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The normal state of strongly coupled superconductors is characterized by the presence of “preformed” Cooper
pairs well above the superconducting critical temperature. In this regime, the electrons are paired, but they lack
the phase coherence necessary for superconductivity. The existence of preformed pairs implies the existence of a
characteristic energy scale associated with a pseudogap. Preformed pairs are often invoked to interpret systems
where some signatures of pairing are present without actual superconductivity, but an unambiguous theoretical
characterization of a preformed-pair system is still lacking. To fill this gap, we consider the response to an external
pairing field of an attractive Hubbard model, which hosts one of the cleanest realizations of a preformed pair
phase, and a repulsive model where s-wave superconductivity cannot be realized. Using dynamical mean-field
theory to study this response, we identify the characteristic features which distinguish the reaction of a preformed
pair state from a normal metal without any precursor of pairing. The theoretical detection of preformed pairs is
associated with the behavior of the second derivative of the order parameter with respect to the external field, as
confirmed by analytic calculations in limiting cases. Our findings provide a solid test bed for the interpretation
of state-of-the-art calculations for the normal state of the doped Hubbard model in terms of d-wave preformed
pairs and, in perspective, of nonequilibrium experiments in high-temperature superconductors.

DOI: 10.1103/PhysRevB.94.155114

I. INTRODUCTION

In many complex materials and quantum systems we
witness the persistence of fingerprints of superconductivity
well above the critical temperature and clearly distinct from
fluctuation phenomena. This often leads to a possible in-
terpretation in terms of electron pairs which are formed at
very large temperature but they can condense only at a much
lower critical temperature due to the phase fluctuations of their
wave function. Yet, the unambiguous detection of preformed
pairs is elusive, as it does not correspond to an actual phase
transition and it cannot be unambiguously associated with a
direct observable quantity.

The prototypical realization of this physics takes place in
model systems with strong pairing interaction, which drives
the formation of tightly bound pairs with a reduced phase
coherence. In this regime, superconductivity occurs as a Bose-
Einstein condensation (BEC) of composite bosons formed by
the bound pairs of fermions. When the pairing strength is
tuned from weak to strong coupling one observes a continuous
crossover from the familiar BCS [1] pairing to this regime.

This BCS-BEC crossover [2–6] has been intensively stud-
ied, both in the context of cold atoms trapped in optical
lattices [7] and in high-temperature superconductivity, where
a preformed pair regime has been invoked [8–12] for the
pseudogap state [13,14] of underdoped cuprates.

In this work we use the attractive Hubbard model as a
theoretical device to set a practical protocol to confirm or
disprove the existence of preformed pairs in a specific system
under analysis. Comparing regimes where s-wave preformed
pairs are certainly present or certainly absent, we identify
which properties of the system are so sensitive to their presence
to be exploited for their detection. Such an identification
will also be applicable to interpret existing analyses of the
pseudogap phase in the cuprates [15–17].

We have structured our paper as follows: In Sec. II, we
briefly discuss the modelization of the problem, in terms of

the single-band (attractive) Hubbard Hamiltonian, and briefly
review some of the previous dynamical mean-field theory
(DMFT) studies in the absence of an external field. In Sec. III,
we report our DMFT results in the presence of a forcing field at
different temperatures and interactions, comparing explicitly
the attractive and repulsive models. The physical interpretation
of our numerical results in terms of the underlying ground-state
properties is given in Sec. IV. In Sec. V we discuss the
implication of this criterion in a broader context, while in
Sec. VI we present our conclusions.

II. MODELIZATION OF THE PROBLEM

Throughout this paper we will consider a simple Hubbard
model in the presence of an external field driving an s-wave
superconducting order parameter:

H = −t
∑
〈ij〉σ

c
†
iσ cjσ + U

∑
i

ni↑ni↓

−μ
∑
iσ

niσ − η
∑

i

(c†i↑c
†
i↓ + H.c.). (1)

Here, t represents the nearest-neighbor amplitude, μ is the
chemical potential, and the effective interaction U is negative
for the attractive and positive for the repulsive Hubbard model.
The last contribution in Eq. (1) represents the coupling of the
system to a forcing, time-independent pairing field η, which is
assumed to be positive and isotropic (s wave).

In more than two dimensions the attractive Hubbard
model displays a low-temperature s-wave superconductivity,
smoothly evolving from a weak-coupling (BCS) regime to a
strong-coupling BEC regime with increasing U [18]. In the lat-
ter regime, pairs are formed at a very high temperature of order
U, while they can only condense at a much lower temperature
T = Tc ∝ 1

U
because of the large phase fluctuations which

contrast the formation of a coherent condensate [2]. In the BCS
regime, superconductivity is stabilized by a potential energy

2469-9950/2016/94(15)/155114(13) 155114-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.155114


A. TAGLIAVINI, M. CAPONE, AND A. TOSCHI PHYSICAL REVIEW B 94, 155114 (2016)

gain, while the superconductor has a (slightly) higher kinetic
energy than the normal state. In the BEC regime the energetic
balance is the opposite: The superconductor is stabilized by
a kinetic energy gain with a slight potential energy loss with
respect to the normal state [18].

Given the s-wave nature of the pairs and the local nature
of the interactions, much of the physics for d > 2 can be well
captured by dynamical mean-field theory (DMFT) [19], an
approach where spatial fluctuations are frozen, but the local
dynamics is included nonperturbatively at every value of the
interaction strength. DMFT becomes formally exact in the
limit of infinite coordination [20] of the lattice but it can
be used as an approximation in finite dimensions, where it
provides a fully nonperturbative description. This represents
a major advantage to analyze weak- and strong-coupling
regimes on equal footing. Previous DMFT studies [18,21–23]
have focused on spectral, thermodynamic properties, and even
on some nonequilibrium properties [24]. Here we consider a
different aspect, namely the response to an external stimulus
which drives a superconducting s-wave pairing, also beyond
the linear-response regime.

