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Two holes in a two-dimensional quantum antiferromagnet: A variational study based
on entangled-plaquette states
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(Received 8 June 2016; revised manuscript received 25 August 2016; published 13 October 2016)

We show that the entangled-plaquette variational Ansatz can be adapted to study the two-dimensional t-J model
in the presence of two mobile holes. Specifically, we focus on a square lattice comprising up to N = 256 sites in
the parameter range 0.4 � J/t � 2.0. Ground state energies are obtained via the optimization of a wave function
in which the weight of a given configuration is expressed in terms of variational coefficients associated with
square and linear entangled plaquettes. Our estimates are in excellent agreement with exact results available for
the N = 16 lattice. By extending our study to considerably larger systems we find, based on the analysis of the
long-distance tail of the probability of finding two holes at spatial separation r , and on our computed two-hole
binding energies, the existence of a two-hole bound state for all the values of J/t explored here. It is estimated
that d-wave binding of the two holes does not occur for J/t < Jc/t � 0.19.
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I. INTRODUCTION

The theoretical investigation of the ground state properties
of strongly correlated systems is one of the hardest problems
in condensed matter physics. Many relevant models lack an
analytical solution, and the exact diagonalization (ED) of the
Hamiltonian matrix, while it can certainly offer useful insights,
remains restricted to system sizes in general too small to
provide a reliable description of the physical scenarios in the
thermodynamic limit. In order to overcome this limitation a
variety of numerical techniques have been developed, each
of which has an optimal realm of applicability. For exam-
ple, quantum Monte Carlo (QMC) approaches [1] provide
essentially exact results for unfrustrated bosonic problems in
any spatial dimension. However, QMC is hardly applicable
without approximations to frustrated bosonic or fermionic
systems, where the so called “sign problem” results in an
exponential loss of accuracy of the results when decreasing
temperature or increasing the number of particles [2]. Con-
versely, variational approaches based on the optimization of a
trial wave function (WF) are sign-problem free; however, their
accuracy ultimately depends on the choice and flexibility of
the adopted Ansatz for the WF. Recently, an impressive effort
has been devoted to the development of tensor-network WFs
able to describe strongly correlated systems in two spatial
dimensions (2D) [3], i.e., where the applicability of matrix
product states [4] and density matrix renormalization group
(DMRG) [5] methods, extremely accurate in 1D, appears
problematic.

One of the fundamental models used to characterize the
behavior of strongly correlated electrons in 2D is the t-J
model [6,7], which is thought to provide an effective Hamil-
tonian description of the basic features of superconducting
copper oxides. Key properties of the insulating copper-oxide
planes at half filling are reproduced by the spin-1/2 antifer-
romagnetic Heisenberg model, i.e., the limiting case of the
t-J Hamiltonian in the absence of holes [8]. The presence of
mobile holes that may change the nature of the copper-oxide
planes from insulating to superconducting is described in the
t-J model via an additional nearest-neighbor hopping term.

The resulting Hamiltonian reads

H = −t
∑

(i,j ),σ

(c+
i,σ cj,σ + H.c.) + J

∑
(i,j )

(
Si · Sj − 1

4
n̂i n̂j

)
,

(1)

where the brackets restrict the sum to nearest-neighbor sites
of a square lattice comprising L × L = N sites. Here, c+

i,σ =
ĉ+
i,σ (1 − n̂i,−σ ) creates an electron with spin projection (e.g.,

along the z axis) σ on site i excluding double occupancy, ĉ+
i,σ

is the standard fermionic creation operator, while n̂i = n̂i,σ +
n̂i,−σ and Si are the number and spin- 1

2 operator, respectively.
In Eq. (1) J > 0 is the antiferromagnetic coupling, and t > 0
the hopping amplitude, taken in the following as the energy
unit.

Aside from its physical interest related to its possible
direct relevance to high-temperature superconductivity, the
model Hamiltonian in Eq. (1) constitutes one of the most
challenging benchmarks to assess the accuracy of a given
variational approach/WF. For this problem “exact” QMC
techniques are applicable at half filling [9], where the t-J
model does not have fermionic character, as well as to the
static single-hole scenario. Accurate QMC strategies are also
possible in the case of a single mobile hole [10]. The addition of
a second hole, however, introduces a severe sign problem that
calls, in the QMC framework, for various, hardly controllable
approximations and work-arounds. A valid option to tackle
the two-hole problem in (quasi-)1D ladder geometries is
DMRG [11], while in 2D the optimization of a suitable WF
that allows for the investigation of system sizes larger than
those treatable with ED likely represents a preferable choice.
In this framework the estimated ground state energy, as a strict
upper bound of the actual value, constitutes a natural figure of
merit to evaluate the accuracy of different Ansätze.

