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Path integral Monte Carlo simulation of global and local superfluidity in liquid 4He reservoirs
separated by nanoscale apertures
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We present a path integral Monte Carlo study of the global superfluid fraction and local superfluid density
in cylindrically symmetric reservoirs of liquid 4He separated by nanoaperture arrays. The superfluid response
to both translations along the axis of symmetry (longitudinal response) and rotations about the cylinder axis
(transverse response) are computed, together with radial and axial density distributions that reveal the microscopic
inhomogeneity arising from the combined effects of the confining external potential and the 4He-4He interatomic
potentials. We make a microscopic determination of the length scale of decay of superfluidity at the radial
boundaries of the system by analyzing the local superfluid density distribution to extract a displacement length
that quantifies the superfluid mass displacement away from the boundary. We find that the longitudinal superfluid
response is reduced in reservoirs separated by a septum containing sufficiently small apertures compared to a
cylinder with no intervening aperture array, for all temperatures below Tλ. For a single aperture in the septum,
a significant drop in the longitudinal superfluid response is seen when the aperture diameter is made smaller
than twice the empirical temperature-dependent 4He healing length, consistent with the formation of a weak link
between the reservoirs. Increasing the diameter of a single aperture or the number of apertures in the array results
in an increase of the superfluid density toward the expected bulk value.
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I. INTRODUCTION

Unlike the case of normal-metal weak links between
superconductors or weak links between reservoirs of liquid
3He, the construction of nanoscale superfluid weak links with
engineered geometry supporting a robust Josephson current
between reservoirs of liquid 4He remains a considerable
engineering challenge [1]. The relative difficulty in 4He is
due to the much smaller value, by orders of magnitude, of
the healing length ξ in liquid 4He relative to that in BCS-type
systems when both are deep in their respective condensed
phases. For example, the measured value of ξ (T = 0) is on
the order of 1.0 μm for a type-II BCS superconductor [2]
and 64 nm for 3He (at 0 bar of pressure), compared with
only 0.3 nm for 4He [3]. A weak link, which generically
consists of two condensed fluids separated by a junction
consisting of noncondensed matter, e.g., the same fluid in
a noncondensed phase, requires that the mass supercurrent
through the connection in response to an external field (e.g.,
mechanical driving in neutral superfluids, voltage bias in
superconductors) is much smaller than the response of the bulk
supercurrent. If two reservoirs of liquid helium are separated
by an array of nanoapertures with an average cross-sectional
diameter 10 nm, experimental studies have shown that such an
array supports a weak link only at temperatures T very close
to the λ transition, Tλ ≈ 2.17 K, specifically, at temperatures
T such that Tλ−T � 0.05 mK [4]. This is consistent with
filling of the apertures by normal fluid as the λ transition is
approached from below.
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Engineering of aperture arrays with apertures having much
smaller diameter [e.g., O(10 Å)] would allow experimenters
to probe phenomena associated with 4He weak link formation,
e.g., Josephson oscillations deep in the superfluid phase,
and strongly interacting quasi-two-dimensional (quasi-2D)
and quasi-1D liquid 4He in precisely controlled geometries.
For example, it has been shown theoretically using both
mean-field methods and the classical pendulum analogy for
the dc Josephson equation that the presence of multiple
apertures in an array can lead to a reduction of decoherence
in the macroscopic phase differences across the array [5,6]. In
addition, quantum field theoretical analysis of tunnel-coupled
reservoirs of interacting bosons predicts a linear scaling of
the amplitude of Josephson oscillations with the number of
apertures in an array [7]. An understanding of superfluidity
in engineered nanoaperture arrays is central to exploring and
generalizing these predictions. Nanoaperture arrays separating
reservoirs of liquid 4He are also an essential component of
proposals for highly sensitive rotation-sensing devices based
on matter-wave Sagnac interferometry [8–10].

By revealing the distribution of superfluidity for liquid 4He
confined in nanoscale and atomic-scale potentials, numerical
simulation of confined liquid 4He below the λ transition
temperature aids the design and implementation of aperture
arrays for superfluidity experiments. In this work, we use a
path integral Monte Carlo (PIMC) algorithm to compute the
global superfluid response and local superfluid density of a
4He reservoir consisting of N = 35–123 4He atoms confined
by a cylindrically symmetric tube potential with diameter
16–20 Å and length 18–24 Å. We then introduce a septum
containing one or more nanoscale apertures, thereby breaking
the translational invariance of the potential, and we use PIMC
to calculate the global and local superfluid response in the
resulting system of connected reservoirs. We present a detailed
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analysis of the longitudinal and transverse superfluid responses
for a single aperture as a function of temperature, aperture
size, and location, and then we study aperture arrays with
up to Na = 5 apertures under conditions in which the single
aperture shows behavior consistent with a weak link.

