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Excellent fits of the tunneling density of states in disordered superconductors can be often achieved making use
of the phenomenological Dynes formula. However, no consistent derivation of this formula has been available so
far. The Dynes formula can be interpreted by the simplest causal frequency-dependent gap function �(ω) with
a vanishing gap at the Fermi level. Here we show, within the coherent potential approximation, that precisely
such a gap function describes superconductors with a Lorentzian distribution of pair-breaking fields and arbitrary
potential disorder. We predict spectral and thermodynamic properties of such superconductors.
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I. INTRODUCTION

The tunneling density of states N (ω) is a basic characteristic
of the single-particle properties of superconductors. The
knowledge of N (ω) has played a major role in identification
of the pairing mechanism in conventional superconductors,
and with a similar aim N (ω) is often also studied in modern
superconductors [1]. On the other hand, N (ω) is also used
as a diagnostic tool enabling us to discover the existence of
pair-breaking processes in superconductors and to quantify
their extent [2]. Such studies are important from the basic
physics point of view, for instance in the context of the still not
completely understood superconductor-insulator transitions
[3,4], but also from the point of view of applied physics,
since in many electronic applications of superconductors such
pair-breaking processes are to be avoided [5].

The presence of pair-breaking processes shows up in the
tunneling experiment as a finite density of states within the
ideal superconducting gap �̄. Long ago, a simple phenomeno-
logical formula has been proposed for superconductors with
such processes [6],

N (ω) = N0Re

[
ω + i�√

(ω + i�)2 − �̄2

]
, (1)

which is now known as the Dynes formula. The parameter
� in this formula quantifies the effect of the pair-breaking
processes, and N0 is the normal-state density of states at the
Fermi level.

In order to demonstrate the quality of fits which can be
achieved making use of Eq. (1), in Fig. 1 we reproduce
the recently measured low-temperature tunneling data on a
series of MoC films with varying thickness [4], together with
their fits to the Dynes formula. Similarly perfect agreement
between experimental data for disordered superconductors and
the Dynes formula has in fact been observed quite frequently,
see, e.g., Refs. [7,8], indicating that Eq. (1) should be caused
by a generic mechanism.

The only mechanism leading to the Dynes formula which
has been suggested so far postulates that its appearance in
tunneling experiments is caused by inelasticity of the tunneling
process [9]. However, this mechanism can not explain the
systematic changes of N (ω) observed in Fig. 1, which must
have a truly intrinsic origin. The aim of this paper therefore is

to propose a generic and intrinsic microscopic interpretation
of the Dynes formula.

II. GAP FUNCTION

Let us start by noting that, within the Eliashberg theory,
N (ω) is completely determined, once the gap function �(ω)
is known:

N (ω) = N0Re

[
ω√

ω2 − �2(ω)

]
. (2)

According to Eq. (1), N (ω) is finite at the Fermi level and this
requires that �(ω) vanishes as ω → 0. The gap function �(ω)
should also be causal, i.e., analytic in the upper half plane, and
it should approach �̄ in the high-energy limit. It is known [10]
that the simplest function with these properties,

�(ω) = ω�̄

ω + i�
, (3)

does lead to the Dynes formula, when inserted into Eq. (2).
Therefore our task in the rest of this paper is to find a
microscopic explanation of Eq. (3).

It is worth pointing out that Mikhailovsky et al. [10] did find
a mechanism leading to Eq. (3). In fact, by a careful analysis of
the Eliashberg equations they have shown that Eq. (3) applies
even in a clean system, since the electron-phonon scattering
has also a pair-breaking component at finite temperatures T .
However, the mechanism of Mikhailovsky et al. predicts that
� scales with T according to � ∝ T 3, and therefore it is not
of direct relevance to the experiments of Refs. [4,7,8] and the
like, where the parameter � is only weakly T dependent and
does not vanish in the low-temperature limit.

The explanation of Eq. (3) should be therefore sought in the
presence of elastic pair-breaking processes, such as scattering
on magnetic impurities [11] and/or fluctuating order parameter
[12]. However, the latter possibility seems to be ruled out by
the spatial homogeneity of the tunneling spectra observed in
Ref. [4]. Moreover, a fluctuating order parameter is expected
to produce appreciable change of N (ω) only for |ω| ≈ �̄ [12].
Therefore in this paper we will concentrate only on the effect
of magnetic impurities.

