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Large anomalous magnetic moment in three-dimensional Dirac and Weyl semimetals
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We investigate the effect of Coulomb interactions on the electromagnetic response of three-dimensional Dirac
and Weyl semimetals. In a calculation reminiscent of Schwinger’s seminal work on quantum electrodynamics, we
find three physically distinct effects for the anomalous magnetic moment of the relativisticlike quasiparticles in
the semimetal. In the case of nonzero doping, the anomalous magnetic moment is finite at long wavelengths and
typically orders of magnitude larger than Schwinger’s result. We also find interesting effects of one of the three
new Hamiltonian terms on the topological surface states at the interface between vacuum and a Weyl semimetal.
We conclude that observation of these effects should be within experimental reach.
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I. INTRODUCTION

Two breakthroughs in the history of quantum mechanics
were the discovery of spin by Stern and Gerlach in 1922 and the
formulation of the Schrodinger equation in 1926 [1,2]. These
two concepts were combined in 1927, when Pauli generalized
Schrodinger’s equation to take into account the Zeeman
interaction of an electron’s spin with an external magnetic field,
assuming the value g, = 2 for its dimensionless magnetic
moment [3]. This theory was subsequently put on a firm footing
by Dirac in 1928 when he derived the fully relativistic wave
equation that now carries his name [4]. A natural result in
his derivation of Pauli’s theory was a dimensionless magnetic
moment of precisely g,, = 2 for the electron. However, in 1947
a slight deviation from g,, = 2 was measured [5]. It took only
a year before this discrepancy was resolved, when Schwinger
used the powerful tools of the newly developed quantum field
theory to calculate the anomalous magnetic moment of the
electron due to its coupling to the photon [6].

One important consequence of the anomalous magnetic
moment becomes clear when it is added to the Dirac equation
for an electron in an external magnetic field. In its absence,
the energy spectrum consists of Landau levels that are all
doubly degenerate, except for the spin-polarized zero-energy
Landau level. However, this spin degeneracy is removed when
an anomalous magnetic moment is present [7]. This spin
splitting is reminiscent of the situation that occurs when spin
degeneracy is removed in a Dirac semimetal by breaking
time-reversal or inversion symmetry, which splits the Dirac
cone into two Weyl cones. The resulting material is nowadays
referred to as a Weyl semimetal.

Recently, Dirac and Weyl physics has been discovered in
materials such as Cd;As, and Na3Bi, and TaAs, respectively
[8-13]. The last material has also been proposed to exhibit
anomalous transport properties due to its topological nature
such as an anomalous Hall effect and a chiral anomaly [14—18].
In view of these rapid developments it is of interest to take a
closer look at the anomalous magnetic moment of the electrons
in these materials. However, there is now a fundamental dif-
ference with Schwinger’s calculation: he considered the case
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of massive electrons in the vacuum, whereas the electrons in
a Weyl semimetal are described by massless electrons around
the band-touching points. In the case of massless electrons
in a vacuum, one would find that the anomalous magnetic
moment contains an infrared divergence. Luckily, there is a
way around this conundrum. Due to their coupling to a nonzero
density of electrons, photons acquire an effective mass at long
wavelengths. This results in a screened Coulomb potential
between the electrons in the material, providing an infrared
cutoff that renders the anomalous magnetic moment finite.

There have been previous investigations into the role of
unscreened Coulomb interactions between the electrons in
a Weyl semimetal, including the effect on charge transport
[19], the Berry curvature [20], and the thermodynamic stability
[21]. Additionally, vertex corrections were investigated both
numerically [22] and using the renormalization group [23].
Here we instead include the effects of screening and provide
an analytical calculation of the anomalous magnetic moment
resulting from the transversal part of the vertex correction.

We start our discussion by deriving the screened Coulomb
potential in doped Weyl semimetals in Sec. II. Subsequently,
we investigate how the coupling of the electrons to an external
electromagnetic field is changed by including these screened
electron-electron interactions. By calculating the so-called
transverse vertex corrections in Sec. III we find that the
anomalous magnetic moment of a Weyl fermion generates
three distinct Hamiltonian terms, one of which constitutes a
Rashba spin-orbit coupling, whereas the other two form a
Zeeman-like effect. Due to the large ratio of the free electron
mass and the effective mass of the photon, both effects
are non-negligible. To illustrate that these effects can have
observable consequences, we consider the influence of the
anomalous Rashba spin-orbit coupling on the topological edge
states of a Weyl semimetal in Sec. IV. Finally, we discuss our
results in Sec. V.