In addition to analyzing the superfluid responses of these
reservoirs connected by nanoscale apertures, we undertake
a microscopic analysis of the length scale characterizing
decay of superfluid density at the radial boundary of the
cylindrical reservoirs. This length scale might be considered
to coincide with the boundary-induced decay length for
superfluid density that appears in the Ginzburg-Pitaevskii (GP)
theory of superfluidity [11], which is one of a number of
measures of the length scale over which the superfluid response
drops to zero at a boundary. Any such measure is commonly
referred to as a “healing length.” Experimental studies on bulk
4He generally measure the healing of a superfluid with the
empirical temperature-dependent expression first determined
from measurements of superfluid density in 4He films flowing
through a slit of ∼3900 Å spacing formed by two concentric
cylinders [12]. This empirical healing length ξ is given by

ξ (t) = 0.34 nm/t0.67 (1)

with t = (1 − T/Tλ) the reduced temperature [4,12,13]. With
some modifications to approximately reproduce the correct
critical exponents for the empirical healing length and the
superfluid density [14,15], GP theory may be applied to
such bulk systems when the fluid density is assumed to
be homogeneous and the superfluid is assumed to decay
over macroscopic length scales. However, a GP approach
is not applicable when the fluid density shows atomic-scale
microscopic variations. Indeed, even in the bulk, the healing
length of a spatially inhomogeneous superfluid is not uniquely
defined [16], creating a challenge for measurement and
quantification of the decay of superfluid density in nanoscale
confined systems.

In this work, we show that the temperature T at which the
empirical ξ (T ) equals the aperture radius is qualitatively a
predictor of the formation of a weak link between reservoirs
of liquid 4He separated by a nanoscale aperture. Since
ξ (T ) is not defined microscopically and GP theory does
not apply to the atomic-scale superfluid density oscillations
observed in these nanoscale confined systems, we quantify the
“healing” of the superfluid instead by a local displacement
length that measures the superfluid mass displacement by
the boundary [7,17]. In particular, the displacement length
that we introduce can be computed directly from PIMC data
and is unequivocally defined for non-translationally-invariant,
cylindrically symmetric confined superfluids. We further show
that this local displacement length can be applied to generate
a “healing surface,” which is a useful notion for visualizing
the displacement of superfluidity from high-potential regions
in generic symmetric or irregularly shaped systems.

A brief outline of the paper is as follows: In Sec. II, we
analyze the radial and axial atomic density distribution, the
temperature dependence of the superfluid response, and the
displacement length at the system boundary in longitudinally
translationally invariant cylinders. This allows a comparison
with previous calculations on the radial distribution of super-
fluidity of liquid 4He confined by nanopores [18]. In Sec. III,

we then present our results for the global superfluid fraction
and local distribution of superfluidity of liquid 4He in a tube
that is partitioned by a septum containing nanoscale apertures
into two communicating reservoirs. We focus first on a single
aperture, characterizing the effect of this in detail, and then we
present results for nanoaperture arrays containing up to five
apertures of cross-sectional diameter 5 Å that are arranged in
various spatial configurations in the plane of the bipartition.
Section IV summarizes and discusses the implications for
analysis and design of experiments with helium superfluid
flow through nanoscale aperture arrays.

The numerical simulations in this work are carried out
at specified temperatures (0.25 � T � 2.0 K) and calculated
pressures (∼3.5 bar, calculated with the estimator of Ref. [19])
that lie well within the bulk He II superfluid phase. For all
simulations, a periodic boundary condition is imposed along
the longitudinal direction, i.e., along the tube axis, to minimize
finite-size effects and allow for simulation of estimators of
certain physical observables that depend on the longitudinal
winding number of the imaginary-time paths of the 4He atoms
in the PIMC calculations.

II. PIMC CALCULATIONS FOR TRANSLATIONALLY
INVARIANT, CYLINDRICALLY SYMMETRIC POTENTIAL

For our PIMC study of 4He atoms contained in a nanoscale
tube, we define the following potential:

Vtube(R,φ,z) = V0

2

[
1 + tanh

(
R − Rt

σR

)]
, (2)

where the cylindrical coordinates R, φ, and z represent
the distance from the tube center, the azimuthal angle, and the
coordinate along the tube axis, respectively, and Rt is the
radius defining the onset of a large “wall” potential. In terms
of Cartesian coordinates (x,y,z), R =

√
x2 + y2 and φ =

tan−1 ( y

x
). In Eq. (2), V0 (potential strength) and σR (steepness

of potential) are taken to be 150 K and 0.25 Å, respectively.
Vtube(R,φ,z) is independent of z and so it is invariant under
translations along the tube axis. For the 4He-4He interaction,
we use a well-known Aziz potential [20]. In the path integral
representation, the thermal density matrix at a low temperature
T is expressed as a convolution of M high-temperature density
matrices with an imaginary time step τ = (MkBT )−1. In the
high-temperature density matrix, the 4He-4He potentials are
incorporated with the pair-product form of the exact two-body
density matrices, while the external potential defined by Eq. (2)
is analyzed within the primitive approximation [19]. We use a
time step of τ−1/kB = 40 K, and periodic boundary conditions
are imposed in the z direction to minimize finite-size effects.

We first computed the density distributions of N = 123 4He
atoms contained by the potential of Eq. (2) with the tube radius
Rt set to be 10 Å and length L = 18 Å. Note that the lowest
value of the tube potential of Eq. (2) occurs at the center of
the tube (R = 0) and that Vtube increases monotonically as
R increases. Figure 1(a) shows a contour plot of the density
distribution at T = 1.25 K averaged over the azimuthal angle
φ. One can observe a layering structure around the tube axis
(R = 0). This layering is due to the interplay between the
4He-4He interparticle interaction and the atomic confinement
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FIG. 1. (a) 2D density distribution of 4He atoms at T = 1.25 K
contained inside a tube of radius Rt = 10 Å and length L = 18 Å,
with periodic boundary conditions along z. The atomic density
distribution ρ(R,φ,z) is averaged over the azimuthal angle φ to give

ρ(R,z) in units of Å
−3

(red: high density, blue: low density). (b)