It should be pointed out that, when the magnetic impurities
are treated in the Born approximation [11], the functional form
Eq. (3) does arise, but only in the limit � � �̄, which is not
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FIG. 1. Normalized tunneling conductance of thin MoC films
with varying thickness at T ≈ 500 mK, from Ref. [4], with fits
to the thermally smeared Dynes formula. For further details see
Appendix F.

of direct relevance to the data in Fig. 1. Subsequent theoretical
work which went beyond the Born approximation concentrated
on the limit of dilute magnetic impurities. Within the T-matrix
approximation, which should be essentially exact in the dilute
impurity limit, Shiba has found magnetic impurity-induced
bound states inside the energy gap in the absence of additional
potential disorder [13], and the precise energy of such bound
states was found to depend on the coupling strength to
the impurities. Furthermore, finite concentration of magnetic
impurities was shown to lead to the formation of impurity
bands centered at the bound-state energies, see Fig. 2. Provided
the magnetic impurities are dilute, later it was shown that
the presence of additional strong potential disorder does not
change these results [14], and very recently it has been
argued that even going beyond mean-field theory leads to only
marginal changes of Shiba’s results [15].
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FIG. 2. N (ω) for a superconductor with dilute pair-breaking
impurities with λ0 = 0.6 and πN0�̄ = 0.05. Results for two impurity
concentrations are shown, x = 0.001 and x = 0.03. The inset shows
that, within CPA, the hard spectral edge of the impurity band softens
if we replace the delta functions in Eq. (6) by Lorentzians with widths
γV0.

It seems to be clear then that, in order to reproduce Eq. (1)
in the physically relevant case � � �̄, one has to allow for
spatially varying coupling strengths to impurities, but in such
a way which leads to a spatially uniform gap function. This
forces us to allow for a dense distribution of impurities, and
therefore we have to abandon the previously used techniques
[13–15]. In this paper we have chosen to make use of the
coherent potential approximation (CPA), which is well known
to provide a successful description of single-particle properties
in disordered systems [16–18].

III. CPA EQUATIONS

Within CPA we look for an averaged Nambu-Gorkov
Green’s function ĜM defined by Ĝ−1

M = Ĝ−1
0 − �̂, where

Ĝ−1
0 (k,ωn) = iωnτ0 − εkτ3 is the bare Green’s function and

�̂n = −i�nτ0 + �nτ1 + χnτ3 is a local translationally invari-
ant self-energy generated by disorder and pairing interactions.
We work in imaginary time formalism, the index n denotes the
Matsubara frequency, and τi are the Pauli matrices.

For the impurity potential we take

V̂ = �̄τ1 + Uτ3 + V τ0.

The first term is the spatially homogeneous pairing interaction;
the second term is a fluctuating potential which is usually
large in samples described by Eq. (1), and the last term is a
much weaker classical pair-breaking field, polarized along a
fixed direction in spin space [19]. We assume that the fields U

and V are distributed according to independent and spatially
uncorrelated even functions Ps(U ) and Pm(V ).

In CPA the self-energy �̂ is chosen so that, on average,
electrons described by ĜM do not scatter on the random
potential V̂ . As shown in Appendix A, this leads to the
following self-consistent equation for the self-energy,

〈(V̂ − �̂)[1 − Ĝloc(V̂ − �̂)]−1〉U,V = 0, (4)

where the angular brackets denote averaging with respect
to U,V and Ĝloc = (ĜM )ii is the diagonal component (in
coordinate space) of ĜM .

For a particle-hole symmetric system, the defining Eq. (4)
of CPA is compatible with χn = 0, see Appendix B. In
what follows we use dimensionless pair-conserving and pair-
breaking fields μ = πN0U and λ = πN0V , respectively. For
convenience, we also make use of the dimensionless quantities
γn = πN0�n,n = λ + iγn, and δn = πN0(�̄ − �n), as well
as of the auxiliary variables

zn = xn + iyn = �n + i(ωn + �n)√
(ωn + �n)2 + �2

n

,

which satisfy the identity |zn|2 = 1. In terms of these variables,
Eq. (4) can be rewritten as a single complex equation, see
Appendix B,〈

zn + δn − n

(zn + δn − n)(z∗
n + δn + n) + μ2

〉
μ,λ

= zn. (5)

