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We propose a systematic framework to classify (2+1)-dimensional (2+1D) fermionic topological orders
without symmetry and 2+1D fermionic/bosonic topological orders with symmetry G. The key is to use the
so-called symmetric fusion category E to describe the symmetry. Here, E = sRep(Zf

2 ) describing particles
in a fermionic product state without symmetry, or E = sRep(Gf ) [E = Rep(G)] describing particles in a
fermionic (bosonic) product state with symmetry G. Then, topological orders with symmetry E are classified by
nondegenerate unitary braided fusion categories over E , plus their modular extensions and total chiral central
charges. This allows us to obtain a list that contains all 2+1D fermionic topological orders without symmetry.
For example, we find that, up to p + ip fermionic topological orders, there are only four fermionic topological

orders with one nontrivial topological excitation: (1) the K = (−1 0
0 2

)
fractional quantum Hall state, (2) a Fibonacci

bosonic topological order stacking with a fermionic product state, (3) the time-reversal conjugate of the previous
one, and (4) a fermionic topological order with chiral central charge c = 1

4 , whose only topological excitation

has non-Abelian statistics with spin s = 1
4 and quantum dimension d = 1 + √

2.

DOI: 10.1103/PhysRevB.94.155113

I. INTRODUCTION

A. Background

Topological order [1–3] is a new kind of order beyond
Landau symmetry breaking theory. It cannot be characterized
by the local order parameters associated with the symmetry
breaking. However, topological order can be characterized/
defined by (a) the topology-dependent ground state degeneracy
[1,2] and (b) the non-Abelian geometric phases (S,T ) of
the degenerate ground states [3,4]. Those quantities are
robust against any local perturbations [2]. Thus they are
topological invariants that define new kinds of quantum
phases—topologically ordered phases. Recently, it was found
that, microscopically, topological order is related to long-range
entanglement [5,6]. In fact, we can regard topological orders
as patterns of long-range entanglement in many-body ground
states [7], which is defined as the equivalence classes of gapped
quantum liquid [8] states under local unitary transformations
[9–11]. Chiral spin liquids [12,13], integer/fractional quantum
Hall states [14–16], Z2 spin liquids [17–19], non-Abelian
fractional quantum Hall states [20–23], etc., are examples of
topologically ordered phases.

Topological order and long-range entanglement are truly
new phenomena, which require new mathematical language to
describe them. Tensor category theory [7,9,24–27] and simple
current algebras [20,28–30] (or patterns of zeros [31–39]) may
be parts of the new mathematical language. Using the new
mathematical language, some systematic classification results
for certain type of topological orders in low dimensions were
achieved.

Using unitary fusion category (UFC) theory, we have
developed a systematic and quantitative theory that classifies
all the topological orders with gappable edge for 2+1D
interacting bosonic systems [7,9]. A double Fibonacci bosonic

topological order 2B
14/5 � 2B

−14/5 was discovered [9]. We also
developed a fermionic UFC theory, to classify topological
orders with gappable edge for 2+1D interacting fermionic
systems [25,27]. For 2+1D bosonic/fermionic topological
orders (with gappable or ungappable edge) that have only
Abelian statistics, we find that we can use integer K matrices
to classify them [40] and use the following U (1) Chern-Simons
theory to describe them [4,40–45]:

L = KIJ

4π
aIμ∂νaJλε

μνλ. (1)

Such an effective theory can be realized by a multilayer
fractional quantum Hall state:∏

I ;i<j

(
zI
i − zI

j

)KII
∏

I<J ;i,j

(
zI
i − zJ

j

)KIJ e− 1
4

∑
i,I |zI

i |2 . (2)

When diagonal KII ’s are all even, the K-matrices classify
2+1D bosonic Abelian topological orders [40]. When some
diagonal KII ’s are odd, the K matrices classify 2+1D
fermionic Abelian topological orders [40].

B. Invertible topological orders

We can stack two topologically ordered states together
to form a new topologically ordered state. Such a stacking
operation � makes the set of various topological orders into
a commutative monoid [46]. (A monoid is almost a group
except that elements may not have inverses.) A state has a
trivial topological order if the stacking of such state with any
other topological order give the same topological order back.
It turns out that the states with a trivial topological order are
always product states or short-range entangled states.

Although most topological orders do not have an inverse
with respect to the stacking operation, some topological
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orders can have an inverse. Those topological orders are
called invertible topological orders [46,47]. A topological
order C is invertible if there exists another topological order
D, such that the stacking of C and D gives rise to a
trivial topological order 1, i.e., C � D = 1. In fact, such
an inverse D can be obtained from C by a time-reversal
transformation.

It turns out that a topological order is invertible if it has
no nontrivial topological excitations [46,47]. In 2+1D, the set
of all invertible bosonic topological orders form an Abelian
groupZ, which is generated, via the stacking and time-reversal
operations, by the E8 bosonic quantum Hall state described by
the following K matrix:

KE8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The E8 bosonic quantum Hall state has no nontrivial topo-
logical excitations (since det(K) = 1). However, the state
has a nontrivial thermal Hall effect [48] and ungappable
gapless chiral edge states [49,50] with a chiral central charge
c = 8. Thus the E8 state has a nontrivial invertible topological
order.

C. Classify topological orders via (non-)Abelian statistics

If we overlook the invertible topological orders, i.e., con-
sider only the quotient

topological orders

invertible topological orders
, (4)

then we can use non-Abelian statistics of topological excita-
tions to describe and classify such a quotient. It is believed
that non-Abelian statistics of topological excitations are fully
described by unitary modular tensor categories (UMTC)
[51–53], a notion of which is equivalent to that of a nonde-
generate unitary braided fusion category [52,54], abbreviated
as a nondegenerate UBFC (for an introduction to category and
UMTC, see Appendix B).

Thus we can use the classification of nondegenerate
UBFC’s [55] to classify 2+1D bosonic topological orders (see
Remark 1) up to invertible topological orders. In a recent paper
[56], we have used such an approach to create a full list of
simple 2+1D bosonic topological orders.

In this paper, we develop a theory for 2+1D fermionic
topological orders without symmetry [25,27,57]—up to in-
vertible topological orders, 2+1D fermionic topological orders
without symmetry are classified by UMTC/F0 ’s with modular
extensions—where, by definition, a UMTC/F0 is a nondegen-
erate UBFC over the symmetric fusion category (SFC)F0, and
F0 ≡ sRep(Zf

2 ) describes a fermionic product state without
symmetry.

Several new concepts are used in the above statement. We
will define SFC in Sec. I D and explain in Sec. II A why a SFC

E describes a fermionic/bosonic product state with/without
symmetry. The notion of “nondegenerate UBFC over SFC”
will be explained in Sec. III, and we will explain the notion of
modular extension in Secs. II C and VI.

Here we briefly discuss fermionic invertible topological
orders. It is believed that all 2+1D fermionic invertible
topological orders [57] form an Abelian group Z under the
stacking operation �. The Abelian group Z is generated
by the p + ip superconductor of spinless fermions [58].
The p + ip superconductor has no nontrivial topological
excitations. However, p + ip superconductor has a nontrivial
thermal Hall effect and ungappable gapless chiral edge states
with a chiral central charge c = 1/2, and thus has a nontrivial
topological order. The most general 2+1D fermionic invertible
topological orders can be obtained by stacking a finite number
of layers of 2+1D p ± ip superconductors.

To develop a simple theory for 2+1D fermionic topological
orders, we assume that the non-Abelian statistics of topological
excitations in 2+1D fermionic topological orders is fully
described by the data (Nij

k ,si), where i,j,k label the types
of topological excitations, si is the spin (mod 1) of the type-i
topological excitation, and N

ij

k are the fusion coefficients of
topological excitations. We find the conditions that the data
(Nij

k ,si) must satisfy in order to describe a 2+1D fermionic
topological order. By finding all the (Nij

k ,si)’s that satisfy
the conditions, we obtain a classification of 2+1D fermionic
topological orders (up to invertible topological orders). If
we further include the chiral central charge c of the edge
states, we believe that the data (Nij

k ,si,c) describe/classify all
2+1D fermionic topological orders (including the invertible
ones).

We have numerically searched the (Nij

k ,si,c) that satisfy
the conditions. This allows us to create complete lists of
2+1D fermionic topological orders (up to invertible topo-
logical orders) within certain bounds (see Tables I–VI).
The invertible topological orders can be easily included
by stacking with a number of layers of p ± ip fermionic
superconductors.

We would like to mention that the close relation between the
bulk topological order and its boundary theory [46,59] suggests
another way to understand/classify topological orders: one
may use 1+1D boundary conformal field theories (CFT) to
classify 2+1D bulk topological orders [59]. For the fermionic
cases, one may use 1+1D boundary Z2-graded chiral algebra
to classify 2+1D fermionic topological orders[60]. However,
such an approach is not very fruitful, because the connection
between 1+1D CFT (or Z2-graded chiral algebra) and 2+1D
topological orders (or 2+1D fermionic topological orders) is
not simple. In fact, 2+1D fermionic topological orders do not
correspond toZ2-graded chiral algebra, rather they correspond
to the gravitational anomalies (perturbative and/or global ones)
in the Z2-graded chiral algebra [46,61–63]. So the relation
between 1+1D Z2-graded chiral algebra and 2+1D fermionic
topological orders is infinity-to-one: all the 1+1D Z2-graded
chiral algebra with the same gravitational anomaly correspond
to the same 2+1D fermionic topological order [46,61,62].
In contrast, the (Nij

k ,si,c) description used in this paper
is a one-to-one description of 2+1D fermionic topological
orders.
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TABLE I. A list of simple fermionic topological orders (up to invertible ones) with N types of topological excitations (including the parent
fermion) and chiral central charge c (mod 1/2). The excitations have quantum dimension di and spin si (mod 1). �2 in the table is defined as
�2 ≡ D−1

∑
i e i 4πsi d2

i where D2 = ∑
i d

2
i . Also ∠�2 ≡ Im ln(�2). The table contains all fermionic topological orders with N = 2, N = 4

(see Appendix A) and D2 � 600, N = 6, and D2 � 400. Here, ζm
n = sin[π (m+1)/(n+2)]

sin[π/(n+2)] .

NF
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K matrix

2F
0 ( ζ 1

2
0 ) 2 1,1 0, 1

2 trivial F0

4F
0 ( 0

0 ) 4 1,1,1,1 0, 1
2 , 1

4 ,− 1
4 F0 � 2B

1 ( 0
0 ), K = (2 2

2 1)

4F
1/5( ζ 1

2 ζ 1
3

3/20
) 7.2360 1,1,ζ 1

3 ,ζ 1
3 0, 1

2 , 1
10 ,− 2

5 F0 � 2B
−14/5( ζ 1

3
3/20

)

4F
−1/5( ζ 1

2 ζ 1
3

−3/20
) 7.2360 1,1,ζ 1

3 ,ζ 1
3 0, 1

2 ,− 1
10 , 2

5 F0 � 2B
14/5( ζ 1

3
−3/20

)

4F
1/4( ζ 3

6
1/2

) 13.656 1,1,ζ 2
6 ,ζ 2

6 = 1 + √
2 0, 1

2 , 1
4 ,− 1

4 F(A1,6)

6F
0 ( ζ 1

2
1/4 ) 6 1,1,1,1,1,1 0, 1

2 , 1
6 ,− 1

3 , 1
6 ,− 1

3 F0 � 3B
−2( 1

1/4 ), K = (3), 	1/3(zi)

6F
0 ( ζ 1

2
−1/4 ) 6 1,1,1,1,1,1 0, 1

2 ,− 1
6 , 1

3 ,− 1
6 , 1

3 F0 � 3B
2 ( 1

−1/4 ), K = (−3), 	∗
1/3(zi)

6F
0 ( ζ 3

6
1/16

) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 = √
2 0, 1

2 ,0, 1
2 , 1

16 ,− 7
16 F0 � 3B

1/2( ζ 1
6

1/16
), FU (1)2/Z2

6F
0 ( ζ 3

6
−1/16

) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 ,− 1
16 , 7

16 F0 � 3B
−1/2( ζ 1

6
−1/16

)

6F
0 ( 1.0823

3/16 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 3
16 ,− 5

16 F0 � 3B
3/2( 0.7653

3/16 )

6F
0 ( 1.0823

−3/16 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 ,− 3
16 , 5

16 F0 � 3B
−3/2( 0.7653

−3/16 )

6F
1/7( ζ 1

2 ζ 2
5

−5/14
) 18.591 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 0, 1

2 , 5
14 ,− 1

7 ,− 3
14 , 2

7 F0 � 3B
8/7( ζ 2

5
−5/14

)

6F
−1/7( ζ 1

2 ζ 2
5

5/14
) 18.591 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 0, 1

2 ,− 5
14 , 1

7 , 3
14 ,− 2

7 F0 � 3B
−8/7( ζ 2

5
5/14

)

6F
0 ( ζ 5

10
−1/12

) 44.784 1,1,ζ 2
10,ζ

2
10,ζ

4
10,ζ

4
10 0, 1

2 , 1
3 ,− 1

6 ,0, 1
2 F(A1,−10)

6F
0 ( ζ 5

10
1/12

) 44.784 1,1,ζ 2
10,ζ

2
10,ζ

4
10,ζ

4
10 0, 1

2 ,− 1
3 , 1

6 ,0, 1
2 F(A1,10)

D. Symmetric fusion categories for bosonic/fermionic
product states with symmetry

What is a SFC? A SFC describes a bosonic/fermionic
product state with/without symmetry. It is characterized by the
quasiparticle excitations. The SFC that describes a fermionic
product state without symmetry (denoted by F0) contains
only two types of quasiparticles (two simple objects): the
trivial quasiparticle 1, and the parent fermion f that forms
the fermionic system. The SFC that describes a bosonic
product state with symmetry G (a finite group) is the category
of G representations, denoted by Rep(G) (see Example 1).
The quasiparticles (the simple objects) are all bosonic and
correspond to irreducible G-representations. The SFC that
describes a fermionic product state with full symmetry
Gf , which contains, in particular, the fermion-number-parity
symmetry Zf

2 [64], is the SFC of the super-representations of
Gf (see Sec. II A and Example 2), denoted by sRep(Gf ).
The quasiparticles (the simple objects) correspond to the
irreducible representations of Gf . They are fermionic if Zf

2
acts nontrivially on the corresponding representation, and
bosonic if Zf

2 acts trivially.

E. Classify topological orders with symmetry

We propose a complete classification of 2+1D
fermionic/bosonic topological orders with symmetry: 2+1D
topological orders with the symmetry E are classified by
(C,M,c), where C is a UMTC/E , M is a modular extension of
C, and c ∈ Q is the total chiral central charge.

There are five main ingredients of above proposal. (1) By
definition, UBFC describes topological excitations and their
fusion-braiding properties (i.e., their non-Abelian statistics).
It is clear that UBFC overlooks the edge states (i.e., cannot
detect invertible topological orders).

(2) The SFC E is a special kind of UBFC that describes the
excitations in boson/fermion product state with symmetry. In
fact, the bosonic/fermionic symmetry is uniquely determined
by E . (See Sec. II for details) [65]. The SFC E is a categorical
description of symmetry.

(3) The non-Abelian statistics of bulk topological excita-
tions in a topological order with symmetry E is described by
a UMTC/E C. The term “UMTC/E” in the above refers to a
UBFC C such that (i) C contains E . (In other words, C contains
all the excitations of product state with the same symmetry);
(ii) the excitations in E have trivial mutual statistics with all
the excitations in C; and (iii) the excitations that have trivial
mutual statistics with all the excitations in C are only those in
E . (We note that when E is trivial UMTC/E becomes UMTC.)

(4) Roughly speaking, a modular extension corresponds
to gauging all the symmetry [66,67] (see Appendix D for a
mathematical definition). Up to the E8 states, the edge states of
a UMTC/E C, are classified by the modular extensions of C (see
Secs. II C and VI for detailed explanations). In particular, the
modular extensions of E classify invertible gapped quantum
liquid phases with symmetry E up to the E8 states. (5) The
remaining ambiguity, i.e., the number of layers of E8 states, is
fixed by the total chiral central charge c.

Invertible gapped quantum liquid phases are closely related
to symmetry protected topological (SPT) phases [68–70].
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TABLE II. A list of simple fermionic topological orders (up to invertible ones) with N = 8 types of topological excitations. The table
contains all fermionic topological orders with D2 � 400.

NF
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K matrix

8F
0 ( 2ζ 1

2
0 ) 8 1,1,1,1,1,1,1,1 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 F0 � 4B

0 ( 2
0 ), (0 2

2 0) ⊕ (0 1
1 1)

8F
0 ( 2

1/8 ) 8 1,1,1,1,1,1,1,1 0, 1
2 ,0, 1

2 , 1
8 ,− 3

8 , 1
8 ,− 3

8 F0 � 4B
1 ( ζ 1

2
1/8 ), −(0 2

2 1)

8F
0 ( 2

−1/8 ) 8 1,1,1,1,1,1,1,1 0, 1
2 ,0, 1

2 ,− 1
8 , 3

8 ,− 1
8 , 3

8 F0 � 4B
−1( ζ 1

2
−1/8 ), (0 2

2 1)

8F
0 ( 0

0 ) 8 1,1,1,1,1,1,1,1 0, 1
2 ,0, 1

2 , 1
4 ,− 1

4 , 1
4 ,− 1

4 F0 � 4B
0 ( 0

0 ), (2 2
2 1) ⊕ (2 2

2 1)

8F
1/5( 0

0 ) 14.472 1,1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0, 1
2 , 1

4 ,− 1
4 , 1

10 ,− 2
5 ,− 3

20 , 7
20 F0 � 4B

−9/5( 0
0 )

8F
−1/5( 0

0 ) 14.472 1,1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 0, 1
2 , 1

4 ,− 1
4 ,− 1

10 , 2
5 ,− 7

20 , 3
20 F0 � 4B

9/5( 0
0 )

8F
0 ( 3.5915

0.1699 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0, 1
6 ,− 1

3 , 1
16 ,− 7

16 FU (1)6/Z2

8F
∗ ( 1.7609

−0.0288 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0, 1
6 ,− 1

3 ,− 1
16 , 7

16 primitive

8F
∗ ( 3.5915

0.3300 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0, 1
6 ,− 1

3 , 3
16 ,− 5

16 primitive

8F
∗ ( 1.7609

−0.4711 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0, 1
6 ,− 1

3 ,− 3
16 , 5

16 primitive

8F
∗ ( 1.7609

0.0288 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0,− 1
6 , 1

3 , 1
16 ,− 7

16 primitive

8F
∗ ( 3.5915

−0.1699 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0,− 1
6 , 1

3 ,− 1
16 , 7

16 primitive

8F
∗ ( 1.7609

0.4711 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0,− 1
6 , 1

3 , 3
16 ,− 5

16 primitive

8F
∗ ( 3.5915

−0.3300 ) 24 1,1,1,1,2,2,
√

6,
√

6 0, 1
2 , 1

2 ,0,− 1
6 , 1

3 ,− 3
16 , 5

16 primitive

8F
−1/10( ζ 1

2 ζ 2
8

3/10
) 26.180 1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 2

8 ,ζ 2
8 0, 1

2 , 1
10 ,− 2

5 , 1
10 ,− 2

5 ,− 3
10 , 1

5 F0 � 4B
12/5( ζ 2

8
3/10

)

8F
0 ( ζ 1

2 ζ 2
8

0
) 26.180 1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 2

8 ,ζ 2
8 0, 1

2 , 1
10 ,− 2

5 ,− 1
10 , 2

5 , 1
2 ,0 F0 � 4B

0 ( ζ 2
8
0

)

8F
1/10( ζ 1

2 ζ 2
8

−3/10
) 26.180 1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 2

8 ,ζ 2
8 0, 1

2 ,− 1
10 , 2

5 ,− 1
10 , 2

5 , 3
10 ,− 1

5 F0 � 4B
−12/5( ζ 2

8
−3/10

)

8F
1/4( 0

0 ) 27.313 1,1,1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 0, 1
2 , 1

4 ,− 1
4 ,0, 1

2 , 1
4 ,− 1

4 4F
1/4( ζ 3

6
1/2

) � 2B
1 ( 0

0 )

8F
1/6( ζ 1

2 ζ 3
7

−5/12
) 38.468 1,1,ζ 1

7 ,ζ 1
7 ,ζ 2

7 ,ζ 2
7 ,ζ 3

7 ,ζ 3
7 0, 1

2 , 1
6 ,− 1

3 , 5
18 ,− 2

9 ,− 1
6 , 1

3 F0 � 4B
−10/3( ζ 3

7
−5/12

)

8F
−1/6( ζ 1

2 ζ 3
7

5/12
) 38.468 1,1,ζ 1

7 ,ζ 1
7 ,ζ 2

7 ,ζ 2
7 ,ζ 3

7 ,ζ 3
7 0, 1

2 ,− 1
6 , 1

3 ,− 5
18 , 2

9 , 1
6 ,− 1

3 F0 � 4B
10/3( ζ 3

7
5/12

)

8F
−1/20( ζ 3

6 ζ 1
3

−7/20
) 49.410 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

6 ,ζ 2
6 ,ζ 1

3 ζ 2
6 ,ζ 1

3 ζ 2
6 0, 1

2 , 1
10 ,− 2

5 , 1
4 ,− 1

4 ,− 3
20 , 7

20 4F
1/4( ζ 3

6
1/2

) � 2B
−14/5( ζ 1

3
3/20

)

8F
1/20( ζ 3

6 ζ 1
3

7/20
) 49.410 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

6 ,ζ 2
6 ,ζ 1

3 ζ 2
6 ,ζ 1

3 ζ 2
6 0, 1

2 ,− 1
10 , 2

5 , 1
4 ,− 1

4 ,− 7
20 , 3

20 4F
1/4( ζ 3

6
1/2

) � 2B
14/5( ζ 1

3
−3/20

)

8F
0 ( 2ζ 2

6
0

) 93.254 1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,(ζ 2
6 )2,(ζ 2

6 )2 0, 1
2 , 1

4 ,− 1
4 , 1

4 ,− 1
4 ,0, 1

2 4F
1/4( ζ 3

6
1/2

) �F0 4F
1/4( ζ 3

6
1/2

)

8F
−1/8( ζ 7

14
7/16 ) 105.09 1,1,ζ 2

14,ζ
2
14,ζ

4
14,ζ

4
14,ζ

6
14,ζ

6
14 0, 1

2 , 3
8 ,− 1

8 , 1
8 ,− 3

8 ,− 1
4 , 1

4 F(A1,−14)

8F
1/8( ζ 7

14
−7/16 ) 105.09 1,1,ζ 2

14,ζ
2
14,ζ

4
14,ζ

4
14,ζ

6
14,ζ

6
14 0, 1

2 ,− 3
8 , 1

8 ,− 1
8 , 3

8 , 1
4 ,− 1

4 F(A1,14)

Roughly speaking,

{invertible gapped quantum liquid phases}
= {invertible topological orders} × {SPT phases}.

