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Ab initio electronic relaxation times and transport in noble metals
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Relaxation times employed to study electron transport in metals are typically taken to be constants and obtained
empirically. Here, we use fully ab initio calculations to compute the electron-phonon relaxation times of Cu,
Ag, and Au and find that they vary significantly on the Fermi surface, with values from ∼15 to 45 fs that are
correlated with the Fermi surface topology. We compute room-temperature resistivities in excellent agreement
with experiment by combining GW quasiparticle band structures, Wannier-interpolated band velocities, and ab
initio relaxation times. We introduce an importance sampling scheme to speed up the convergence of resistivity
and transport calculations.
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Copper, silver, and gold are noble metals with broad
application in electronics, power generation, catalysis, and
plasmonics. They have attracted interest since the early days of
solid state theory, as their electronic structure deviates from the
free-electron model that applies to the alkali metals. The Fermi
surface (FS) of noble metals is not spherical as in free-electron
theory but is deformed due to the proximity of the d bands
to the free-electron-like sp band [1–4]. Electron scattering
processes at the FS are of particular relevance for noble metal
applications, as they regulate charge and heat transport [5,6].
At room temperature in relatively pure metals, scattering with
phonons [7,8] is dominant, while scattering with defects and
impurities is important at low temperatures and in alloys or
samples of low purity.

Transport in metals can be understood heuristically with
the Drude theory [9], which assumes free electrons with a
constant (that is, band- and k-independent) relaxation time
(RT). Even in noble metals, where important deviations are
expected from the Drude theory, resistive losses and optical
experiments are routinely interpreted using constant relaxation
times [9–11]. More advanced models, such as state-of-the-
art ab initio calculations of resistivity and other transport
properties [12,13], typically employ density functional theory
(DFT) band structures combined with constant RTs inferred
from experiment or estimated heuristically.

However, the RT of an electron in a Bloch state depends, in
general, on the band and crystal momentum k, a point that has
so far been often neglected. Accurate calculations of electron
RTs are computationally costly, as they require fine Brillouin
zone (BZ) sampling [14–16], prompting adoption of simplified
schemes that employ either a constant RT [17] or an average
scattering strength [18]. An exception are recent transport
calculations in Al [19] and two-dimensional materials [19–21]
that included the band and k dependence of the RTs.

As striking new experimental findings on noble metals
emerge [22–24], predictive theories are needed to study
electron scattering in these materials. For example, recent
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experiments by Kim et al. [22] show a remarkable resistivity
drop when a single crystal of Ag is doped with a small fraction
of Cu, contrary to the intuition that the resistivity should
increase upon alloying due to enhanced impurity scattering.
While the constant-RT approach may be too simplistic,
at present it is not known whether more refined theories
are necessary to improve our quantitative understanding of
transport in the noble metals.

Here we compute electron-phonon (e-ph) RTs and GW band
velocities of Cu, Ag, and Au on fine k-point grids. We develop
a linear interpolation approach to sample k points directly
on the FS and use it to study the correlation of the RTs and
velocities with FS topology. We find that the e-ph RTs are
far from constant on the FS. They vary by a factor of 2–3
between their minima and their maxima, located in FS regions
with different curvatures. The band velocity maps on the FS
exhibit anticorrelation with the e-ph RT maps. We investigate
approximations to compute the resistivity of Cu, Ag, and Au at
room temperature and find excellent agreement (within ∼10%)
with experiment only when ab initio RTs and GW velocities
are used. Our FS sampling approach dramatically speeds
up the convergence of resistivity calculations and may be
extended to study heat transport and thermoelectric effects in
materials.

We carry out DFT calculations at experimental lattice
constants (Cu: 3.61 Å, Ag: 4.09 Å, Au: 4.08 Å) using the local
density approximation [25] and a plane-wave basis with the
QUANTUM ESPRESSO code [26]. To determine the ground-state
charge density, we use scalar-relativistic norm-conserving
pseudopotentials [27] (including semicore s and p states),
kinetic energy cutoffs of 240 Ry for Cu and 180 Ry for Ag
and Au, and shifted 103-k-point grids. Spin-orbit effects are
neglected. The quasiparticle energies are computed within
the G0W0 and generalized plasmon pole approximations
[28,29] using the BERKELEYGW package [30]. Our GW

calculations are well converged using a 50-Ry cutoff for the
dielectric matrix, which was evaluated on an 83-k-point grid
for interband transitions (finite q) and a 163-k-point grid for
intraband transitions (q → 0) and using ∼1000 unoccupied
bands, consistent with previous studies [31–33].
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The e-ph matrix elements are computed on fine k-point
grids with a procedure detailed in Ref. [16]. Briefly, we use
density functional perturbation theory [34] to determine the
phonon dispersions and displacement patterns, and the e-ph
coupling matrix elements on a coarse 4×4×4 q-point grid. The
band structures, phonon dispersions, and e-ph matrix elements
are interpolated using maximally localized Wannier functions
[35–37] constructed from Bloch states on a 123-k-point grid.
All quantities are interpolated using the EPW code [38,39]
with our recently developed approach [14–16]. The velocities
are calculated in the Wannier representation [40] using GW
eigenvalues. For e-ph RT and resistivity calculations, we use
the tetrahedron method [41] to obtain the FS as a collection
of triangular facets, whose centroids constitute an ultrafine
k-point grid employed in the calculations to sample the FS.