By solving Eq. (5), we can find the normal and anomalous
self-energies �n and �n, or, alternatively, the wave-function
renormalization Zn = 1 + �n/ωn and the gap function �n =
�n/Zn.
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Dilute gas of identical magnetic impurities

In order to proceed, we need to specify the probability
distributions Ps(U ) and Pm(V ). We will start by considering
the well studied example with vanishing potential disorder and

Pm(V ) = (1 − x)δ(V ) + x

2
[δ(V − V0) + δ(V + V0)], (6)

which describes a set of magnetic impurities with magnetic
field ±V0 and concentration x. Making use of this distribution
in Eq. (5) and assuming that x 	 1, to first order in the impurity
concentration we find

Zn = 1 + �0
(
1 + λ2

0

)√
ω2

n + �2
n(

1 + λ2
0

)2
ω2

n + (
1 − λ2

0

)2
�2

n

,

�̄ =
[

1 + 2�0

√
ω2

n + �2
n(

1 + λ2
0

)2
ω2

n + (
1 − λ2

0

)2
�2

n

]
�n,

where �0 = xπN0V
2

0 and λ0 = πN0V0. These are the well-
known self-consistent equations of the T-matrix approximation
[13], which shows that CPA becomes exact in the low-density
limit.

In Fig. 2 we compare N (ω) for a superconductor with a
dilute gas of pair-breaking impurities, calculated within the T-
matrix approximation and the full CPA. Both approximations
result in a qualitatively similar density of states. As expected,
the agreement between the two approximations improves as the
impurity concentration x decreases. Somewhat surprisingly,
CPA predicts systematically narrower impurity bands.

IV. THE DYNES SUPERCONDUCTORS

Now we turn to the main result of this paper. In order to
take into account the spatial distribution of coupling strengths
to magnetic impurities, instead of Eq. (6) we consider the
so-called Lloyd model [20],

Pm(V ) = 1

π

�

V 2 + �2
,

with a continuous spread of impurity strengths ranging up to
∼�. We emphasize that we don’t need to make any further
assumptions about Ps(U ).

Let us for definiteness consider ωn > 0 and assume that
yn > γn > 0. Inserting Pm(V ) into Eq. (5), we notice that
averaging with respect to λ can be readily performed in the
complex plane of λ, leading to〈

ζn

|ζn|2 + μ2

〉
μ

= zn, (7)

where we have introduced ζn = (xn + δn) + i(yn + λ0 − γn)
with λ0 = πN0�.

Comparing the phases of both sides of Eq. (7) leads to

�n = ωn�̄

ωn + �
.

After analytic continuation to the real axis this result reduces
to Eq. (3) meaning that, within CPA, the Lorentzian distri-
bution Pm(V ) of pair-breaking fields generates precisely that
frequency-dependent gap function �(ω) which reproduces the
Dynes tunneling density of states Eq. (1). Moreover, the Dynes

parameter � is given directly by the width of the Lorentzian
Pm(V ). Note that in the absence of pair breaking, i.e., for
� = 0, CPA predicts �(ω) = �̄, which is consistent with the
Anderson theorem.

Comparing the amplitudes of both sides of Eq. (7) we find
that |ζn| = F is independent of frequency and the constant F

is fixed by
∫

dμPs(μ)F/(μ2 + F 2) = 1. The self-energy �n

can be determined from |ζn| = F . After analytic continuation
to the real axis the wave-function renormalization Z(ω) =
1 + i�(ω)/ω reads

Z(ω) =
(

1 + i�s

�

)(
1 + i�

ω

)
, (8)

where �s = (1 − F )/πN0 is the pair-conserving scattering
rate and � = [(ω + i�)2 − �̄2]

1/2
. The function Z(ω) is seen

to be a product of two factors. The first factor, due to
pair-conserving scattering, reproduces the Born approximation
[21], albeit with a generalized �s . The second factor, due to
pair-breaking processes, has the same form as found previously
for inelastic processes at finite temperatures [10]. Strongly
disordered samples which we are interested in are described
by � � �̄ 	 �s .