For bosonic cases, the only invertible topological orders are
the E8 states. Therefore bosonic SPT phases should be in one-
to-one correspondence with the modular extensions of E =
Rep(G), which are given by H3[G,U (1)] [71]. This agrees
with the classifications of 2+1D bosonic SPT phases with
unitary finite symmetry group G [69].

Things are a bit complicated for fermionic cases. We
are able to see both fermionic SPT phases and invertible
fermionic topological orders in the modular extensions of
E = sRep(Gf ). More precisely, the modular extensions of
sRep(Gf ) with central charge c = 0 correspond to fermionic
SPT phases, while those with central charge c �= 0 correspond
to phases with both invertible topological orders and SPT
orders. Two modular extensions with the same central charge

have the same invertible fermionic topological orders (up to
E8 states), but may differ by some fermionic SPT phases.
In other words, similar to the bosonic case, the central
charge is the label for invertible fermionic topological orders.
But unlike the bosonic case, where the minimal central
charge is c = 8 for the E8 state that is independent of the
symmetry, the minimal central charge for invertible fermionic
topological orders may depend on the symmetry Gf . For
Gf = Zf

2 , there are 16 modular extensions, forming a Z16

group (see Sec. VII B). The minimal invertible fermionic
topological order (with no symmetry) has central charge
c = 8/16 = 1/2. We expect that it is also the case if Gf =
Gb × Zf

2 . (See also Ref. [72].) However, for generic Gf (not
of the form Gb × Z

f

2 ), the invertible fermionic topological
orders can be different due to nontrivial interplays with
other symmetries. We may have a different minimal central
charge, which can be extracted from the modular extensions
of sRep(Gf ).
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TABLE III. A list of simple fermionic topological orders (up to invertible ones) with N = 10 types of topological excitations. The table
contains all fermionic topological orders with D2 � 120.

NF
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K matrix

10F
0 ( ζ 1

2
0 ) 10 1,1,1,1,1,1,1,1,1,1 0, 1

2 , 1
10 ,− 2

5 , 1
10 ,− 2

5 ,− 1
10 , 2

5 ,− 1
10 , 2

5 F0 � 5B
4 ( 1

0 ), (4 3
3 1)

10F
0 ( ζ 1

2
1/2 ) 10 1,1,1,1,1,1,1,1,1,1 0, 1

2 , 3
10 ,− 1

5 , 3
10 ,− 1

5 ,− 3
10 , 1

5 ,− 3
10 , 1

5 F0 � 5B
0 ( 1

1/2 ), (3 2
2 3)

10F
∗ ( 2ζ 1

2
−1/12 ) 24 1,1,1,1,

√
3,

√
3,

√
3,

√
3,2,2 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 , 1

3 ,− 1
6 primitive

10F
∗ ( 2ζ 1

2
1/12 ) 24 1,1,1,1,

√
3,

√
3,

√
3,

√
3,2,2 0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 ,− 1

3 , 1
6 primitive

10F
∗ ( 2ζ 1

2
−5/12

) 24 1,1,1,1,
√

3,
√

3,
√

3,
√

3,2,2 0, 1
2 ,0, 1

2 , 1
4 ,− 1

4 , 1
4 ,− 1

4 , 1
3 ,− 1

6 primitive

10F
∗ ( 2ζ 1

2
5/12

) 24 1,1,1,1,
√

3,
√

3,
√

3,
√

3,2,2 0, 1
2 ,0, 1

2 , 1
4 ,− 1

4 , 1
4 ,− 1

4 ,− 1
3 , 1

6 primitive

10F
0 ( ζ 5

10
1/4

) 24 1,1,1,1,
√

3,
√

3,
√

3,
√

3,2,2 0, 1
2 , 1

2 ,0, 1
8 ,− 3

8 ,− 3
8 , 1

8 , 1
6 ,− 1

3 F0 � 5B
−2( ζ 2

10
1/4

)

10F
0 (

√
6−√

2
1/4 ) 24 1,1,1,1,

√
3,

√
3,

√
3,

√
3,2,2 0, 1

2 , 1
2 ,0, 1

8 ,− 3
8 ,− 3

8 , 1
8 ,− 1

6 , 1
3 F0 � 5B

2 (
√

3−1
1/4 )

10F
0 (

√
6−√

2
−1/4 ) 24 1,1,1,1,

√
3,

√
3,

√
3,

√
3,2,2 0, 1

2 , 1
2 ,0,− 1

8 , 3
8 , 3

8 ,− 1
8 , 1

6 ,− 1
3 F0 � 5B

−2(
√

3−1
−1/4 )

10F
0 ( ζ 5

10
−1/4

) 24 1,1,1,1,
√

3,
√

3,
√

3,
√

3,2,2 0, 1
2 , 1

2 ,0,− 1
8 , 3

8 , 3
8 ,− 1

8 ,− 1
6 , 1

3 F0 � 5B
2 ( ζ 2

10
−1/4

)

10F
0 ( 4.2807

0.0874 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 1
10 ,− 2

5 ,− 1
10 , 2

5 , 1
16 ,− 7

16 FU (1)10/Z2

10F
∗ ( 4.2807

−0.0874 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 1
10 ,− 2

5 ,− 1
10 , 2

5 ,− 1
16 , 7

16 primitive

10F
∗ ( 2.3823

0.3060 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 1
10 ,− 2

5 ,− 1
10 , 2

5 , 3
16 ,− 5

16 primitive

10F
∗ ( 2.3823

−0.3060 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 1
10 ,− 2

5 ,− 1
10 , 2

5 ,− 3
16 , 5

16 primitive

10F
∗ ( 2.3823

0.1939 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 3
10 ,− 1

5 ,− 3
10 , 1

5 , 1
16 ,− 7

16 primitive

10F
∗ ( 2.3823

−0.1939 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 3
10 ,− 1

5 ,− 3
10 , 1

5 ,− 1
16 , 7

16 primitive

10F
∗ ( 4.2807

0.4125 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 3
10 ,− 1

5 ,− 3
10 , 1

5 , 3
16 ,− 5

16 primitive

10F
∗ ( 4.2807

−0.4125 ) 40 1,1,1,1,2,2,2,2,
√

10,
√

10 0, 1
2 , 1

2 ,0, 3
10 ,− 1

5 ,− 3
10 , 1

5 ,− 3
16 , 5

16 primitive

10F
−1/22( ζ 1

2 ζ 4
9

2/11
) 69.292 1,1,ζ 1

9 ,ζ 1
9 ,ζ 2

9 ,ζ 2
9 ,ζ 3

9 ,ζ 3
9 ,ζ 4

9 ,ζ 4
9 0, 1

2 , 7
22 ,− 2

11 ,− 7
22 , 2

11 ,− 9
22 , 1

11 , 1
22 ,− 5

11 F0 � 5B
16/11( ζ 4

9
2/11

)

10F
1/22( ζ 1

2 ζ 4
9

−2/11
) 69.292 1,1,ζ 1

9 ,ζ 1
9 ,ζ 2

9 ,ζ 2
9 ,ζ 3

9 ,ζ 3
9 ,ζ 4

9 ,ζ 4
9 0, 1

2 ,− 7
22 , 2

11 , 7
22 ,− 2

11 , 9
22 ,− 1

11 ,− 1
22 , 5

11 F0 � 5B
−16/11( ζ 4

9
−2/11

)

10F
1/14( ζ 1

2 ζ 2
12

−5/28
) 70.684 1,1,ζ 2

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

12,ζ
2
12,ζ

4
12,ζ

4
12 0, 1

2 , 5
14 ,− 1

7 , 5
14 ,− 1

7 ,− 5
14 , 1

7 ,− 1
14 , 3

7 F0 � 5B
18/7( ζ 2

12
−5/28

)

10F
−1/14( ζ 1

2 ζ 2
12

5/28
) 70.684 1,1,ζ 2

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

12,ζ
2
12,ζ

4
12,ζ

4
12 0, 1

2 ,− 5
14 , 1

7 ,− 5
14 , 1

7 , 5
14 ,− 1

7 , 1
14 ,− 3

7 F0 � 5B
−18/7( ζ 2

12
5/28

)

10F
−1/5( ζ 9

18
−1/10

) 204.31 1,1,ζ 2
18,ζ

2
18,ζ

4
18,ζ

4
18,ζ

6
18,ζ

6
18,ζ

8
18,ζ

8
18 0, 1

2 , 2
5 ,− 1

10 , 1
5 ,− 3

10 ,− 1
10 , 2

5 , 1
2 ,0 F(A1,−18)

10F
1/5( ζ 9

18
1/10

) 204.31 1,1,ζ 2
18,ζ

2
18,ζ

4
18,ζ

4
18,ζ

6
18,ζ

6
18,ζ

8
18,ζ

8
18 0, 1

2 ,− 2
5 , 1

10 ,− 1
5 , 3

10 , 1
10 ,− 2

5 , 1
2 ,0 F(A1,18)

By combining with the theory of BF category developed in
Ref. [46], the above proposal can be naturally generalized
to higher dimensions. Up to invertible topological orders,
(d + 1)D fermionic/bosonic topological orders with/without
symmetry are classified by nondegenerate unitary braided
fusion (d − 1) categories over a symmetric fusion 1 category;
the symmetric fusion 1-category, viewed as a unitary braided
fusion (d − 1) category with only trivial k morphisms for
0 � k < d, describes a (d + 1)D fermionic/bosonic product
state with/without symmetry. We also require that the unitary
braided fusion (d − 1) category has a modular extension.

Fermionic/bosonic topological orders with symmetry will
be thoroughly studied in an upcoming paper Ref. [73]. In
this paper, we concentrate on 2+1D fermionic topological
orders without symmetry, which are the simplest examples of
nondegenerate UBFC’s over a SFC.

F. Relation to G-crossed category

Note that our proposal in the bosonic cases—2+1D bosonic
topological orders with symmetry G, up to invertible topolog-

ical orders, are classified by UMTC/Rep(G) that have modular
extensions—is different, but equivalent to another proposal
in Ref. [74], using G-crossed UMTC’s to classify 2+1D
bosonic topological orders with symmetry G. Mathematically,
a UMTC/Rep(G) C is related to a G-crossed UMTC D ∼= MG

via the de-equivariantization and equivariantization processes
[54]. Let D0 be the neutral component (the full subcategory
graded by the identity element of the group G) of D. Note that
D0 is a UMTC with a G action. We have

C ∼= DG
0

C=Rep(G)cenM

de-equivariantization

CG
∼= D0

neutral component

equivariantization

M ∼= DG
de-equivariantization

MG
∼= D

equivariantization

where de-equivariantization and equivariantization are inverse
to each other. This is why we say that the two proposals are
equivalent in the bosonic cases. We will further study their
relation elsewhere. However, our proposal has the advantage
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TABLE IV. A list of simple fermionic topological orders (up to invertible ones) with N = 12 types of topological excitations. The table
contains all fermionic topological orders with D2 � 50. Here, χm

n = m + √
n.

NF
c ( |�2 |

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K-matrix

12F
0 ( 0

0 ) 12 1,1,1,1,1,1,1,1,1,1,1,1 0, 1
2 , 1

12 , 7
12 , 1

12 , 7
12 , 1

4 , 3
4 , 1

3 , 5
6 , 1

3 , 5
6 F0 � 6B

1 ( 0
0 )

12F
0 ( 0

0 ) 12 1,1,1,1,1,1,1,1,1,1,1,1 0, 1
2 , 1

6 , 2
3 , 1

6 , 2
3 , 1

4 , 3
4 , 5

12 , 11
12 , 5

12 , 11
12 F0 � 6B

5 ( 0
0 )

12F
∗ ( 2

0 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 ,0, 1
2 ,0, 1

2 primitive

12F
0 ( 0

0 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 1
16 , 9

16 , 5
16 , 13

16 F0 � 6B
3/2( 0

0 )

12F
∗ ( 2

1/4 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 1
8 , 5

8 , 1
8 , 5

8 primitive

12F
0 ( 0

0 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 3
16 , 11

16 , 7
16 , 15

16 F0 � 6B
1/2( 0

0 )

12F
∗ ( 2

1/2 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 1
4 , 3

4 , 1
4 , 3

4 primitive

12F
∗ ( 2

−1/4 ) 16 1,1,1,1,1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
2 ,ζ 1

2 0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 3
8 , 7

8 , 3
8 , 7

8 primitive

12F
3/10( ζ1

2 ζ1
3

1/10
) 21.708 1,1,1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

2 , 1
6 , 2

3 , 1
6 , 2

3 , 1
15 , 17

30 , 1
15 , 17

30 , 2
5 , 9

10 F0 � 6B
4/5( ζ1

3
1/10

)

12F
1/5( ζ1

2 ζ1
3

2/5
) 21.708 1,1,1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

2 , 1
6 , 2

3 , 1
6 , 2

3 , 1
10 , 3

5 , 4
15 , 23

30 , 4
15 , 23

30 F0 � 6B
16/5( ζ1

3
2/5

)

12F
1/5( ζ1

2 ζ1
3

−1/10
) 21.708 1,1,1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

2 , 1
3 , 5

6 , 1
3 , 5

6 , 1
10 , 3

5 , 13
30 , 14

15 , 13
30 , 14

15 F0 � 6B
−4/5( ζ1

3
−1/10

)

12F
3/10( ζ1

2 ζ1
3

−2/5
) 21.708 1,1,1,1,1,1,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

2 , 1
3 , 5

6 , 1
3 , 5

6 , 7
30 , 11

15 , 7
30 , 11

15 , 2
5 , 9

10 F0 � 6B
−16/5( ζ1

3
−2/5

)

12F
1/5( ζ1

3 ζ3
6

17/80
) 28.944 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

2 ζ 1
3 ,ζ 1

2 ζ 1
3 0, 1

2 ,0, 1
2 , 1

16 , 9
16 , 1

10 , 3
5 , 1

10 , 3
5 , 13

80 , 53
80 F0 � 6B

17/10( ζ1
3 ζ1

6
17/80

)

12F
3/10( ζ1

3 ζ3
6

−7/80
) 28.944 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

2 ζ 1
3 ,ζ 1

2 ζ 1
3 0, 1

2 ,0, 1
2 , 1

16 , 9
16 , 2

5 , 9
10 , 2

5 , 9
10 , 37

80 , 77
80 F0 � 6B

33/10( ζ1
3 ζ1

6
−7/80

)

12F
1/5( 1.7513

27/80 ) 28.944 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
2 ζ 1

3 ,ζ 1
2 ζ 1

3 0, 1
2 ,0, 1

2 , 3
16 , 11

16 , 1
10 , 3

5 , 1
10 , 3

5 , 23
80 , 63

80 F0 � 6B
27/10( 1.2383

27/80 )

12F
3/10( 1.7513

3/80 ) 28.944 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
2 ζ 1

3 ,ζ 1
2 ζ 1

3 0, 1
2 ,0, 1

2 , 3
16 , 11

16 , 2
5 , 9

10 , 2
5 , 9

10 , 7
80 , 47

80 F0 � 6B
3/10( 1.2383

3/80 )

12F
1/5( 1.7513

−3/80 ) 28.944 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
2 ζ 1

3 ,ζ 1
2 ζ 1

3 0, 1
2 ,0, 1

2 , 5
16 , 13

16 , 1
10 , 3

5 , 1
10 , 3

5 , 33
80 , 73

80 F0 � 6B
37/10( 1.2383

−3/80 )

12F
3/10( 1.7513

−27/80 ) 28.944 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
2 ζ 1

3 ,ζ 1
2 ζ 1

3 0, 1
2 ,0, 1

2 , 5
16 , 13

16 , 2
5 , 9

10 , 2
5 , 9

10 , 17
80 , 57

80 F0 � 6B
13/10( 1.2383

−27/80 )

12F
1/5( ζ1

3 ζ3
6

7/80
) 28.944 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

2 ζ 1
3 ,ζ 1

2 ζ 1
3 0, 1

2 ,0, 1
2 , 7

16 , 15
16 , 1

10 , 3
5 , 1

10 , 3
5 , 3

80 , 43
80 F0 � 6B

7/10( ζ1
3 ζ1

6
7/80

)

12F
3/10( ζ1

3 ζ3
6

−17/80
) 28.944 1,1,1,1,ζ 1

2 ,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ,ζ 1

2 ζ 1
3 ,ζ 1

2 ζ 1
3 0, 1

2 ,0, 1
2 , 7

16 , 15
16 , 2

5 , 9
10 , 2

5 , 9
10 , 27

80 , 67
80 F0 � 6B

23/10( ζ1
3 ζ1

6
−17/80

)

12F
1/7( 0

0 ) 37.183 1,1,1,1,ζ 1
5 ,ζ 1

5 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

5 0, 1
2 , 1

4 , 3
4 , 3

28 , 17
28 , 5

14 , 6
7 , 1

28 , 15
28 , 2

7 , 11
14 F0 � 6B

1/7( 0
0 )

12F
5/14( 0

0 ) 37.183 1,1,1,1,ζ 1
5 ,ζ 1

5 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

5 0, 1
2 , 1

4 , 3
4 , 1

7 , 9
14 , 11

28 , 25
28 , 3

14 , 5
7 , 13

28 , 27
28 F0 � 6B

41/7( 0
0 )

12F
0 ( ζ1

2 ζ4
8

0
) 40 1,1,1,1,2,2,2,2,

√
5,

√
5,

√
5,

√
5 0, 1

2 ,0, 1
2 , 1

10 , 3
5 , 2

5 , 9
10 ,0, 1

2 ,0, 1
2 F0 � 6B

4 ( ζ4
8
0

)

12F
∗ (

√
12

0.1830 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
10 , 3

5 , 2
5 , 9

10 , 1
8 , 5

8 , 1
8 , 5

8 primitive

12F
0 ( 1.7480

1/2 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
10 , 3

5 , 2
5 , 9

10 , 1
4 , 3

4 , 1
4 , 3

4 F0 � 6B
4 ( 1.2360

1/2 )

12F
∗ (

√
12

−0.1830 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
10 , 3

5 , 2
5 , 9

10 , 3
8 , 7

8 , 3
8 , 7

8 primitive

12F
0 ( 1.7480

0 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
5 , 7

10 , 3
10 , 4

5 ,0, 1
2 ,0, 1

2 F0 � 6B
0 ( 1.2360

0 )

12F
∗ (

√
12

0.3169 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
5 , 7

10 , 3
10 , 4

5 , 1
8 , 5

8 , 1
8 , 5

8 primitive

12F
0 ( ζ1

2 ζ4
8

1/2
) 40 1,1,1,1,2,2,2,2,

√
5,

√
5,

√
5,

√
5 0, 1

2 ,0, 1
2 , 1

5 , 7
10 , 3

10 , 4
5 , 1

4 , 3
4 , 1

4 , 3
4 F0 � 6B

0 ( ζ4
8

1/2
)

12F
∗ (

√
12

−0.3169 ) 40 1,1,1,1,2,2,2,2,
√

5,
√

5,
√

5,
√

5 0, 1
2 ,0, 1

2 , 1
5 , 7

10 , 3
10 , 4

5 , 3
8 , 7

8 , 3
8 , 7

8 primitive

12F
1/4( ζ3

6
−1/4

) 40.970 1,1,1,1,1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 0, 1
2 , 1

6 , 2
3 , 1

6 , 2
3 , 1

4 , 3
4 , 5

12 , 11
12 , 5

12 , 11
12 4F

1/4( ζ3
6

1/2
) � 3B

6 ( 1
1/4 )

12F
1/4( ζ3

6
1/4

) 40.970 1,1,1,1,1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 0, 1
2 , 1

3 , 5
6 , 1

3 , 5
6 , 1

12 , 7
12 , 1

12 , 7
12 , 1

4 , 3
4 4F

1/4( ζ3
6

1/2
) � 3B

2 ( 1
−1/4 )

12F
1/4( χ2

8
−7/16

) 54.627 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ2
2 ,χ2

2 0, 1
2 ,0, 1

2 , 1
16 , 9

16 , 1
4 , 3

4 , 1
4 , 3

4 , 5
16 , 13

16 4F
1/4( ζ3

6
1/2

) � 3B
1/2( ζ1

6
1/16

)