Following Mahan [8], the e-ph transport relaxation scat-
tering rates �nk (and their inverse, the RTs τnk = �−1

nk ) are
computed with perturbation theory, due to the interaction with
phonons:

�nk = 2π

�

∑
mqν

|gnm,ν(k,q)|2(1 − cos θk,k+q)

· [ (Nνq + fmk+q) δ(εnk + �ωνq − εmk+q)

+ (Nνq + 1 − fmk+q) δ(εnk − �ωνq − εmk+q)], (1)

where gnm,ν(k,q) are e-ph coupling matrix elements for an
electron in Bloch state |nk〉 (with quasiparticle energy εnk)
that scatters into a Bloch state |mk + q〉 (with quasiparticle
energy εmk+q) due to a phonon with polarization ν, wave
vector q, and frequency ωνq. Here, θk,k+q is the scattering angle
between k and k + q. The two terms in brackets correspond
to phonon absorption and emission, respectively, and the
temperature dependence stems from the occupation factors
fnk and Nνq, for electrons and phonons, respectively (in this
work, both the electrons and the phonons are at 300 K). The
conductivity tensor from Boltzmann transport theory within
the relaxation-time approximation is expressed as the FS
integral [5,8]

σαβ = 2

(2π )3

e2

�

∑
n

∫
dSF

vnk,αvnk,β

|vnk| τnk, (2)

where vnk,α are Cartesian components (α = x,y,z) of the
velocities and τnk e-ph RTs. The area elements dSF correspond
to the area of the triangular facets that make up the FS
within our interpolation scheme. The resistivity ρ is obtained
from the trace of the inverse of the conductivity tensor, i.e.,
ρ = Tr[σ−1]/3 [42].

The computed Fermi surfaces (see Fig. 1) exhibit well-
known [1–4] topological features, including open-orbit regions
with upward curvature (known as “necks”) near the L points of
the BZ, spherical regions known as the “belly,” as well as flatter
regions near the K points between the necks, and “bulges”
where the FS approaches the BZ edge at the X points. The FS
of Ag is noticeably different from those of Cu and Au, with
much smaller necks, less pronounced bulges, and an overall
more spherical shape due to the d bands being lower in energy
compared to Cu and Au.

Figure 1 shows maps of the e-ph RTs and GW velocities
calculated at k points on the FS. For all three materials, we

FIG. 1. Electron-phonon relaxation times (top), orbital character
(middle), and band velocities (bottom) of states on the Fermi surface
of Cu, Ag, and Au.

find large variations in the RTs, with the necks and bulges
exhibiting shorter RTs than the belly and flat regions between
the necks. The RTs vary the most in Cu and Au, with a factor
of ∼3 difference between the minima (located near the L

and X points) and the maxima (located near the K point),
while the variation in Ag is smaller, with only a factor of ∼2
difference between minima and maxima. The velocities show
an opposite trend, so that FS regions with longer (shorter) RTs
are associated with lower (higher) velocities. Cu and Au exhibit
moderate variations in the velocities, while Ag shows a large
difference. The difference between the minimal velocities at
the necks and the maximal velocities at the belly is a factor of
∼2 in Cu and Au and a factor of ∼4 in Ag.

We investigate the physical origin of the variation of the RTs
and velocities on the FS. By mapping the orbital character of
the electronic states on the FS (see Fig. 1), we find a correlation
between the character of the state and its RT. Electronic states
with a predominantly sp character, as found in the necks and
bulges of the FS, are associated with shorter RTs, while states
with large d character exhibit longer RTs.

In Fig. 2, we explore quantitatively the origin of the
anisotropic RTs for the case of Ag, by choosing initial states
with sp and sp + d character, respectively, and computing the
coupling matrix elements |g|2 connecting these initial k points
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FIG. 2. Electron-phonon coupling matrix elements for an initial
electronic state of predominantly sp character (left) and an initial state
with large d character (right). Shown are the e-ph coupling matrix
elements (summed over phonon polarizations) versus the character of
the final electronic state involved in the e-ph scattering process. For
each initial state, the average coupling matrix element is also given.

to all other final k points on the FS. These matrix elements
are the ones entering the calculation of the RTs for each of the
initial states within our approach [Eq. (1)], and we now seek to
categorize them based on the character of the initial and final
states in the e-ph scattering processes.