The criterion for applicability of our results, yn > γn, is
satisfied for F > g = πN0(�2 + �̄2)1/2. If for Ps(U ) we take,
as an order-of-magnitude estimate, a box distribution of width
2U0, we find F = πN0U0/ tan(πN0U0). On the other hand,
for samples with � � �̄ we have g 	 1. From here it follows
that F > g holds provided that U0 � 1/(2N0), i.e., up to
large potential disorder. In Appendix C we argue that the
existence of a critical value of U0 is an artifact of the CPA
approximation.

We emphasize that our microscopics goes beyond the
phenomenology of Eq. (1) by predicting both of the Eliashberg
functions, �(ω) and Z(ω). The resulting retarded electron
Green’s function reads

ĜM (k,ω) = (1 + i�s/�)[(ω + i�)τ0 + �̄τ1] + εkτ3

(� + i�s)2 − ε2
k

. (9)

Note that Eq. (9) is the simplest consistent generalization
of the BCS Green’s function which takes into account both
the pair-conserving and the pair-breaking scattering processes
with rates �s and �, respectively. Superconductors described
by Eq. (9) will be called Dynes superconductors in what
follows.

A. Thermodynamics

Next we consider the thermodynamic properties of the
Dynes superconductors. To this end, we realize that the
off-diagonal part �̄ of the potential V̂ has to come from a
phonon-induced anomalous self-energy. As shown in detail
in Appendix D, within the BCS approximation with dimen-
sionless coupling constant λ 	 1 and cutoff frequency �, the
self-consistent equation for the Dynes superconductors reads
as

�̄ = λπT

�∑
ωn=−�

�̄√
(|ωn| + �)2 + �̄2

. (10)
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FIG. 3. The order parameter at T = 0 in a magnetic field b,�̄b(0),
as a function of b for several �. First-order transitions for small � are
shown by the dotted line.

Making use of Eq. (10), we can calculate the temperature de-
pendence �̄ = �̄(T ) as a function of the parameter �. We find
that the critical temperature of a dirty Dynes superconductor
T̄c is governed by the same equation as in the Abrikosov-
Gorkov theory, ψ( 1

2 + α
x

) − ψ( 1
2 ) = ln( 1

x
), where ψ(x) is the

digamma function, α = �/(2πTc),x = T̄c/Tc, and Tc is the
critical temperature of the clean system. This is because, as
already mentioned, close to the critical temperature, Eq. (3)
applies to superconductors with pair breaking even in the Born
approximation.

Below Tc it is convenient to normalize �̄(T ) in terms of
�(0), the zero-temperature gap of the clean system. At T = 0
we find �̄(0) = √

�(0)[�(0) − 2�], therefore the critical
disorder strength for complete disappearance of superconduc-
tivity is �c = �(0)/2. The �̄ = �̄(T ) curves for varying �

are essentially BCS-like, as shown in detail in Appendix D.
The ratio �̄(0)/T̄c increases by a factor R with respect to the
clean-system value �(0)/Tc, and R slightly grows with �. For
� → �c we find R(�c) ≈ 1.45, which is however much less
than R(�c) ≈ 2.52 within the Abrikosov-Gorkov theory.

B. Effect of external magnetic field

Finally we study the density of states of a Dynes supercon-
ductor in an external magnetic field B. We assume that the
superconductor is sufficiently dirty, so that the suppression of
�̄ by B can be roughly estimated by keeping only the Zeeman
coupling, as explained in Appendix E. In this approximation
the effect of B is fully described by simply changing the bare
electron Green’s function to Ĝ−1

0 (k,ωn) = (iωn − b)τ0 − εkτ3

with b = μBB. One can check that the CPA expressions
remain valid, if we make the substitution ωn → ωn + ib. In
particular, Eq. (10) is replaced by the following self-consistent
equation,

�̄ = 2λπT

�∑
ωn>0

Re

[
�̄√

(ωn + � + ib)2 + �̄2

]
. (11)

As was to be expected, the theory with only Zeeman coupling,
Eq. (11), predicts a first-order transition at small �, but, as
shown in Fig. 3, the transition becomes continuous for � >
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FIG. 4. Right panel: map of Nb(ω) at T = 0 in the (ω,b) plane for
a Dynes superconductor with �/�(0) = 0.38. The dash-dotted curve
marks the positions of the maxima of Nb(ω) at fixed b. The lower left
panel shows Nb(ω) for several values of b. The self-consistent values
of �̄b(0) for the same b values are plotted in the upper left panel.