12F
1/4( 2

−5/16 ) 54.627 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ2
2 ,χ2

2 0, 1
2 ,0, 1

2 , 3
16 , 11

16 , 1
4 , 3

4 , 1
4 , 3

4 , 7
16 , 15

16 4F
1/4( ζ3

6
1/2

) � 3B
3/2( 0.7653

3/16 )

12F
1/4( 2

5/16 ) 54.627 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ2
2 ,χ2

2 0, 1
2 ,0, 1

2 , 5
16 , 13

16 , 1
4 , 3

4 , 1
4 , 3

4 , 1
16 , 9

16 4F
1/4( ζ3

6
1/2

) � 3B
5/2( 0.7653

−3/16 )

12F
1/4( χ2

8
7/16

) 54.627 1,1,1,1,ζ 1
2 ,ζ 1

2 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ2
2 ,χ2

2 0, 1
2 ,0, 1

2 , 7
16 , 15

16 , 1
4 , 3

4 , 1
4 , 3

4 , 3
16 , 11

16 4F
1/4( ζ3

6
1/2

) � 3B
7/2( ζ1

6
−1/16

)

12F
2/35( ζ1

2 ζ1
3 ζ2

5
−0.4928

) 67.265 1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 ,ζ 1
3 ζ 2

5 0, 1
2 , 1

10 , 3
5 , 1

7 , 9
14 , 3

14 , 5
7 , 17

70 , 26
35 , 11

35 , 57
70 F0 � 6B

−138/35( ζ1
3 ζ2

5
−0.4928

)

12F
12/35( ζ1

2 ζ1
3 ζ2

5
−0.2071

) 67.265 1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 ,ζ 1
3 ζ 2

5 0, 1
2 , 1

10 , 3
5 , 5

14 , 6
7 , 2

7 , 11
14 , 16

35 , 67
70 , 27

70 , 31
35 F0 � 6B

−58/35( ζ1
3 ζ2

5
−0.2071

)

12F
11/70( ζ1

2 ζ1
3 ζ2

5
0.2071

) 67.265 1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 ,ζ 1
3 ζ 2

5 0, 1
2 , 2

5 , 9
10 , 1

7 , 9
14 , 3

14 , 5
7 , 3

70 , 19
35 , 4

35 , 43
70 F0 � 6B

58/35( ζ1
3 ζ2

5
0.2071

)

12F
31/70( ζ1

2 ζ1
3 ζ2

5
0.4928

) 67.265 1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 ,ζ 1
3 ζ 2

5 0, 1
2 , 2

5 , 9
10 , 5

14 , 6
7 , 2

7 , 11
14 , 9

35 , 53
70 , 13

70 , 24
35 F0 � 6B

138/35( ζ1
3 ζ2

5
0.4928

)

12F
0 ( 0

0 ) 89.569 1,1,1,1,ζ 2
10,ζ

2
10,ζ

2
10,ζ

2
10,ζ

4
10,ζ

4
10,ζ

4
10,ζ

4
10 0, 1

2 , 1
4 , 3

4 , 1
12 , 7

12 , 1
3 , 5

6 ,0, 1
2 , 1

4 , 3
4 6F

0 ( ζ5
10

−1/12
) � 2B

1 ( 0
0 )

12F
0 ( 0

0 ) 89.569 1,1,1,1,ζ 2
10,ζ

2
10,ζ

2
10,ζ

2
10,ζ

4
10,ζ

4
10,ζ

4
10,ζ

4
10 0, 1

2 , 1
4 , 3

4 , 1
6 , 2

3 , 5
12 , 11

12 ,0, 1
2 , 1

4 , 3
4 6F

0 ( ζ5
10

1/12
) � 2B

1 ( 0
0 )

12F
6/13( ζ1

2 ζ5
11

3/52
) 113.49 1,1,ζ 1

11,ζ
1
11,ζ

2
11,ζ

2
11,ζ

3
11,ζ

3
11,ζ

4
11,ζ

4
11,ζ

5
11,ζ

5
11 0, 1

2 , 5
26 , 9

13 , 9
26 , 11

13 , 6
13 , 25

26 , 1
26 , 7

13 , 1
13 , 15

26 F0 � 6B
−46/13( ζ5

11
3/52

)

12F
1/26( ζ1

2 ζ5
11

−3/52
) 113.49 1,1,ζ 1

11,ζ
1
11,ζ

2
11,ζ

2
11,ζ

3
11,ζ

3
11,ζ

4
11,ζ

4
11,ζ

5
11,ζ

5
11 0, 1

2 , 4
13 , 21

26 , 2
13 , 17

26 , 1
26 , 7

13 , 6
13 , 25

26 , 11
26 , 12

13 F0 � 6B
46/13( ζ5

11
−3/52

)
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TABLE V. A list of simple fermionic topological orders (up to invertible ones) with N = 12 types of topological excitations. The table
contains all fermionic topological orders with D2 � 50. Here χm

n = m + √
n.

NF
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K-matrix

12F
3/28( ζ 3

6 ζ 2
5

−1/7
) 126.95 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ζ 1
5 ,ζ 2

6 ζ 1
5 ,ζ 2

6 ζ 2
5 ,ζ 2

6 ζ 2
5 0, 1

2 , 1
7 , 9

14 , 3
14 , 5

7 , 1
4 , 3

4 , 11
28 , 25

28 , 13
28 , 27

28 3B
−8/7 � 4F

1/4( ζ 3
6

1/2
)

12F
−3/28( ζ 3

6 ζ 2
5

1/7
) 126.95 1,1,ζ 1

5 ,ζ 1
5 ,ζ 2

5 ,ζ 2
5 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ζ 1
5 ,ζ 2

6 ζ 1
5 ,ζ 2

6 ζ 2
5 ,ζ 2

6 ζ 2
5 0, 1

2 , 5
14 , 6

7 , 2
7 , 11

14 , 1
4 , 3

4 , 3
28 , 17

28 , 1
28 , 15

28 3B
8/7 � 4F

1/4( ζ 3
6

1/2
)

12F
8/3( 6.2387

1/3 ) 149.23 1,1,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 3

7 ,ζ 4
16,ζ

4
16,ζ

6
16,ζ

6
16 0, 1

2 , 1
9 , 11

18 , 1
9 , 11

18 , 1
9 , 11

18 , 1
3 , 5

6 , 1
6 , 2

3 6B
8/3 � F0

12F
−8/3( ζ 1

2 ζ 4
16

−1/3
) 149.23 1,1,ζ 3

7 ,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 4

16,ζ
4
16,ζ

6
16,ζ

6
16 0, 1

2 , 7
18 , 8

9 , 7
18 , 8

9 , 7
18 , 8

9 , 1
6 , 2

3 , 1
3 , 5

6 6B
−8/3 � F0

12F
1/5( ζ 1

3 ζ 5
10

7/30
) 162.03 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

10,ζ
2
10,ζ

4
10,ζ

4
10,ζ

1
3 ζ 2

10,ζ
1
3 ζ 2

10,ζ
1
3 ζ 4

10,ζ
1
3 ζ 4

10 0, 1
2 , 1

10 , 3
5 , 1

6 , 2
3 ,0, 1

2 , 4
15 , 23

30 , 1
10 , 3

5 2B
−14/5 � 6F

0 ( ζ 5
10

1/12
)

12F
1/5( ζ 1

3 ζ 5
10

1/15
) 162.03 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

10,ζ
2
10,ζ

4
10,ζ

4
10,ζ

1
3 ζ 2

10,ζ
1
3 ζ 2

10,ζ
1
3 ζ 4

10,ζ
1
3 ζ 4

10 0, 1
2 , 1

10 , 3
5 , 1

3 , 5
6 ,0, 1

2 , 13
30 , 14

15 , 1
10 , 3

5 2B
−14/5 � 6F

0 ( ζ 5
10

−1/12
)

12F
−1/5( ζ 1

3 ζ 5
10

−1/15
) 162.03 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

10,ζ
2
10,ζ

4
10,ζ

4
10,ζ

1
3 ζ 2

10,ζ
1
3 ζ 2

10,ζ
1
3 ζ 4

10,ζ
1
3 ζ 4

10 0, 1
2 , 2

5 , 9
10 , 1

6 , 2
3 ,0, 1

2 , 1
15 , 17

30 , 2
5 , 9

10 2B
14/5 � 6F

0 ( ζ 5
10

1/12
)

12F
−1/5( ζ 1

3 ζ 5
10

−7/30
) 162.03 1,1,ζ 1

3 ,ζ 1
3 ,ζ 2

10,ζ
2
10,ζ

4
10,ζ

4
10,ζ

1
3 ζ 2

10,ζ
1
3 ζ 2

10,ζ
1
3 ζ 4

10,ζ
1
3 ζ 4

10 0, 1
2 , 2

5 , 9
10 , 1

3 , 5
6 ,0, 1

2 , 7
30 , 11

15 , 2
5 , 9

10 2B
14/5 � 6F

0 ( ζ 5
10

−1/12
)

12F
−2( 6.7759

1/4 ) 201.23 1,1,
χ3

21
2 × 6,

χ5
21
2 ,

χ5
21
2 ,

χ7
21
2 ,

χ7
21
2 0, 1

2 , 1
14 , 4

7 , 1
7 , 9

14 , 2
7 , 11

14 ,0, 1
2 , 1

6 , 2
3 6B

−2 � F0

12F
2 ( 6.7759

−1/4 ) 201.23 1,1,
χ3

21
2 × 6,

χ5
21
2 ,

χ5
21
2 ,

χ7
21
2 ,

χ7
21
2 0, 1

2 , 3
14 , 5

7 , 5
14 , 6

7 , 3
7 , 13

14 ,0, 1
2 , 1

3 , 5
6 6B

2 � F0

12F
1/4(

11+√
1519

7
−5/12

) 305.80 1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
10,ζ

2
10,ζ

4
10,ζ

4
10,ζ

2
6 ζ 2

10,ζ
2
6 ζ 2

10,ζ
2
6 ζ 4

10,ζ
2
6 ζ 4

10 0, 1
2 , 1

4 , 3
4 , 1

6 , 2
3 ,0, 1

2 , 5
12 , 11

12 , 1
4 , 3

4 6F
0 ( ζ 5

10
1/12

) � 4F
1/4( ζ 3

6
1/2

)

12F
1/4(

11+√
1519

7
5/12

) 305.80 1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
10,ζ

2
10,ζ

4
10,ζ

4
10,ζ

2
6 ζ 2

10,ζ
2
6 ζ 2

10,ζ
2
6 ζ 4

10,ζ
2
6 ζ 4

10 0, 1
2 , 1

4 , 3
4 , 1

3 , 5
6 ,0, 1

2 , 1
12 , 7

12 , 1
4 , 3

4 6F
0 ( ζ 5

10
−1/12

) � 4F
1/4( ζ 3

6
1/2

)

12F
1/4( ζ 11

22
−5/12

) 352.17 1,1,ζ 2
22,ζ

2
22,ζ

4
22,ζ

4
22,ζ

6
22,ζ

6
22,ζ

8
22,ζ

8
22,ζ

10
22 ,ζ 10

22 0, 1
2 , 1

12 , 7
12 , 1

4 , 3
4 ,0, 1

2 , 1
3 , 5

6 , 1
4 , 3

4 F(A1,22)

12F
1/4( ζ 11

22
5/12

) 352.17 1,1,ζ 2
22,ζ

2
22,ζ

4
22,ζ

4
22,ζ

6
22,ζ

6
22,ζ

8
22,ζ

8
22,ζ

10
22 ,ζ 10

22 0, 1
2 , 5

12 , 11
12 , 1

4 , 3
4 ,0, 1

2 , 1
6 , 2

3 , 1
4 , 3

4 F(A1,−22)

that it easily generalizes to fermionic cases, by replacing
Rep(G) with sRep(Gf ).

Given a symmetry G, not all UBFC’s are nondegenerate
over Rep(G). Similarly, not all UMTC’s admit a G action; there
are group cohomological obstructions to define the G action on
a UMTC [74]. They must vanish for a consistent G action on
a UMTC. On the other hand, a UMTC/Rep(G) C may not have
modular extensions, and the corresponding UMTC CG with
G action may not have G-crossed extensions; there are also
group cohomological obstructions for the extensions to exist
[74]. Reference [67] showed that when the obstructions do not
vanish, the anomalous symmetry action can still be realized on
the surface of 3+1D systems. To study such anomalous cases,
we need the higher dimensional analogs of our proposal.

G. Remarks

Remark 1. Without further announcement, all 2+1D topo-
logical orders considered in this work are anomaly-free (or
closed) in the sense that they can be realized by a 2+1D lattice
model with a local Hamiltonian [46].

Remark 2. In this paper, we use “nondegenerate UBFC
over a SFC E” and “UMTC/E” as synonyms. In the bosonic
case with no symmetry, “over E = B0,” or the subscript “/B0 ,”
will be omitted.

Remark 3. We restrict ourselves to finite symmetry groups
in this work. The representations (or super-representations) of
finite groups form symmetric fusion categories. For continuous
groups, their representations (or super-representations) still
form symmetric tensor categories, but not fusion categories
(there are infinitely many nonisomorphic irreducible repre-
sentations). It is not clear to what extent our results apply to
cases of continuous groups.

Remark 4. Three types of tensor products are used in this
work. We use � for the stacking product of two phases, ⊗ for
the fusion product of particles, and ⊗C for the usual tensor
product of vector spaces over C and that of matrices with C
entries.

II. CATEGORICAL DESCRIPTION OF TOPOLOGICAL
ORDERS WITH SYMMETRY

In this section, we give a physically motivated discussion on
how to find a categorical description of the particle statistics in
a fermionic/bosonic topological order with symmetry. Readers
who are not familiar with the categorical view of particle
statistics are welcome to first read an elementary discussion of
it in Appendix B.

A. Trivial topological orders with symmetry:
Categorical view of symmetry

A 2+1D phase with trivial topological order (i.e., a product
state) can have only local particles, which, by definition, are
particles that can be created/annihilated by local operators.
In a bosonic trivial phase without symmetry, there is only
one type of (indecomposable) particle: the trivial particle
1. When we localize the particle by a trap, the trapped
trivial particle has no internal degrees of freedom (i.e., no
degeneracy) and is described by a one-dimensional Hilbert
space C. For some very special traps, we may have accidental
degeneracy described by a finite dimensional Hilbert space.
Such a trapped particle with accidental degeneracy is called a
composite particle and is a direct sum of the trivial particle.
Therefore the bosonic product states without symmetry can be
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TABLE VI. A list of simple fermionic topological orders (up to invertible ones) with N = 14 types of topological excitations. The table
contains all fermionic topological orders with D2 � 40. Here χm

n = m + √
n.

NF
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments/K

14F
0 ( ζ 1

2
1/4 ) 14 1,1,1,1,1,1,1,1,1,1,1,1,1,1 0, 1

2 , 1
14 , 4

7 , 1
14 , 4

7 , 1
7 , 9

14 , 1
7 , 9

14 , 2
7 , 11

14 , 2
7 , 11

14 F0 � 7B
2 ( 1

1/4 )

14F
0 ( ζ 1

2
−1/4 ) 14 1,1,1,1,1,1,1,1,1,1,1,1,1,1 0, 1

2 , 3
14 , 5

7 , 3
14 , 5

7 , 5
14 , 6

7 , 5
14 , 6

7 , 3
7 , 13

14 , 3
7 , 13

14 F0 � 7B
−2( 1

−1/4 )

14F
∗ (

√
20

0.0512 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
8 , 5

8 primitive

14F
∗ (

√
20

−0.0512 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 3
8 , 7

8 primitive

14F
∗ ( 2

1/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 , 1

8 , 5
8 , 1

4 , 3
4 primitive

14F
∗ ( 2

−1/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 ,0, 1
2 , 1

4 , 3
4 , 3

8 , 7
8 primitive

14F
∗ (

√
20

0.1987 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
8 , 5

8 , 1
8 , 5

8 , 1
8 , 5

8 primitive

14F
∗ ( 2

1/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
8 , 5

8 , 1
8 , 5

8 , 3
8 , 7

8 primitive

14F
∗ ( 2

3/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
8 , 5

8 , 1
4 , 3

4 , 1
4 , 3

4 primitive

14F
∗ ( 2

−1/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
8 , 5

8 , 3
8 , 7

8 , 3
8 , 7

8 primitive

14F
∗ ( 2

−3/8 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 1
4 , 3

4 , 1
4 , 3

4 , 3
8 , 7

8 primitive

14F
∗ (

√
20

−0.1987 ) 32 1,1,1,1,1,1,1,1,2,2,2,2,2,2 0, 1
2 ,0, 1

2 ,0, 1
2 ,0, 1

2 , 3
8 , 7

8 , 3
8 , 7

8 , 3
8 , 7

8 primitive

14F
1/4( ζ 7

14
−15/32

) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 11
32 , 27

32 , 11
32 , 27

32 , 1
4 , 3

4 , 1
4 , 3

4 , 7
32 , 23

32 F0 � 7B
1/4( ζ 3

14
−15/32

)

14F
1/4( 4.3454

−13/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 9
32 , 25

32 , 9
32 , 25

32 , 1
4 , 3

4 , 1
4 , 3

4 , 13
32 , 29

32 F0 � 7B
3/4( 3.0727

−13/32 )

14F
1/4( 2.9035

−11/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 15
32 , 31

32 , 15
32 , 31

32 , 1
4 , 3

4 , 1
4 , 3

4 , 11
32 , 27

32 F0 � 7B
5/4( 2.0531

−11/32 )

14F
1/4( 1.0195

−9/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 13
32 , 29

32 , 13
32 , 29

32 , 1
4 , 3

4 , 1
4 , 3

4 , 1
32 , 17

32 F0 � 7B
7/4( 0.7209

−9/32 )

14F
1/4( 1.0195

9/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 3
32 , 19

32 , 3
32 , 19

32 , 1
4 , 3

4 , 1
4 , 3

4 , 15
32 , 31

32 F0 � 7B
9/4( 0.7209

9/32 )

14F
1/4( 2.9035

11/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 1
32 , 17

32 , 1
32 , 17

32 , 1
4 , 3

4 , 1
4 , 3

4 , 5
32 , 21

32 F0 � 7B
11/4( 2.0531

11/32 )

14F
1/4( 4.3454

13/32 ) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 7
32 , 23

32 , 7
32 , 23

32 , 1
4 , 3

4 , 1
4 , 3

4 , 3
32 , 19

32 F0 � 7B
13/4( 3.0727

13/32 )

14F
1/4( ζ 7

14
15/32

) 54.627 1,1,1,1,ζ 1
6 ,ζ 1

6 ,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 ,ζ 3

6 0, 1
2 ,0, 1

2 , 5
32 , 21

32 , 5
32 , 21

32 , 1
4 , 3

4 , 1
4 , 3

4 , 9
32 , 25

32 F0 � 7B
15/4( ζ 3

14
15/32

)

14F
2/5( ζ 1

2 ζ 6
13

3/10
) 173.50 1,1,ζ 1

13,ζ
1
13,ζ

2
13,ζ

2
13,ζ

3
13,ζ

3
13,ζ

4
13,ζ

4
13,ζ

5
13,ζ

5
13,ζ

6
13,ζ

6
13 0, 1

2 , 1
5 , 7

10 , 11
30 , 13

15 ,0, 1
2 , 1

10 , 3
5 , 1

6 , 2
3 , 1

5 , 7
10 F0 � 7B

−8/5( ζ 6
13

3/10
)

14F
1/10( ζ 1

2 ζ 6
13

−3/10
) 173.50 1,1,ζ 1

13,ζ
1
13,ζ

2
13,ζ

2
13,ζ

3
13,ζ

3
13,ζ

4
13,ζ

4
13,ζ

5
13,ζ

5
13,ζ

6
13,ζ

6
13 0, 1

2 , 3
10 , 4

5 , 2
15 , 19

30 ,0, 1
2 , 2

5 , 9
10 , 1

3 , 5
6 , 3

10 , 4
5 F0 � 7B

8/5( ζ 6
13

−3/10
)

14F
0 ( χ2

8
1/8

) 186.50 1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ 2
2 ,χ 2

2 ,χ 2
2 ,χ 2

2 ,χ 2
8 ,χ 2

8 ,χ 3
8 ,χ 3

8 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

4 , 3
4 , 1

4 , 3
4 , 1

8 , 5
8 ,0, 1

2 F0 � 7B
1 ( χ2

2
1/8 )

14F
0 ( χ2

8
−1/8

) 186.50 1,1,ζ 2
6 ,ζ 2

6 ,ζ 2
6 ,ζ 2

6 ,χ 2
2 ,χ 2

2 ,χ 2
2 ,χ 2

2 ,χ 2
8 ,χ 2

8 ,χ 3
8 ,χ 3

8 0, 1
2 ,0, 1

2 ,0, 1
2 , 1

4 , 3
4 , 1

4 , 3
4 , 3

8 , 7
8 ,0, 1

2 F0 � 7B
−1( χ2

2
−1/8 )

described by the category of finite dimensional Hilbert spaces,
denoted by B0, in which the one-dimensional Hilbert space C
is the trivial particle.

For a 2+1D product state with symmetry (given by a
finite group G), all the particles can be created/annihilated
by local operators, and are local excitations. They can carry
additional charges from the representations of the symmetry.
As a consequence, (indecomposable) particles in a bosonic
product state with symmetry are described by irreducible
representations of G. Thus the trivial topological order with
symmetry is described by the category of G representations,
denoted by Rep(G) (see also Example 1).