II. SCREENING IN DIRAC AND WEYL SEMIMETALS

We start by considering a three-dimensional semimetal with
Dirac dispersion €(k) = hvpk, in terms of its Fermi velocity
vr, which we always assume to be much less then the speed of
light ¢ so that we are allowed to neglect retardation effects
and current-current interactions. Moreover, throughout the
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following we will ignore logarithmic interaction corrections.
For instance, the Fermi velocity will be taken constant, inde-
pendent of the doping of the material. To preserve generality
we consider a system with g degenerate Dirac cones that split
up into g/2 pairs of Weyl cones when time-reversal symmetry
is broken. In principle, each of these pairs of cones can be sepa-
rated in momentum space with its own time-reversal symmetry
breaking vector b that acts as an internal Zeeman field.

The dielectric function for such a material has been studied
extensively and is known analytically in the random-phase
approximation [24—28]. This is a good approximation because
the number of Weyl nodes g is typically large and higher-
order corrections are suppressed in powers of 1/g [29]. In
terms of its complex frequency z and wave number g the
dielectric function equals €(g,z) = 1 — V(¢)Il(g,z), with the
Coulomb potential V(q) = e?/€pq>. The polarizability at zero
temperature can be written as
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where kp is the Fermi wave number and we defined the
dimensionless functions H(x) =In(1 + 1/x) and G(x) =
(x> —3x +2)/4. Here A is an ultraviolet cutoff scale. Its
physical origin lies in the fact that in a real material, the linear
Dirac dispersion is only an approximation that holds up to a
certain energy scale.

The screened Coulomb potential follows from the static
retarded dielectric function €(g,0%) and reads, again up to
logarithmic corrections,

V@) go0 & 1

Vie(q) = < -
(@) €(q,0%) € q>+&2
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with the screening length & = 1/71/2g6(kf7 in terms of the

dimensionless effective fine-structure constant & = ca/vp =
e?/4mwephvp. This also defines an effective photon mass
mpn = h/&c.

We note explicitly that, due to vg/c < 1, this screened
Coulomb potential does not depend on the separation in
momentum space between a pair of Weyl cones. Furthermore,
the screened Coulomb potential reduces to an ordinary one
in the case of zero doping. Additionally, the numerically
transformed Coulomb potential shows very small-amplitude
Friedel oscillations at large distances, but as the exponential
Yukawa decay is dominant, we will neglect those here [28]. We
also noted above that the effective photon mass in the screened
Coulomb potential will act as an infrared cutoff. For the typical

parameters kp = 0.04108_1, g =12, and vp = ¢/300 [10,13],
we have kp& ~ (.24 and a photon mass which is three orders
of magnitude smaller than the free electron mass m,. This
implies that the Coulomb potential has a relatively large range
and as a result vertex corrections can be of significant size, as
we will show now.
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FIG. 1. Feynman diagram for the vertex correction. Photons are
denoted by wiggly lines and fermions by straight lines. The dashed
circle and inset indicate that we are using the screened Coulomb
interaction in the random-phase approximation.

III. TRANSVERSAL VERTEX CORRECTIONS
IN WEYL SEMIMETALS

We specialize to a Weyl semimetal with broken time-
reversal symmetry characterized by a shift of 2b between a
pair of Weyl points in momentum space. Although we shall
ultimately consider the zero-temperature limit, we set up our
framework at a nonzero temperature 7. The Weyl fermions
are described by the spinor ¥/ (x,7). Thus, the imaginary-time
action for a single Weyl cone with chemical potential x and
chirality € = = then reads

Sozh/ drdwa(x,r)[a, - % —vpo - (ieV + b)]w(x,r),
(©)

where T € [0,A8] with B = (kzgT)~! and o is the vector of
Pauli matrices. The emergent Lorentz symmetry allows us to
use a relativistic notation with unit metric. Using this notation,
we couple the Weyl fermions with charge —e to the external
four-potential A* = (¢/vp,A) via the minimal substitution
ho, — ho, — edp(x,7) and —iAV — —ihV + eA(x,7). This
way the coupling terms in the action can be written as
—evpA,y*, with y# = (1, — €o) the bare vertex. The final
ingredient that we add to our theory is interactions between the
fermions via the screened Coulomb potential Vi.(q) presented
in Eq. (2).

We next perform perturbation theory in the bare vertex and
the screened Coulomb interactions. We absorb the location of
the Weyl cone into the wave number by o - (€k —b) = €0 - p.
Then the bare Matsubara propagator of the fermion is Go(p) =
(iwy, + p/h — evrpo - p)~! and we find that the lowest-order
vertex correction for a system of volume V reads

KBV (p.q) = — > _Go(p'+@)y" Vie(® —P)Go(p).  (4)
p'.n’

where p" and g* are the incoming fermion and photon wave
number. The vertex correction is depicted graphically in terms
of a Feynman diagram in Fig. 1.
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The total vertex needs to preserve gauge invariance, which
can be checked with the so-called Ward-Takahashi identity.
For the bare vertex it is given by the relation vpg,y* =
G, 1(q +p) -G, '(p), while for the vertex correction, the
Ward-Takahashi identity reads [30]

vrqu T (p.q) = —2(g + p) + Z(p), (5)

where ABV X (p) = — Zp,’”, Go(p)Vse(p' — p) is the self-
energy in the so-called Gy W approximation.