One-dimensional density distributions in (units of Å
−3

) computed as a
function of R for a range of temperatures below the bulk, Tλ ≈ 2.17 K.

due to the nanoscale confining potential of Eq. (2). It is to be
contrasted with the layering observed in PIMC calculations for
4He atoms inside an amorphous Si3N4 nanopore that included
attractive van der Waals interactions of 4He with the pore
wall [18]. While that work also found layered structures for
4He inside the nanopore, the layering there was primarily due
to the interplay of the repulsive 4He-4He interaction and the
attractive component of the 4He-wall interaction. The latter
provided attractive adsorption sites for 4He in the vicinity
of the wall that caused the two outermost 4He layers to be
solidified without making any contribution to superfluidity at
low temperatures. The fact that our calculations do not assume
an attractive van der Waals interaction between the 4He atoms
and an atomically structured wall implies that the layering of
the 4He density shown is then due solely to the interplay of the
4He-4He interaction with the external confining potential. As
a consequence, no solidified layers are observed. The absence
of solidified layers allows an unambiguous characterization of
the superfluid healing behavior at the boundary of a nanoscale
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FIG. 2. Global superfluid fraction of liquid 4He contained inside
tubes of diameter Dt = 16 Å (red circles) and Dt = 20 Å (black
circles) as a function of temperature. The calculations were made
for N = 80 atoms (red circles) or N = 123 atoms (black circles) in
a cylinder of length L = 18 Å, with periodic boundary conditions
in z. Blue dots show recommended values for the global superfluid
fraction of bulk liquid 4He below Tλ at saturated vapor pressure [21].

container (see Sec. II). Figure 1(b) shows the one-dimensional
density distributions computed as a function of radius R for
several temperatures between 0.625 and 2 K. It is evident that
there is no thermal effect on the 4He density distribution at
temperatures below 2 K.

The global superfluid response to translations of the system
along the tube axis, i.e., the z axis, may be computed by
using the following winding number estimator for the global
superfluid fraction [19]:(

ρs

ρ

)
z

= mL2
〈
W 2

z

〉
�2βN

, (3)

where m, L, and N are the bare mass of a 4He atom, the
length of the tube, and the number of helium atoms inside the
tube, respectively. Here the winding number Wz is defined by
Wz = 1/L

∑N
i=1

∑M
k=1(zi,k+1 − zi,k), where M is the number

of time slices in the discrete path integral representation, the
sums are over particle index i and imaginary-time slice index k,
and zi,k is the projection of the single-particle imaginary time
configuration �ri,k onto the cylinder axis. Therefore, a nonzero
average winding number indicates the onset of superfluidity.

Figure 2 shows the global superfluid fractions of liquid
4He inside tubes with two different diameters (Dt = 2Rt )
as a function of temperature. Recommended values for the
expected superfluid fraction in bulk liquid 4He at and below
Tλ are also shown for comparison [21]. For temperatures below
1 K, both 4He systems are seen to exhibit complete superfluid
response, similar to bulk liquid 4He. In contrast, the PIMC
calculations of Ref. [18] for 4He atoms in a Si3N4 nanopore
show a saturated superfluid fraction of only ρs/ρ ∼ 0.2 for
T � 1 K, as a result of the inert solid 4He layers adsorbed
on the pore wall. From a microscopic perspective, the fact
that our calculations show complete superfluid response for
the present 4He-nanotube system in this temperature range
is due to the fact that the tube potential of Eq. (2) does not
adsorb layers of solid 4He. This may also be interpreted within
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a hydrodynamic perspective, where the lack of short-range
van der Waals attraction between the 4He atoms and the wall
means that a longitudinal translation of the wall does not result
in entrainment of any part of the liquid helium-4 as a solid
layer; therefore, the mass fraction of the liquid that exhibits
a superfluid response is higher in our calculations relative
to Ref. [18]. Reduction of superfluid fraction also occurs in
the first layer of liquid 4He adsorbed on a molecular dopant
embedded in a liquid 4He nanocluster [22]. In general, an
attractive van der Waals interaction of helium atoms with an
atomically structured container or with an embedded dopant
pins the imaginary-time paths at the surface-liquid or dopant-
liquid interface and thereby renders unlikely the acceptance
(in the METROPOLIS algorithm employed in PIMC) of a
permutation move combining paths of two or more 4He atoms
to create an extended path that makes a nonzero contribution to
the total winding number in Eq. (3). This effectively removes
helium density from the superfluid component, resulting in
a molecular scale nonsuperfluid density as first described
in Ref. [22]. Calculations of the global superfluid fraction
of nanoscale liquid 4He confined by parametrized external
potentials modeling adsorption at a system boundary have
also been performed in spherical [23] and cylindrical [24]
geometries.

In Fig. 2, the superfluid fraction is observed to decrease
for T � 1 K in both Dt = 16 and 20 Å tubes, similar
to the decrease observed in bulk 4He in Ref. [19], except
with comparatively lower values and broader transition to
zero value, as is typical of finite-size systems. The quantum
statistical explanation of this decrease in superfluidity inside
the nanotube is the same as in the bulk, namely that as
the temperature is increased toward the λ transition, fewer
winding paths contribute to the bosonic partition function, as
the thermal de Broglie wavelength and hence the exchange
probabilities of the 4He atoms decrease. Therefore, the value
of the winding number estimator in Eq. (3) also decreases.