For the sake of definiteness we consider a semicircular
density of states N (ε) = 2

πD2

√
D2 − ε2 (D being its half-

bandwidth) which is suitable to represent a finite-bandwidth
system in DMFT. To solve the auxiliary impurity problem of
DMFT we adopted an exact diagonalization (ED) solver with
ns = 5 sites (one impurity and nb = 4 bath electronic sites),
and tested the stability of the results by increasing the num-
ber of sites in the most relevant intermediate-coupling/low-
temperature regime. Obviously, due to the external pairing
field in Eq. (1), the DMFT treatment has to be extended to
the broken-symmetry phase, by recasting DMFT in Nambu
formalism (see, e.g., [22]).

In this section we set up the stage by presenting refined
results for the unperturbed attractive Hubbard model. In this
way we identify concretely weak-, intermediate-, and strong-
coupling regions whose definition will be helpful to guide the
discussion of the following sections.

Figure 1 shows the energy difference between the super-
conducting and the normal state �Etot = ES − EN (resolved
in its kinetic and potential energy components) in different
interaction regimes for two significant choices of the electron
density: n = 1 (half filling) and n = 0.5 (quarter filling). We
consider a low value of the temperature β = 50D−1 which
is significantly below Tc for the broad range of |U | used in
the figure. Moreover, we verified that discretization effects
associated with a finite bath size of the ED solver are negligible.

Our findings are summarized by the different colors
in the diagrams, which mark the different regimes (BCS:
blue; intermediate: violet; BEC: red). Figure 1 shows that a
qualitative change of the energetic balance with respect to BCS
only takes place when U � 2D, where a narrow intermediate
region, in which the superconductor gains both potential
and kinetic energy, starts. At U � 2.5D a BEC regime is
established. This evolution of the energetic balance tracks
the progressive formation of preformed pairs in the normal
state. These results provide a more accurate determination of
the boundaries found in Ref. [18]. We also notice that the
results for n = 1 and n = 0.5 are remarkably similar. This
observation shows how weakly the physics of the attractive

FIG. 1. Energy balance �Etot = ES − EN (and its kinetic and
potential components) computed in the superconducting region at
β = 50D−1 as a function of the attractive interaction U . The upper
panel refers to the half-filled (n = 1) case, while the lower panel
refers to the electron density n = 0.5. Inset: The same but for the
Hamiltonian of Eq. (2), where the energies have been scaled in order
to keep the attractive interaction constant (λ = −0.5) and let the
bandwidth vary as a more realistic effect of the correlation and/or
doping.

Hubbard model depends on doping. For this reason we will
mainly focus in the following on the half-filled case, which has
an important practical advantage for our calculations, which
are performed in the grand-canonical ensemble, where the
chemical potential is the independent variable. The half-filling
condition is indeed obtained by enforcing particle-hole sym-
metry, which corresponds to μ = U/2. For any other filling,
the corresponding chemical potential and its dependence on U

are not known analytically and they must be found numerically.
We however show explicitly that our findings are general by
performing a set of calculations for n = 0.5. Analogous DMFT
characterizations also hold for magnetic phases, in particular
for the “sibling” crossover from a Slater to an Heisenberg
antiferromagnet, as explicitly shown by recent DMFT [25]
and dynamical cluster approximation (DCA) [26] results.
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In this work the attractive Hubbard is not introduced as
a microscopic description of any realistic material, but as a
simple tool for the detection of preformed pairs. However,
the energetic analysis we just summarized was suggested
as a possible explanation of the spectral weight changes
observed in the optical conductivity on the cuprates [27–38].
Evidently any attempt in this direction must include at least
qualitatively the effect of strong repulsive correlations, which
mainly control the doping dependence of the cuprate phase
diagram. Thus, if one wanted to use Eq. (1) with U = −λ < 0
for a rough investigation of these specific features in the
cuprate physics, one should account for the doping dependence
of the quasiparticle properties. This can be achieved by
renormalizing the kinetic term by means of the quasiparticle
weight Z, while leaving at first approximation the effective
attractive interaction unchanged:

H =−Z t
∑
〈ij〉,σ

c
†
iσ cjσ − λ

∑
i

ni↑ni↓ − μ
∑

i

(ni↑ + ni↓).

(2)

Here the effective bandwidth D∗ = 2Zt decreases as we
reduce the hole doping and vanishes at the Mott transition
Z → 0 as x → 0, while the attractive interaction λ is taken
as a constant. Such a simple assumption is explicitly real-
ized, e.g., in realistic modeling of the strongly correlated
superconductivity in fullerides [39,40]. As for the energetic
balance this amounts to a rescaling in the previous plot,
whose effects are reported in the inset of Fig. 1: The results
of this a “more physical” approach to the problem do not
change the qualitative picture, making, however, the energetic
balance between the BCS and the BEC regimes overall more
symmetric.

III. DMFT RESULTS IN THE PRESENCE
OF A FORCING FIELD

In this section we will apply a “theoretical probe” to
investigate the preformed pair physics: We will study the
superconducting response induced by a finite forcing pairing
field, also beyond the linear response regime. We will com-
pute by means of DMFT the s-wave superconducting order
parameter � = 1

N

∑
i〈ci↓ci↑〉 as a function of the external

field η at different interaction couplings (U ) and inverse
temperatures (β = 1/T ). We detail our analysis in the half-
filling case, where particle-hole symmetry strongly reduces
the time required by the calculations, and then we extend our
investigation to a less symmetric case away from half filling,
specifically for n = 0.5 (quarter filling).

A. Half-filling study (n = 1.0)

As a first step, we follow the evolution of �(η) in the
attractive case (U < 0) across the critical temperature at weak-
and strong-coupling regimes (according to the classification of
Sec. II). This evolution shows the expected appearance of a
finite � for η = 0 below Tc and the divergence of the slope
of �(η) for η → 0+ (which coincides with the linear-response
pairing susceptibility) approaching Tc from above (see Fig. 2).