For a fermionic product state with symmetry, we must
include in G the fermion-number parity transformation z

(z �= 1), which is involutive, i.e., z2 = 1, and commutes with
other symmetries, i.e., zg = gz for all g ∈ G. Therefore the
fermonic symmetry is a pair Gf = (G,z). The particles in
the fermionic product state with symmetry Gf still have to
be classified by irreducible representations of G. However,
some particles are bosonic and some particles are fermionic:
An irreducible representation is bosonic (or fermionic) if z

acts as 1 (or −1) in the irreducible representation. These
representations braid as bosons and fermions with trivial
mutual statistics. Namely, by exchanging the positions of
two fermions, we get an extra −1 sign (see Example 2 for
a precise mathematical definition). Therefore the particles in
a fermionic product state with symmetry Gf are described
by the category sRep(Gf ), which is the same category as
Rep(G) but equipped with the braidings defined according to
the fermion-number parity. For the fermonic trivial topological
order without symmetry, there is no symmetry other than the
fermion-number parity symmetry f , i.e., G = {1,z} = Z2 or
Gf = Zf

2 = (Z2,z). In this case, we also denote sRep(Zf

2 ) by
F0 (see also Sec. I D).

The categories Rep(G) and sRep(Gf ) are examples of
symmetric fusion category (SFC), which is a UBFC with
only trivial double braidings, i.e., trivial mutual statistics (see
Sec. III B and Appendix D for precise definitions). It turns out
that all SFC’s are of these types [65]. More precisely, an SFC
E is either Rep(G) for a unique group G or sRep(Gf ) for a
unique group G and a central involutive element 1 �= z ∈ G.
In other words, SFC’s are in one-to-one correspondence
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with (finite) bosonic/fermionic symmetry groups [G or Gf =
(G,z)]. Therefore we can refer to a given bosonic/fermionic
symmetry by a SFCE , instead of the traditional way, by groups.
This is the categorical way to describe symmetries.

In summary, we obtain the following result. All the
excitations in a 2 + 1D bosonic/fermionic product state with
symmetry E are local, and are described by the SFC E .
Note that above statement also covers the cases without
symmetry. In particular, when E = B0, it describes a bosonic
trivial topological order without symmetry; when E = F0,
it describes a fermonic trivial topological order without
symmetry.

B. Nontrivial topological orders with symmetries

UBFC is the natural language to describe the particle
statistics (braiding and fusion) in topological orders. The
categorical description of symmetry, using the SFC E instead
of the symmetry group, makes it more straightforward to con-
sider nontrivial topological orders with symmetries. Roughly
speaking, a UBFC C describing a nontrivial topological
order with symmetry E , must “contain” E in a certain way.
More precisely, (1) C contains local excitations carrying all
the irreducible representations of the symmetry group G.
Mathematically, it means that C must contain E (either Rep(G)
or sRep(Gf )) as a full subcategory (see Definition 3).

(2) Since local excitations, by definition, can be created/
annihilated by local operators, they must have trivial mutual
statistics with all particles (including themselves). Mathemat-
ically, it means that E lies in the centralizer Z2(C) of C. The
centralizer Z2(C) of C is defined as the full subcategory formed
by objects that have trivial mutual braidings with all objects
(including themselves). See Eq. (15) and Definition 4 for
precise definitions.

(3) Nondegeneracy condition. In order for the phase to
be anomaly-free (recall Remark 1), if a particle has trivial
mutual statistics with all particles, it must be a local excitation.
Mathematically, it just means that Z2(C) = E .

A UBFC satisfying the above three properties is called a
nondegenerate UBFC over E (UMTC/E for short, see also
Sec. III B and Definition 6) [54,75]. The precise requirements
of the nondegeneracy condition on the S matrix is given in
Sec. III. Note that the simplest UMTC/E is just E itself,
which is nothing but the trivial topological order with the
symmetry E .

In summary, we conclude that the bulk topological excita-
tions in a bosonic/fermionic topological order with symmetry
E is described by a UMTC/E . We describe the notion of a
UMTC/E by concrete computable data in Sec. III. For precise
mathematical definition, see Appendix D or see Refs. [54,75].
In Appendix C, we provide yet another explanation of the
above proposal from the point of view of local operator
algebras that define the topological excitations in a topological
phase with symmetry.

C. How to measure edge states categorically?

We have explained why a bosonic/fermionic topological
order with a given symmetry E can be naturally described by
a UMTC/E C. However, it also raises a few puzzles.

(1) The particles in C can be detected or distinguished via
braiding only up to those local excitations E . This ambiguity is
protected by the symmetry. It raises a question: how to measure
C and the symmetry E categorically?

(2) The category C only contains the information of the
excitations in the bulk. It does not contain enough information
of the edge states. It does not describe invertible topological
orders. Unlike the no-symmetry cases, in which one can
compute the central charge (mod 8) of a UMTC to get the
information of the edge states, the notion of central charge is
not defined for a UMTC/E , which is only a UBFC. It raises
a question: how to measure the edge states of C (or invertible
topological order) categorically?

Since the only categorical tool is the mutual braidings, the
only thing we can do is to gauge the symmetry [66,67,74]
by adding external particles to the system such that newly
added particles can detect old particles in E . Clearly, there
are too many ways to add external particles. We impose the
following two natural principles to the categorical detectors:
(1) the principle of efficiency: a newly added particle should
have nontrivial double braidings to at least one object in E ;
and (2) the principle of completeness: the set of all new and
old particles should be able to detect each other via double
braidings. In other words, they must form a bosonic anomaly-
free 2+1D topological order (without symmetry).

In other words, a categorical measurement must be “ef-
ficient” and “complete.” These two principles lead us to the
following precise definition of a categorical measurement, or
a modular extension of C.

A categorical measurement or a modular extension of a
UMTC/E C is a UMTC M, together with a fully faithful
embedding C ↪→ M, such that the only particles in M that
have trivial mutual braidings with all particles in E are those
in C. Mathematically, it means that the centralizer of E in
M coincides with C, i.e., Ecen

M = C (see Definitions 4 and 7).
[Note that the centralizer of C in C is the centralizer of C:
Ccen
C = Z2(C).]

Physical realities lie in how C can be measured or detected
by other nice categories, which, in this case, are nondegenerate
UBFC’s (or UMTC’s). Therefore it is natural to require that a
modular extension of a UMTC/E always exists (see condition 8
in Sec. III A). In other words, it is always possible to gauge
the symmetry E to obtain a modular extension of a UMTC/E .
This is also necessary for the symmetry action to be anomaly
free. For simplicity, in this paper, we will adopt a nonstandard
definition of UBFC, by requiring UBFC to have a modular
extension.

When E = Rep(G), the modular extensions of Rep(G)
are given by the Drinfeld centers of fusion categories Vecω

G

for ω ∈ H3[G,U (1)] [71], where Vecω
G is the category of

G-graded vector spaces twisted by ω. In these cases, we
see that the modular extensions of Rep(G) are consistent
with the well-known classification of SPT phases by group
cohomology [68–70]. We give more details of this case in
Ref. [73,76]. In Sec. VII B, we further confirm this picture by
explicitly identifying the modular extensions of F0 with the
invertible fermionic topological orders generated by p + ip
superconductors.

Given these evidences, we believe that the modular exten-
sion is the proper categorical way to measure the edge states
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and invertible topological orders that are missing from the
categorical description of UMTC/E . Since UMTC’s fix the
central charge modulo 8, the only ambiguity left is that of E8

states. This leads to our main proposal in Sec. I E.

III. NONDEGENERATE UBFC OVER SFC

In this section, we transform abstract data and axioms
of a nondegenerate UBFC over a SFC to concrete data and
equations. Due to the complexity of the axioms and the
extra gauge degrees of freedom, expressing the data of a
UBFC as concrete tensor entries is quite impractical. To avoid
such complexity, we would like to work with the universal
gauge-invariant data of a UBFC. Similar to the eigenvalues
for matrices, the characters for group representations, for a
UBFC, the gauge-invariant data are the fusion rules N

ij

k and
the topological spins θi = e2π i si . Other gauge-invariant data,
such as quantum dimensions and S and T matrices, can be
expressed in terms of N

ij

k and si . These gauge-invariant data
must satisfy finitely many algebraic equations according to the
axioms of a UBFC.

For a nondegenerate UBFC over a SFC, we have some
additional algebraic equations for the gauge-invariant data.
This allows us to perform a finite search (for fixed rank within
certain bounds) for topological orders with symmetry. In
particular, when we choose the SFC to beF0 = sRep(Zf

2 ), this
leads to a classification and a table of simple 2+1D fermionic
topological orders (see Tables I–VI).

A. A simple definition of unitary braided fusion category

A unitary braided fusion category (UBFC) (also called
a unitary pre-modular category or a unitary ribbon fusion
category) is a theory of the fusion-braiding properties of
systems of anyons without the assumption of the nondegen-
eracy of the mutual braidings. Examples of such anyonic
systems are those consisting of fermions, or bosons with
some symmetries, as building blocks. The building blocks
(the parent bosons/fermions) have trivial mutual braiding but
can still be distinguished by fermion-number parity or other
symmetry charges. This leads to degenerate mutual braidings.

In our simplified theory, a UBFC is described by a
nonnegative integer tensor N

ij

k and a mod-1 rational vector
si , where i,j,k run from 1 to N and N is called the rank of
UBFC. We may simply denote a UBFC [the collection of data
(Nij

k ,si)] by C, a particle i in C by i ∈ C. Sometimes it is more
convenient to use abstract labels rather than 1 to N ; we may
also abuse C as the set of labels (particles).

Not all (Nij

k ,si) describe valid UBFC. In order to describe
a UBFC C, (Nij

k ,si) must satisfy the following conditions
[51,53,55,59,77].

(1) Fusion ring. N
ij

k for the UBFC C are nonnegative
integers that satisfy

N
ij

k = N
ji

k , N1i
j = δij ,

N∑
k=1

Nik
1 N

kj

1 = δij ,

∑
m

Nij
m Nmk

l =
∑

n

Nin
l Njk

n or
∑
m

Nij
m Nm = NiNj , (5)

where the matrix Ni is given by (Ni)kj = N
ij

k , and the indices
i,j,k run from 1 to N . In fact N

ij

1 defines a charge conjugation
i → ī:

N
ij

1 = δīj . (6)

N
ij

k satisfying the above conditions define a fusion ring.
(2) Rational condition. N

ij

k and si for C satisfy [51,78–80]∑
r

V r
ijklsr = 0 mod 1, (7)

where

V r
ijkl = Nij

r Nkl
r̄ + Nil

r N
jk
r̄ + Nik

r N
jl
r̄

− (δir + δjr + δkr + δlr )
∑
m

Nij
m Nkl

m̄ . (8)

(3) Verlinde fusion characters. The topological S matrix is
given by (see Eq. (223) in Ref. [52])

Sij = 1

D

∑
k

N
ij

k e2π i (si+sj −sk )dk, (9)

where di (called quantum dimension) is the largest eigenvalue

of the matrix Ni and D =
√∑

i d
2
i (called the total quantum

dimension). Then [81]

SilSjl

S1l

=
∑

k

N
ij

k Skl . (10)

(4) Weak modularity. The topological T matrix is given by

Tij = δij e2π i si . (11)

Then (see Eq. (232) in Ref. [52])

S†T S = �T †S†T †, � = D−1
∑

i

e2π i si d2
i . (12)

(5) Charge conjugation symmetry.

Sij = S∗
ij̄

, si = sī , or S = S†C, T = T C, (13)

where the charge conjugation matrix C is given by Cij =
N

ij

1 = δij̄ .
(6) Let

νi = 1

D2

∑
jk

N
jk

i djdk e i 4π(sj −sk ), (14)

then νi ∈ Z if i = ī [82].
(7) The centralizer of C, Z2(C), is the subset of the particle

labels

Z2(C) =
{

i | Sij = didj

D
,∀j ∈ C

}
. (15)

Then, Z2(C) forms a fusion subring, and such a fusion subring
is the fusion ring of a SFC. This leads to several conditions:
(a) di = integer, ∀i ∈ Z2(C), (b) if the fusion ring Z2(C) is
simple (i.e., has no fusion subring), then the fusion ring Z2(C)
is the fusion ring of the representaions of a simple finite group;
and (c) every simple fusion subring of Z2(C) is the fusion ring
of the representaions of a simple finite group.
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(8) There exists a UMTC M containing C as a sub-UBFC,
and the set

Z2(C)cen
M =

{
i ∈ M | Sij = didj

D
,∀j ∈ Z2(C)

}
(16)

is the same as C. For details, see Sec. VI, Definition 7.
The above conditions are necessary and sufficient (due to
condition 8) for (Nij

k ,si) to describe a UBFC.
According to tensor category theory, a UBFC is fully

characterized by N
ij

k plus a F -tensor and a R tensor [51–53].
In our simplified theory, we use only the data (Nij

k ,si) to
characterize a UBFC. In general, each (Nij

k ,si) may correspond
to several UBFC’s. However, for the examples found in this
paper, each (Nij

k ,si) describes a single UBFC.

B. Nondegenerate UBFC over a SFC and classification of 2+1D
bosonic/fermionic topological orders with/without symmetry

Two anyons i,j are said to be mutually local if and only
if Sij = didj /D. In other words, the mutual braiding (also
called the double braiding) of i,j is trivial. In this sense, the
centralizer of C, Z2(C), defined in the last subsection is the
subset of anyons that are mutually local to all anyons.

We have the following key definitions.
(1) A UBFC is nondegenerate (i.e., a UMTC) if

Z2(C) = {1}. In this case, the data (Nij

k ,si) satisfy additional
conditions: (a) S is a unitary matrix; (b) � = exp(2π i c

8 ),
where c is the chiral central charge; and (c) νi = 0 if i �= ī,
and νi = ±1 if i = ī [53,55]. The above three conditions
on (Nij

k ,si,c) plus those conditions in Sec. III A gives us
a simplified theory of UMTC. Finding (Nij

k ,si,c) satisfying
those conditions allows us to produce a list of simple 2+1D
bosonic topological orders [56]. (2) A UBFC E is symmetric
(i.e., a SFC) if Z2(E) = E . (3) A UBFC C with an embedding
E ↪→ Z2(C) is called a UBFC over the SFC E . It is a
nondegenerate UBFC over E (i.e., a UMTC/E ) if E = Z2(C).
Put it simply, a UMTC/E is a UBFC with E as its centralizer.
One can also find more rigorous but abstract definitions of the
above notions in Appendix D.

UMTC/E ’s with modular extensions classify all 2+1D
bosonic/fermionic topological orders with/without symmetry
(up to invertible ones). (1) If we choose E to be trivial, i.e.,
E = B0, then UMTC/B0 ’s are just UMTC’s, which classify
all 2+1D bosonic topological orders without symmetry. (2)
If we choose E to be the SFC for fermions, i.e., E = F0,
then UMTC/F0 ’s classify all 2+1D fermionic topological
orders without symmetry. (3) If we choose E to be the
SFC of the representations of a group G, i.e., E = Rep(G),
then UMTC/Rep(G)’s classify all 2+1D bosonic topological
orders with symmetry G. (4) If we choose E to be the
SFC of the super-representations of fermionic symmetry Gf

(recall Sec. II A), i.e., E = sRep(Gf ), then UMTC/sRep(Gf )’s
classify all 2+1D fermionic topological orders with fermonic
symmetry Gf .

The first case has been studied in Ref. [56]. In this paper,
we concentrate on the second case. We leave the other two
cases to Ref. [73].

C. Symmetric fusion category F0 for fermions

We have proposed that UMTC/F0 ’s with modular exten-
sions classify all 2+1D fermionic topological orders without
symmetry, and the SFC F0 gives a fermionic system without
topological order. But what is F0 in terms of gauge-invariant
data? Let us list them: (1) The set of objects (particles) F0 =
{1,f }. (2) The fusion coefficients N

ij

k : N11
1 = N

ff

1 = N
1f

f =
N

f 1
f = 1. Other entries of N

ij

k are 0. In other words, the particle
f only has a Z2 conservation: f ⊗ f = 1 and f ⊗ 1 = f .
(3) (θ1,θf ) = (1,−1) [i.e., (s1,sf ) = (0, 1

2 ) or TF0 = (1 0
0 −1)].

In other words, the particle f has Fermi statistics. (4) SF0 =
1√
2
(1 1
1 1). All the particles have trivial mutual statistics between

them.
The above data, Nij

k and (s1,sf ) = (0, 1
2 ), describes the SFC

for fermions. There is only one such SFC for fermions.

IV. FERMIONIC TOPOLOGICAL ORDERS: UMTC/F0

A. Conditions on (N i j
k ,si ) for fermionic topological orders

Now we are ready to apply the general properties in
Sec. III A for a UBFC, to obtain special properties of a
UMTC/F0 . We find that a UMTC/F0 (i.e., 2+1D fermionic
topological orders) is described by (Nij

k ,si) that satisfy the
conditions in Sec. III A plus the following conditions.

(1) Since f is Abelian, we know that for each i there is
a unique j such that N

f i

j = 1, and for j ′ �= j , N
f i

j ′ = 0. We
denote such j by if . Thus fusion with f defines an involution,
denoted by i 
→ if . We have (if )f = i, N

f i

j = δiif . Also
dif = di .

(2) f is mutually local to all anyons:

Sif = 1

D

θiθf

θif
dif = di

D
. (17)

Thus we have θif = −θi . This also means that if �= i and
if �= ī.

(3) N
ij

k and Sij has some symmetries under i 
→ if :

N
ij

k = N
if jf

k = N
if j

kf = N
ijf

kf ,

Sij = Sijf . (18)

This means that if we arrange the order of labels well, the S,T

matrices have the form S = S̃ ⊗C SF0 , T = T̃ ⊗C TF0 . We
may introduce the equivalence relation i ∼ if . S̃ is indexed by
the equivalent classes [i] = [if ]. We shall call such equivalent
classes [i] up-to-fermion types.

(4) Using the fact that Z2(C) = {1,f }, one can show that S̃

must be unitary. Then for the fusion of equivalent classes we
have the usual Verlinde formula

Ñ
[i][j ]
[k]

def= N
ij

k + N
ij

kf =
∑

[l]

S̃[i][l]S̃[j ][l]S̃
∗
[k][l]

S̃[1][l]
,

S̃[i][j ] is symmetric and unitary. (19)

The above conditions plus those conditions in Sec. III A on
(Nij

k ,si) give us a practical definition of UMTC/F0 , which
classify 2+1D fermionic topological orders.
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B. Numerical solutions for (N i j
k ,si )

To find (Nij

k ,si)’s that satisfy the above conditions plus
those conditions in Sec. III A, we may start with (Ñ [i][j ]

[k] ,S̃[i][j ])
that satisfy

Ñ
[i][j ]
[k] = N

[j ][i]
[k] , Ñ

[1][i]
[j ] = δ[i][j ],∑

[k]

Ñ
[i][k]
[1] Ñ

[k][j ]
[1] = δ[i][j ], (20)

∑
[m]

Ñ
[i][j ]
[m] Ñ

[m][k]
[l] =

∑
[n]

Ñ
[i][n]
[l] Ñ

[j ][k]
[n] ,

and Eq. (19). We then split the value Ñ
[i][j ]
[k] into two parts and

construct N
ij

k via

Ñ
[i][j ]
[k] = N

ij

k + N
ij

kf ,

N
ij

k = N
if jf

k = N
if j

kf = N
ijf

kf , (21)

N
ij

kf = N
if jf

kf = N
if j

k = N
ijf

k .

Such N
ij

k automatically satisfy Eq. (10) for a S that satisfies
Eq. (18). So we only need to check if N

ij

k satisfies Eq. (5).
Using ∑

k

N
ij

k dk = didj , di = dif = d[i], (22)

we find that ∑
[k]

Ñ
[i][j ]
[k] d[k] = d[i]d[j ]. (23)

Thus d[i] is also the largest eigenvalue of the matrix Ñ[i] which
is given by (Ñ[i])[k][j ] = N

[i][j ]
[k] . The quantum dimensions di

are already determined by Ñ
[i][j ]
[k] .

Following Ref. [56], we numerically searched (Nij

k ,si)’s
that satisfy the above four conditions plus conditions 1–7
in Sec. III A. The results are summarized in Tables I–VI.
We find that each entry corresponds to a valid fermionic
topological order (up to invertible topological orders), even
through we did not use the condition 8 when producing the
tables. In the table, we used the notation NF

c ( |�2|
∠�2/2π

) to denote
fermionic topological orders with rank N , chiral central charge
c (mod 1/2), and �2 ≡ D−1 ∑

i e i 4πsi d2
i [∠�2 ≡ Im ln(�2)].

The central charge c is given mod 1/2 since the minimal 2+1D
invertible fermionic topological order has a central charge
1/2.

The topological excitations are labeled by i = 1, . . . ,N .
Note that i = 1 always label the trivial excitation, and
i = 2 always label the excitation that corresponds to the parent
fermion f . Also 2i and 2i − 1 always correspond to a pair of
excitations that differs by f :

(2i)f = 2i − 1, (2i − 1)f = 2i. (24)

We like to remark that the rank N is the number of the
types of topological excitations in the fermionic topological
orders, which include the parent fermion as a nontrivial type.
In literature, most people treat the parent fermion as a trivial
type; so, the number of types of topological excitations usually

referred in literature is, in our notion, the number of up-to-
fermion types of topological excitations, N/2.