For the nanotube, it is then interesting to analyze the
temperature at which the largest depression of ρS/ρ occurs
in terms of the relationship between the corresponding healing
length and the tube diameter. We find that for both values of
tube diameter studied here, the temperature marking the onset
of a large depression of global superfluid fraction is remarkably
similar to the temperature at which the empirical healing
length ξ (T ) of the superfluid approaches the tube radius Rt .
Specifically, the empirical formula Eq. (1) yields the following
two temperature/healing length combinations for which the
healing lengths are equal to half the tube diameters employed
in Fig. 2 : ξ (T = 1.56 K) = 8 Å and ξ (T = 1.74 K) = 10 Å.
Hence, for T � 1.5 K, the superfluid density inside the tube
does not reach its maximal possible value, and so the global
superfluidity is further reduced below the bulk value in this
regime.

However, while ξ (T ) gives a consistent prediction of
the temperature range at which the superfluid fraction falls
significantly below 1, this empirical estimate of healing of
the superfluid is not clearly related to the Ginzburg-Pitaevskii
notion of decay of superfluidity near a boundary. Moreover,
as noted already above, within its domain of applicability,
the Ginzburg-Pitaevskii theory of superfluidity predicts a
monotonic decay of the superfluid density from its maximum

value to zero, within a temperature-dependent distance from
a flat boundary [11]. In Sec. II below, we show that the radial
superfluid density in a nanoscale cylindrically symmetric
system does not decay monotonically from the axis of
symmetry. We then provide a general method for quantifying
the decay of superfluidity at such a boundary that, unlike
the Ginzburg-Pitaevskii theory, which is only valid for length
scales much greater than the atomic scale, is now valid on all
length scales.

Spatial distribution of superfluidity

To analyze the spatial distribution of the superfluid density,
we employ an estimator for the local longitudinal superfluid
density, i.e., the superfluid response to translation in the z

direction, that is based on the following local decomposition
of the winding number estimator in Eq. (3):

ρs(�r)z = mL2

�2β

〈
Nw∑
i=1

M∑
k=1

W 2
z

NwM
δ(�r − �ri,k)

〉
, (4)

where Nw is the number of 4He atoms comprising winding
paths. This estimator of local superfluid density is similar to
the local estimator of Khairallah and Ceperley [25] in the sense
that all “beads” (represented by the coordinates �ri,k) on the
imaginary time “polymers” constituting the winding paths are
assumed to contribute equally to superfluidity. Although the lo-
cal estimator employed by Kulchytskyy et al. [18] and the one
used in this work give the same proper value when integrated
over space, that is, the global superfluid fraction multiplied by
the total number of 4He atoms, the two estimators for the local
superfluidity are based on different local decompositions of
the winding number estimator [compare Eq. (4) of the present
paper with Eq. (3) of Ref. [18]]. In particular, Eq. (4) is locally
positive-semidefinite, which makes interpretation of regions
of negative local superfluid density unnecessary, and it also
exhibits less statistical noise, making the PIMC estimation
more robust.

In Fig. 3, we show the radial superfluid density, ρs(R),
computed using the local estimator of ρs(�r)z in Eq. (4),
and subsequently averaging over the axial coordinate z and
angular coordinate φ of �r . The reported Monte Carlo error
at each radial coordinate is the sample standard deviation
from the local average value of the superfluid density. As
the temperature increases, ρs(R) is seen to decrease below
the temperature-independent total density ρ(R) in Fig. 1 at all
values of R. However, whereas the height of the peaks of ρ(R)
decreases only slightly as R increases toward the boundary [see
Fig. 1(b)], the peaks of ρs(R) in Fig. 3 are noticeably reduced
as R increases, corresponding to a decrease in the superfluid
fraction near the boundary. The cause of this radial decrease
of superfluid response is the fact that atoms distributed near
the tube wall interact with fewer neighboring atoms, so that
a bosonic permutation move is less likely to be accepted near
the wall than in central regions of the cylinder. This suggests
that the decrease in superfluid fraction near the tube wall is a
quantum statistical effect and is not caused by solidification of
atomic layers at the wall due to an attractive potential.

For engineering nanoscale channels supporting super-
fluid helium flow, it is useful to quantify the length scale
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FIG. 3. (a) One-dimensional radial superfluid density distribu-
tions in a cylindrically symmetric potential for four temperatures
below bulk Tλ. Calculations were made for N = 123 atoms in a
tube of length L = 18 Å and diameter Dt = 20 Å with periodic
boundary conditions imposed in the z direction. The error bar at
a given radial coordinate represents the sample standard deviation
from the average superfluid density at that coordinate computed
from statistically independent data blocks. (b) Healing surfaces for
T = 0.625 K (purple) and T = 2.00 K (orange) computed using a
local version of the superfluid mass displacement length (see text).
The outer cylinder with radius 10 Å is a guide to the eye.

characterizing the decay of superfluid density at a region of
large potential energy or a system boundary. Because the
empirical healing length ξ (T ) of Ref. [12] is not directly
computable from the local superfluid density distribution, one
must identify a length scale that captures the same underlying
physical features while at the same time satisfying three
conditions: (i) being extractable from the local superfluid
density distribution, (ii) increasing with increasing tempera-
ture, and (iii) being applicable to non-translationally-invariant
potentials. There is no unique definition of such a length scale.
Several local and global quantifiers of the displacement of
superfluid density from the walls of a confined bosonic system
were formulated from the local superfluid density distribution
data and compared in Ref. [26]. In the present work, we adapt
the notion of displacement length defined in Ref. [17] to
define a local displacement length that is easily applied to
the cylindrically symmetric systems considered here.