These obvious features are a direct consequence of a
second-order phase transition and could, thus, hide the

FIG. 2. Superconducting s-wave order parameter for two differ-
ent values of the on-site attractive interaction, namely, U = −1 and
U = −4, and for different β values at half filling.

preformed-pair physics. Hence, in the following analysis, we
will choose a sufficiently high temperature T = 1/7D (i.e.,
T � Tc for the selected U ) to be safely in the normal state
and to mitigate the impact of the underlying phase transition
on the low-η behavior of �(η).

The corresponding results are shown in Fig. 3 (left panel),
where the exact result for the atomic limit (t = 0) is also
reported for comparison. For all U values from weak to strong
coupling and in the atomic limit �(η) saturates to 1/2 by
increasing η. Physically, this reflects the fact that, due to
the attractive interaction in the s-wave channel, the system
responds promptly to the forcing pairing field: the slope of
�(η) assumes the largest value for η → 0+ and decreases
monotonically with η.

Mathematically, this means that �(η) is a concave function
for the whole interval η ∈ (0,∞), i.e.,

d2�(η)

dη2
< 0 ∀ η > 0. (3)

We note that this general property is totally unaffected by
the specific behavior of the linear response regime (slope
for η → 0+), whose quantitative change as a function of U

mostly reflects a different proximity to Tc, which is maximum
at intermediate coupling [18,41], very close to the reported
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FIG. 3. Superconducting s-wave order parameter � = 1
N

∑
i〈ci↓ci↑〉 as a function of the forcing pairing field η in the attractive (left panel)

and the repulsive (right panel) Hubbard model (half-filling case). Here all the quantities are expressed in units of the half-bandwidth D. The
black line on the right panel refers to the analytic behavior in the atomic limit at β = 7 [see Eq. (9)].

value of U/D = −2.225. This is exemplified in Fig. 4 where
we perform the same analysis but for a local pairing field
ηloc and detecting the local order parameter. Here the small-η
slope, being proportional to the local pairing susceptibility, is
unaffected by the proximity to the second-order phase transi-
tion, and it monotonically approaches the atomic limit result.
Nevertheless, the curvature of the second-order derivative is
the same as the one of the uniform-field case.

In order to understand the physical meaning of Eq. (3),
and to exploit it for a preformed-pairs probing beyond our
work, we provide a comparative DMFT study of the opposite
situation, where our external pairing field η contrasts the
underlying spontaneously ordered phase of the system at low
T . This can be realized repeating the same analysis for the
repulsive (U > 0) Hubbard model. The corresponding results
are shown in Fig. 3 (right panel), where—as before—the s-
wave superconducting order parameter is plotted as a function

FIG. 4. Local superconducting s-wave order parameter � =
1
N

∑
i〈ci↓ci↑〉 as a function of the local forcing pairing field ηloc

in the attractive Hubbard model. The black line provides the analytic
behavior in the atomic limit case at U = −7 and β = 7 [see Eq. (9)].

of the pairing field η for the same high temperature (β =
7D−1). The DMFT behavior of �(η) shows quantitative and
qualitative differences between the attractive and the repulsive
case. The first difference concerns the linear response to the
pairing field, which is progressively suppressed by increasing
the strength of the repulsive interaction.

Yet, this difference should be considered—from our
perspective—only quantitative: Since the linear response is
crucially affected by the proximity to the second-order phase
transition, it always becomes progressively smaller going
farther away from the transition (e.g., for the attractive case
by increasing T , or for the repulsive case by increasing U ).
Hence, its absolute value is not per se informative about the
presence of preformed pairs in the system.

The behavior of the second derivative of �(η), instead,
is qualitatively richer than in the attractive case (Fig. 3): For
small values of η, the second derivative has a positive sign [i.e.,
�(η) is a convex function], up to an inflection point η∗ (marked
by a vertical arrow in the picture). For η > η∗ the curvature
becomes negative and �(η) becomes concave, approaching
eventually the regime value � = 0.5.

As a first, heuristic interpretation of this difference, we
observe that the appearance of a region with a convex curvature
at low η reflects the defiance of the (U > 0) system against the
formation of the s-wave pairs induced by the field. Very large
fields instead simply override the repulsive interaction leading
to the formation of pairs.

This implies a quite general rule of thumb: If, by applying
a finite pairing field η to a system of interest, one observes an
initial convex curvature of the corresponding superconducting
response, the presence of an underlying preformed pair physics
(with the same symmetry of the pairing field) can be ruled out.
In fact, on the basis of our model results, an inspection of sign
changes of the second derivative of �(η) should provide a good
test for detecting the absence of preformed pair physics. This
rule of thumb, which represents one of the main outcomes
of our study, will be applied to the more realistic d-wave
pairing in the pseudogap regime of the Hubbard model in
Sec. V.
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FIG. 5. Superconducting s-wave order parameter � = 1
N

∑
i〈ci↓ci↑〉 as a function of the forcing pairing field η in the attractive (left panel)

and the repulsive (right panel) Hubbard model (at quarter filling). The values of the pairing field corresponding to the inflection point are
marked by black arrows.

Before proceeding, however, we should recall that only the
first derivative of �(η) (and, rigorously, only in the limiting
case of η → 0+) has a standard interpretation within the linear
response theory. Hence, we need to formalize our heuristic
understanding of the curvature of �(η) more precisely. This
will be done in the next section by investigating explicitly, in
relevant limiting cases, the relation between the nature of the
ground state of the system and its “defying” response to the
pairing field.

B. Quarter-filling study (n = 0.5)

The calculations we have presented so far have been
performed on the half-filled model. In this section, we repeat
the same analysis in the “less symmetric”, but more generic,
situation of quarter filling (n = 0.5).

In Fig. 5 we show the evolution of the s-wave supercon-
ducting order parameter � as a function for the external field
η in the attractive (left panel) and the repulsive (right panel)
Hubbard model. In both cases, we observe the same qualitative
behavior found at half filling in Fig. 3, with an overall concave
�(η) for U < 0, and an inflection point at η∗ for U > 0.

The differences with respect to the half-filling case are
merely qualitative: For U < 0, a weakened response at small
η is observed, which is consistent with the suppression of
the superconducting order at low densities and with the
corresponding atomic limit analysis in Appendix B. For
U > 0, we find a reduction of η∗ with respect to half filling,
also consistent with our atomic limit analysis, and coherent
with the expected progressive reduction of the effects of the
electronic repulsion away from half filling.