�c ≈ 0.355�(0), as one would expect in the full theory with
orbital effects included.

In Appendix E we argue furthermore that, sufficiently far
away from the vortex cores, the density of states in a finite
magnetic field Nb(ω) can be described by considering only the
Zeeman coupling, and this leads to Nb(ω) = ∑

± N (ω ± b)/2.
In Fig. 4 we plot the evolution of Nb(ω) with b for a Dynes
superconductor with �/�(0) = 0.38. Due to the Zeeman
coupling, the peak-to-peak distance of the density of states
exhibits only small changes with b, up to the critical field
bc. This means that gap filling rather than gap closing with
increasing b can be observed in dirty Dynes superconductors.
Note, however, that the order parameter �̄b(0) does behave in
a standard way and vanishes at bc, see the left panel of Fig. 4.
Very recently, similar behavior of N (ω) in magnetic fields has
been observed experimentally [22].

V. CONCLUSIONS

We have identified a class of gapless superconductors,
the Dynes superconductors, which are distinguished by a
sufficiently broad distribution of pair-breaking fields. The
Dynes superconductors are described by two scattering rates,
�s and �, for pair-conserving and pair-breaking processes,
respectively. The Green function of a canonical Dynes su-
perconductor is given by Eq. (9). We have shown that this
functional form follows from the CPA equations with a
Lorentzian distribution of pair-breaking fields and arbitrary
potential disorder. The Dynes superconductors are always
gapless from Tc all the way down to the lowest temperatures,
and their thermodynamic properties differ from predictions of
the Abrikosov-Gorkov theory.
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APPENDIX A: COHERENT POTENTIAL
APPROXIMATION

For convenience we present a short sketch of the derivation
of Eq. (4) from the main text. Let Ĝ be the full Green’s function
of the disordered system (i.e., a matrix whose indices describe
the lattice sites and the Nambu components) and let Ĝ0 be the
bare Green’s function of the clean system. Then Ĝ satisfies the
matrix equation

Ĝ = Ĝ0 + Ĝ0V̂ Ĝ, (A1)

which corresponds to repeated scattering of the bare electrons
(described by Ĝ0) by the random potential V̂ . Equivalently,
Eq. (A1) can be written in terms of the T matrix T̂0 in the form
Ĝ = Ĝ0 + Ĝ0T̂0Ĝ0. Comparing these two expressions for Ĝ,
one finds easily that

T̂0 = V̂ (1 − Ĝ0V̂ )−1. (A2)

In CPA we look for an optimal averaged Nambu-Gorkov
Green’s function ĜM describing the disordered medium. Let
us express this effective Green’s function in terms of the self-
energy by the Dyson equation

Ĝ−1
M = Ĝ−1

0 − �̂. (A3)

From similar considerations which led to Eq. (A1) it follows
that the full Green’s function of the disordered system Ĝ

satisfies the matrix equation

Ĝ = ĜM + ĜM (V̂ − �̂)Ĝ, (A4)

which shows that electrons described by the effective Green’s
function ĜM interact with a reduced potential V̂ − �̂.

In order to fix the optimal self-energy �̂, let us rewrite
Eq. (A4) for the full Green’s function Ĝ in terms of the T
matrix of the effective medium T̂ by Ĝ = ĜM + ĜMT̂ ĜM . A
calculation completely analogous to that leading to Eq. (A2)
leads then to an expression for the T matrix of the effective
medium:

T̂ = (V̂ − �̂)[1 − ĜM (V̂ − �̂)]−1. (A5)

Note that Eq. (A5) differs from Eq. (A2) by simply replacing V̂

by V̂ − �̂ and Ĝ0 by ĜM , i.e., T̂ describes residual scattering
on disorder, not taken into account in the effective medium
description. Two points are to be noted: (i) T̂ for a given
sample depends on the choice of the random potential, and (ii)
T̂ is a matrix in the coordinate space.

Now it is natural to choose the effective medium so
that, after averaging over disorder, the residual scattering is
minimized, 〈T̂ 〉 = 0. Within CPA one requires that only the
site-diagonal components of the T matrix vanish. This leads to
the self-consistent equation [17]

〈(V̂ − �̂)[1 − Ĝloc(V̂ − �̂)]−1〉 = 0,

where Ĝloc = (ĜM )ii is the diagonal component (in coordinate
space) of ĜM . This is Eq. (4) from the main text.