In a system of stationary liquid 4He occupying a half-space
z � 0 of R3 and satisfying the boundary conditions ρs(z =
0) = 0 and ρs(�r) → c = const as z → ∞, the displacement

length d that quantifies the effective superfluid mass displace-
ment at a planar interface z = 0 is defined as∫

R3
cθ (z − d)dx dy dz =

∫
R3

ρs(�r)θ (z)dx dy dz, (5)

where θ (z) = 1 (z � 0), and θ (z) = 0 (z < 0) is the step
function. The displacement length d was shown in Ref. [17]
to scale near Tλ as the reciprocal of the (roton) energy
gap. To formulate a local version of the displacement length
for cylindrically symmetric containers, we seek for each
coordinate z the distance d(z) such that

( max
0�R�Rt (z)

ρs(R,z))[Rt (z) − d(z)] =
∫ Rt (z)

0
dR ρs(R,z) (6)

is satisfied, where the tube radius at axis coordinate z is defined
by Rt (z). In practice, the right-hand side of Eq. (6) is evaluated
by trapezoid rule integration of the spatially discrete ρs(R,z)
numerical data, which are in turn obtained by integrating the
full numerical distribution ρs(�r) over φ. ρs(R,z) is defined to
be the mean longitudinal superfluid density at the coordinate
(R,z). In the present work, we consider only the simplest case
of Rt (z) = Rt for all z.

In the more general context of liquid 4He in a compact,
connected space defined by an irregular external potential,
the definition of the length scale characterizing the decay of
superfluid density at the boundaries may be generalized by
introducing the notion of a “healing surface.” For example,
in a cylindrically symmetric system parametrized by height
z and radius 0 � R(z) � Rt such as we consider in this
work [where R(z) is the radial coordinate from the central
guiding axis of the cylinder], the local displacement length
d(z) in Eq. (6) can be used to define a cylindrically symmetric
healing surface. In this case, the healing surface is a surface
of revolution defined by rotating the coordinates (z,Rt − d(z))
about the z axis. This healing surface is shown in Fig. 3(b)
for the potential in Eq. (2) at two different temperatures. Note
that the healing surfaces exhibit fluctuations at the single-
atom length scale O(1 Å) even for well-converged numerical
calculations. These fluctuations reflect the numerical error
in the radial location of maximal superfluid density at each
z coordinate. If max0�R�Rt (z) ρs(R,z) = 0 for a given z, the
displacement length is locally undefined at that z coordinate.
The local displacement length can be further generalized to
quantify the decay of elements of the locally defined superfluid
response tensor ρ

ij
s (�r) near other types of boundaries and

inhomogeneities.
To define a global displacement length d in a cylindrically

symmetric system, the distance d(z) is averaged over z. The
temperature dependence of the global displacement length for
the potential in Eq. (2) is shown in Table I below. The increase
of d with temperature demonstrates the increasing length scale
of the decay of superfluidity at a nonadsorbing boundary of a
nanoscale system. Although data showing the T → Tλ critical
scaling of d are lacking, we nevertheless observe a smaller rate
of increase of d with temperature than is expected from Eq. (1)
for ξ (T ). We note that the displacement length from a planar
boundary calculated from the free energy of the Hills-Roberts
theory [27] also increases more slowly with temperature than
the empirical healing length. The displacement length data of
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TABLE I. Global displacement lengths d (Å) of liquid 4He subject
to the one-body potential in Eq. (2) for a uniform cylinder of radius
10 Å, calculated from radial local superfluid density according to
Eq. (6). The empirical healing length ξ (T ) is shown for comparison.
Parameters of the simulations are the same as in Fig. 3. Errors are
estimated by calculating the displacement lengths d± corresponding
to ρs(R) ± σ (R) in Fig. 3, where σ (R) is the local Monte Carlo error.

T (K) d (Å) ξ (T ) (Å)

0.625 3.84+0.02
−0.03

4.27

1.25 3.98+0.03
−0.03

6.04

1.60 4.13+0.03
−0.03

8.33

2.00 4.27+0.06
−0.05

18.73

Tables I and II (see Sec. III) indicate that the length scale
characterizing the decay of superfluidity at a boundary of a
nanoscale container is less sensitive to the phase transition
than the empirical healing length ξ (T ), which has a critical
exponent that depends on the scaling of the bulk superfluid
density as T → Tλ [28]. In Sec. III, we show that at a
given temperature T , ξ (T ) is a qualitative lower bound for
the radius of a nanoscale aperture connecting two superfluid
reservoirs that allows the expected bulk value of the global
superfluid fraction to be attained. Therefore, whereas the
theoretical displacement length estimator d quantifies the
average displacement of the superfluid from the wall at a
given temperature, the empirical healing length quantifies
the characteristic radius below which a nanoscale aperture
becomes a weak link.

In the next section, we describe the results of calculations
of superfluid observables for cylinders interrupted by a septum
containing one or more nanoscale apertures. We first use
the estimator of displacement length in Eq. (6) together
with the local and global superfluidity estimators to study
the effect of a single nanoaperture interrupting a superfluid
reservoir. Subsequently, we investigate the effect of an array
of multiple nanoapertures on the global superfluid fraction of
the bipartitioned reservoir system.