Thus, our DMFT analysis at n = 0.5, supported by the
corresponding atomic limit study in Appendix B, confirms the
robustness of the behavior of �(η) in a broad range of model
parameters and, consequently, the validity of our study also
away from the particle-hole symmetric case.

IV. ANALYSIS OF LIMITING CASES

Aiming at extracting the physical information encoded in
the second derivative of the superconducting order parameter,

we perform an investigation of the simplest limiting cases, i.e.,
noninteracting (U = 0), atomic limit (t = 0), and the two-site
model, where a full analytical treatment is possible.

We start with the noninteracting case which can be
diagonalized in momentum space:

H =
∑
kσ

εkc
†
kσ ckσ − η

∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑), (4)

where εk represents the free-particle energy dispersion. Be-
cause of the presence of the static field η, one immediately
recognizes the formal analogy with the BCS mean field. After
a few algebraic steps (see Appendix A), one obtains

�(η) = η

πD2

∫ D

−D

dε

√
D2 − ε2√
ε2 + η2

tanh

(
β
√

ε2 + η2

2

)
. (5)

While this integral can be computed numerically, it is insightful
to study its behavior in the zero and high-temperature regimes
for a small pairing field (η � 1 and β

√
η2 + ε2 � 1). In the

first case, we have

�(η)|T =0 = 2η

π

[∫ η

0
dε

√
1 − ε2√
ε2 + η2

+
∫ 1

η

dε

√
1 − ε2√
ε2 + η2

]

� 2η

π

[
η2

2
+ ln(2) − ln(η)

]
. (6)

Hence, at T = U = 0, the first derivative exhibits a positive
logarithmic divergence as η → 0, which is readily understood
by looking at the noninteracting problem in the limit of
vanishing interaction (U/D → 0). Since Tc decreases expo-
nentially as U → 0 [1], the noninteracting pair susceptibility
at U = 0 must diverge exactly at T = 0. In the opposite,
high-temperature regime, the expansion of the Fermi function
as β

√
η2 + ε2 � 1 yields

�(η) � β

4
η − β2η

4π

∫ 1

0
dε

√
1 − ε2

√
ε2 + η2. (7)

As the second integral is always positive, we obtain an overall
negative value of the second derivative of �, which vanishes
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only for η → 0. The study of the noninteracting case is not
fully conclusive in itself, but it already indicates that a negative
curvature of �(η) does not provide an unambiguous indication
of an underlying preformed pair physics, certainly absent in
our model for U = 0.

Further insights can be gained by considering the atomic
limit (t = 0) of Eq. (1). Here, the superconducting order
parameter assumes the following expression (see Appendix B):

�(η) = η

2 ε

sinh(βε)

cosh(βε) + eβ U
2

, (8)

where ε =
√

μ2 + η2. In particular, Eq. (8) further simplifies
at half filling:

�att(η) = 1

2

sinh(βη)

cosh(βη) + e−β
|U |
2

, (9)

�rep(η) = 1

2

sinh(βη)

cosh(βη) + eβ
|U |
2

, (10)

whose dependence on η, at different temperatures, is plotted
in Fig. 6 both for the attractive and the repulsive case. By
exploiting a (rather rough) resemblance of the �(η) curves
to the corresponding DMFT results of Fig. 3, we progress in
clarifying the physical meaning of the second derivative of
�(η). In particular, let us now focus on the repulsive atomic
case, whose �(η) displays an inflection point at η∗ = U/2,
in a somewhat similar fashion to the DMFT results. We
observe that the inflection point η∗ is exactly associated with
a corresponding change of the ground state. By diagonalizing
the Hamiltonian (see Appendix B), a crossing of energy levels
occurs exactly at η∗ = U/2: For η < η∗ the lowest energy
eigenvalue is achieved in the (degenerate) subspace {|↑〉,|↓〉}
describing an (isolated) magnetic moment, while for η > η∗,
the ground state becomes |↑↓〉+|0〉√

2
, i.e., a doubly/empty

occupied state. Hence, the curvature of the superconducting
response, as a function of the pairing field, provides direct
information about the ground-state properties of the system
and, in particular, about the presence or the absence of
pairs.

The simplest way to verify to what extent these results hold,
also for finite electron hopping, is to consider a two-site model.
Here the Hilbert space is spanned by 16 basis vectors and the
matrix can be readily diagonalized (see Appendix C), allowing
us to exactly compute the ground-state vector and � (Fig. 7)
as a function of η.

The agreement with DMFT obviously improves with
respect to the atomic limit and an inflection point at η∗ remains
well visible. The broadening around the inflection point is no
longer just a mere effect of the temperature as in the atomic
case, but it results from the interplay between the magnetic
moment and pair formation tendencies of the ground state.
Such interplay is—evidently—affected by the hopping term,
as also happens for the DMFT results.

Also in this case we relate �(η), and specifically, the value
of its inflection point η∗, to the corresponding evolution of the
system’s ground state. For the latter, in the presence of the

FIG. 6. Analytic behavior in the atomic limit of the superconduct-
ing order parameter � = 1

N

∑
i〈ci↓ci↑〉 with respect to the forcing

pairing field η in the attractive (upper panel) and in the repulsive
(lower panel) Hubbard model for U = −7 (and U = 7 in the repulsive
case) and different temperature values [see Eqs. (9) and (10)].

pairing field η, we obtain

|GS〉 = α

( |↑,↓〉 − |↓,↑〉√
2

)
+ β

( |↑↓,0〉 + |0,↑↓〉√
2

)

+ γ

( |0,0〉 + |↑↓,↑↓〉√
2

)
, (11)

where the coefficients α, β, γ vary continuously as a function
of the field η and the interaction strength U . The first term of
Eq. (11) represents a singlet state over the two sites while the
two remaining terms feature empty and double occupations.
Intuitively, the singlet state could be linked to the presence of a
localized magnetic moment (with antiferromagnetic tendency)
in the ground state, while the other states contain localized
(“preformed”) pairs.