In this paper we study the ground state of two holes in the
t-J model by using an entangled-plaquette WF [12]. Such a
tensor-network-based WF, founded on the variational family
of the entangled-plaquette states (EPS), has been successfully
employed to investigate different unfrustrated and frustrated

2469-9950/2016/94(15)/155120(5) 155120-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.155120


FABIO MEZZACAPO, ADRIANO ANGELONE, AND GUIDO PUPILLO PHYSICAL REVIEW B 94, 155120 (2016)

models providing results of comparable or better accuracy than
those obtainable with alternative WFs or techniques [13–15].
In the case of a single mobile hole [15], for example, it provides
estimates of ground state energy and hole spectral weight in
excellent agreement with the most accurate results available
in the literature, based on QMC [10]. Here, we show that
an EPS WF including both square and linear plaquettes of
limited sizes is able to faithfully describe the ground state
of two holes in the t-J model. The error on our estimates
of the ground state energies for Eq. (1) relative to the exact
ones available for the N = 4 × 4 lattice is of the order or
less than 0.1% for all values of J/t explored in this work.
By considering square lattices of much larger size (i.e., up
to N = 256) we show that binding of the two holes occurs
for all of the analyzed values of J/t ; specifically, we find an
exponential decay of the probability of finding two holes at
distance r in the large-r limit and that the two-hole binding
energy, although with an absolute value considerably smaller
than the one of the system with N = 16, stays negative in the
thermodynamic limit. We estimate Jc/t � 0.19 as the critical
value below which the existence of a bound state characterized
by the dx2−y2 symmetry, predicted by previous studies in our
chosen parameter range, is excluded.

The accuracy of our findings for the two-hole t-J model
is a fundamental step towards the design of an EPS WF
for the finite hole concentration scenario where the physics
is still not completely understood. It is worth mentioning
that relevant states proposed for the many-hole problem have
a straightforward representation in terms of EPS [13] and
essentially every WF may systematically be improved by
taking advantage of the peculiar characteristics of the EPS
Ansatz (see below).

The remainder of this paper is organized as follows: In the
next section we discuss the EPS Ansatz adopted in this work,
also recalling the main properties of the general EPS WF. Then
we present our results, and compare them with those obtained
via alternative approaches. Finally we outline our conclusions
pointing out possible extensions of the present work.

II. WAVE FUNCTION

Let us consider an ensemble of M spin-1/2 particles on a
lattice comprising N not doubly occupied sites. The WF for
such a system can be written as a weighted superposition of
all possible configurations in the form |�〉 = ∑

m W (m)|m〉.
Here, |m〉 = |m1,m2, . . . ,mN 〉, with mi = 1, (−1), or 0 if site
i is occupied by a particle with “up” (“down”) spin projection
along an arbitrarily chosen axis, or empty. The general idea
of the EPS Ansatz is to express the weight W (m) of a generic
global configuration |m〉 in terms of variational coefficients in
biunivocal correspondence with the configuration of different
groups of sites, i.e., plaquettes. The simplest (nonentangled)
plaquette Ansatz consists of choosing W (m) = ∏N

P=1 C
mi1,P

P

where C
mi1,P

P are variational coefficients associated with the
configuration of the single site [see Fig. 1(a)], labeled by mi1,P

,
of the P th plaquette. This choice results in a mean-field-like
WF where correlations are neglected. However, they can be
promptly incorporated in the Ansatz by increasing the plaquette
size. While in the case of nonoverlapping plaquettes [Fig. 1(b)]

(a) (b)

ih1

ih2

(c)

FIG. 1. Graphic representation of various classes of plaquettes:
(a) single-site plaquettes; (b) 3 × 3 nonoverlapping plaquettes. Shown
in panel (c) are examples of 3 × 3 entangled plaquettes and stringlike
plaquettes joining the hole in site ih2 with one of the nearest-neighbor
sites of the hole in ih1 (see text) used to build the EPS WF in Eq. (2).

correlations are well described for distances of the order of the
plaquette size, a reliable description of long-range correlations
is obtainable, even with relatively small plaquettes, when
the latter overlap (i.e., are entangled). Clearly, any EPS
Ansatz is a legitimate variational choice regardless of the
size of the plaquette used. In other words one can adopt a
given plaquette size and provide variational estimates with an
accuracy related to the given dimension of the plaquettes. This
is exactly as in any variational calculation based on different
WFs, where the accuracy is related to the chosen variational
Ansatz. Furthermore, the EPS WF is systematically improvable
by enlarging the size of the plaquettes and/or by including
plaquettes of various shapes correlating specific groups of
sites, being exact in the limit of a single plaquette as large
as the system.