APPENDIX B: DERIVATION OF EQ. (5)

Let us take for the self-energy the ansatz �̂n = −i�nτ0 +
�nτ1 + χnτ3 from the main text, and making use of Eq. (A3)

let us calculate the averaged Green’s function ĜM (k,ωn). We
find

ĜM (k,ωn) = − i(ωn + �n)τ0 + �nτ1 + (εk + χn)τ3

(ωn + �n)2 + �2
n + (εk + χn)2

. (B1)

The local Green’s function Ĝloc(ωn) can be found by Fourier
transforming the function ĜM (k,ωn) from momentum (k) to
real (r) space and by taking r = 0. Replacing the momentum
summation by energy integration and assuming a constant
density of states N0 in the vicinity of the Fermi level, a standard
calculation leads to

Ĝloc(ωn) = −πN0
i(ωn + �n)τ0 + φnτ1√

(ωn + �n)2 + φ2
n

. (B2)

Note that, as usual, the component of Ĝloc proportional to the
Pauli matrix τ3 vanishes. This is a consequence of the assumed
particle-hole symmetry of the problem.

Evaluating the matrix inverse entering Eq. (4) is straight-
forward, since Ĝloc,V̂ , and �̂ are matrices 2 × 2. Making use
of the explicit form of the potential V̂ = �̄τ1 + Uτ3 + V τ0

from the main text we find

[τ0 − Ĝloc(V̂ − �̂)]−1 = anτ0 + ibnτ1 + icnτ2 + idnτ3

a2
n + b2

n + c2
n + d2

n

,

(B3)

where we have introduced auxiliary variables

an = 1 + πN0
i(ωn + �n)(V + i�n) + φn(�̄ − φn)√

(ωn + �n)2 + φ2
n

,

bn = πN0
iφn(V + i�n) − (ωn + �n)(�̄ − φn)√

(ωn + �n)2 + φ2
n

,

cn = πN0
φn(U − χn)√

(ωn + �n)2 + φ2
n

,

dn = πN0
(ωn + �n)(χn − U )√

(ωn + �n)2 + φ2
n

.

Inserting the result Eq. (B3) into Eq. (4), we obtain four
equations, which follow from requiring that the coefficients
in front of the Pauli matrices τi with i = 0, . . . ,3 vanish:〈

(V + i�n)an + i(�̄ − φn)bn + i(U − χn)dn

a2
n + b2

n + c2
n + d2

n

〉
= 0, (B4)

〈
i(V + i�n)bn + (�̄ − φn)an + (U − χn)cn

a2
n + b2

n + c2
n + d2

n

〉
= 0, (B5)

〈
i(V + i�n)cn + (�̄ − φn)dn − (U − χn)bn

a2
n + b2

n + c2
n + d2

n

〉
= 0, (B6)

〈
i(V + i�n)dn − (�̄ − φn)cn + (U − χn)an

a2
n + b2

n + c2
n + d2

n

〉
= 0. (B7)

If one makes use of the explicit form of the auxiliary
variables an,bn,cn, and dn, the last two equations (B6) and
(B7) can be easily solved. In fact, Eq. (B6) is trivially satisfied,
and Eq. (B7) can be written as〈

U − χn

a2
n + b2

n + [πN0(U − χn)]2

〉
= 0.
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Note that the variables an and bn do not include the scalar
potential U . But since the distribution function P (U ) is
supposed to be even, one checks easily that Eq. (B7) is solved
by requiring χn = 0.

Finally, if we take the sum and the difference of Eqs. (B4)
and (B5) and if we make use of the result χn = 0, we obtain
another set of two equations. They can be written down in a
simple form by using the dimensionless variables μ, n,δn,
and zn defined in the main text:〈

(δn + n)(1 + z∗
n(δn − n)) + z∗

nμ
2

(1 + z∗
n(δn − n))(1 + zn(δn + n)) + μ2

〉
= 0,

〈
(δn − n)(1 + zn(δn + n)) + znμ

2

(1 + z∗
n(δn − n))(1 + zn(δn + n)) + μ2

〉
= 0.

Assuming that φn and �n are purely real, we can easily see
that they reduce to just one equation after complex conjugation
and substitution V → −V in one of them. After some trivial
algebra we are therefore left with just one complex integral
CPA equation in the form of Eq. (5) from the main text.