For an initial state near X with dominant sp character, the
coupling, as measured by the sum over phonon polarizations
of the matrix element between the initial and the final states,∑

ν |gν |2, is strongest to final states with d admixture along the
[110] directions. We find that coupling to other final states with
some d character is in general weaker and strongly anisotropic,
so that different groups of final d-like states exhibit |g|2 values
distributed in multiple sets (see Fig. 2). As the fraction of d

character of the final state decreases, the coupling decreases
monotonically.

For an initial state near the K point with large d character,
coupling is strong to one set of d-like states (along [110])
and weak to most other d-like states. Two distinct sets of
|g|2 values are found for such d-d coupling (see Fig. 2). As
the d character of the final state decreases, different final
states exhibit different trends: for some states the coupling
becomes stronger, while for others it becomes weaker. On
average, the |g|2 is greater by a factor of 1.2 for the initial
sp state near X, thus explaining the higher scattering rate
(which is proportional to |g|2) and shorter RT compared to
states with large d character, as discussed above. While further
investigation is needed to more completely understand the
role of the character of the initial and final state and the
perturbation potential, our results demonstrate that the e-ph
matrix elements are highly anisotropic and depend strongly
both on the character of the initial and final states and
on the wave vector connecting the initial and final states
through the perturbation potential induced by the phonons.
The combination of these effects results in the anisotropic
RTs found here. The variation in the velocities is easier to
explain. It can be understood by considering the curvature of
the FS: flatter regions have lower velocities compared to more
curved regions, given that the latter are associated with a higher
gradient of the band at the Fermi energy.

TABLE I. Comparison of relaxation times and velocities com-
puted by averaging on the Fermi surface (headings in angle brackets)
versus the same quantities obtained within Drude theory (headings
with subscript D). The Fermi-surface-averaged relaxation times are
computed using GW band structures, while the band velocities
are given for both the DFT and the GW band structures for
comparison. Drude values were obtained using Eq. (3) with resistivity
experimental data [22,43] from single-crystal samples.

τ (fs) v (108 cm/s)

〈τnk〉 τD 〈vDFT
nk 〉 〈vGW

nk 〉 vD

Cu 37 27a 1.13 1.19 1.57
Ag 30 41b 1.45 1.55 1.39
Au 24 30c 1.38 1.52 1.39

aFrom Ref. [43].
bFrom Ref. [22].
cUsing the estimated SC resistivity.

To highlight the difference between the ab initio and the
empirical data, we compare in Table I the Fermi-surface-
averaged RTs 〈τnk〉 and velocities 〈vnk〉, obtained by averaging
the ab initio data in Fig. 1, with the values derived from the
free-electron Drude model,

τD = m∗

ne2ρ
, vD = �(3π2n)1/3

m∗ , (3)

where τD and vD are the empirical Drude RT and free electron
velocity, respectively. The ab initio average quantities 〈X〉
(with X = τ , v) are computed over the triangular facets that
compose the FS, using ∼10 000 k points and weighing by the
facet area,

〈X〉 =
∑

t AtXkc∑
t At

, (4)

with At the facet area for a triangle t and kc its centroid. The
Drude RTs τD are calculated using the resistivity ρ measured
on single-crystal (SC) samples [22,43] (see Table II); we
further obtain the charge density n using one free electron per
unit cell and take the effective mass m∗ = me, consistent with

TABLE II. Resistivity values (in units of μ� cm) at 300 K
computed using GW band velocities and different approximations for
the relaxation times: τnk are band and k dependent relaxation times
from ab initio data, 〈τnk〉 are Fermi surface averages of the τnk’s, and
τD are empirical Drude relaxation times. Also listed are the resistivity
values computed from DFT velocities and empirical Drude relaxation
times. Experimental data for single-crystal (SC) and polycrystalline
(PC) samples are listed for comparison.

Computed ρ Experimental ρ

τnk 〈τnk〉 τD DFT + τD SC PC

Cu 1.51 1.51 2.05 2.19 1.52a 1.67a

Ag 1.81 1.83 1.34 1.43 1.49b 1.59b

Au 2.24 2.24 1.82 2.01 2.0c 2.26

aFrom Ref. [43].
bFrom Ref. [22].
cEstimated from the PC resistivity.
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a simple Drude treatment of noble metals [9]. We find that the
〈τnk〉 of Cu is 50% larger than the Drude value, while the 〈τnk〉’s
of Ag and Au are 15%–25% smaller than their respective
Drude RTs. The magnitude of the velocities averaged over
the FS show the opposite behavior, with 〈vnk〉 smaller in
Cu and larger in Ag and Au than the Drude value. These
results challenge the accuracy of the widely used empirical
Drude model. In particular, since the tabulated Drude RTs
are constants, they miss the complex trends and significant
variation on the FS found here. The Drude RTs should thus be
regarded as mere model parameters used to interpret transport
and optical experiments in the absence of ab initio data.