III. PIMC CALCULATIONS FOR CYLINDRICAL 4He
RESERVOIRS SEPARATED BY NANOSCALE APERTURES

An analysis of global superfluid fraction and local super-
fluid density may be undertaken for reservoirs of liquid 4He
separated by a septum pierced with one or more apertures; a
cross-sectional view of such a septum with a single aperture
centered on the cylinder axis is shown in Fig. 4(a). To explore
the distribution of superfluidity in reservoirs containing such
aperture arrays, we consider an external potential given by

V
(Na )

wall (R,φ,z) = V0

2

[
1 + tanh

(
R − Rt

σR

)]

+
[

V0

4

[
1 + tanh

(
z + δ

σZ

)]

×
[

1 − tanh

(
z − δ

σZ

)]

×
(

1

2

)Na Na∏
j=1

[
1 + tanh

(
Rj − Da

2

σR

)]⎤
⎦,

(7)

which represents a septum of length 2δ located between
z = +δ and −δ, pierced by Na circular apertures of ra-
dius Ra = Da/2 and thickness 2δ. The apertures are lo-
cated at variable positions Rj , j = 1, . . . ,Na , where Rj =√

(R cos φ − xj )2 + (R sin φ − yj )2 is the radial distance from
the center of the j th aperture located at coordinates (xj ,yj ) to
the point of interest. The remaining potential parameters (set
equal to the specified fixed values if they are held constant in
the simulations) are given as follows:

(i) Maximum potential strength: V0 = 150 K.
(ii) Tube radius: Rt .
(iii) Steepness of potential at cylinder boundary:

σR = 0.2 Å.
(iv) Septum thickness: 2δ = 3.0 Å.
(v) Steepness of potential at septum boundary: σZ = 0.2 Å.
(vi) Number of apertures: Na .
(vii) Aperture radius: Ra = Da/2.
In addition, we denote the length of the tube along the z

axis by L (periodic boundary conditions are imposed in this
direction). The potential in Eq. (7) may in general break the
cylindrical symmetry of the system.

We first computed the superfluid fraction in a cylindrical
reservoir (Dt = 13 Å, L = 24 Å) of N = 35 atoms with a
single intervening aperture of various diameters Da [Fig. 4(b)].
In this case, the aperture center coincides with the center
of the septum (both on the cylinder axis) so that cylindrical
symmetry is maintained. At both T = 0.625 and 1.25 K, no
superflow is observed through apertures with diameters less
than 3 Å. As the aperture diameter is increased, the superfluid
fraction increases to reach the values corresponding to those
of reservoirs without a septum (see Fig. 2). At T = 0.625 and
1.25 K, the simulations show non-negligible superflow through
the hole with diameter larger than 5 Å. The empirical healing
length of superfluid 4He at T = 0.625 and 1.25 K is calculated
from Eq. (1) to be 4.27 and 6.04 Å, respectively. For Da larger
than 2ξ (T = 0.625 K), the superfluid fraction reaches unity
(within statistical error). Conversely, ρs/ρ falls below unity
for both T = 0.625 and 1.25 K when the aperture diameter
satisfies Da � 2ξ (T ). Therefore, these data are consistent with
the formation of a superfluid 4He weak link in a cylindrically
symmetric nanoscale channel at a temperature T such that
2ξ (T ) ≈ Da . One implication of this result is that in order
to decrease the temperature at which an array of nanoscale
apertures behaves as a weak link from T = 1.25 to 0.625 K,
Da must be reduced by ∼4 Å, indicating that atomic-scale
imperfections in the fabrication of the nanoscale aperture array
can affect the sharpness of the critical temperature for weak
link formation.

We proceed to analyze the reduction of the longitudinal
superfluid fraction due to the presence of the septum by
comparing it to the transverse superfluid fraction, which
represents the superfluid response to rotation of the cylinder
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TABLE II. Average displacement lengths d (Å) of liquid 4He in a bipartitioned reservoir subject to the one-body potential in Eq. (7) with a
single aperture, Na = 1, located on-axis with the aperture center at (0,0,0). d is calculated as d = [2(L/2 − δ)]−1(

∫ −δ

−L/2 dz d(z) + ∫ L/2
δ

dz d(z)).
Parameters of the simulations are the same as for Fig. 5(a).

T (K) 0.250 0.417 0.625 0.833 1.000 1.250 1.430 1.600 2.000
d (Å) 4.39 4.62 4.78 4.95 4.98 5.34 5.42 5.93 6.38

about its axis of symmetry. Whereas the longitudinal superfluid
fraction is quantified by the winding number estimator in
Eq. (3), the transverse superfluid fraction is written in terms of
the mean-squared projected areas of imaginary-time polymers
on the plane perpendicular to the cylinder axis [19]:(

ρs

ρ

)
⊥

= 2mT
〈
A2

z

〉
λIc

. (8)

FIG. 4. (a) Cross-sectional view of a single aperture in a septum
separating cylindrical reservoirs of liquid 4He. 2δ is the thickness
of the septum, Rt is the radius of the container, and Ra = Da/2 is
the radius of the aperture allowing for transport of fluid between the
reservoirs. (b) Superfluid fraction of reservoirs (N = 35, Dt = 13 Å,
and L = 24 Å) of liquid 4He connected by a single atomic-scale to
nanoscale aperture as a function of aperture diameter at temperatures
T = 0.625 K (black squares) and 1.25 K (red squares). In each case,
the aperture has a thickness 2δ = 3 Å and all calculations use periodic
boundary conditions in z.