APPENDIX C: CPA IN THE NORMAL STATE

In the normal state our model for disorder implies that
electrons with spin σ experience a random potential W =
U + σV with distribution functions

Pσ (W ) =
∫

dU

∫
dV Ps(U )Pm(V )δ(U + σV − W ). (C1)

Note that since Pm(V ) is even, we have P↑(W ) = P↓(W ) ≡
P (W ). In the upper half-plane ωn > 0, Eq. (4) from the
main text is solved for this distribution function by a
frequency-independent self-energy �n = −i�N , where �N =
(1 − FN )/(πN0) and the constant FN is given by

1 =
〈

FN

F 2
N + (πN0W )2

〉
W

. (C2)

Note that Eq. (C2) does not have a solution for sufficiently
broad distributions P (W ). This is an artifact of the CPA, as can
be shown readily, if we take for Ps(U ) and Pm(V ) Lorentzians
with widths �s and �, respectively. In fact, in that case also
P (W ) is a Lorentzian with width � + �s and Eq. (C2) implies
that 1 − FN = πN0(� + �s), or, in other words, the normal-
state self-energy is given by the width of P (W ), �N = � + �s .
However, since Eq. (C2) clearly requires that FN > 0, the CPA
solution is valid only for πN0�N < 1.

On the other hand, as shown by Lloyd [20], the normal-state
model with a Lorentzian distribution P (W ) is exactly solvable
for all values of �N , thus the criterion πN0�N < 1 can not
have any physical meaning and it must be an artifact of the
CPA. It should be pointed out, however, that in its region of
validity, the CPA does reproduce the exact self-energy of the
Lloyd model [20].

APPENDIX D: THERMODYNAMICS
OF THE DYNES SUPERCONDUCTORS

Let us assume that the pairing in the Dynes superconduc-
tors is driven by a local phonon-mediated electron-electron
interaction Uph which is present up to a finite frequency cutoff

�. Then, at the mean-field level, the off-diagonal part of the
potential V̂ is determined by the self-consistent equation

�̄ = Uph〈ψ↑(r)ψ↓(r)〉, (D1)

where ψσ (r) are the annihilation operators for electrons at
site r. After Fourier transformation to momentum space with
annihilation operators ckσ , this equation can be written as

�̄ = Uph

N

∑
k

〈ck↑c−k↓〉 = −Uph

N

∑
k

Ĝ12
M (k,τ = 0+), (D2)

where N is the number of lattice sites and Ĝ12
M is the

off-diagonal component of the averaged Green’s function.
Performing the temporal Fourier transformation of the Green’s
function and making use of the explicit form of ĜM , Eq. (B1),
together with the result χn = 0, Eq. (D2) can be written as

�̄ = Uph
T

N

∑
k,ωm

Zm�m

Z2
m

(
ω2

m + �2
m

) + ε2
k

. (D3)

Let us note that the momentum summation in Eq. (D3) can be
replaced by energy integration, which in turn can be performed
explicitly. Imposing furthermore the frequency cutoff �, this
leads to the result

�̄ = λπT

�∑
ωm=−�

�m√
ω2

m + �2
m

, (D4)

where λ = N0Uph is a dimensionless coupling constant. Note
that the wave-function renormalization Zm drops out from the
right-hand side. If in Eq. (D4) we make use of the frequency
dependence of the gap function of a Dynes superconductor,
valid for both signs of ωn,

�m = |ωm|
|ωm| + �

�̄,

we finally end up with the self-consistent Eq. (10) from the
main text. It is worth pointing out that Eq. (10) from the main
text does not contain the pair-conserving scattering rate �s ,
and this is consistent with the Anderson theorem.

In Fig. 5 we show the temperature dependence of the ideal
gaps �̄(T ) of Dynes superconductors for various pair-breaking
parameters �, which are seen to be essentially BCS-like for
all admissible values of �.