Next, we use our results to compute the resistivity of Cu,
Ag, and Au, with a range of approximations for the RTs
and velocities. Table II compares the resistivities calculated
with the GW velocities in combination with (i) full band- and
k-resolved RTs τnk, (ii) FS-averaged ab initio RTs 〈τnk〉, and
(iii) empirical Drude RTs τD. For comparison, we also compute
the resistivities using the common approach combining DFT
(as opposed to GW) velocities with Drude RTs. We compare
our calculated resistivities with experiments at 293 K for SC
samples. Polycrystalline (PC) experimental data [44] are also
given. Since in pure SC samples at room temperature the
source of resistivity is almost exclusively e-ph scattering, our
approach using e-ph RTs is justified.

We first discuss the data in Table II obtained with our best
approximation, namely, ab initio τnk and GW velocities. In
the case of Cu, the agreement with SC experiment is excellent
(within 1%). For Ag and Au we find resistivities that are higher
by ∼10% than experiment. We attribute this small discrepancy
to a number of sources, including the ∼0.1-eV accuracy of the
quasiparticle energies obtained via the GW method and a ∼5%
uncertainty in the RTs depending on whether or not the cosine
factor in Eq. (1) is employed [8]. Using the average RTs 〈τnk〉
with GW velocities gives nearly identical resistivities as the
band- and k-resolved RTs, thus suggesting that approximate
schemes using a constant RT should employ FS-averaged ab
initio data rather than empirical data.

For all three materials, we find that the velocities obtained
from the GW quasiparticle band structures are ∼10% higher
than those obtained via DFT (see Table I), consistent with
previous studies in Au [33] showing a large effect of GW
on the d-band energies and sp band width. For Ag and Au,
the lower DFT velocities, combined with Drude RTs that are
larger than the ab initio values, yield resistivities in fortuitous
agreement with experiment when using the DFT velocity plus
τD approach, a result of compensation of errors. For Cu, on
the other hand, the DFT velocity plus τD approach gives a
resistivity almost 50% higher than experiment. Our results
highlight the predictive character of calculations combining
GW band structures and velocities with ab initio e-ph RTs.

The resistivity calculations in Table II are obtained with a
novel approach that employs direct FS sampling instead of a
homogeneous k grid in the BZ, affording orders of magnitude
speed up the convergence of the resistivity with respect to the
number of k-points. Figure 3 compares the convergence of the
resistivity with respect to number of k-points for uniform and
importance sampling. Since we focus only on the convergence
behavior with respect to number of k-points, the resistivity, for
illustration in Fig. 3, is determined using DFT velocities and

FIG. 3. Convergence of the resistivity computed with a uniform
�k-grid (dashed lines) and using Fermi surface importance sampling
(solid line with markers). The dotted lines indicate the converged
values.

τD , though the trends are general. We find that the importance
sampling scheme reaches convergence for ∼104 k-points
and approaches monotonically the converged value. On the
other hand, the commonly employed uniform grid requires
∼107 k-points to converge and fluctuates considerably with
increasing number of k-points as it approaches convergence.
Since calculations of e-ph relaxation times are computationally
expensive, the importance sampling scheme provides great
advantages when ab initio relaxation times are employed. For
the noble metal cases discussed here, importance sampling
decreases the number of k-points in the e-ph relaxation time
calculation by a factor of 103. When higher order terms
in the Sommerfeld expansion are needed, e.g. to compute
high temperature electrical resistivity or thermal conductivity
and thermopower, additional isoenergy surfaces (at EF ± dE)
can be computed with a small computational overhead. Our
approach is thus highly promising for computing transport
properties beyond the resistivity.

In conclusion, we show that the e-ph RTs and velocities vary
considerably on the FS of Cu, Ag, and Au. The correlation
between RTs, velocities, and FS topology found here may
extend to other classes of materials with complex Fermi
surfaces. Our work points out the shortcomings of employing
empirical RTs, DFT bands, and uniform k grids to compute
transport properties in materials. It further suggests that even
energy-dependent (but not k-dependent) RTs, also commonly
employed in transport studies, would miss the complex
interplay of band structure and scattering processes. These
observations may extend to defect and impurity scattering,
which will be the subject of future investigations. While com-
plex nonequilibrium approaches are being explored for carrier
dynamics, we argue that accurate ab initio state-dependent RTs
may yield a close agreement with experiment in many cases
of practical interest, even within the RT approximation of the
Boltzmann transport equation.
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