z0 = 4 z1 = 4
Ip=2
2→3 = −Ip=1

2→3 + y1 − z1 = y1 − 4 = 0

ABC2→3 Σ3 = everything but

the creamy filling

one S3 1 0

A3→4 Σ3 one S3 1 0
Ip=1
3→4 = −(1 + 1) + 2 = 0,

C3→4 4-volume, B4 S3 1 0

B3→4 shell around 4-volume 2 × S3 2 0
Ip=2
3→4 = 0,

ABC3→4 everything Nothing 0 0
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where Av and Bp are the usual vertex and plaquette operators.
The infinite-temperature thermal double Hamiltonian may be
taken to be

H̃∞ =
∑

�

2 − X�X̃� − Z�Z̃�, (B9)

with the tilde variables referring to the purifying degrees
of freedom. To obtain the non-Hermitian constraints which
annihilate the thermal double state at finite T , we compute

H̃�,T = (e− H
2T ⊗ 1)H�,∞(e

H
2T ⊗ 1)

= 2 − eβ
∑

p�� BpX�X̃� − eβ
∑

v�� AvZ�Z̃�, (B10)

where the notation in the exponentials means (finite) sums over
plaquettes or vertices than contain link �.

Note that, by construction, the commutator between H̃�,T

and H̃�′,T is zero for all � and �′. However, the commutator
between H̃

†
�,T and H̃�′,T is nonvanishing if � and �′ share a

vertex or a plaquette. The conjugate of H̃�,T is

H̃
†
�,T = 2 − X�X̃�e

β
∑

p�� Bp − Z�Z̃�e
β

∑
v�� Av = H̃�,−T .

(B11)

It would be very interesting to further analyze the spectrum
of the resulting Hermitian Hamiltonian

∑
l H̃

†
�,T H̃�,T and

show that it has an energy gap. If it does not, perhaps some
modification along the lines of H

(A)
T does. As shown in [55],

the problem can be decomposed into an electric part and a
magnetic part.

APPENDIX C: CELLULAR DECOMPOSITION OF R4

In the following table (see Table I), d is the number of
spatial dimensions. L is the number of unit cells (u.c.); we
must keep track of this since some of the Betti numbers decay
with L. �k denotes the k-skeleton, i.e., the result of assembling
the 0-cells through k-cells.

The little illustrations depict the analogous cells in the case
of Rd=3. The analysis at the first two steps is given for the
general case of Rd , since the pattern is useful. At the 2 → 3
step we specify d = 4.

The obstructions in the rightmost column are given for the
case of p = 1 and p = 2-form gauge theory [57]:

Ip=1 =−b0(∂M)|A+C
B+ABC

≡ −b0(∂A) − b0(∂C) + b0(∂B) + b0(∂ABC)

Ip=2 = b0(∂M)
∣∣A+C

B+ABC
− b1(∂M)

∣∣A+C

B+ABC
.

Mysteries are in red and answer-analysis is in green. By this
we mean that we have not determined y1 ≡ b1(∂�2) a priori,
but rather have used the condition (in green) of vanishing of
the obstruction I

p=2
2→3 to determine it.
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