The vertex correction in Eq. (4) has longitudinal and
transversal parts. The longitudinal part is divergent in the
ultraviolet and upon regularization it ultimately leads to a
renormalization of the Fermi velocity as a function of the
doping. This has been investigated thoroughly in Ref. [31].
Since the renormalization is only logarithmic in pu, it is for our
purposes allowed to not consider it here. Instead, we aim to
investigate the transversal part of the vertex correction. Besides
using the Ward-Takahashi identity, we fix the decomposition
of the vertex correction in its transversal and longitudinal parts
uniquely by demanding that both the longitudinal and the
transversal vertex are Hermitian. To make analytic progress
we specialize to zero temperature and perform perturbation
theory in the external photon momentum up to first order. This
is valid if we consider external electric and magnetic fields
that vary slowly in space and time. Finally, gauge invariance
ensures that everything can be written in terms of the external
electric and magnetic fields E and B. We thus arrive at a
correction to the action in Eq. (3) that reads

“ E
_evFAMFtransv.(p) = —[m1(p) x o] - E

— [m2(p) —epy(@1-B, (6

in terms of the magnetic moments p;(p) = u;(p)p and
M2(p) = ua(p)o. The first term constitutes a Rashba spin-orbit
coupling, while the second and third term together form a
Zeeman-like effect. Note that the third term is proportional to
€, indicating that its sign depends on the chirality of the Weyl
cone under consideration.

Upon defining the function f(x) = In[1 + (kp& + x)*] —
In[1 + (kp& — x)?], the magnitudes u;(p), scaled by the Bohr
magneton ug = eh/2mg, are given by

mi(p)  eca
“B 4r upép?
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where o/2m is Schwinger’s result in terms of the fine-
structure constant o and me/myy >> 1, as discussed previ-
ously. Equations (6), (7), and (8) form the central result of this
paper. We stress that although «/27 &~ 1.2 x 1073 is small,
it is multiplied by the large fraction me/mp, ~ 1.6 x 103,
indicating that our results are between two and three orders
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FIG. 2. Plot of dimensionless magnetic moments for kp& = 1/4
(solid lines) and kr& = 2 (dashed lines). Note that w,(p) changes
sign for small p when kr§ < 1.

of magnitude larger than those of Schwinger. Indeed, we
find for kp& ~ 0.24 in the long-wavelength limit p kg /g ~
0.25 and wy/up =~ 0.85. Hence, these anomalous effects are
substantial.

One interesting property is that both the magnetic moment
ft1 and the linear combination g, — € can change sign for
small p and kpé < 1. Askpé = /m/2ga, this means that the
strength of the effective fine-structure constant determines the
sign of the Zeeman or Rashba effect. We have plotted the two
moments for two values of k& in Fig. 2.

Yet another important property is that the two magnetic
moments are finite in the long-wavelength limit. The crucial
ingredient for obtaining this finite long-wavelength behavior
is a nonzero doping. This causes the Coulomb potential to be
screened, yielding an infrared cutoff for the loop integral in the
vertex correction. Indeed, in the limit k. — 0, or § — o0, we
obtain the infrared divergence u;(p) ~ p~2. Exactly the same
behavior was recently found in a holographic calculation at
the critical Dirac point [32].

IV. RASHBA-MODIFIED TOPOLOGICAL
SURFACE STATES

To consider observable effects of the anomalous magnetic
moment, we now investigate how the Rashba spin-orbit
coupling due to a constant external electric field E influences
the topological surface states of a Weyl semimetal. The effect
of the Zeeman-like anomalous terms will be discussed in
future work. We would like to stress that the Rashba spin-orbit
coupling we derived in Eq. (6) does not follow from a Peierls
substitution in the Weyl Hamiltonian. Its true origin lies in the
Coulomb interactions between the electrons.