Our adopted EPS WF for the study of the ground state
properties of the Hamiltonian (1) on an N -site square lattice
with periodic boundary conditions, in the presence of two
mobile holes, is

|�〉 =
∑
m,S

(−1)L(m)+F(mS )
∏
P

C
mP

P C
mS

S |m〉, (2)

where m refers to a configuration with STOT
z = 0 comprising

N − 2 electrons and 2 holes at sites ih1 and ih2 (with ih1 <

ih2 ). The above Ansatz includes two classes of plaquettes
characterized by index P and S, respectively. Specifically,
we consider N square plaquettes comprising l sites, where
their configuration, for a given plaquette, is labeled via
mi1,P

, . . . ,mil,P and linear stringlike plaquettes joining sites
ih2 and ih1 comprising l′ sites so that i1,S ≡ ih2 and il′,S is a
nearest neighbor of ih1 . Examples of plaquettes belonging to
both classes are illustrated in Fig. 1(c). In Eq. (2), L(m) =
NA

↓ + ∑
i∈A,j>i n̂h

i n̂
h
j , with NA

↓ the number of down spins in
one of the two sublattices of the square lattices and n̂h

i the hole-
number operator at site i; similarly F(mS) = NS

↓ + g(ih1 ,il′,S)
where the first term on the right-hand side counts the number
of down spins comprised in the Sth stringlike plaquette and
g(ih1 ,il′,S) = 1 (0) if the distance between ih1 and il′,S is
±̂y (±̂x). The resulting phase factor (−1)L(m)+F(mS ) reduces
at half filling to the exact Marshall sign rule [16] and, for the
present study, is found, in our explored parameter range, to
improve the optimization of the wave function favoring the
emergence of the ground state properties of the system.
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In our calculations we set l = 9 corresponding to 3 × 3
plaquettes and consider string plaquettes comprising up to
l′ = l sites. A null weight has been assigned to system
configurations in which holes are connected by longer strings.
We carry out independent optimizations of the state in Eq. (2)
for each lattice size and value of J/t considered here via the
variational Monte Carlo algorithm described in Ref. [12] and
use the same numerical approach to estimate the observables
of our interest. In particular, for 0.4 � J/t � 2.0 we compute
(i) the two-hole ground state energy defined as δE2/t =
(E2 − E0)/t , where E2 (E0) are the ground state energies of
model (1) with two holes (at half filling), (ii) the probability
distribution P (r) = ∑

i<j n̂h
i n̂

h
j δ(rij − r) of finding the two

holes at distance r , as well as (iii) the two-hole binding
energy �/t = δE2/t − 2δE1/t where the one-hole ground
state energy δE1/t has been estimated by means of the EPS
Ansatz based on 3 × 3 plaquettes proposed by one of us in
Ref. [15]. It has to be stressed that with our chosen dimension
of the plaquettes we obtain remarkable agreement with ED
calculations [17–19] for both the single- and the two-hole
problems; similarly, on large lattices our estimates of both
the single- and the two-holes ground state energies are in
extremely good agreement with the most accurate results
available in the literature [10,20] (see Sec. III). This is an
important point since a consistent increase of the plaquette
size, e.g., by considering square plaquettes of 16 sites, if
doable, would be extremely expensive from a computational
point of view due to the dimension (i.e., 3) of the local Hilbert
space of the t-J model. Our findings for P (r) obtained for
lattices of up to N = 256 sites, that is, much larger than those
treatable with exact methods, demonstrate the existence of a
two-hole bound state for any value of J/t considered here.
Estimates of the two-hole binding energy extrapolated to the
thermodynamic limit and for values of J/t lower than 0.4
suggest that a two-hole bound state does not exist with the same
symmetry characteristic of the range of J/t values explored
in this work for J/t � 0.19.