In the table, we also listed the quantum dimensions di and
the spin si of the ith-type of topological excitations. We note
that the quantum dimensions satisfy

didj =
∑

k

N
ij

k dk. (25)

So in the table the quantum dimensions di partially represent
the fusion coefficients N

ij

k .
The total quantum dimension

D2 =
N∑

i=1

d2
i (26)

is also listed. Note that in literature, people usually define
D2

F = ∑N/2
i=1 d2

2i as the total quantum dimension. The topolog-
ical entanglement entropy [5,6] is given by

Stop = 1

2
log2 D2

F = 1

2
log2

D2

2
. (27)

From last column of the Tables I–VI, we see that most
fermionic topological orders can be viewed as a stacking of
a bosonic topological order (whose label was introduced in
Ref. [56]) with the trivial fermionic topological order F0 (the
fermionic product state). Some other fermionic topological
orders can be viewed as a stacking of a bosonic topological
order with a fermionic topological order, or as a stacking of
two fermionic topological orders. There are also fermionic
topological orders that are primitive, i.e., cannot be viewed as
a stacking of two simpler nontrivial topological orders.

The simplest primitive fermionic topological order is
the 4F

1/4( ζ 3
6

1/2 ) topological order. It is the first of a se-
quence of primitive fermionic topological orders with
4F

1/4( ζ 3
6

1/2 ), (6F
0 ( ζ105

1/12 ), 8F
1/8( ζ 7

14−7/16 ), 10F
1/5( ζ 9

18
1/10 ), etc. Another type

of primitive fermionic topological orders are the 8F
0 topological

orders with D2 = 24 (there are eight of them with different
spins si). This is also the first of a sequence of primitive
fermionic topological orders.

V. STACKING OPERATION FOR TOPOLOGICAL ORDERS

In this section, we discuss the stacking operation in details.
In particular, we describe the stacking operation in terms of
(Nij

k ,si,c).

A. Stacking fermionic/bosonic topological order
with bosonic topological order

Suppose that we have two UBFC’s, C and D, with particles
(simple objects) labeled by i ∈ C, a ∈ D. We can construct a
new UBFC by simply stacking C and D, denoted by C � D.
By definition, the combined system has no interaction between
the two systems C and D. Certainly, if we add a weak local
interaction between the two systems, the combined system is
still described by the same topological order C � D, as long
as the weak interaction does not drive a phase transition.
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The anyon labels of C � D are pairs (i,a),i ∈ C,a ∈ D, and
the topological data are given by (let K = C � D)

(NK)(i,a)(j,b)
(k,c) = (NC)ijk (ND)ab

c ,

sK(i,a) = sCi + sDa , cK = cC + cD,

TK = TC ⊗C TD,

SK = SC ⊗C SD. (28)

This defines the stacking operation of fermionic/bosonic
topological order with bosonic topological order in terms of
the topological data (Nij

k ,si,c).

B. Abelian fermionic topological orders

It is proved in Ref. [54] that if a UMTC/F0 C is Abelian, it
must be the stacking of some UMTC B with F0, C = B � F0.
In other words, Abelian fermionic topological orders C can
always be decomposed as bosonic topological orders B
stacking with a layer of fermionic product state (with trivial
fermionic topological order). However, this is not always
true for non-Abelian cases, for example, the 4F

1/4 primitive
fermionic topological order.

C. Stacking two fermionic topological orders

When we are considering two fermionic topological orders
described by two UMTC/F0 ’s, C and D, we need a different
notion of stacking, denoted by C �F0 D. The physical idea is
thatF0 ⊂ C andF0 ⊂ D are the same fermion background; we
would like to identify them. The stacking � operation defined
above gives C � D which is a UMTC/F0�F0 . However, the
correct stacking �F0 operation should give us C �F0 D which
is still a UMTC/F0 . To achieve this (i.e., to identify the two
F0’s in F0 � F0 and reduce it to a single F0), we introduce
the equivalent relation (i,a) ∼ (if ,af ), and the anyon labels of
C �F0 D are the equivalent classes [(i,a)]. The topological data
are given by (assume that TC = T̃C ⊗C TF0 ,SD = S̃D ⊗C SF0

and let K = C �F0 D)

(NK)[(i,a)][(j,b)]
[(k,c)] = (NC)ijk (ND)ab

c + (NC)ij
kf (ND)ab

cf ,

sK[(i,a)] = sCi + sDa = sCif + sDaf ,

cK = cC + cD, (29)

TK = T̃C ⊗C T̃D ⊗C TF0 ,

SK = S̃C ⊗C S̃D ⊗C SF0 .

The above defines the stacking operation of two fermionic
topological orders in terms of the topological data (Nij

k ,si,c).
The stacking operation between fermionic topological orders
also makes the set of fermionic topological orders into a
monoid.

VI. MODULAR EXTENSIONS OF A FERMIONIC
TOPOLOGICAL ORDER

In this section, we discuss how to calculate the modular
extensions of a UMTC/F0 . First, note that if we have a UMTC
B that contains fermions, F0 = {1,f } ⊂ B, it is possible to
construct a UMTC/F0F by taking the subset of anyons in B

that are mutually local to (centralize) F0,

F = (F0)cen
B = {i | i ∈ B, Sif = di/D}. (30)

Such a UMTC/F0 describes a fermionic topological order F .
By definition, B is the modular extension of the fermionic
topological orderF . We consider it a physical requirement that
fermionic topological orders must have modular extensions;
in other words, the fermion-number-parity must be gaugable
(see Secs. II C and VII B). This is nothing but condition 8 in
Sec. III A.

Such modular extensions allow us to calculate the chiral
central charge of the fermionic topological order F . We
conjecture that the chiral central charge c of all the modular
extensions B of a given fermionic topological order F is the
same modulo 1/2. Such a chiral central charge c mod 1/2 is
the chiral central charge of the fermionic topological order.

How do we calculate the modular extension BF of a
fermionic topological order F from the data of F? We note
that all the anyons in F are contained in BF , and BF contains
some additional anyons. Assume that the anyon labels of BF
are {1,f,i,j, . . . ,x,y, . . . }, where we use underline to indicate

the additional anyons (not in F). Let N ij

k , Sij be the fusion
coefficients and the S-matrix for BF , and N

ij

k be the fusion
coefficients for F . Using Verlinde formula

Sf x

S1x

Sf x

S1x

= S1x

S1x

= 1, (31)

we find that Sf x = ±S1x = ±dx/DBF . However, by definition
x /∈ F , we must have Sf x = −dx/DBF . Since S is unitary,
0 = ∑

a S1aSf a = ∑
i∈F d2

a /D2
BF

− ∑
x /∈F d2

x /D2
BF

, therefore
∑
i∈F

d2
a =

∑
x /∈F

d2
x . (32)

Thus the total quantum dimension DF of F and the total
quantum dimension DBF of its modular extension BF are
directly related:

D2
F = 1

2D2
BF

. (33)

The above also constraints the maximal number of additional
anyons we can have.

Next we try to determine the fusion rules involving x,y, . . . .
By Verlinde formula

Si1

S11

Sx1

S11
=

∑
j∈F

N ix

j

Sj1

S11
+

∑
y /∈F

N ix
y

Sy1

S11
, (34)

Sif

S1f

Sxf

S1f

=
∑
j∈F

N ix

j

Sjf

S1f

+
∑
y /∈F

N ix
y

Syf

S1f

. (35)

Adding the two we have 0 = ∑
j∈F N ix

j dj , thus N ix

j = 0.

Similarly, we can show N xy

z = 0. So the fusion coefficients of
odd numbers of x,y,z, . . . always vanish.

Therefore Ni for i ∈ F is block diagonal: (Ni)jx =
(Ni)xj = 0, where i,j ∈ F and x /∈ F . In other words,

Ni = Ni ⊕ Ňi, (36)

where (Ni)jk = N ij

k = N
ij

k and (Ňi)xy = N iy

x , i,j,k ∈ F ,
x,y /∈ F .
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If we pick a charge conjugation for the additional particles
x 
→ x̄, the conditions for fusion rules reduce to

N ix
y = N xi

y = N x̄y

i = N iȳ

x̄ , (37)
∑
k∈F

N
ij

k N kx
y =

∑
z/∈F

N iz
x N jy

z . (38)

With a choice of charge conjugation, it is enough to construct
(or search for) the matrices Ňi to determine all the extended
fusion rules N ij

k . Then, it is straightforward to search for the
spins si for the extend fusion rules N ij

k to form some UMTC
B and check if B contains F .

Besides the general condition (38), there are also some
simple constraints on Ňi that may speed up the numerical
search. Firstly, observe that (38) is the same as

ŇiŇj =
∑
k∈F

N
ij

k Ňk, (39)

where i,j,k ∈ F . This means that Ňi satisfy the same fusion
algebra as Ni , and N

ij

k = N ij

k is the structure constant;
therefore the eigenvalues of Ňi must be a subset of the
eigenvalues of Ni .

Secondly, since
∑

y /∈F N ix
y dy = didx , by Perron-Frobenius

theorem, we know that di is the largest eigenvalue of Ňi ,
with eigenvector v,vx = dx . (di is also the largest absolute
value of the eigenvalues of Ňi .) Note that ŇīŇi = ŇiŇī ,

Ňī = Ň
†
i . Thus d2

i is the largest eigenvalue of the positive
semidefinite Hermitian matrix Ň

†
i Ňi . For any unit vector z, we

have z†Ň †
i Ňiz � d2

i , in particular,

(Ň †
i Ňi)xx =

∑
y

(
N ix

y

)2 � d2
i . (40)

The above result is very helpful to reduce the scope of
numerical search.

Thirdly, since
∑

i∈F N ix
x di = d2

x , combined with (32), we
have

∑
i∈F

diTr Ňi =
∑
x /∈F

d2
x =

∑
i∈F

d2
i . (41)

This puts strong constraints on the traces of the matrices
Ňi , especially when di,d

2
i are not all integers (but they are

always algebraic numbers). For example, if di is of the form
k + √

l,k,l ∈ Z (41), essentially splits into two independent
equations: the coefficients of

√
l must be equal and the rest

part must be equal. This is the case for the 4F
1/4( ζ 3

6
1/2 ) fermionic

topological order. We can compute that Tr Ň1 + Tr Ňf =
4, thus Tr Ň1 � 4. Note that Tr Ň1 is exactly the number
of additional particles. Therefore, combined with (40), we
performed a finite search for modular extensions of 4F

1/4( ζ 3
6

1/2 ),
as shown in Table VII.

VII. A CLASSIFICATION OF 2+1D INVERTIBLE
FERMIONIC TOPOLOGICAL ORDERS

A. Quantization of chiral central charge c

Let us first review a standard argument for the quantization
of chiral central charge c (see, for example, Refs. [46,57]).
Consider a bosonic or a fermionic system with invertible
topological order. After integrating out all the dynamical
degrees of freedom, we obtain a partition function that may
contain a gravitational Chern-Simons term:

Z[M3] = e i 2πc
24

∫
M3 ω3 , (42)

where dω3 = p1 is the first Pontryagin class. When the tangent
bundle of M3 is nontrivial, the above expression

∫
M3 ω3 is not

well defined. In order to define the gravitational Chern-Simons
term for arbitrary closed space-time manifold M3, we note
that the oriented cobordism group �SO

3 = 0, i.e., any closed
oriented 3-manifold M3 is a boundary of a 4-manifold M4:
M3 = ∂M4. So, we can always define the gravitational Chern-
Simons term as

e i 2πc
24

∫
M3=∂M4 ω3 = e i 2πc

24

∫
M4 p1 . (43)

However, the same oriented 3-manifold M3 can be the
boundary of two different 4-manifolds: M3 = ∂M4 = ∂M̃4. In
order for the above definition to be self-consistent, we require
that

e i 2πc
24

∫
M4 p1 = e i 2πc

24

∫
M̃4 p1 (44)

or

e i 2πc
24

∫
M4 p1 = 1 (45)

for any closed oriented 4-manifold ∂M4 = ∅.
We note that ∫

M4
p1 = 0 mod 3. (46)

Therefore c must be quantized as

c = 0 mod 8 (47)

to satisfy the condition Eq. (45). This implies that the central
charge for bosonic invertible topological orders must be
multiple of 8, where c = 8 is realized by the E8 bosonic
quantum Hall state.

But for fermionic invertible topological orders, the central
charge is quantized differently. This is because M4 must have
a spin structure for fermion systems. In this case [83],∫

M4
spin

p1 = 0 mod 48. (48)

Therefore c must be quantized as

c = 0 mod 1
2 (49)

for 2+1D fermionic invertible topological orders. c = 1
2 is

realized by the p + ip fermionic superconducting state.

B. Classify 2+1D invertible fermionic topological
orders via modular extentions

However, for each quantized c, do we have only one
invertible fermionic topological order, or can we have several
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TABLE VII. The 16 modular extensions of the 4F
1/4( ζ 3

6
1/2

) fermionic topological order (in the first row).

NF,B
c Stop D2 d1,d2, . . . s1,s2, . . .

4F
1/4( ζ 3

6
1/2

) 1.3857 13.656 1,1,ζ 2
6 ,ζ 2

6 0, 1
2 , 1

4 ,− 1
4

7B
9/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 , 3

32 , 15
32 , 3

32

7B
−1/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 , 5

32 ,− 7
32 , 5

32

7B
−15/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 , 11

32 ,− 9
32 , 11

32

7B
7/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 , 13

32 , 1
32 , 13

32

7B
−7/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 ,− 13

32 ,− 1
32 ,− 13

32

7B
15/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 ,− 11

32 , 9
32 ,− 11

32

7B
1/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 ,− 5

32 , 7
32 ,− 5

32

7B
−9/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 1

6 ,ζ 3
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 ,− 3

32 ,− 15
32 ,− 3

32

7B
−5/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 ,− 11

32 , 1
32 , 1

32

7B
13/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 ,− 13

32 , 7
32 , 7

32

7B
3/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 ,− 3

32 , 9
32 , 9

32

7B
−11/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 ,− 5

32 , 15
32 , 15

32

7B
11/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 , 5

32 ,− 15
32 ,− 15

32

7B
−3/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 , 3

32 ,− 9
32 ,− 9

32

7B
−13/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 , 1

4 ,− 1
4 , 13

32 ,− 7
32 ,− 7

32

7B
5/4 2.3857 27.313 1,1,ζ 2

6 ,ζ 2
6 ,ζ 3

6 ,ζ 1
6 ,ζ 1

6 0, 1
2 ,− 1

4 , 1
4 , 11

32 ,− 1
32 ,− 1

32

distinct invertible fermionic topological orders? The above
analysis of the quantization of the central charge c cannot
answer this question. Here, we would like to propose the
following conjecture to address this issue. Up to invertible
bosonic topological orders, invertible fermionic topological
orders are classified by the modular extensions of F0. More
precisely, let iF be an invertible fermionic topological order
and define the equivalent relation ∼: (iF � E8) ∼ iF . The
quotient {invertible fermionic topological orders}/∼ is classi-
fied by the modular extensions of F0.

The modular extensions of F0 are given by the bosonic
topological orders that (a) contain a fermion f (with spin
1/2 and quantum dimension 1) and (b) f has nontrivial
mutual statistics with all nontrivial topological excitations.
From Eq. (33), we see that a modular extension of F0

must have a total quantum dimension D2 = 4. We find that
the trivial fermionic topological order F0 has 16 modular
extensions: eight Ising type UMTC 3B

c with central charge c =
±1/2,±3/2,±5/2,±7/2, and eight Abelian rank-4 UMTC
4B

c with central charge c = 0,±1,±2,±3,4 (see Ref. [56]).
This agrees with Kitaev’s 16-fold way [52]. For a detailed
exposition of the mathematical structures of these 16 UMTC’s,
see Refs. [52,54].

We conclude that, up to invertible bosonic topological
orders, all invertible fermionic topological orders are classified
by Z16 generated by the p + ip fermionic superconducting
state. This is a generally believed result, which is one of the
reasons that motivates the above conjecture.

For nontrivial fermionic topological orders, we further
conjecture. The fermionic topological orders with a given set
of bulk topological excitations F are classified by the modular
extensions of F up to invertible bosonic topological orders.
They have the same set of bulk topological excitations F ,

but different edge states. This a special case of our general
proposal mentioned in Sec. I E.

For the fermionic topological order of the form F =
F0 � B (i.e., a stacking of trivial fermionic topological order
F0 and a bosonic topological order B), it has the modular
extensions (up to invertible bosonic topological orders) given
by BF = BF0 � B, where BF0 is one of the 16 modular
extensions of F0. They correspond to fermionic topological
orders that have the same set of bulk excitations, but different
edge states. Also, the 16 modular extensions of the 4F

1/4( ζ 3
6

1/2 )
primitive fermionic topological order is listed in Table VII.
Again, they correspond to fermionic topological orders that
have the same set of bulk excitations, but different edge
states. Physically, those 16 fermionic topological orders for
16 modular extensions correspond the condensing the fermion
into 0, 1, . . . , 15 layers of p + ip superconducting states.

In Table II, there are seven entries with 8F
∗ label, where *

mean that the central charge is undetermined. However, the
8F

∗ entries and one 8F
0 entry all belong to the same D2 = 24

block. Those eight fermionic topological orders all contain a
topological nontrivial fermion. We believe that they are related
by condensing such fermion into integer quantum Hall states.
Thus their central charge should differ only by integers. In
other words, all eight entries have central charge c = 0 mod
1/2. Similar phenomena also happen in other tables.

Before we end this section, we briefly remark on the relation
between the modular extensions of F0 and the Witt groups
[84]. The 16 modular extensions of F0 does not form a group
under the stacking product � because they are not invertible.
However, they do form a Z16 group if we carefully define
the stacking �F0 for modular extensions [73,76]. Moreover,
the Witt classes of these 16 modular extensions of F0 also
form a Z16 subgroup of the bosonic Witt group W [84].
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This subgroup is precisely the kernel of the canonical group
homomorphism W → W/F0 [54,75], where W/F0 is the Witt
group for UMTC/F0 ’s. This is not an accident, it turns out that,
by taking the Witt class, the set of all modular extensions of
a generic SFC E maps onto the kernel of the canonical group
homomorphism W → W/E [76], where W/E is the Witt group
for UMTC/E ’s. Details will be given in Ref. [76].

VIII. EXAMPLES AND REALIZATIONS OF FERMIONIC
TOPOLOGICAL ORDERS

A. Fermionic Abelian topological orders

The fermionic Abelian topological orders with di = 1 in
the Tables I, II, IV, V, and VI are described by K matrices
(which are included in the last column of the tables). Their
many-body wave functions are given by Eq. (2). Note that
K = (m) corresponds to the filling fraction ν = 1/m Laughlin
state 	1/m(zi).

We also note that most fermionic topological orders are
stacking of a bosonic topological order and a fermion product
state. The wave functions for the bosonic topological orders
(described by the K matrix and/or simple current algebra) are
given in Refs. [55,85] and Appendix E.

B. Fermionic topological orders from the U(1)M
Z2

-orbifold
simple-current algebra

We can also use the conformal field theory (CFT) (or
more precisely, a simple-current algebra) to construct 2+1D
topological orders. In fact, we regard the correlation function of
Np simple-current operators as an Np electron wave function
	(z1, . . . ,zNp

) [20,28–33]. Such an Np electron wave function
describes a purely chiral fermionic topological order, if the
simple current operators have half-integer conformal weights.
(If all simple current operators have integer conformal weights,
the correlation function of simple-current operators describes
a bosonic many-body state.)

The adjoint representation generated by the simple-current
operators corresponds to the trivial up-to-fermion type of
topological excitations (see Sec. IV A for an explanation
of up-to-fermion type of topological excitations). While
other irreducible representations of the simple-current algebra
correspond to nontrivial up-to-fermion type of topological
excitations. The number of the up-to-fermion types of topo-
logical excitations is given by the number of the irreducible
representations of the simple-current algebra.

For example, a bosonic topological state can be constructed
through U (1)M

Z2
-orbifold CFT. The U (1)M

Z2
-orbifold CFT is a

simple-current algebra generated by the spin-M simple current
ψ = cos(

√
2Mφ) (for details, see Ref. [86]). Since the

conformal dimension (the spin) of the simple-current ψ is
an integer M , ψ is an bosonic operator. The correlation of
ψ’s gives rise to a many-boson wave function with a bosonic
topological order (for details, see Ref. [85]).

The topological excitations in such a topologically ordered
state correspond to the irreducible representations of the U (1)M

Z2
-

orbifold simple-current algebra, which is listed in Table VIII.
The spins si and quantum dimensions di of those topological
excitations are given by the conformal dimensions hi , si = hi

mod 1, and the quantum dimensions di of those irreducible

TABLE VIII. The irreducible representations V
U (1)M
Z2

i of U (1)M
Z2

-
orbifold simple current algebra. The second column is the conformal
dimensions hi of the corresponding primary fields. The third column
is the quantum dimensions di of the representations.

Label i hi di

1 0 1
j 1 1
φα

M M/4 1 α = 1,2

σα 1/16
√

M α = 1,2

τα 9/16
√

M α = 1,2
φγ γ 2/4M 2 γ = 1, . . . ,M − 1

representations. The S matrix (i.e., the mutual statistics) of
those topological excitations is given in Tables IX and X. We
denote such bosonic topological order and the corresponding
UMTC as BU (1)M/Z2 = {1,j,φα

M,φγ ,τα,σ α}, where α = 1,2
and γ = 1, . . . ,M − 1.