The explicit dependence of the squared amplitude of α,
β, γ is shown in Fig. 8 as a function of the pairing field
and for different values of the interaction U : The coefficients
show a smooth evolution as a function of η which becomes
sharper by increasing the interaction, before recovering the

155114-6



DETECTING A PREFORMED PAIR PHASE: RESPONSE TO . . . PHYSICAL REVIEW B 94, 155114 (2016)

FIG. 7. Superconducting order parameter �(η) = 1
N

∑
i〈ci↓ci↑〉

as a function of η: comparison between the DMFT results at β =
7D−1 and the two-site results for T = 0 (green line) and β = 7D−1

(red line).

step function of the atomic limit for U → ∞. For any given
value of U , |α|2 monotonically increases with η, while |β|2 and
|γ |2 decrease, reflecting the progressively enhanced weight
of “pairs” (doubly occupied sites) induced by the pairing
field.

By reporting the corresponding values of the inflection
point η∗ (as extracted by the data of Fig. 7) we find that
η∗ occurs in correspondence of the value of |α|2 = 0.5
(marked by dashed line in the figure) in the intermediate- and
strong-coupling regimes (U = 3 and U = 7). This reflects the
fact that, also in the two-site model, the sign change of the
second derivative of �(η) marks a change of the prevalent
character of the ground state. This is dominated by localized
magnetic moments (|α|2 > 0.5 > |β|2 + |γ |2) for η < η∗, i.e.,
where the curvature of �(η) is convex. On the other hand,
local (“preformed”) pairs prevail (|α|2 < 0.5 < |β|2 + |γ |2)
for η > η∗, i.e., where a concave curvature of �(η) occurs.
Our microscopic analysis confirms thus the link between the
curvature of �(η) with the tendency of the system to contrast
or to favor the driven superconducting state.

From a quantitative perspective, one should note that in
the weak-coupling regime [U = 1, Fig. 8(a)], the inflection
point η∗ is slightly before the coefficient |α|2 crosses the value
0.5; i.e., at η = η∗ one finds an |α|2 slightly larger than 0.5.
While this weak-coupling feature might be a specific result
of the two-site model, its presence does not compromise the
validity of our interpretation. This can be better understood
looking at Fig. 10, where the physics of the two-site model with
the pairing field is eventually summarized. Here, in a phase
diagram U vs η (drawn at a fixed T = 1/7D), the values of η∗
and of the loci where |α|2 = 0.5 are reported. Moreover, in the
spirit of Sec. II, different region of the phase diagram could be
defined, and classified in terms of the kinetic/potential energy
gain/losses induced by the application of the (finite) pairing

FIG. 8. Ground-state coefficients |α|2 (blue line), |β|2 (green
line), and |γ |2 (red line) of the two-site model [Eq. (11)] for different
U values as a function of the forcing field η.

field:

〈HK〉η − 〈HK〉η=0 = −2αβ + 2

U

(
1 + 4

U 2

)1/2

,

(12)
〈Hpot〉η − 〈Hpot〉η=0 = −Uα2 − 4ηβγ

+ U

2

[
1 +

(
1 + 4

U 2

)−1/2
]
.

The energetic balance analysis of Fig. 10 confirms, hence,
that the correspondence between η∗ and the change of nature
in the ground state of the two-site model is rather solid
in the whole intermediate and BEC coupling regime (rele-
vant for the preformed pair physics) with minor deviations
occurring in the BCS regime. Moreover, we observe that
in the BCS region for η = η∗, |α|2 is slightly larger than
0.5, indicating that a convex (=positive) curvature of �(η)
is definitely incompatible with any preformed pair physics
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FIG. 9. Values of the coefficients |α|2, |β|2, and |γ |2 of Eq. (11)
at η∗ as a function of U .

in the ground state (see Figs. 9 and 10). We finally note
that such criterion of “absence”, usable to rigorously exclude
the presence of preformed pairs, is also compatible with the
analysis of the concave (=negative) curvature of �(η) in the
noninteracting case, discussed at the beginning of the section.

V. IMPLICATIONS FOR OTHER STUDIES

By analyzing systematically the superconducting response
(�) of simple models to an external s-wave pairing field
(η), we have demonstrated that, whenever �(η) displays a
convex curvature in the low-field limit, we can safely exclude
preformed Cooper pairs. In this section, we discuss the
relevance of this rule-of-thumb criterion to a wider range of
systems. Through a unitary transformation, the pairing field
and the superconducting order parameter in the attractive
Hubbard model map onto the magnetic field and the magnetic

FIG. 10. U -η plane showing the different regimes obtained from
an energy balance analysis in the two-site model. The blue, violet,
and red regions indicate respectively the weak-, intermediate-, and
strong-coupling regimes. The η∗ behavior at different U values is
shown by the red line.

moments in the correspondent repulsive counterpart [2].
This means that our findings apply also for detecting the
presence/absence of preformed magnetic moments by means
of an external magnetic field. This generalization of our
results is particularly promising, because a measure of the
magnetization as a function of the magnetic field is obviously
not a pure theoretical probe and it can be directly exploited
in various experiments (at least for the study of preformed
moments in ferromagnetic compounds).

Since the presence and the role of preformed magnetic mo-
ments remain a debated issue for several correlated materials,
ranging from simple metals such as Fe and Ni [42–45] to alloys
(FeAl [46]) and iron-pnictides and chalcogenides [47,48], the
clear-cut criterion proposed in this work may find widespread
application in future experimental and theoretical studies of
these materials.

One may also envisage further applications of our results
as an idealized description of pump-probe experiments on
superconductors. There, a transient state with an optical
response, which is at least compatible with a superconductor,
can be created by impulsive excitations inducing coherent
phonon deformations, while leaving the temperature of the
electrons unchanged [49–53]. Comparing experiments against
our idealized calculations, one could analyze to which extent
the impulsive excitation can be interpreted as an external field
driving superconductivity (obviously in our calculations the
driven superconductivity is static, as the external field does
not depend on time).