III. RESULTS

While for small system sizes (i.e., up to N � 16) it is
possible to describe the ground state properties of model (1)
essentially exactly by means of an EPS WF based on a single
plaquette that correlates all the lattice sites, such a choice is
not a viable option for larger lattices. Our variational state in
Eq. (2), where plaquettes comprising a limited number of sites
are used, provides accurate energy upper bounds for the lattice
with N = 16 and is applicable to considerably larger lattice
sizes using standard computational resources. For example,
on the 4 × 4 square lattice we find, at J/t = 1.0,E2 =
−18.8007(1)t which compares extremely well with the exact
result [17] Eex

2 = −18.8061t . The resulting EPS two-hole
ground state energy is δE2/t(J/t = 1.0) = 0.4246(1), which
has to be compared with δEex

2 /t(J/t = 1.0) = 0.4223. It is
interesting to contrast our results with those obtained by means
of a Green’s function Monte Carlo (GFMC) approach based
on the extrapolation of transient energy estimates generated by
the GFMC algorithm starting from a suitable initial state. For
the two-hole t-J model, the GFMC technique is affected by the
fermionic sign problem and the mentioned extrapolation can
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FIG. 2. Two-hole ground state energy δE2/t of model Eq. (1) as
a function of the lattice size N . Estimates are obtained with the EPS
Ansatz in Eq. (2). Values of J/t are 2.0 (stars), 1.0 (squares), 1/1.5
(triangles), 0.5 (diamonds), and 0.4 (circles). Error bars are smaller
than the symbol size. Exact results [17,18] available for the 4 × 4
lattice are also shown (empty squares) for comparison. The dotted
lines are polynomial in the inverse system size fitting functions to
numerical data. Inset: Probability P (r) of finding two holes at distance
r on a 4 × 4 lattice; same symbols correspond to the same values of
J/t in the main panel, and solid lines are guides to the eye. Distances
are in units of the lattice constant.

be performed by using just a few transient estimates before
the occurrence of an uncontrolled growth of the statistical
uncertainty ultimately due to sign instability. Consequently,
the choice of the initial state is crucial in the case of GFMC
as it has to produce reliable estimates in a limited number of
algorithm iterations. Although for J/t = 1.0 this procedure
gives an extrapolated value δEGFMC

2 /t(J/t = 1.0) = 0.42(1),
in agreement with our EPS result, we note that the GFMC
zeroth, variational iteration based on the initial WF provides
a two-hole ground state energy more than 3 times larger. This
demonstrates that our EPS Ansatz is much more accurate than
the initial variational state adopted in Ref. [20] and, more
importantly, suggests our WF as a nearly optimal one to start
a GFMC numerical scheme consisting of a few iterations.
The latter, aside from the above-mentioned possibility of
adding variational flexibility to a general EPS WF by including
larger plaquettes, constitutes a further opportunity to improve
numerical estimates.

Figure 2 shows EPS results for the two-hole ground state
energy δE2/t as a function of the system size N and various
values of J/t . The relative error of our numerical estimates
with respect to the exact results obtainable for the N = 16
lattice (i.e., the smallest considered here) is of the order of
0.5% or less regardless of the J/t value. On larger lattices
our two-hole ground state energies compare extremely well
with GFMC ones; at J/t = 1.0, for example, our estimated
value for the 8 × 8 system is 0.238(2) in numerical agreement,
taking into account the quoted error bars, with the GFMC
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FIG. 3. Probability P (r) of finding two holes at distance r on
the 8 × 8 lattice. Estimates are obtained with the EPS Ansatz in
Eq. (2). Values of J/t are 2.0 (stars) and 0.4 (circles). Error bars
are smaller than the symbol size; solid lines are guides to the eye.
Inset: Large-distance decay of P (r) for J/t = 0.4; also shown is
the exponential (see text) fitting function adopted to describe our
numerical data (dashed line). Distances are in units of the lattice
constant.

result, i.e., 0.26(2) [20]. By means of a simple extrapolation
of our data to the thermodynamic limit based on a polynomial
expansion in powers of 1/N (dashed lines in figures) we find
that the two-hole ground state energy monotonically decreases
with decreasing J/t being, e.g., δEN=∞

2 /t(J/t = 1.0) �
0.185 and δEN=∞

2 /t(J/t = 0.4) � −3.05. Our extrapolated
results are in substantial agreement with the estimates for
the largest lattice size studied in this work (i.e., N = 256)
pointing out how the EPS Ansatz allows, for the model of our
interest, to investigate lattices large enough to provide a good
approximation of the physics emerging in the thermodynamic
limit. The probability P (r) of finding the two holes at distance
r on the 4 × 4 lattice for chosen values of J/t = 2.0 and
0.4 is plotted in the inset of Fig. 2. This quantity displays
an oscillating behavior with a global maximum at r = 1 for
J/t = 2.0. For lower J/t the position of such a maximum
shifts to r = √

2 and P (r) at larger r increases, signaling an
enhanced propensity of the two holes to reside on distant lattice
sites. This may possibly result for larger system sizes in an
“unbound” two-hole ground state. Conversely, if the two holes
form a bound state P (r) is expected to feature an exponential
decay at large distances [21].