In fact, the above UMTC BU (1)M/Z2 with M = 6 is a
modular extension of the 8F

0 ( 3.5915
0.1699 ) fermionic topological

order with si = (0, 1
2 , 1

2 ,0, 1
6 ,− 1

3 ,− 7
16 , 1

16 ). From the S matrix
in Table IX, we see that the objects/particles in F0 = {1,φ1

6},
a subset of BU (1)M/Z2 , are mutually local with respect to each
other. Thus the spin-6/4 operator φ1

6 corresponds to the parent
fermion f . From the S matrix in Table IX, we also see that
the topological excitations in F = {1,φ1

6 ,φ
2
6 ,j,φ2,φ4,τ

1,σ 1},
another subset of BU (1)M/Z2 , are local with respect to F0. Thus
F is a UBFC over F0. In fact it is a UMTC/F0 .

The conformal dimensions and the quantum dimensions
of the topological excitations in F are given by hi =
(0, 3

2 , 3
2 ,1, 1

6 , 2
3 , 9

16 , 1
16 ) and di = (1,1,1,1,2,2,

√
6,

√
6). Thus

F is the UMTC/F0 that describes the 8F
0 ( 3.5915

0.1699 ) fermionic

topological order (see Table II). The fusion of such a 8F
0 ( 3.5915

0.1699 )
fermionic topological order is given in Table XI.

The above results help us to obtain the many-body wave
function that realize the 8F

0 ( 3.5915
0.1699 ) fermionic topological order.

In fact, naively, the correlation of the spin-3/2 fermionic
simple-current operator φ1

6’s

	({zi}) ∝ lim
z∞→∞

〈
V̂ (z∞)

∏
φ1

6(zi)

〉
(50)

gives rise to a quantum-Hall many-fermion wave function
	({zi})e− 1

4

∑ |zi |2 with the above 8F
0 ( 3.5915

0.1699 ) fermionic topo-
logical order. The edge excitations of such a quantum Hall
state are described by the U (1)M

Z2
-orbifold CFT [30,50,87,88].

However, the above construction has a problem: the
correlation of φ1

6 (i.e., 	({zi})) has poles as zi → zj . But
this is only a technical problem that can be fixed as pointed
out in Ref. [85]. We may put the wave function on a lattice
or adding additional factors

∏ |zi − zj |3 to make the wave
function finite. This is a realization of the 8F

0 ( 3.5915
0.1699 ) topological

order.
We may also introduce three complex chiral fermions

ψ1, ψ2, and ψ3. This allows us to construct a four-layer
quantum-Hall wave function as the following correlation in
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TABLE IX. The S matrix for the U (1)M
Z2

-orbifold simple current algebra with M = even. Here, γ,λ =
1, . . . ,M − 1, α,β = 1,2, and σαβ = 2δαβ − 1.

Sij 1 j φα
M σα τα φγ

1 1 1 1
√

M
√

M 2

j 1 1 1 −√
M −√

M 2

φ
β

M 1 1 1 σαβ

√
M σαβ

√
M 2(−)γ

σ β
√

M −√
M σαβ

√
M δαβ

√
2M −δαβ

√
2M 0

τβ
√

M −√
M σαβ

√
M −δαβ

√
2M δαβ

√
2M 0

φλ 2 2 2(−)λ 0 0 4 cos (π γλ

M
)

a CFT:

	({zi,wi,ui,vi}) ∝
〈
V̂ (z∞)

∏
c1(zi)c2(wi)c3(ui)c4(vi)

〉
,

ci = ψi, i = 1,2,3, c4 = ψ1ψ2ψ3φ
1
6 . (51)

In such a four-layer quantum-Hall state, the particles in the first
three layers are fermions and the particles in the fourth layer are
bosons. Such a wave function is finite, and its edge excitations
are described by the U (1)M

Z2
× U 3(1) CFT [30,50,87,88], where

U 3(1) CFT describes the edge excitation of ν = 3 integer quan-
tum Hall states (generated by ψi, i = 1,2,3). Therefore the
8F

0 ( 3.5915
0.1699 ) fermionic topological order described by the wave

function 	({zi,wi,ui,vi})e− 1
4

∑ |zi |2+|wi |2+|ui |2+|vi |2 only differs
from the 8F

0 ( 3.5915
0.1699 ) fermionic topological order described by

	({zi})e− 1
4

∑ |zi |2 by an invertible fermionic topological order
of the ν = 3 integer quantum Hall state.

The above discussion also apply to U (1)M
Z2

-orbifold CFT with
M = 2 + 4n. When M = 2 (i.e., n = 0), the corresponding
fermionic topological order is the 6F

0 ( ζ 3
6

1/16 ) topological order.
The case M = 6 (i.e., n = 1) was discussed above. The case
M = 10 (i.e., n = 2) gives rise to the 10F

0 ( 4.2807
0.0874 ) topological

order in Table III. The larger n gives a sequence of fermionic
topological orders. We denote those fermionic topological or-
ders byFU (1)M/Z2 . One of its modular extensions isBU (1)M/Z2 .

We note that fermionic topological orders FU (1)M/Z2 , M =
2 + 4n, always contain a fermionic topological excitation,
apart from the parent fermion. When those fermionic topo-
logical excitations condense into invertible integer quantum
Hall states, it changes the FU (1)M/Z2 topological order to some
other topological order with the same quantum dimensions

di but different spins si . We can see those related fermionic
topological orders in Tables I–III.

C. Fermionic topological orders from the (A1,k)
Kac-Moody algebra

The (A1,k) Kac-Moody algebra (i.e., the SU (2) level k

Kac-Moody algebra), for k ∈ Z, also gives rise to a sequence
of UMTC’s. The gauge-invariant data of (A1,k) are as follows.

(1) The objects (particles) are labeled by i ∈ {0,1,2, . . . ,k}.
They carry the SU (2) isospin S = i/2. The corresponding
primary fields are denoted by V m

i , m = − k
2 ,− k

2 + 1, . . . , k
2 .

(2) Fusion rules: i ⊗ j = |i − j | ⊕ (|i − j | + 2) ⊕
(|i − j | + 4) ⊕ · · · ⊕ min(i + j,2k − i − j ).

(3) Conformal dimensions hi = i(i + 2)

4(k + 2)
. (Spins si = hi

mod 1.)
(4) Quantum dimensions di = ζ i

k ≡ sin[π(i+1)/(k+2)]
sin[π/(k+2)] .

(5) Chiral central charge c = 3k

k + 2
.

The above data (fusion rules and spins) describe a bosonic
topological order denoted by B(A1,k), whose S matrix can be
calculated from Eq. (9).

Observe that for k = 4l + 2, l ∈ Z, the last particle i =
4l + 2 in B(A1,4l+2) is a fermion. The corresponding conformal
field is a simple current operator. We identity F0 = {0,f =
4l + 2} ⊂ B(A1,4l+2). Then, we have a sequence of fermionic
topological orders

F(A1,4l+2) = {i ∈ B(A1,4l+2)|Si,4l+2 = di/D}
= {0,2,4, . . . ,4l + 2} ⊂ B(A1,4l+2), (52)

such that B(A1,4l+2) is a modular extension of F(A1,4l+2).
For l = 0, F(A1,2)

∼= F0 is the trivial fermionic topological

TABLE X. The S matrix for the U (1)M
Z2

-orbifold simple current algebra with M = odd. Here, γ,λ = 1, . . . ,M − 1,
α,β = 1,2, and σαβ = 2δαβ − 1.

Sij 1 j φα
M σα τα φγ

1 1 1 1
√

M
√

M 2

j 1 1 1 −√
M −√

M 2

φ
β

M 1 1 −1 iσαβ

√
M iσαβ

√
M 2(−)γ

σ β
√

M −√
M iσαβ

√
M eπ i σαβ/4

√
2M −eπ i σαβ/4

√
2M 0

τβ
√

M −√
M iσαβ

√
M −eπ i σαβ/4

√
2M eπ i σαβ/4

√
2M 0

φλ 2 2 2(−)λ 0 0 4 cos (π γλ

M
)
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TABLE XI. Fusion rule j ⊗ i for the 8F
0 ( 3.5915

0.1699 ) fermionic topological order with di = (1,1,1,1,2,2,
√

6,
√

6).

di 1 1 1 1 2 2
√

6
√

6

j\i 1 f a af α αf β βf

1 1 f a af α αf β βf

f f 1 af a αf α βf β

a a af 1 f αf α β βf

af af a f 1 α αf βf β

α α αf αf α 1 ⊕ af ⊕ αf f ⊕ a ⊕ α β ⊕ βf β ⊕ βf

αf αf α α αf f ⊕ a ⊕ α 1 ⊕ af ⊕ αf β ⊕ βf β ⊕ βf

β β βf β βf β ⊕ βf β ⊕ βf 1 ⊕ a ⊕ α ⊕ αf f ⊕ af ⊕ α ⊕ αf

βf βf β βf β β ⊕ βf β ⊕ βf f ⊕ af ⊕ α ⊕ αf 1 ⊕ a ⊕ α ⊕ αf

order. The l = 1 case has been studied in Ref. [89],
whose fusion rule is listed in Table XII. This sequence
appears in our numerical calculations [4F

1/4( ζ 3
6

1/2 ),6F
0 ( 2ζ 1

10
1/12 ),

8F
1/8( ζ 7

14−7/16 ),10F
1/5( ζ 9

18
1/10 ) in Tables I–III]. In fact, all fermionic

topological orders in this sequence are primitive.
For l = 1, the simple current operator carries isospin-3 and

is given by V m
3 , m = −3,−2, . . . ,3, with conformal dimension

h6 = 3
2 . To obtain a many-body wave function that gives rise

to the 4F
1/4( ζ 3

6
1/2 ) fermionic topological order, we may again

introduce three complex chiral fermions ψ1, ψ2, and ψ3. This
allows us to construct a four-layer quantum-Hall wave function
as the following correlation in a SU (2)6 × U 3(1) Kac-Moody
algebra [28]:

	({zi,wi,ui,vi,mi})

∝
〈
V̂ (z∞)

∏
c1(zi)c2(wi)c3(ui)c

mi

4 (vi)

〉
,

ci = ψi, i = 1,2,3, cm
4 = ψ1ψ2ψ3V

m
6 . (53)

In such a four-layer quantum-Hall state, the particles in
the first three layers are fermions and the particles in the
fourth layer are isospin-3 bosons. Such a wave function
is finite, and its edge excitations are described by the
(A1,6) × U 3(1) CFT [30,50,87,88], where U 3(1) CFT de-
scribes the edge excitation of ν = 3 integer quantum Hall
states (generated by ψi, i = 1,2,3). The wave function
	({zi,wi,ui,vi,mi})e− 1

4

∑ |zi |2+|wi |2+|ui |2+|vi |2 gives rise to the
4F

1/4( ζ 3
6

1/2 ) or F(A1,6) fermionic topological order.

TABLE XII. Fusion rule j ⊗ i for 4F
1/4( ζ 3

6
1/2

) fermionic topological

order. ζ 2
6 = 1 + √

2.

di 1 1 ζ 2
6 ζ 2

6

j\i 1 f α αf

1 1 f α αf

f f 1 αf α

α α αf 1 ⊕ α ⊕ αf f ⊕ α ⊕ αf

αf αf α f ⊕ α ⊕ αf 1 ⊕ α ⊕ αf

The B(A1,6) is one of the modular extensions of the 4F
1/4( ζ 3

6
1/2 )

fermionic topological order. Such a modular extension is the
NB

c = 7B
9/4 bosonic topological order in Table VII.

IX. SUMMARY

In this paper, we proposed that 2+1D bosonic/fermionic
topological orders with symmetry G are classified, up to
invertible topological orders, by UMTC/E ’s with modular
extensions. E is the category Rep(G) of G-representations
in bosonic cases and the category sRep(Gf ) for fermionic
cases, where Gf = (G,z) and z ∈ G is the fermion-number
parity symmetry. The case of G = {1} (or Gf = (Z2,z) = Zf

2 )
corresponds to the bosonic (or fermionic) case without
symmetry.

We developed a simplified theory for nondegenerate UBFC
over the SFC F0 = sRep(Zf

2 ), which allows us to obtain a list
of simple fermionic topological orders with no symmetry. We
find two sequences of primitive fermionic topological orders
F(A1,4l+2) and FU (1)M/Z2 .
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APPENDIX A: PROOF THAT THERE ARE ONLY
FOUR N = 4 UMTC/F0

In this section, we prove that there are only four different
N = 4UMTC/F0 using the conditions listed in the main text.
Let us label the four particles by {1,f,a,af }. Since af = a ⊗
f , all the fusion rules can actually be generated by

a ⊗ a = 1 ⊕ zf ⊕ xa ⊕ yaf ,

where x,y,z are nonnegative integers.
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Firstly,

a ⊗ af = a ⊗ a ⊗ f = f ⊕ z1 ⊕ xaf ⊕ ya.

Since a = ā �= af , we must have z = 0. The quantum dimen-
sion da = daf is then given by

d2
a = 1 + (x + y)da, da = x + y +

√
(x + y)2 + 4

2
.

Secondly, if either of x,y is zero, the fusion rule splits,
and the N = 4UMTC/F0 is not primitive. It is the stacking
of a N = 2 UMTC with F0. The classification of N = 2
UMTC is clear: semion UMTC, Fibonacci UMTC and their
time-reversal conjugates (the first four in Table XIII). After
stacking withF0, semion UMTC and its time-reversal produce
the same UMTC/F0 . This way we obtain in total three different
UMTC/F0 .

It remains to show that there is only one primitive N = 4
UMTC/F0 . Firstly, we know that the S matrix has the form
S = S̃ ⊗C SF0 and the rank 2 matrix S̃ is unitary. So S can
only be

1

D

(
1 da

da −1

)
⊗C

(
1 1
1 1

)
.

In particular,

−1 = DSaa =
∑

k

Naa
k e2π i (sa+sa−sk )dk.

We also know that s1 = 0, sf = 1/2, saf = sa + 1/2. The
above reduces to

−1 = e4π i sa + (x − y)da e2π i sa

or

−2 cos(2πsa) = (x − y)da. (A1)

But note that for a primitive UMTC/F0 , x � 1, y � 1,

thus da � 1+1+
√

(1+1)2+4
2 = 1 + √

2. If x �= y we must have
|(x − y)da| > 2, which is contradictory to Eq. (A1). So it is
only possible that x = y and sa = 1/4 or sa = 3/4.

Secondly, we check the condition that

νa = 1

D2

∑
jk

Njk
a djdk e i 4π(sj −sk )

is an integer. Substituting the results we obtained so far,

νa = −4da + 4xd2
a

2 + 2d2
a

, da = x +
√

x2 + 1.

Thus

2x3 + (2x2 − 1)
√

x2 + 1 = (x2 + 1)νa + xνa

√
x2 + 1.

Since νa is an integer (
√

x2 + 1 is never an integer for
x = 1,2, . . . ), we have{

2x3 = (x2 + 1)νa,

2x2 − 1 = xνa.

Substituting the second into the first, we get

2x3 = x(2x2 − 1) + νa,

thus, x = νa , x2 = 1. The only non-negative integer solution is
x = νa = 1. This solution does give us a valid UMTC/F0 . The
two choices of spins, sa = 1/4,saf = 3/4, or sa = 3/4,saf =
1/4, turn out to be isomorphic. This completes our proof.

APPENDIX B: CATEGORICAL VIEW
OF PARTICLE STATISTICS

In 3+1D, particles can have two different kinds of statistics,
bosonic or fermionic. Besides, if the system has certain
physical symmetry, particles also carry group representations.
The Bose/Fermi statistics and representations of symmetry
groups can be unified by a single mathematical framework
symmetric categories.

Before giving a rigorous mathematical definition, here we
try to give a physical picture of “categories.” Physically, tensor
category theory can be viewed as a theory that describe quasi-
particle excitations in a gapped state. The particles (pointlike
excitations) correspond to objects in category theory, and the
operators or operations acting on the particles correspond
to morphisms in category theory. Two particles that can be
connected by local operators are regarded as equivalent and
correspond to two isomorphic objects in category theory.

Under such an equivalence relation, the local operators are
regarded as trivial (or null) operations, that correspond to trivial
morphisms. Other operations, such as moving one particle
around another, braiding two particles, etc., correspond to
nontrivial morphisms. Those operations are described by the
product of hopping operators, i.e., the string operators (or
Wilson loop operators). In other words, local operators are
trivial morphisms, while string operators can be nontrivial
morphisms.

String operators also have an equivalence relation: Two
string operators are considered equivalent if they (1) have
the same matrix elements among the low energy states
or (2) equivalently, differ by only local operators. (Those
string operators are also called logic operators in topological
quantum computing.) It is the equivalent classes of string
operators that correspond to morphisms in category theory.

Besides, if there is some physical symmetry, we require
the operators to preserve the symmetry, i.e., they intertwine
(commute with) the symmetry actions. For example, two
particles, carrying different irreducible representations of the
SO(3) symmetry group, cannot have morphism between them,
i.e., there is no symmetry preserving operations that can change
one particle into the other. On the other hand, if one particle
carry a reducible representation of spin-1 and spin-2, and the
other particle carry a reducible representation of spin-2 and
spin-3, then there is a morphism between the two particles
(objects), (i.e., symmetry preserving operations may turn the
first particle into the second particle with a nonzero amplitude).
We denote the first particle as spin-1⊕ spin-2 and the second
particle as spin-2⊕ spin-3, and the morphism as an arrow
between the two particles:

(spin-1 ⊕ spin-2) → (spin-2 ⊕ spin-3). (B1)

In category theory, the irreducible representations, such as
spin-1, correspond to simple objects, and the reducible repre-
sentations, spin-1⊕ spin-2, correspond to composite objects.
The composite objects are direct sums ⊕ of simple objects.
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TABLE XIII. A list of simple bosonic topological orders (up to invertible ones) with N types of topological excitations and chiral central
charge c (mod 8). The excitations have quantum dimension di and spin si (mod 1). The table contains all topological orders with N � 4 as well
as N = 5 and D2 � 120. Here, ζm

n = sin[π (m+1)/(n+2)]
sin[π/(n+2)] .

NB
c ( |�2 |

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments, SCA, K matrix, wave function

2B
1 ( 0

0 ) 2 1,1 0, 1
4 K = (2), 	1/2(zi )

2B
−1( 0

0 ) 2 1,1 0,− 1
4 K = (−2), 	∗

1/2(zi )

2B
14/5( ζ1

3
−3/20

) 3.6180 1,ζ 1
3 0, 2

5 (A1,3)1/2, (G2,1)

2B
−14/5( ζ1

3
3/20

) 3.6180 1,ζ 1
3 0,− 2

5 (A1,−3)1/2, (G2,−1)

3B
2 ( 1

−1/4 ) 3 1,1,1 0, 1
3 , 1

3 K = (2 2; 1)

3B
−2( 1

1/4 ) 3 1,1,1 0,− 1
3 ,− 1

3 K = (−2 − 2; −1)

3B
3/2( 0.7653

3/16 ) 4 1,1,ζ 1
2 0, 1

2 , 3
16 (A1,2), (B9,1), A( 1

z1−z2
1

z3−z4
· · · )	1(zi ) [20]

3B
5/2( 0.7653

−3/16 ) 4 1,1,ζ 1
2 0, 1

2 , 5
16 (B2,1), 	2(zi )	2(zi ) [21,28]

3B
7/2( ζ1

6
−1/16

) 4 1,1,ζ 1
2 0, 1

2 , 7
16 (B3,1)

3B
−7/2( ζ1

6
1/16

) 4 1,1,ζ 1
2 0, 1

2 ,− 7
16 (B4,1)

3B
−5/2( 0.7653

3/16 ) 4 1,1,ζ 1
2 0, 1

2 ,− 5
16 (B5,1), 	∗

2 (zi )	∗
2 (zi ) [21,28]

3B
−3/2( 0.7653

−3/16 ) 4 1,1,ζ 1
2 0, 1

2 ,− 3
16 (B6,1)

3B
−1/2( ζ1

6
−1/16

) 4 1,1,ζ 1
2 0, 1

2 ,− 1
16 (B7,1)

3B
1/2( ζ1

6
1/16

) 4 1,1,ζ 1
2 0, 1

2 , 1
16 (B8,1)

3B
8/7( ζ2

5
−5/14

) 9.2958 1,ζ 1
5 ,ζ 2

5 0,− 1
7 , 2

7 (A1,5)1/2

3B
−8/7( ζ2

5
5/14

) 9.2958 1,ζ 1
5 ,ζ 2

5 0, 1
7 ,− 2

7 (A1,−5)1/2

4B
1 ( ζ1

2
1/8

) 4 1,1,1,1 0, 1
8 , 1

8 , 1
2 K = (4), 	1/4(zi )

4B
2 ( 0

0 ) 4 1,1,1,1 0, 1
4 , 1

4 , 1
2 2B

1 ( 0
0 ) � 2B

1 ( 0
0 )

4B
3 ( ζ1

2−1/8
) 4 1,1,1,1 0, 3

8 , 3
8 , 1

2 K = (2 2 2; 1 1; 1)

4B
4 ( 2

0 ) 4 1,1,1,1 0, 1
2 , 1

2 , 1
2 K = (2 2 2 2; 1 0 0; 1 0; 1)

4B
−3( ζ1

2
1/8

) 4 1,1,1,1 0,− 3
8 ,− 3

8 , 1
2 K = −(2 2 2; 1 1; 1)

4B
−2( 0

0 ) 4 1,1,1,1 0,− 1
4 ,− 1

4 , 1
2 2B

−1( 0
0 ) � 2B

−1( 0
0 )

4B
−1( ζ1

2−1/8
) 4 1,1,1,1 0,− 1

8 ,− 1
8 , 1

2 K = (−4), 	∗
1/4(zi )

4B
0 ( 2

0 ) 4 1,1,1,1 0,0,0, 1
2 K = (0 0; 2)