One of the most natural applications of our results is,
however, the possible presence of preformed d-wave pairs in
the pseudogap phase of the two-dimensional Hubbard model.
Indeed a closely related theoretical analysis has already been
performed using the dynamical cluster approximation (DCA)
[54], an extension of DMFT where the single impurity is
replaced by a cluster of Nc sites. An external d-wave pairing
field was applied and the resulting d-wave superconducting
response �k was then computed [15]. Without driving fields,
for Nc = 8 and U > 1.5D (with D = 4t) the superconducting
phase is replaced by the pseudogap state, where a strong
spectral weight suppression is found at the antinodal point,
without any superconducting long-range order. Clearly, the
identification of the physical origin of this phase is also
crucial to understand the debated underlying physics of the
high-temperature superconductors. In this respect, the two
main alternative interpretations describe the pseudogap either
as the result of intrinsic interaction effects (spin fluctuations,
Mott physics, or other) or as the signature of preformed d-wave
pairs.

The results of Ref. [15] are reproduced in Fig. 11, which
shows �k(ηk)|k=(0,π) as a function of the external d-wave
pairing field field η = ηd . On the basis of these calculations the
authors concluded that the superconducting response to a d-
wave forcing field was “weak enough” to exclude a preformed
pair origin of the pseudogap state in DCA. This statement is
certainly reasonable, but it still lacks formal strength as it is
not based on some precise criterion.

A closer look to the data of Fig. 11 shows that, besides
an expected progressive suppression of the linear response
moving away from the critical regime, one observes a sign
change of the second derivative of �k(ηd ), which starts
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FIG. 11. (DCA data reproduced from Ref. [15].) The d-wave
superconducting order parameter induced by the corresponding d-
wave pairing field ηd : in a DCA calculation for a 2D Hubbard model
at βD = 240 the order parameter �k is evaluated in the sector k =
(0,π ) and plotted as a function of ηd at doping x = 0 for interaction
strengths indicated. The dashed lines, marking the slope of the (linear)
response at ηd → 0+, make more easily noticeable the curvature
change of �(ηd ) occurring for the data set at U = 1.6D.

displaying a convex curvature for small fields at U = 1.6D.
Hence, according to our criterion, we can now safely conclude
that, once the system is sufficiently far from the supercon-
ducting instability, there are no well-defined preformed pairs
which couple with the external pairing field in a parameter
region where the pseudogap is observed in DCA. This
excludes a preformed-pair origin of the pseudogap and it
is rather suggestive of a major role played by the strong
antiferromagnetic correlations or by nonlocal Mott physics.
It is worth mentioning that the claim of a lack of preformed
pairs of Ref. [15], made more rigorous by the present
analysis, is not necessarily in contradiction with the claim,
based on a different DCA study [16], of significant d-wave
pairing fluctuations also far from Tc. The latter result indeed
refers to short-ranged fluctuations both in space and time,
while the (static) forcing-field analysis focuses on long-lived
pairs. Indeed these results are perfectly compatible in view
of the more recent study of Ref. [17], where it has been
shown that well-defined spin fluctuations, emerging as the
predominant pseudogap mechanism according to our analysis
of the data of Ref. [15], show up as short-range/short-lived
pairing fluctuating modes, if viewed from the perspective of
the particle-particle scattering channel.

VI. CONCLUSIONS

This work has been devoted to the definition of an operative
criterion to confirm or exclude the existence of preformed pairs
in a non-superconducting state. This goal has been achieved by
a systematic DMFT study of the response to an external s-wave
pairing forcing field η in the controlled situation of a single
band (attractive and repulsive) Hubbard model. For strong
attractive interactions we are indeed certain of the existence of

a preformed pair region, while the repulsive model does not
host any s-wave pair.

By comparing the different regimes, we identified a clear-
cut rule-of-thumb criterion for excluding a preformed pair
physics: The latter are certainly absent, if the second derivative
of �(η) is positive in a finite region of η from 0 to a finite value
η∗ [i.e., �(η) is a convex function at small fields]. This happens
because the convexity of �(η) reflects the “reluctance” of the
systems to respond to the pairing field. In other words, the
positive second derivative indicates that the applied forcing
field is not intense enough to revert the dominant nature of
the ground state, which is opposed to the order induced by the
probing field. Only if η is enough large to exceed any intrinsic
property of the model, the curvature changes sign and becomes
concave, leading, eventually, to a saturation to the maximum
pairing amplitude. This behavior testifies to the absence of any
intrinsic preformed pairing.

On the other hand, an overall concave curvature of �(η)
is a necessary condition for the existence of preformed pairs,
but it is not a sufficient condition. Therefore, the latter should
be supplemented with further physical information, such as
the energetic balance underlying superconductivity, as we also
discuss in Sec. II of this paper.

Our results have a potential impact for several different
aspects. Our rule of thumb can be indeed applied, as showed
in the previous section, for improving the interpretation of
cutting-edge DCA calculations [15], relevant for the cuprate
physics, and—in particular—to exclude on a rigorous basis
that the pseudogap state of DCA is originated by preformed
pair fluctuations. Indeed, a related analysis has been proposed
in Ref. [15], where, however, the physical interpretation of the
results was mostly heuristic.

Moreover, it is quite natural to extend the conclusions of
our analysis (and, in particular, our criterion) to cases of other,
more physical, forcing fields: This would be, e.g., the case of a
(finite) magnetic field exploited to detect preformed magnetic
moments via the evolution of the magnetization as a function
of magnetic field beyond linear response. Evidently, the latter
analysis allows also for direct experimental realizations.