In Eq. (8), Az is the z component of the area vector, having
magnitude equal to the area of an imaginary-time polymer
projected onto the (R,φ) plane, λ := �

2/2m, and Ic is the
classical moment of inertia of the polymer. Figure 5(a) presents
a comparison of the transverse superfluid fraction and the
longitudinal superfluid fraction as functions of temperature
for a system with a single aperture with radius Da = 6 Å
and cylinder diameter Dt = 20 Å. The upper traces in
Fig. 5(a) (square symbols) show (ρs/ρ)⊥, and the lower traces
(triangular symbols) show the (ρs/ρ)z. It is evident that,
regardless of the aperture location, the transverse superfluid
fraction is consistently larger than the longitudinal superfluid
fraction and that the former also shows saturation for low
T , whereas the latter shows only a small increase at lower
temperatures and remains less than 0.4 for all temperatures
studied. In the present case, this difference reflects the fact
that the transverse superfluid flow is not obstructed by any
potential that breaks the rotation invariance of the cylinder. In
contrast, the longitudinal superfluid fraction is determined by
imaginary-time paths with nonzero winding number that must
pass through the aperture, whatever its location. This constraint
severely decreases superfluid response to translations along the
cylinder axis.

To gain insight into this difference, we show in Fig. 5(a)
calculations for two locations of the aperture in the septum
(red symbols for the aperture center on the axis of symmetry;
black symbols for the aperture center situated 4 Å off the axis
of symmetry). Within statistical error, we see that neither the
transverse superfluid fraction (upper traces) nor the longitudi-
nal superfluid fraction (lower traces) is significantly affected
by the position of the aperture in the septum. However, we
observe [Fig. 5(b)] that the local distribution of superfluidity
in the presence of an off-center aperture is shifted radially
relative to the nanotube axis compared to the local distribution
of superfluidity both for an on-axis aperture center and for a
cylinder with no intervening aperture array. This asymmetric
distribution of superfluidity has the consequence that the liquid
4He would be expected to exhibit an asymmetric response
to, e.g., shear motions of the boundary. In general, given
information about the shape of a nanoscale container, one can
therefore use the calculated local distribution of superfluidity
to determine the optimal configuration of the aperture array
for a particular quantum nanofluidic experiment. Therefore,
knowledge of the asymmetry in the local superfluid density
is useful for experimental realization and applications of
nanoaperture arrays in liquid 4He.

For a single intervening aperture with center on the cylinder
axis, we may apply the displacement length definition of
Eq. (6) to extract an averaged displacement length for the
entire bipartitioned reservoir. In Table II, we show the cylinder-
averaged displacement length d in a system containing a single
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FIG. 5. (a) Comparison of global transverse superfluid fraction, computed by the projected path area estimator in Eq. (8) (squares), with
the longitudinal superfluid fraction, computed by the winding number estimator (inverted triangles), for reservoirs of 4He (N = 100, Dt = 20
Å, and L = 18 Å) separated by a septum containing a single aperture with Da = 6 Å. Red symbols denote results with the aperture center on
the axis of symmetry; black symbols denote results with the aperture located off the axis of symmetry by 4 Å. (b) Local longitudinal superfluid
densities ρs(z,R) [obtained by averaging Eq. (4) over the angular coordinate φ], shown as functions of (z,R) in cylinders (L = 18 Å, Dt = 20
Å) with a single off-center aperture having δ = 1.5 and Da = 6 Å at T = 0.25 K (left) and T = 1.00 K (right).

aperture with a center on the cylinder axis. d is calculated by
averaging the values of dL(z) and dR(z) obtained by applying
Eq. (6) to regions of the cylinder to the immediate left and right
of the septum, respectively. Similar to the displacement lengths
calculated for a system without an aperture array (Table I), d

is observed to increase with temperature. The larger values in
Table II compared to Table I are due to the fact that, for a given
tube radius Rt , the local displacement length d(z) computed

for z near a septum is larger on average than d(z) computed
for z far from the septum or in the same tube without a septum.

It is clear that the definitions of local and global dis-
placement lengths become ambiguous when the potential is
no longer cylindrically symmetric. For example, in Fig. 5(b)
the local superfluid density distribution is displaced from the
wall with a smaller characteristic length in the half-cylinder
containing the aperture compared to the half-cylinder without
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FIG. 6. Global superfluid fractions computed by the winding number estimator, Eq. (3), of a reservoir of N = 100 4He atoms bipartitioned
by an aperture array defined in Eq. (7) for Na = 2 (green), Na = 3 (red), Na = 4 (yellow), and Na = 5 (blue) apertures having Da = 5 Å for
three temperatures below Tλ. Configurations of apertures in the septum are shown above the plot. The [x (Å),y (Å)] coordinates of the aperture
centers in the septum plane are as follows: (0,4),(0,−4) for Na = 2; (0,5),(4.33,−2.5),(−4.33,−2.5) for Na = 3; (−5,0),(5,0),(0,5),(0,−5)
for Na = 4; (5.71,1.86),(0,6),(−5.71,1.86),(−3.53,−4.86),(3.53,−4.86) for Na = 5. For all simulations, the tube radius and tube length are
given by Dt = 20 Å and L = 18 Å, respectively.

it. This result indicates that the superfluid mass density is
displaced asymmetrically from the boundaries in a manner that
depends on the geometry of the confining potential. Global
estimates of healing behavior or superfluid density cannot
account for the asymmetry; this is why the introduction of the
notion of a healing surface, which reveals the local structure
of healing, is necessary.