4B
0 ( 0

0 ) 4 1,1,1,1 0,0, 1
4 ,− 1

4 2B
1 ( 0

0 ) � 2B
−1( 0

0 )

4B
9/5( 0

0 ) 7.2360 1,1,ζ 1
3 ,ζ 1

3 0,− 1
4 , 3

20 , 2
5 2B

−1( 0
0 ) � 2B

14/5( ζ1
3

−3/20
)

4B
−9/5( 0

0 ) 7.2360 1,1,ζ 1
3 ,ζ 1

3 0, 1
4 ,− 3

20 ,− 2
5 2B

1 ( 0
0 ) � 2B

−14/5( ζ1
3

3/20
)

4B
19/5( 0

0 ) 7.2360 1,1,ζ 1
3 ,ζ 1

3 0, 1
4 ,− 7

20 , 2
5 2B

1 ( 0
0 ) � 2B

14/5( ζ1
3

−3/20
)

4B
−19/5( 0

0 ) 7.2360 1,1,ζ 1
3 ,ζ 1

3 0,− 1
4 , 7

20 ,− 2
5 2B

−1( 0
0 ) � 2B

−14/5( ζ1
3

3/20
)

4B
0 ( ζ2

8
0

) 13.090 1,ζ 1
3 ,ζ 1

3 ,ζ 2
8 0, 2

5 ,− 2
5 ,0 2B

14/5( ζ1
3

−3/20
) � 2B

−14/5( ζ1
3

3/20
)

4B
12/5( ζ2

8
3/10

) 13.090 1,ζ 1
3 ,ζ 1

3 ,ζ 2
8 0,− 2

5 ,− 2
5 , 1

5 2B
−14/5( ζ1

3
3/20

) � 2B
−14/5( ζ1

3
3/20

)

4B
−12/5( ζ2

8
−3/10

) 13.090 1,ζ 1
3 ,ζ 1

3 ,ζ 2
8 0, 2

5 , 2
5 ,− 1

5 2B
14/5( ζ1

3
−3/20

) � 2B
14/5( ζ1

3
−3/20

)

4B
10/3( ζ3

7
5/12

) 19.234 1,ζ 1
7 ,ζ 2

7 ,ζ 3
7 0, 1

3 , 2
9 ,− 1

3 (A1,7)1/2

4B
−10/3( ζ3

7
−5/12

) 19.234 1,ζ 1
7 ,ζ 2

7 ,ζ 3
7 0,− 1

3 ,− 2
9 , 1

3 (A1,−7)1/2, (G2,2)

5B
0 ( 1

1/2 ) 5 1,1,1,1,1 0, 1
5 , 1

5 ,− 1
5 ,− 1

5 K = (2 2; 3)

5B
4 ( 1

0 ) 5 1,1,1,1,1 0, 2
5 , 2

5 ,− 2
5 ,− 2

5 K = (2 2 2 2; 1 1 0; 1 0; 1)

5B
2 (

√
3−1

1/4 ) 12 1,1,ζ 1
4 ,ζ 1

4 ,2 0,0, 1
8 ,− 3

8 , 1
3 (A1,4)

5B
2 ( ζ2

10
−1/4

) 12 1,1,ζ 1
4 ,ζ 1

4 ,2 0,0,− 1
8 , 3

8 , 1
3 [(A1,4) � 2B

1 � 2B
1 ]1/4

5B
−2( ζ2

10
1/4

) 12 1,1,ζ 1
4 ,ζ 1

4 ,2 0,0, 1
8 ,− 3

8 ,− 1
3 [(A1,−4) � 2B

1 � 2B
1 ]1/4

5B
−2(

√
3−1

−1/4 ) 12 1,1,ζ 1
4 ,ζ 1

4 ,2 0,0,− 1
8 , 3

8 ,− 1
3 (A1,−4)

5B
16/11( ζ4

9
2/11

) 34.646 1,ζ 1
9 ,ζ 2

9 ,ζ 3
9 ,ζ 4

9 0,− 2
11 , 2

11 , 1
11 ,− 5

11 (A1,9)1/2, (F4,2)

5B
−16/11( ζ4

9
−2/11

) 34.646 1,ζ 1
9 ,ζ 2

9 ,ζ 3
9 ,ζ 4

9 0, 2
11 ,− 2

11 ,− 1
11 , 5

11 (A1,−9)1/2, (E8,3)

5B
18/7( ζ2

12
−5/28

) 35.342 1,ζ 2
5 ,ζ 2

5 ,ζ 2
12,ζ

4
12 0,− 1

7 ,− 1
7 , 1

7 , 3
7 (A1,12)1/4, (A2,4)1/3

5B
−18/7( ζ2

12
5/28

) 35.342 1,ζ 2
5 ,ζ 2

5 ,ζ 2
12,ζ

4
12 0, 1

7 , 1
7 ,− 1

7 ,− 3
7 (A3,3)1/4
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If we view two particles (objects) i and j from far away,
the two particles can be regarded as a single particle k. This
defines a fusion operation ⊗:

i ⊗ j = k. (B2)

If we include such a fusion operation between objects of a
category, we get a tensor category, where ⊗ is also called the
tensor product.

To summarize, the equivalence classes of particles form a
set of objects. If we add arrows (morphisms) between objects,
we turn the set into a category. If we further add the fusion
operation, we turn the category into a tensor category.

It is the philosophy of category theory, also the physical
idea of second quantization, that we can focus on only the
operators (morphisms) while treat particles (objects) as black
boxes, but still have all the information of the system. In other
words, the particles (objects) are defined by all their relations
(morphisms) to other particles (objects).

Usually, when we try to understand an object, we like
to divide the object into smaller pieces (or more basic
components). If we can do that, we gain a better understanding
of the object. This is the reductionist approach. But there is
another approach. We do not think about the internal structure
of the object, and pretend the internal structure is not there
(i.e., treating the object as a black box). (Maybe the internal
structure really does not exist.) We try to understand an object
through its relations (i.e., morphisms) to all objects. In fact, we
use all those relations to define the object. In other words, there
are no objects, just relations. An object is uniquely determined
by its relation to all objects (called Yoneda Lemma in category
theory). In other words, the very existence of an object is in
the form of the relations (morphisms). This is the philosophy
of category theory. We see that category theory is essentially
a theory of relations.

On the other hand, this categorical point of view is also the
point of view taken by most physicists who pretend (or perhaps
just get used to claim that) they are reductionists. Indeed, from
a physical point of view, there is no more fundamental reality
than the relations, or interactions, between particles, because
what can be measured in physics are not particles but only their
interactions. Perhaps, a physical object only arise as an illusion
of an observer after a sophisticated process of computation
based on the data from relations or interactions.

Now we try to introduce the operators (morphisms) in
the category of particle statistics. One of the most important
examples of nontrivial operators are those string operators (the
product of local hopping operators) that generate braidings.
Such a string operator, exchanging the positions of two parti-
cles a,b along a given path γ , corresponds to an isomorphism
ca,b : a ⊗ b → b ⊗ a. Since local operators are quotiented out,
the braiding operator depends only on the isotopy class of
the path γ . In 2+1D, there are two isotopy classes of paths
with winding numbers ±1, clockwise and counter-clockwise.
They are inverse to each other. However, in 3+1D, clockwise
and counter-clockwise paths fall into the same isotopy class;
the braiding must be the inverse of itself. Such braidings
are call symmetric. (This is what the term “symmetric” in
“symmetric category” means; it refers to “symmetric braiding”
rather than some physical symmetry.) Therefore, in 3+1D,
the braidings of identical particles can only be either +1

or −1, corresponding to bosonic or fermionic statistics. A
system of such particles is described by a symmetric category.
In contrast, in 2+1D, the braidings are allowed to be more
complicated, known as anyonic or even non-Abelian statistics.
Those particles are described by a braided fusion category,
which is explained later.

Other examples of topological operators are the fusion
and splitting operators. In 3+1D, they become important if
we take into account the physical symmetry. Consider two
particles, carrying two irreducible representations U,V of the
symmetry group. We bring them together to form a composite
particle, carrying the tensor product representation U ⊗ V .
Usually, U ⊗ V is not irreducible, and can fuse into another
particle carrying an irreducible representation W via symmetry
preserving operations. Such a process f : U ⊗ V → W is a
fusion operator, corresponding to a morphism in a category; its
Hermitian conjugate f † : W → U ⊗ V is a splitting operator
(another morphism), corresponding to the process of splitting
one particle into two. We need more data to describe these fu-
sion and splitting operators, for example, the Clebsch-Gordan
coefficients for spins. Furthermore, if more than three particles
are fused, the 6j symbols kicks in. They measure the difference
between fusing particles in different orders. In 3+1D, this
seems just a different way to study group representations, by
focusing on how representations fuse/split rather than how the
group acts. However, the fusion and splitting operators become
very rich in 2+1D. Because anyons do not necessarily carry
group representations, the fusion and splitting operators are
much more than merely the interwiners between group repre-
sentations. This leads to rich non-Abelian statistics in 2+1D.

In summary, particle statistics in 3+1D and physical
symmetry are described by symmetric categories. In 2+1D,
there are new kinds of particle statistics beyond symmetric cat-
egories (i.e., Bose/Fermi statistics). But those 2+1D statistics
is still not arbitrary.

First, there is a series of self-consistent conditions among
the braiding, fusion and splitting operators. These lead to the
mathematical structure of a unitary braided fusion category
(UBFC).

Secondly, we would also assume the theory to be “com-
plete.” By “complete” we mean that “everything can be
physically measured.” Recall in quantum mechanics, we
assume that states have inner products. Theoretically, physical
measurements are made by taking inner products. Here “inner
products” are “nondegenerate” bilinear forms. Nondegeneracy
means that if two states produce the same inner products with
all states (the same measurement outputs), they must be the
same state. Thus the nondegeneracy means the theory is “com-
plete.” Now, the particle statistics are measured by the mutual
braiding, so we expect similar “braiding nondegeneracy.” More
precisely, the braiding measurement is performed as follows.
Assume that a particle a is waiting to be measured. We first
create a pair of test particles i and its antiparticle ī, then move
i around a, i.e., a double braiding, and finally annihilate iī.
The amplitude of such process is proportional to the (a,i)
entry of the topological S matrix, Sai . So the S matrix is the
output of the braiding measurement, and, we should impose
the nondegeneracy condition to the S matrix.

For 2+1D bosonic topological orders with no symmetry,
the only (topological) measurement is the mutual braiding.
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Thus different particles should be fully distinguished by
their distinct mutual braiding statistics with other particles.
If two particles have the same mutual braiding statistics
with all particles, then the two particle must be equivalent
(i.e., connected by local operators). [This is an application of
the philosophy of category theory: an object is defined by its
relations (morphisms) with all objects.] Indeed, a complete
set of the equivalent classes of particles (i.e., the topological
excitations) are described by a UBFC such that its S-matrix
is nondegenerate. Such a UBFC is called nondegenerate.
It is equivalent to the notion of a unitary modular tensor
category (UMTC) [52,54]. This is why we say that the
topological excitations (and their non-Abelian statistics) of
a 2+1D bosonic topological order are fully described by a
UMTC, or equivalently, a nondegenerate UBFC.

APPENDIX C: TOPOLOGICAL ORDERS
WITH SYMMETRY FROM THE POINT OF
VIEW OF LOCAL OPERATOR ALGEBRAS

In this section, we try to explain how to obtain a tensor-
categorical description of topological bulk excitations in a
2+1D topological order with symmetry from the perspective
of a local operator algebra that defines these topological
excitations. Let us first recall what is known in the no-
symmetry cases. Consider a 2+1D bosonic topological order
without symmetry that can be realized by a lattice model. We
have a local operator algebra A acting on the total Hilbert
space HR associated to a disklike region R. A topological
(particlelike) excitation localized within a disklike region R

in the lattice can be defined as a subspace of HR . Such a
topological excitation can not be created/annihilated by any
local operators. As a consequence, a topological excitation
must be a module over the local operator algebra A, or an A

module. This fact was fully established in Levin-Wen models
that can realize all topological orders with gappable boundaries
[26,62,90]. This fact must also hold for all topological orders
because any topological order C can be viewed as a subsystem
of a boundary-gappable topological order C � D, where D
can be chosen to be the time-reversal conjugate of C. Then the
topological excitations in C can all be realized as modules over
a local operator algebra in a Levin-Wen model that realizes
the phase C � D. The choice of A is almost never unique
even for a given lattice model. It usually depends on the
choice of the region R. However, its dependence on R is not
essential as it was proved in Levin-Wen models that different
local operator algebras are all Morita equivalent [90]. In other
words, the Morita class of A, or equivalently, the category
of A-modules, denoted by A-Mod, is unique. We remark that
this uniqueness should hold not only for a given Levin-Wen
Hamiltonian but also for a class of Hamiltonians connected by
local perturbations.

In general, A is naturally equipped with a structure
(somewhat equivalent to that of an E2 algebra [91]) such that
the category A-Mod is a braided monoidal category. Moreover,
due to the requirement of unitarity in physics, we expect more
structures on A, such as certain ∗ structure and semisimpleness,
such that the category A-Mod is a nondegenerate UBFC (or
a UMTC). Macroscopically, the local operator algebra A is
not observable and not a topological invariant either. Instead,

only its Morita class (or equivalently, the category A-Mod) is
a macroscopic observable and a topological invariant.

For a bosonic topological order with a symmetry group G,
let us consider a lattice model realizing it. In this lattice model,
we still have a local operator algebra A (not respecting the
symmetry) acting on the total Hilbert space HR associated to
a disklike region R, in which there is a topological excitation.
As in the cases without symmetry, we do not worry about the
dependence of A on the region R. We assume that the existence
of the lattice model realizing the bosonic topological order
with symmetry G is equivalent to the existence of a local
operator algebra A equipped with a G action, i.e., a group
homomorphism f : G → Aut(A). Actually, if G is on-site, G

should also act on HR as local operators in A. As a result, there
is a natural group homomorphism G → Aut(A), defined by
g 
→ (a 
→ gag−1) for a ∈ A and g ∈ G. Also note that a 
→
gag−1 is an algebraic isomorphism. Therefore the microscopic
data (A,f ) completely determines the topological order with
symmetry. What we would like to do is to use the pair (A,f )
as the initial data to derive a natural macroscopic description
of this topological order with symmetry G.

Note that the final macroscopic observables should respect
the symmetry G in some sense. In the microscopic world, the
local operators that respect the symmetry G are those living in
the fix-point algebra AG := {a ∈ A| ga = ag,∀g ∈ G}, which
is a subalgebra of A. Naively, it seems that the category of AG

modules, denoted by AG-Mod, should be a natural choice for
the categorical description of the topological excitations in this
topological order with symmetry. However, this naive choice
is not good for many reasons. The main reason is that we
lose a lot of information in the process of replacing “A with
a G action” by AG. What we would like to do is to find the
correct replacement of the category “AG-Mod”. We do that in
two steps. In the first step, we carefully throw away the right
amount microscopic data in “A with a G action” so that all the
macroscopic data remain intact; in the second step, we try to
find a fix-point construction which lose no more information.

Similar to the nosymmetry cases, the macroscopic data
of “A with a G action” is encoded in its “Morita class.”
Therefore the first step amounts to find a proper notion
of the category of modules over “A with a G action.” It
turns out that a G action on A naturally determines a G

action on the category A-Mod as functors. More precisely,
assuming that G is on-site for convenience, an A-module
M , i.e., a pair (M,ρ : A ⊗C M → M), can be twisted by
an element g ∈ G to give a new A module (M,ρg) with
the action ρg defined by ρg(a ⊗C m) = ρ(gag−1 ⊗C m). For
each g ∈ G, there is a functor Tg : A-Mod → A-Mod which
maps (M,ρ) to (M,ρg) and maps an A-module map M → N

to the same linear map (which automatically intertwines the
actions ρg). We expect that Tg also respects the monoidal
and braiding structures on A-Mod. Namely, it is a braided
monoidal equivalence. These functors Tg,∀g ∈ G, give arise
to a G action T : Ĝ → Autbr (A-Mod) on A-Mod, where Ĝ

is the monoidal category with objects given by elements in G

and morphisms given by identity morphisms. Recall that only
the Morita class of “A with a G action” is macroscopically
meaningful. Moreover, if we equip the category A-Mod with
the forgetful functor to Vec, each g action on A for g ∈ G

can be recovered from the functor Tg by the unique natural
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isomorphism from the identity functor to Tg . Therefore this
“A-Mod with G action” can be regarded as the Morita class
of “A with a G action.” This already suggests that a proper
categorical description of a topological order with symmetry is

given by a nondegenerate UBFC C equipped with a G action T ,
i.e., a pair (C,T ). In particular, the trivial phase with symmetry
G is given by the trivial nondegenerate UBFC B0 with a G

action.

TABLE XIV. The table contains all bosonic topological orders with N = 6 and D2 � 111 (continued on the next page).

NB
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments, SCA, K matrix

6B
1 ( 0

0 ) 6 1,1,1,1,1,1 0, 1
12 , 1

12 ,− 1
4 , 1

3 , 1
3 2B

−1( 0
0 ) � 3B

2 ( 1
−1/4 )

6B
−1( 0

0 ) 6 1,1,1,1,1,1 0,− 1
12 ,− 1

12 , 1
4 ,− 1

3 ,− 1
3 2B

1 ( 0
0 ) � 3B

−2( 1
1/4 )

6B
3 ( 0

0 ) 6 1,1,1,1,1,1 0, 1
4 , 1

3 , 1
3 ,− 5

12 ,− 5
12 2B

1 ( 0
0 ) � 3B

2 ( 1
−1/4 )

6B
−3( 0

0 ) 6 1,1,1,1,1,1 0,− 1
4 ,− 1

3 ,− 1
3 , 5

12 , 5
12 2B

−1( 0
0 ) � 3B

−2( 1
1/4 )

6B
1/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 ,− 1

16 , 3
16 2B

1 ( 0
0 ) � 3B

−1/2( ζ 1
6

−1/16
)

6B
−1/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 , 1

16 ,− 3
16 2B

−1( 0
0 ) � 3B

1/2( ζ 1
6

1/16
)

6B
3/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 , 1

16 , 5
16 2B

1 ( 0
0 ) � 3B

1/2( ζ 1
6

1/16
)

6B
−3/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 ,− 1

16 ,− 5
16 2B

−1( 0
0 ) � 3B

−1/2( ζ 1
6

−1/16
)

6B
5/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 , 3

16 , 7
16 2B

1 ( 0
0 ) � 3B

3/2( 0.7653
3/16 )

6B
−5/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 ,− 3

16 ,− 7
16 2B

−1( 0
0 ) � 3B

−3/2( 0.7653
−3/16 )

6B
7/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 , 5

16 ,− 7
16 2B

1 ( 0
0 ) � 3B

5/2( 0.7653
−3/16 )

6B
−7/2( 0

0 ) 8 1,1,1,1,ζ 1
2 ,ζ 1

2 0, 1
4 ,− 1

4 , 1
2 ,− 5

16 , 7
16 2B

−1( 0
0 ) � 3B

−5/2( 0.7653
3/16 )

6B
4/5( ζ 1

3
1/10

) 10.854 1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,− 1

3 ,− 1
3 , 1

15 , 1
15 , 2

5 2B
14/5( ζ 1

3
−3/20

) � 3B
−2( 1

1/4 )

6B
−4/5( ζ 1

3
−1/10

) 10.854 1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

3 , 1
3 ,− 1

15 ,− 1
15 ,− 2

5 2B
−14/5( ζ 1

3
3/20

) � 3B
2 ( 1

−1/4 )

6B
16/5( ζ 1

3
2/5

) 10.854 1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0,− 1

3 ,− 1
3 , 4

15 , 4
15 ,− 2

5 2B
−14/5( ζ 1

3
3/20

) � 3B
−2( 1

1/4 )

6B
−16/5( ζ 1

3
−2/5

) 10.854 1,1,1,ζ 1
3 ,ζ 1

3 ,ζ 1
3 0, 1

3 , 1
3 ,− 4

15 ,− 4
15 , 2

5 2B
14/5( ζ 1

3
−3/20

) � 3B
2 ( 1

−1/4 )

6B
3/10( 1.2383

3/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 ,− 5
16 ,− 1

10 , 2
5 , 7

80 2B
14/5( ζ 1

3
−3/20

) � 3B
−5/2( 0.7653

3/16 )

6B
−3/10( 1.2383

−3/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 , 5
16 , 1

10 ,− 2
5 ,− 7

80 2B
−14/5( ζ 1

3
3/20

) � 3B
5/2( 0.7653

−3/16 )

6B
7/10( ζ 1

3 ζ 1
6

7/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 , 7

16 , 1
10 ,− 2

5 , 3
80 2B

−14/5( ζ 1
3

3/20
) � 3B

7/2( ζ 1
6

−1/16
)

6B
−7/10( ζ 1

3 ζ 1
6

−7/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 ,− 7

16 ,− 1
10 , 2

5 ,− 3
80 2B

14/5( ζ 1
3

−3/20
) � 3B

−7/2( ζ 1
6

1/16
)

6B
13/10( 1.2383

−27/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 ,− 3
16 ,− 1

10 , 2
5 , 17

80 2B
14/5( ζ 1

3
−3/20

) � 3B
−3/2( 0.7653

−3/16 )

6B
−13/10( 1.2383

27/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 , 3
16 , 1

10 ,− 2
5 ,− 17

80 2B
−14/5( ζ 1

3
3/20

) � 3B
3/2( 0.7653

3/16 )

6B
17/10( ζ 1

3 ζ 1
6

17/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 ,− 7

16 , 1
10 ,− 2

5 , 13
80 2B

−14/5( ζ 1
3

3/20
) � 3B

−7/2( ζ 1
6

1/16
)