Figure 3 shows estimates of P (r) on a lattice of N =
64 sites. Although the qualitative behavior of the two-hole
distribution function is similar to that found for N = 16 here,
as expected, holes are more separated on average. The smaller
is the value of J/t , the larger is their tendency to increase
their relative distance. However, for large r our data are well
described by the simple functional form P (r) ∼ e−r/ξ where,
for J/t = 0.4 (see inset), we estimate ξ ∼ 0.4. By increasing
the lattice size to N = 256 the value of ξ stays essentially
unchanged. On the basis of this analysis we can conclude
that the two holes form a bound state for all the values
0.4 � J/t � 2.0 examined in our study.
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FIG. 4. Single-hole ground state energy δE1/t of model Eq. (1)
as a function of the lattice size N . Estimates are obtained with the EPS
Ansatz used in Ref. [15]. Values of J/t are 2.0 (stars), 1.0 (squares),
1/1.5 (triangles), 0.5 (diamonds), and 0.4 (circles). Error bars are
smaller than the symbol size. The dotted lines are polynomial in the
inverse system size fitting functions to numerical data. Exact results
available for the 4 × 4 lattice are also shown (empty squares) for
comparison.

Quantitative information about the two-hole bound state is
obtainable by computing the binding energy �/t defined in
Sec. II. A negative value of this quantity signals the existence of
the bound state. In order to estimate �/t , both the two- and the
single-hole ground state energies are needed. The single-hole
ground state energy is plotted as a function of the system size in
Fig. 4, for several values of J/t . The binding energy resulting
from the combination of data in Fig. 2 and Fig. 4 displays a
marked dependence on the system size as well as on the values
of J/t . For example, for N = 256 we find �/t(J/t = 0.4) =
−0.111(3), a value in agreement with the GFMC estimate
of −0.12(4), approximately 3 times higher than that for the
4 × 4 lattice. On the other hand, on a 16 × 16 lattice when
J/t increases from 0.4 to 1.0, the two-hole binding energy
decreases down to ∼ −0.39.
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FIG. 5. J/t versus opposite binding energy extrapolated to the
thermodynamic limit −�∞/t . The dashed line is a fitting function to
our numerical estimates (see text).
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Values of the binding energy extrapolated to the thermody-
namic limit are plotted in Fig. 5. Specifically, for each value
of J/t,�∞/t = δE∞

2 /t − 2δE∞
1 /t is computed via the cor-

responding extrapolations of the two- and single-hole ground
state energies (see dashed lines in Figs. 2 and 4, respectively).
By assuming, as in Ref. [20], the functional dependence t/J =
G(x = �∞/t) = t/Jc[1 − λx ln(x/ε)], we estimate the criti-
cal value Jc � 0.19t at which the two-hole binding energy
extrapolated to the thermodynamic limit reaches zero. This
estimate, in agreement with that obtained in the case of the
16 × 16 lattice, indicates that for J � Jc a bound state of two
holes, if present, is characterized by a symmetry different from
that (i.e., d-wave) predicted by several studies in the parameter
range of Fig. 5. Indeed, a change in the symmetry of the bound
state should occur for J/t � 0.18 [22] (or 0.15) [23].

IV. CONCLUSIONS AND PERSPECTIVES

We have shown that the entangled-plaquette variational
Ansatz can be applied to study the ground state properties
of two mobile holes in a two-dimensional quantum anti-
ferromagnet for lattice sizes considerably larger than those
treatable with exact approaches. Obtained energy estimates are
in remarkable agreement with exact results on a N = 16 lattice.
We have extended our analysis to a maximum system size of
N = 256, demonstrating the existence of a two-hole bound
state for all the values of J/t explored here. An extrapolation of

our estimated two-hole binding energy in the large-N limit to
low values of J/t results in a critical Jc � 0.19t below which
a bound state with d-wave symmetry is not expected. Possible
interesting extensions of the present work are including, e.g.,
the p-wave symmetry in the EPS Ansatz to investigate the
existence of a different two-hole bound state in the ground
state for J/t � 0.19, as well as studying the dependence of
the physical properties discussed here on the presence of a
next-nearest-neighbor hopping term in Eq. (1).

Furthermore, although specific QMC approaches can still
be adopted for the two-hole t-J model at the price of a large
error bar on the resulting estimates, in the finite hole density
scenario, where the physical picture remains under debate
[24–26], their applicability is unfeasible due to an even
heavier sign problem. In such a case the EPS Ansatz, in
the framework of a simple, by definition sign-problem free,
variational approach (e.g., that employed here) may constitute
a viable option either as a generalization of Eq. (2) or as a
systematic route to improve relevant wave functions.
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