Calculations for multiaperture arrays are more challenging
on account of the increased statistical error in all estimators,
particularly the local estimators. However, the global longi-
tudinal superfluid fraction, Eq. (3), is sufficiently stable to
allow a systematic study with respect to temperature for a
range of aperture numbers. In Fig. 6, we now show the global
superfluid fraction computed by the winding number estimator
for reservoirs separated by arrays containing Na = 2, 3, 4, or 5
apertures, with radius Da = 5 Å in all cases. The apertures are
arranged in each calculation so that the cylindrical symmetry
of the reservoir is decreased to C2, C3, C4, and C5 symmetry,
respectively. Several trends are apparent from these results.
First, the global superfluid response is less than the value for
the cylinder without any aperture, and the superfluid fraction
also decreases with temperature, as expected. Second, it is
evident that in general, for a given temperature the superfluid
response increases as the number of apertures Na increases.
It is interesting that this increase with aperture number occurs
despite the fact that the aperture radius is smaller than the
healing length in these calculations [the empirical healing
length values at these temperatures are ξ (T = 0.25) = 3.69 Å,
ξ (T = 0.625) = 4.1 Å, and ξ (T = 1.25) = 6.0 Å]. Thus
the critical factor for the increased longitudinal superfluid
response with increasing aperture number Na is that the
individual aperture radii are greater than the helium atomic
dimension of length (Da � 4 Å), and not whether the helium
flow is outside the weak link regime.

IV. SUMMARY AND CONCLUSIONS

We have used path integral Monte Carlo numerical sim-
ulations to analyze the global and local superfluid response
of cylindrically symmetric reservoirs of liquid 4He with and
without a bisecting array of nanoscale apertures, using external
potentials for the 4He reservoirs that preclude adsorption
at the boundary. Global superfluid fractions quantifying the
superfluid response to translational motion along the cylinder
axis (i.e., longitudinal superfluidity) and rotational motion
about the cylinder axis (i.e., transverse superfluidity) were
calculated for these systems by using estimators that are
based, respectively, on the longitudinal winding number of
imaginary-time polymers representing indistinguishable 4He
atoms, and the projected areas of these imaginary time
polymers. We found that the presence of a septum with a
single aperture significantly reduces the global longitudinal
superfluid response but has a smaller effect on the superfluid
response to rotational motion of the aperture, with both of these
reductions being approximately independent of the location of
the aperture center in the septum. Furthermore, the longitu-
dinal superfluid response decreases as the aperture diameter
decreases, with a significant drop when the diameter satisfies
2ξ (T ) ≈ Da , consistent with the formation of a superfluid 4He
weak link in a cylindrically symmetric nanoscale channel. For
an aperture array with Na > 1 apertures, we found that the
longitudinal superfluid fraction increases when the number of
apertures Na is increased, regardless of whether individual
apertures are operating in the weak link regime or in the lower
temperature regime where 2ξ (T ) � Da .

We also calculated the local distribution of superfluid
density in these nanoaperture array systems by using a
positive-definite estimator of local superfluid density [Eq. (4)]
that weights equally all beads participating in imaginary-time
polymers with nonzero winding number. In contrast to the
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prediction of Ginzburg-Pitaevskii theory for bulk liquid helium
that the superfluid density decreases monotonically near the
boundary of a system, we find that, as a consequence of
the confining potential, the radial superfluid density does
not decay monotonically as R → Rt in a nanoscale cylinder.
Instead, it shows radial oscillations reflecting the effect of
the interatomic interactions. In systems containing an off-axis
intervening aperture, asymmetrical displacement lengths are
observed in the upper and lower halves of the cylinder. This
asymmetry could be exploited in the design of aperture arrays
for experiments in superfluid hydrodynamics.

We analyzed two temperature-dependent length scales re-
lated to the global superfluid response and local superfluid den-
sity distributions, the empirical temperature-dependent heal-
ing length ξ (T ), and the theoretical temperature-dependent
displacement length d. Our results indicate that the empirical
healing length ξ (T ) is qualitatively useful for predicting
the temperatures and aperture radius at which superfluidity
decreases below the expected bulk value and a weak link
can form. However, for a detailed picture of the length scale
characterizing the decay of superfluidity at a boundary of
a non-translationally-invariant system, rather than making
empirical estimates, a microscopic estimator is required that
can be calculated from the ρS(R,z) data. The local and
averaged displacement length estimators given by d(z) and d

(d in the case of reservoirs separated by a septum), respectively,
accurately quantify the decay of superfluidity at a boundary
of a cylindrically symmetric container, and they also exhibit
an increase with temperature over the range T = 0.25–2.0 K.
A study of the critical scaling of the displacement length d as
T → Tλ that takes into account finite-size effects in various
confined geometries is an important avenue for future research.

In this work, we have considered only static properties of
the constrained superfluid. To analyze the effects of externally
imposed flow on the local superfluid density and displacement
lengths with the PIMC method, local estimators of velocity
and vorticity and their correlations must be calculated. We
have derived an estimator for the local vorticity in the system
that will divulge information about the equilibrium structure of
linelike defects in superfluid density in cylindrically confined
systems [26]. Results in this direction will be reported in
a future publication. We expect that the construction of
nanoscale aperture arrays similar to those analyzed in this
work could lead to experimental observation of Josephson
oscillations between phase-coherent reservoirs of liquid 4He
deep in the superfluid phase, which may be be exploited in
superfluid-based technologies [8].
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