6B
−17/10( ζ 1

3 ζ 1
6

−17/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 , 7

16 ,− 1
10 , 2

5 ,− 13
80 2B

14/5( ζ 1
3

−3/20
) � 3B

7/2( ζ 1
6

−1/16
)

6B
23/10( ζ 1

3 ζ 1
6

−17/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 ,− 1

16 ,− 1
10 , 2

5 , 27
80 2B

14/5( ζ 1
3

−3/20
) � 3B

−1/2( ζ 1
6

−1/16
)

6B
−23/10( ζ 1

3 ζ 1
6

17/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 , 1

16 , 1
10 ,− 2

5 ,− 27
80 2B

−14/5( ζ 1
3

3/20
) � 3B

1/2( ζ 1
6

1/16
)

6B
27/10( 1.2383

27/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 ,− 5
16 , 1

10 ,− 2
5 , 23

80 2B
−14/5( ζ 1

3
3/20

) � 3B
−5/2( 0.7653

3/16 )

6B
−27/10( 1.2383

−27/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 , 5
16 ,− 1

10 , 2
5 ,− 23

80 2B
14/5( ζ 1

3
−3/20

) � 3B
5/2( 0.7653

−3/16 )

6B
33/10( ζ 1

3 ζ 1
6

−7/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 , 1

16 ,− 1
10 , 2

5 , 37
80 2B

14/5( ζ 1
3

−3/20
) � 3B

1/2( ζ 1
6

1/16
)

6B
−33/10( ζ 1

3 ζ 1
6

7/80
) 14.472 1,1,ζ 1

2 ,ζ 1
3 ,ζ 1

3 ,ζ 1
3 ζ 1

2 0, 1
2 ,− 1

16 , 1
10 ,− 2

5 ,− 37
80 2B

−14/5( ζ 1
3

3/20
) � 3B

−1/2( ζ 1
6

−1/16
)

6B
37/10( 1.2383

−3/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 ,− 3
16 , 1

10 ,− 2
5 , 33

80 2B
−14/5( ζ 1

3
3/20

) � 3B
−3/2( 0.7653

−3/16 )

6B
−37/10( 1.2383

3/80 ) 14.472 1,1,ζ 1
2 ,ζ 1

3 ,ζ 1
3 ,ζ 1

3 ζ 1
2 0, 1

2 , 3
16 ,− 1

10 , 2
5 ,− 33

80 2B
14/5( ζ 1

3
−3/20

) � 3B
3/2( 0.7653

3/16 )

6B
1/7( 0

0 ) 18.591 1,1,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 0,− 1
4 ,− 1

7 ,− 11
28 , 1

28 , 2
7 2B

−1( 0
0 ) � 3B

8/7( ζ 2
5

−5/14
)

6B
−1/7( 0

0 ) 18.591 1,1,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 0, 1
4 , 1

7 , 11
28 ,− 1

28 ,− 2
7 2B

1 ( 0
0 ) � 3B

−8/7( ζ 2
5

5/14
)

6B
15/7( 0

0 ) 18.591 1,1,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 0, 1
4 , 3

28 ,− 1
7 , 2

7 ,− 13
28 2B

1 ( 0
0 ) � 3B

8/7( ζ 2
5

−5/14
)

6B
−15/7( 0

0 ) 18.591 1,1,ζ 1
5 ,ζ 1

5 ,ζ 2
5 ,ζ 2

5 0,− 1
4 ,− 3

28 , 1
7 ,− 2

7 , 13
28 2B

−1( 0
0 ) � 3B

−8/7( ζ 2
5

5/14
)
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TABLE XV. The table contains all bosonic topological orders with N = 6 and D2 � 111. Here, χm
n ≡ m + √

n.

NB
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments, SCA, K matrix

6B
0 ( 1.2360

0 ) 20 1,1,2,2,
√

5,
√

5 0,0, 1
5 ,− 1

5 ,0, 1
2 (D5,2)1/4, (U (1)5/Z2)1/2

6B
0 ( ζ 4

8
1/2

) 20 1,1,2,2,
√

5,
√

5 0,0, 1
5 ,− 1

5 , 1
4 ,− 1

4 (6B,a
0 � 2B

1 � 2B
−1)1/4

6B
4 ( ζ 4

8
0

) 20 1,1,2,2,
√

5,
√

5 0,0, 2
5 ,− 2

5 ,0, 1
2 (6B,a

4 � 2B
1 � 2B

−1)1/4

6B
4 ( 1.2360

1/2 ) 20 1,1,2,2,
√

5,
√

5 0,0, 2
5 ,− 2

5 , 1
4 ,− 1

4 (B2,2)

6B
58/35( ζ 1

3 ζ 2
5

0.2071
) 33.632 1,ζ 1

3 ,ζ 1
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 0, 2
5 , 1

7 ,− 2
7 ,− 16

35 , 4
35 2B

14/5( ζ 1
3

−3/20
) � 3B

−8/7( ζ 2
5

5/14
)

6B
−58/35( ζ 1

3 ζ 2
5

−0.2071
) 33.632 1,ζ 1

3 ,ζ 1
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 0,− 2
5 ,− 1

7 , 2
7 , 16

35 ,− 4
35 2B

−14/5( ζ 1
3

3/20
) � 3B

8/7( ζ 2
5

−5/14
)

6B
138/35( ζ 1

3 ζ 2
5

0.4928
) 33.632 1,ζ 1

3 ,ζ 1
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 0, 2
5 ,− 1

7 , 2
7 , 9

35 ,− 11
35 2B

14/5( ζ 1
3

−3/20
) � 3B

8/7( ζ 2
5

−5/14
)

6B
−138/35( ζ 1

3 ζ 2
5

−0.4928
) 33.632 1,ζ 1

3 ,ζ 1
5 ,ζ 2

5 ,ζ 1
3 ζ 1

5 ,ζ 1
3 ζ 2

5 0,− 2
5 , 1

7 ,− 2
7 ,− 9

35 , 11
35 2B

−14/5( ζ 1
3

3/20
) � 3B

−8/7( ζ 2
5

5/14
)

6B
46/13( ζ 5

11
−3/52

) 56.746 1,ζ 1
11,ζ

2
11,ζ

3
11,ζ

4
11,ζ

5
11 0, 4

13 , 2
13 ,− 6

13 , 6
13 ,− 1

13 (A1,11)1/2

6B
−46/13( ζ 5

11
3/52

) 56.746 1,ζ 1
11,ζ

2
11,ζ

3
11,ζ

4
11,ζ

5
11 0,− 4

13 ,− 2
13 , 6

13 ,− 6
13 , 1

13 (A1,−11)1/2

6B
8/3( ζ 4

16
1/3

) 74.617 1,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 4

16,ζ
6
16 0, 1

9 , 1
9 , 1

9 , 1
3 ,− 1

3 (A1,16)1/4

6B
−8/3( ζ 4

16
−1/3

) 74.617 1,ζ 3
7 ,ζ 3

7 ,ζ 3
7 ,ζ 4

16,ζ
6
16 0,− 1

9 ,− 1
9 ,− 1

9 ,− 1
3 , 1

3 (A1,−16)1/4

6B
2 ( χ5

21/2
−1/4 ) 100.61 1, 1

2 χ 3
21,

1
2 χ 3

21,
1
2 χ 3

21,
1
2 χ 5

21,
1
2 χ 7

21 0,− 1
7 ,− 2

7 , 3
7 ,0, 1

3 (G2,−3)

6B
−2( χ5

21/2
1/4 ) 100.61 1, 1

2 χ 3
21,

1
2 χ 3

21,
1
2 χ 3

21,
1
2 χ 5

21,
1
2 χ 7

21 0, 1
7 , 2

7 ,− 3
7 ,0,− 1

3 (G2,3)

Note that the pair (C,T ) is not a G-invariant description
since the G action is explicit. So we take the second step
to find a G-invariant description. This can be achieved by
simply replacing the category C with a G action by the
fix-point category CG, which consists of those objects in C
that is invariant under the G action, i.e., those objects X ∈ C
such that Tg(X) � X,∀g ∈ G. The category CG is also called
the equivariantization of (C,T ) (see Ref. [54] for a precise
definition). It turns out to be a nondegenerate UBFC over
Rep(G) [54].

For example, for the trivial phase (B0,T ) with symmetry
G, the category BG

0 is nothing but Rep(G). Different from
the replacement of “A with a G action” by AG, which
loses information, that of “C with a G action” by CG loses
no information at all. Indeed, one can recover the former
structure from the later one by a condensation process [54].
Mathematically, the 2-category of nondegenerate UBFC’s
equipped with a G action is canonically equivalent to
that of nondegenerate UBFC’s over Rep(G) [54]. Therefore
this notion of a nondegenerate UBFC over Rep(G) is the
correct replacement to the category “AG-Mod” that we are
looking for.

Working with a nondegenerate UBFC over Rep(G) has
some advantages over working with a nondegenerate UBFC
with a G action. For example, it can be generalized easily
to fermonic topological orders with/without symmetry by
replacing Rep(G) by a SFC E , which determines
bosonic/fermionic symmetry uniquely. An object in E is a local
excitation (a trivial AG module). It can be created/annihilated
by local operators, and has trivial mutual statistics with
all excitations (the local operators break the symmetry if
the excitation carries a nontrivial representation). In other
words, E describes the local excitations in a topological

order with symmetry. In particular, the SFC E should be
viewed as the categorical description of the trivial phase with
symmetry.

In summary, our analysis leads us to the proposal in Sec. II B
that the bulk excitations in a 2+1D topological order with
symmetry E are described by a nondegenerate UBFC over E .

APPENDIX D: MATHEMATICAL DEFINITIONS

For the reader’s convenience, we collect the some relevant
mathematical definitions in this section. We would assume
a basic knowledge on tensor category theory. Readers can
consult with Refs. [54,75] for more details.

Definition 1. A fusion category is a rigid semisimple C-
linear tensor category, which has only finitely many isomor-
phic classes of simple objects, finite dimensional hom spaces,
and simple unit object. A braided fusion category is a fusion
category endowed with a braiding satisfying the hexagon
equations. (For a detailed definition, see, e.g., Refs. [51,52].)

For physical reasons, we would assume that all the cate-
gories are unitary, i.e., one can take the Hermitian conjugate of
the morphisms (physically they are operators between Hilbert
spaces), and such Hermitian conjugate is compatible with the
fusion and braiding structures. A unitary fusion category has a
canonical spherical structure [52]. As a result, a unitary braided
fusion category (UBFC) is automatically a ribbon category, or
a premodular category.

Definition 2. The pair of objects X,Y in a UBFC C are said
to centralize (mutually local to) each other if cY,X ◦ cX,Y =
idX⊗Y , where cX,Y : X ⊗ Y

�−→ Y ⊗ X is the braiding in C. If
X,Y are simple, this is equivalent to SXY = dXdY /D, where S

is the S matrix.
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TABLE XVI. The table contains all bosonic topological orders with N = 7 and D2 � 40. Here, χm
n ≡ m + √

n.

NB
c ( |�2|

∠�2/2π
) D2 d1,d2, . . . s1,s2, . . . Comments, SCA, K matrix

7B
2 ( 1

1/4 ) 7 1,1,1,1,1,1,1 0, 1
7 , 1

7 , 2
7 , 2

7 , 4
7 , 4

7 (4 4; 3)

7B
6 ( 1

−1/4 ) 7 1,1,1,1,1,1,1 0, 3
7 , 3

7 , 5
7 , 5

7 , 6
7 , 6

7 −(4 4; 3), (A6,1)

7B
9/4( 0.7209

9/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 3
32 , 3

32 , 1
4 , 3

4 , 15
32 (A1,6)

7B
13/4( 3.0727

13/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 7
32 , 7

32 , 1
4 , 3

4 , 19
32 (7B

9/4 � 4B
1 )1/4

7B
−15/4( ζ 3

14
−15/32

) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 11
32 , 11

32 , 1
4 , 3

4 , 23
32 (7B

13/4 � 4B
1 )1/4

7B
−11/4( 2.0531

−11/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 15
32 , 15

32 , 1
4 , 3

4 , 27
32 (7B

−15/4 � 4B
1 )1/4

7B
−7/4( 0.7209

9/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 19
32 , 19

32 , 1
4 , 3

4 , 31
32 (7B

−11/4 � 4B
1 )1/4

7B
−3/4( 3.0727

13/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 23
32 , 23

32 , 1
4 , 3

4 , 3
32 (7B

−7/4 � 4B
1 )1/4

7B
1/4( ζ 3

14
−15/32

) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 27
32 , 27

32 , 1
4 , 3

4 , 7
32 (7B

−3/4 � 4B
1 )1/4

7B
5/4( 2.0531

−11/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 31
32 , 31

32 , 1
4 , 3

4 , 11
32 (7B

1/4 � 4B
1 )1/4

7B
7/4( 0.7209

−9/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 13
32 , 13

32 , 1
4 , 3

4 , 1
32 (C6,1)

7B
11/4( 2.0531

11/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 17
32 , 17

32 , 1
4 , 3

4 , 5
32 (7B

7/4 � 4B
1 )1/4

7B
15/4( ζ 3

14
15/32

) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 21
32 , 21

32 , 1
4 , 3

4 , 9
32 (7B

11/4 � 4B
1 )1/4

7B
−13/4( 3.0727

−13/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 25
32 , 25

32 , 1
4 , 3

4 , 13
32 (7B

15/4 � 4B
1 )1/4

7B
−9/4( 0.7209

−9/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 29
32 , 29

32 , 1
4 , 3

4 , 17
32 (7B

−13/4 � 4B
1 )1/4

7B
−5/4( 2.0531

11/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 1
32 , 1

32 , 1
4 , 3

4 , 21
32 (7B

−9/4 � 4B
1 )1/4

7B
−1/4( ζ 3

14
15/32

) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 5
32 , 5

32 , 1
4 , 3

4 , 25
32 (7B

−5/4 � 4B
1 )1/4

7B
3/4( 3.0727

−13/32 ) 27.313 1,1,ζ 1
6 ,ζ 1

6 ,ζ 2
6 ,ζ 2

6 ,ζ 3
6 0, 1

2 , 9
32 , 9

32 , 1
4 , 3

4 , 29
32 (7B

−1/4 � 4B
1 )1/4

7B
2 ( χ1

7
1/4

) 28 1,1,2,2,2,
√

7,
√

7 0,0, 1
7 , 2

7 , 4
7 , 1

8 , 5
8 (U (1)7/Z2)1/2

7B
2 ( 1.6457

−1/4 ) 28 1,1,2,2,2,
√

7,
√

7 0,0, 1
7 , 2

7 , 4
7 , 3

8 , 7
8 (7B

2 ( χ1
7

1/4 ) � 2B
1 � 2B

−1)1/4

7B
−2( 1.6457

1/4 ) 28 1,1,2,2,2,
√

7,
√

7 0,0, 3
7 , 5

7 , 6
7 , 1

8 , 5
8 (7B

−2( χ1
7

−1/4 ) � 2B
1 � 2B

−1)1/4

7B
−2( χ1

7
−1/4

) 28 1,1,2,2,2,
√

7,
√

7 0,0, 3
7 , 5

7 , 6
7 , 3

8 , 7
8 (B3,2), (D7,2)1/2

7B
8/5( ζ 6

13
−3/10

) 86.750 1,ζ 1
13,ζ

2
13,ζ

3
13,ζ

4
13,ζ

5
13,ζ

6
13 0, 4

5 , 2
15 ,0, 2

5 , 1
3 , 4

5 (A1,13)1/2

7B
32/5( ζ 6

13
3/10

) 86.750 1,ζ 1
13,ζ

2
13,ζ

3
13,ζ

4
13,ζ

5
13,ζ

6
13 0, 1

5 , 13
15 ,0, 3

5 , 2
3 , 1

5 (A1,−13)1/2

7B
1 ( χ2

2
1/8 ) 93.254 1,ζ 2

6 ,ζ 2
6 ,χ 2

2 ,χ 2
2 ,χ 2

8 ,χ 3
8 0, 1

2 , 1
2 , 1

4 , 1
4 , 5

8 ,0 (A2,5)1/3

7B
7 ( χ2

2
−1/8 ) 93.254 1,ζ 2

6 ,ζ 2
6 ,χ 2

2 ,χ 2
2 ,χ 2

8 ,χ 3
8 0, 1

2 , 1
2 , 3

4 , 3
4 , 3

8 ,0 (A2,−5)1/3

Physically, two particles “centralize” or “mutually local to”
each other means that the two particles have trivial mutual
statistics with each other.

Definition 3. A full subcategory D of the category C is a
subcategory of C such that every morphism in C between two
objects in D is also a morphism in D, i.e., HomD(x,y) =
HomC(x,y) for all x,y ∈ D.

Definition 4. Given a full subcategoryD of a braided fusion
category C, the centralizer of D in C, denoted by Dcen

C , is the
full subcategory of objects in C that centralize all the objects
in D. In particular, Z2(C) ≡ Ccen

C is called the centralizer of C.
Definition 5. A symmetric fusion category (SFC) E is a

UBFC E such that Z2(E) = E . In other words, E is symmetric
if cY,X ◦ cX,Y = idX⊗Y for objects X,Y ∈ E .

This means that all particles in a SFC have trivial mutual
statistics with respect to each other. SFC’s are closely related
to physical symmetries (groups).

Example 1. For a finite group G, the category of G

representations, denoted by Rep(G), is an example of SFC.

The category Rep(G) is equipped with the tensor product ⊗
given by the usual vector space tensor product ⊗C and the
standard symmetric braiding:

cX,Y (x ⊗C y) = y ⊗C x, ∀x ∈ X,y ∈ Y. (D1)

In particular, the category B0 = Rep({1}) corresponds to
bosonic systems without symmetry.

Example 2. Let Gf be a pair (G,z), where G is a finite
group and z is involutive central nontrivial element in G, i.e.,
z2 = 1, zg = gz for all g ∈ G, and z �= 1. Such element z

acts on G-representations as the fermion-number parity, i.e.,
zx = x if x is even and zx = −x if x is odd. In other words, the
pair Zf

2 = ({1,z},z) is the fermion-number-parity subgroup
of G. We define the category sRep(Gf ) as the same fusion
category as Rep(G) but equipped with a modified braiding:

cX,Y (x ⊗C y) =
{−y ⊗C x, x,y both odd,

y ⊗C x, otherwise. (D2)
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sRep(Gf ) is also an example of SFC. It is a “super”
or “fermionic” version of Rep(G) that describes fermionic
symmetries. In particular, sRep(Zf

2 ) = F0 corresponds to
fermionic systems without symmetry.

By Deligne’s theorem [65], a SFC is equivalent to either
Rep(G) or sRep(Gf ).

Definition 6. A UBFC C over a SFC E is a UBFC C with a
fully faithful braided tensor embedding E ↪→ Z2(C). A UBFC
C over a SFC E is nondegenerate, i.e., a UMTC/E , if E
coincides with its centralizer, E = Z2(C).

If we take E = B0, we recover the usual definition of
nondegenerate UBFC, or unitary modular tensor category
(UMTC).

Definition 7. A modular extension of a UBFC C is a pair
(M,η), where M is a UMTC and η : C ↪→ M is a fully
faithful braided tensor embedding, such that Z2(C)cen

M = C
(identify the image of η with C).

Two modular extensions (M1,η1),(M2,η2) of C are equiv-
alent if there is a braided tensor equivalence F : M1 → M2,
such that F ◦ η1 = η2.

Mathematically, the notion of a UBFC C, or a UBFC C over
E , is self-contained. All the definitions and conditions can be
checked within C. There is no need to require C to be embedded
into a larger UMTC. We include having a modular extension
(condition 8 in Sec. III A) in the definition of UBFC in the
main text, because it is a physical anomaly-free condition (see
discussions in Sec. II C), and also ensures that UBFC’s in terms
of gauge-invariant data (Nij

k ,si) can be concretely realized by
subcategories of certain UMTC’s.

APPENDIX E: A LIST OF SIMPLE BOSONIC
TOPOLOGICAL ORDERS

Many fermionic topological orders can be viewed as
bosonic topological orders stacked with a fermionic product
state or some other simpler fermionic topological orders.
For completeness, here we list simple bosonic topological
orders obtained in Ref. [56] (see Table XIII, XIV, XV,
and XVI). The Abelian topological orders with di = 1
are described by K-matrices, denoted by the notation
(K11K22 . . . ; K12K23 . . . ; K13K24 . . . ; . . .). In Ref. [85], we
show that all the non-Abelian topological orders in the
table can be generated by simple current algebra (SCA)
[28–30]. (See also https://www.math.ksu.edu/∼gerald/voas/)
Their many-body wave functions are given by the corre-
lation of the simple currents in the SCA [20,28–30]. The
SCA’s are denoted by (R, ± k)α (see Refs. [55,85]), where
R = An,Bn,Cn,Dn, etc., and (R,−k)α is the time-reversal
conjugate of (R, + k)α . The last column of Table XIII indicates
how the corresponding topological order is realized by the
K-matrix state, the SCA state, or the stacking of simpler
topological orders. For some cases, we also indicate the many-
body wave function that realize the corresponding topological
order, where we use 	1/m(zi) to indicate the filling fraction
ν = 1/m Laughline wave function and 	n(zi) to indicate the
fermionic wave function with n-filled Landau level.

We also like to point out that the 16 red entries in
Table XIII are all the 16 modular extentions of F0, which
describe the 2+1D invertible fermionic topological orders
up to E8 states.
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