Finally, we notice that the study of regimes of exter-
nal perturbation field, far away from the linear response,
might provide important complementary information to in-
terpret more challenging nonequilibrium phenomena. Com-
paring our results with pump-probe experiments where tran-
sient superconductivity is realized by coherently exciting
phonon modes, we could study whether, and to which
extent, these nonequilibrium phenomena can be interpreted
in terms of a light-driven pairing field which favors pair
formation.
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APPENDIX A: NONINTERACTING CASE

The half-filled noninteracting problem under a isotropic
pairing forcing field η can be easily solved in k space. Here,
the Hamiltonian assumes the following form:

H =
∑
kσ

εkc
†
kσ ckσ − η

∑
k

(c†k↑c
†
−k↓ + c−k↓ck↑), (A1)

where εk represents the free particle energy dispersion. This
Hamiltonian can be exactly diagonalized by exploiting the
Bogoliubov transformations [1], which read

{
γ
†
k,↑ = ukck,σ

† − vkc−k,↓,

γ−k,↓ = ukc−k,↓ + vkck,↑†,
(A2)

where {
u2

k = 1
2

(
1 + ε(k)

E(k)

)
,

vk
2 = 1

2

(
1 − ε(k)

E(k)

)
,

(A3)

and E(k) =
√

εk
2 + η2.

In order to evaluate the superconducting order parameter
in real space, one has to perform the expectation value of the
annihilation “pair operator” bk = c−k↓ck↑ and sum over the
Brillouin zone:

〈bk〉 = 〈c−k↓ck↑〉 = u∗
kvk(1 − 〈γk↑†γk↑〉 − 〈γk↓†γk↓〉)

= u∗
kvk[1 − 2f (Ek)], (A4)

where f (Ek) represents the usual Fermi-Dirac thermal distri-
bution for fermion-like excitations with energy Ek. Hence,
we finally end up with the following expression for the
superconducting order parameter:

� =
∑

k

u∗
kvk[1 − 2f (Ek)]

=
∑

k

η

2E(k)
[1 − 2f (Ek)]

= η

2

∫ D

−D

dε
D(ε)

E(ε)
[1 − 2f (E(ε))]. (A5)

Explicitly substituting the DOS of the Bethe-lattice and the
Fermi-Dirac thermal distribution, one gets Eq. (5).

APPENDIX B: ATOMIC LIMIT

In this section we explicitly derive the expression for
the superconducting order parameter � in the atomic limit.
We proceed in two steps: first we perform the unitary
transformation to map the attractive Hubbard model onto the
repulsive one; second we project the system onto the new
principal axes and evaluate the expectation value 〈ci↓ci↑〉 in the
starting (attractive) system. Note that the analogous procedure
can be adopted for the repulsive case just by swapping the U

sign.
Let us start from the attractive Hubbard model Hamil-

tonian, properly readjusted to emphasize the particle-hole

symmetry:

Hattr = U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
−

(
μ − U

2

)

×
∑

i

(ni↑ + ni↓) − η
∑

i

(c†i↑c
†
i↓ + H.c.). (B1)

Here U < 0 and μ is the shifted chemical potential (note μ =
U/2 at half filling). By performing the unitary transformation
to map the attractive Hubbard model onto the repulsive one
[2], {

ci↓ → (−1)ni c
†
i↓,

ci↑ → ci↑,
(B2)

we end up with the corresponding repulsive Hubbard Hamil-
tonian:

Hrep = |U |
∑

i

ni↑ni↓ − |U |
2

∑
i

(ni↑ + ni↓) −
(

μ + |U |
2

)

×
∑

i

(ni↑ − ni↓) − η
∑

i

(−1)ni (c†i↑ci↓ + c
†
i↓ci↑).

(B3)

Notice that Eq. (B3) is nothing but a half-filled repulsive
system with two external magnetic fields applied onto the z

and the x axes. Since the first two terms are invariant under axis
rotation, it is convenient to perform a unitary transformation
of the operators, projecting the system along the principal axes
in the (x,z) plane.

Diagonalizing the last two terms in the 4-state Hilbert space
for the single site and making the proper transformations, we
end up with to the following expression:

Hrep = |U |
∑

i

ni↑ni↓ − |U |
2

∑
i

(ni↑ + ni↓)

+ ε
∑

i

(ni↑ − ni↓), (B4)

where ε =
√

(μ + |U |
2 )2 + η2 is the effective magnetic field

resulting from the μ and η terms.
In order to evaluate the superconducting order parameter

�, we need to map the pairing operator ci↓ci↑ onto the
corresponding repulsive system by projecting it along the
principal axes. We obtain

〈ci↓ci↑〉 → 1

4ηε2

[
−

(
ε − |U |

2 − μ
)

a2
〈c†i↑ci↑〉

+
(
ε + |U |

2 + μ
)

b2
〈c†i↓ci↓〉

]
, (B5)

where a/b = [η2 + (μ ± |U |
2 ± ε)]−1/2.

Evaluating explicitly the expectation values in Eq. (B5) one
obtains

�(η) = η

2 ε

sinh(βε)

cosh(βε) + e−β
|U |
2

, (B6)
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which reduces to the simpler expression in the half-filling case:

�att(η) = 1

2

sinh(βη)

cosh(βη) + e−β
|U |
2

. (B7)

Since this expression is typically applicable for large values
of |U |, one can notice that the order parameter exhibits a
weak dependence on the interacting constant. This also sets a
minimum value for the slope in the limit |U | → +∞ at finite
temperature:

lim
|U |→+∞

∂�att

∂η

∣∣∣∣
η=0

= tanh
(
β
∣∣μ + |U |

2

∣∣)
2
∣∣μ + |U |

2

∣∣ , (B8)

which displays a maximum in the half-filling case:

lim
|U |→+∞

∂�att

∂η

∣∣∣∣
η=0,μ=− |U |

2

= β

2
. (B9)

This means that, away from half-filling, the superconduct-
ing linear response of the system is progressively reduced
and, thus, the regime value � = 0.5 is approached more
slowly if compared with the half-filling situation. This result
is consistent with the DMFT data shown in Fig. 5 (left panel).
A study on the second derivative ∂2�att/∂η2 shows that, for
all η > 0, the superconducting order parameter exhibits a
negative curvature in the attractive Hubbard model, as shown in
Fig. 6 for the half-filling case (upper panel). The corresponding
behavior for U > 0 (in the half-filling case) is shown in Fig. 6
(lower panel).