We consider a simple model system inspired by Refs.
[33,34]. We have an interface at x = 0 of a Dirac vacuum
with mass m for x < 0 and a massless Weyl semimetal with
a time-reversal symmetry breaking vector b = bZ for x > 0,
with b > 0. The mass m >> hb/vp acts as the equivalent of a
work function for the electrons to leave the Weyl semimetal
into the Dirac vacuum. Such a system has a surface state
localized around x = 0 that propagates in the yz plane.
This state is chiral because it only admits the dispersion
wx = —vrk,, whereas the dispersion with the other sign is
not a solution. Additionally, it only exists for |k;| < b, which
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FIG. 3. (a) Schematic illustration of the proposed experimental setup. In this case the electric field is perpendicular to the surface.
(b) Density plot of the dimensionless dispersion wx/bvr as a function of k, /b and k. /b for E = 1/10. (c) Same as in (b), for £ = 1/2. The
white regions cannot support a bound state. In both figures the red lines [and @] indicate the boundary of the area where there are bound states
for zero electric field, whereas the blue lines [and @] do the same in the case of a nonzero electric field. The green lines [and ®] indicate the

Fermi arc for a nonzero electric field.

leads to the so-called Fermi arc of the system [13]. A schematic
image of this setup is presented in Fig. 3(a).

Now we ask how these properties change when we turn on
a constant external electric field which induces the anomalous
Rashba spin-orbit coupling. For x > 0 the Hamiltonian is
block diagonal with its constituent blocks H, corresponding
to the different chiralities € = =+. In the long-wavelength limit
it reads

H.. (k)
wa

where we introduced the dimensionless electric field E =
w1(0)E/hv% and we reintroduced the time-reversal symmetry
breaking vector by setting p = kF b. The wave numbers
along the y and z direction are good quantum numbers, such
that the eigenvalue problem becomes one dimensional in the
x coordinate

We proceed by solving the eigenvalue problems of the
Dirac and Weyl Hamiltonian for x < 0 and x > O separately
and demand continuity of the spinors at x = 0. This yields a
four-by-four matching matrix, which should have a vanishing
determinant to support a bound state located around x = 0.
There are three physically distinct situations. An electric field
in the y direction yields the same dispersion relation and Fermi
arc as in the case of zero electric field. In the case of an
electric field in the z direction, we find a modified dispersion
wx = —vpV1+ E_‘Zky, while the Fermi arc is still given by
|k.| < b. Finally, the most interesting situation is the one
where the electric field is in the x direction, perpendicular
to the surface. In this case we find a dispersion relation that
reads

=+[kFb]-0 —[Ex (kFb)] o, )

(1 — E*bky + E(k} + k2 — b*)
\/ (b4 Eky)? + E2k2

. (10)

Wk = —VUFf

which only is a solution in the exterior of the two
circles defined by [k, + %]2 + [k, £ %(1 + %)]2 = ”72[1 +

2 .
%] . Hence, there are no bound states with wave numbers

in the interior of these circles because the one-dimensional
problem then corresponds to a topologically trivial band
insulator. This is drastically different from the condition
|k.| > b for zero electric field. Furthermore, by demanding
wk = vpkp we find that the Fermi arc is a part of a circle that
increases in size for larger values of the electric field. This
should be contrasted to the case of zero electric field, where
the Fermi arc is just a straight line. We show a density plot of
the dispersion relation and Fermi arc for two values of E in
Figs. 3(b) and 3(c).

This dramatic change in the Fermi arc when an external
electric field is applied could be an experimental signature
to detect the anomalous Rashba spin-orbit coupling. Addi-
tionally, we deduce from Figs. 3(b) and 3(c) that there are
bound states with a certain wave number which seize to be
a bound state when a critical value for the externally applied
electric field is reached. This could be another experimental
signature of the presence of the anomalous Rashba spin-orbit
coupling. To make quantitative predictions for a specific
material, one needs to consider a more detailed model of
the surface. However, we stress that the qualitative behavior
obtained above is determined by topology and will remain the
same.

V. CONCLUSION AND DISCUSSION

In conclusion, we have calculated the first-order vertex cor-
rection for a three-dimensional Weyl semimetal in which the
massless electrons interact via a screened Coulomb potential.
We have shown that the correction is orders of magnitude
larger than Schwinger’s result for the anomalous magnetic
moment for massive electrons in quantum electrodynamics.
Finally, we have demonstrated that the anomalous Rashba
spin-orbit coupling has an observable effect on the surface
states located between a Weyl semimetal and vacuum, as
well as on the corresponding Fermi arcs. A surface Rashba
effect due to the inevitable breaking of inversion symmetry at
the surface of the material [35] does not modify these latter
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observations. Indeed, the mere existence of the surface states
is determined by the topological nature of the band structure
in the bulk, which is characterized by the bulk Hamiltonian
that includes the Rashba-like spin-orbit coupling coming from
the transversal vertex correction. Hence, a Rashba effect
on the surface changes the dispersion relation in Eq. (10),
but will not change the boundaries of the regions in the
(ky,k;) plane that determine whether or not there is a surface
state.

In future work we plan to investigate the influence of
the Zeeman-like term on the bound surface states of a
Weyl semimetal. It would also be interesting to explore if
the anomalous effects derived in this paper leave a distinct
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signature in the quasiparticle interference pattern of a Weyl
semimetal [36-38].
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