Ground state

As a final atomic limit analysis in the repulsive case, we
can look at the ground-state evolution as a function of the
external pairing field. The local, repulsive Hamiltonian has the
following form:

H i
rep = U ni↑ni↓ − U

2
(ni↑ + ni↓) − η (ci↓ci↑ + c

†
i↑c

†
i↓),

(B10)

where, for the sake of simplicity, we reduced at half filling.
By diagonalizing the 4 × 4 block matrix, we find three

different eigenvalues: −U/2 (twofold degenerate), ±η. There-
fore, as soon as η → U/2, the ground state of the system
abruptly changes from the degenerate subspace to the eigen-
state associated with −η, namely,

| − η〉 = |↑↓〉 + |0〉√
2

. (B11)

Out of half filling the condition for having this level crossing
which changes abruptly the ground state of the system from
singly occupied magnetic moment to |↑↓〉+|0〉√

2
becomes√

η2 +
(

μ − U

2

)2

= U

2
. (B12)

Although μ depends in general on the specific parameters of
the system (e.g., temperature, electronic density, and external
field η) and it must be determined self-consistently, it is clear
from Eq. (B12) that the change of the ground state will occur
at a smaller value of the pairing field η than the half-filled

system. This trend is also coherent with the DMFT results in
Fig. 5 (right panel).

APPENDIX C: TWO-SITE MODEL

In this section we target the solution of the repulsive
Hubbard model taking into account just two sites. The two-site
Hamiltonian reads

H = −t
∑

σ

(c†1σ c2σ + c
†
2σ c1σ ) + U

∑
i=1,2

(
ni↑ − 1

2

)

×
(

ni↓ − 1

2

)
− η

∑
i=1,2

(c†i↑c
†
i↓ + ci↓ci↑), (C1)

where t is the hopping integral, U > 0 is the interaction
parameter, and η represents the external pairing field. Since
we are working in the grand-canonical ensemble, the Hilbert
space is spanned by 16 basis vectors, namely,

{|↑,↓〉,|↓,↑〉,|↑↓,0〉,|0,↑↓〉,|↑,↑〉,|↓,↓〉}
⇒ ssp n = 1, (C2)

{|↑,0〉,|↓,0〉,|0,↑〉,|0,↓〉} ⇒ ssp n = 0.5, (C3)

{|↑,↑↓〉,| ↓ ,↑↓〉,|↑↓, ↑〉,|↑↓, ↓〉} ⇒ ssp n = 1.5, (C4)

{|↑↓,↑↓〉} ⇒ ssp n = 2, (C5)

{|0,0〉} ⇒ ssp n = 0, (C6)

where each line indicates a specific subspace (ssp) character-
ized by an electron density n. By exploiting the symmetries of
the system one can identify for which states the Hamiltonian
is diagonal:{ |↑↓,0〉 − |0,↑↓〉√

2
,
|0,0〉 − |↑↓,↑↓〉√

2

}
⇒ E1 = 0, (C7){

|↑,↑〉,|↓,↓〉, |↑,↓〉 + |↓,↑〉√
2

}
⇒ E2 = −U, (C8)

while projecting the Hamiltonian on the 3-dimensional sub-
space { |0,0〉+|↑↓,↑↓〉√

2
,
|↑↓,0〉+|0,↑↓〉√

2
,
|↑,↓〉−|↓,↑〉√

2
} gives the following

matrix:

M =
⎛
⎝−U −2t 0

−2t 0 −2η

0 −2η 0

⎞
⎠. (C9)

One can demonstrate that this matrix has three distinguished
real eigenvalues (E3, E4, and E5) even if an explicit simple
expression cannot be found analytically. Nevertheless, we are
able to compute numerically eigenvalues and eigenvectors as
a function of the interaction U and the pairing field η. The
remaining states with an odd average number of particles span
two equivalent 4-dimensional subspaces (one for each spin
channel) whose Hamiltonian projection reads

M1 =

⎛
⎜⎜⎝

−U
2 −t −η 0

−t −U
2 0 −η

−η 0 −U
2 t

0 −η t −U
2

⎞
⎟⎟⎠. (C10)
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FIG. 12. Energy levels as a function of the pairing forcing field η for different values of U .

So we obtain the two eigenvalues E6 and E7 (each one four
times degenerate) and the associated eigenvectors.

Figure 12 shows the seven eigenvalues as a function of η at
different interaction values. Hence, it is possible to identify the
state associated with E3 to be the ground state of the system for
any U and η values. This state lives in the subspace described
by matrix M and can be written as follows:

|GS〉 = α

( |↑,↓〉 − |↓,↑〉√
2

)
+ β

( |↑↓,0〉 + |0,↑↓〉√
2

)

+ γ

( |0,0〉 + |↑↓,↑↓〉√
2

)
. (C11)

Superconducting response at T �= 0

The superconducting order parameter at finite temperature
in the two-site model is readily computed as

� = 1

2

∑
i

1

Z
Tr(e−βĤ ci↓ci↑)

= 1

2

1

Z

∑
i

∑
ñ n

e−βεn〈ñ|ci↓ |n〉(〈ñ|c†i↑|n〉)∗

= 1

Z
{e−βE6 (m1p1 + m2p2) + e−βE7 (m3p3 + m4p4)

+ e−βE3 (β1γ1) + e−βE4 (β2γ2) + e−βE5 (β3γ3)},
(C12)

where the coefficients mi and pi (i = {1,4}) are related to the
eigenstates of M1. Namely,

|E6〉 = l1(2)|↑,0〉 + m1(2)|0,↑〉 + n1(2)|↑,↑↓〉 + p1(2)|↑↓,↑〉,
(C13)

|E7〉 = l3(4)|↑,0〉 + m3(4)|0,↑〉 + n3(4)|↑,↑↓〉 + p3(4)|↑↓,↑〉,
(C14)

and the partition function is given by

Z = 3 eβU + 2 + e−βE3 + e−βE4

+ e−βE5 + 4e−βE6 + 4e−βE7 . (C15)

Figure 7 shows the comparison between Eq. (C12) and the
DMFT result for the superconducting order parameter.
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