APPENDIX E: EFFECT OF FINITE EXTERNAL
MAGNETIC FIELD

External magnetic field interacts with electrons via two
different mechanisms: via the Zeeman coupling and by
minimal coupling between the electron’s momentum and
the vector potential, which for brevity will be called orbital
coupling. In order to compare the relative importance of the
Zeeman and orbital couplings, we will estimate the critical
fields, i.e., those fields which lead to a complete destruction of
superconductivity, for both mechanisms taken separately. Let
us start by considering the orbital coupling. In a dirty type-II
superconductor such as MoC, the upper critical field Hc2 can be
estimated as μ0Hc2 ∼ �0/(ξ0�), where �0 is the flux quantum,
ξ0 ∼ �vF /� is the coherence length, and � is the mean free
path. On the other hand, due to the Zeeman coupling, the
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FIG. 5. Numerically determined ideal gaps �̄(T ) of Dynes
superconductors for various pair-breaking parameters � for fixed
λ 	 1 and �. The gaps are measured in units of �(0), which is the
gap of the clean system at T = 0. Temperature is displayed in units
of Tc, which is the critical temperature of the clean system.

Cooper pairing will be destroyed by the Pauli depairing field
HP , which can be estimated as μ0HP ∼ �/μB , where μB

is the Bohr magneton [23]. Comparing the two estimates we
find HP /Hc2 ∼ kF �, which shows that in materials which are
close to the metal-insulator transition, the Zeeman and orbital
couplings are of the same order of magnitude. This suggests
that the suppression of �̄ with magnetic field in such samples
should be described qualitatively correctly by keeping only the
Zeeman coupling, of course only at sufficiently large �, where
the transition is continuous. This approximation has been used
in the main text in Figs. 3 and 4.

However, since the Zeeman and orbital couplings are of
comparable magnitude, it is legitimate to ask whether it is
sufficient to keep only the Zeeman coupling in calculating the
effect of the magnetic field on the density of states Nb(ω).
To answer this question, let us remember that, in a wide field
range, type-II superconductors exhibit the vortex state. If the
density of states is to be measured sufficiently far away from
the vortex cores, as is assumed in this work, then the orbital
effect of the magnetic field can be taken into account by the
Doppler shift, which is proportional to the local momentum
of the supercurrent flow q in the point where the density of
states is being measured [24]. This changes the bare electron
Green’s function in the presence of magnetic field to

Ĝ−1
0 (k,ωn) = (iωn − b − δk)τ0 − εkτ3,

where b is the Zeeman energy and δk = vk · q is the Doppler
shift. Note that both pair-breaking fields b and δk enter the
Green’s function in the same way, the only difference being
that δk depends on the direction of k, while b is direction
independent.

FIG. 6. Density of states Nb(ω) of a Dynes superconductor with
�/�(0) = 0.38 and Zeeman coupling b/�(0) = 0.16, when the gap
is reduced to �̄b(0)/�(0) = 0.46 (see Fig. 4 of the main text). Note
that the effect of the orbital coupling δ is very mild up to large values
δ ∼ 2b. Moreover, the peak-to-peak distance of Nb(ω) exhibits further
increase due to orbital effects.

In the presence of the Doppler shift, the density of states of
a 3D superconductor changes to

Nb(ω) = 1

4

∑
±

∫ π

0
dθ sin θN (ω ± b − vF q cos θ ), (E1)

which shows that the Doppler shift and the Zeeman coupling
modify the density of states in a similar fashion.

Finally, we need to fix the magnitude of δ = vF q. Obvi-
ously, δ is position dependent, but it is easy to see that on
the boundaries of the flux-lattice cells, δ has to vanish by
symmetry. This means that the results presented in Fig. 4 of
the main text are directly applicable at such boundaries [25].
Moreover, Fig. 6 shows that the orbital effects on Nb(ω) are
small with respect to the effect of the Zeeman coupling up to
large values of δ, which shows that keeping only the Zeeman
coupling in estimating Nb(ω) should be a good approximation
in a quite broad range of positions away from the vortex
centers.

APPENDIX F: REMARKS ON THE EXPERIMENT
OF SZABÓ et al.

The differential tunneling conductance at a finite voltage V

between a featureless normal metal and a superconductor with
density of states N (ω) is at finite temperatures given by

G(V ) ∝
∫

dωN (ω + eV )

(
− ∂f

∂ω

)
, (F1)

where f (ω) is the Fermi-Dirac distribution. Note that in the
zero-temperature limit −∂f/∂ω reduces to a delta-function and
G(V ) becomes directly proportional to N (eV ). The fits shown
in Fig. 1 of the main text were done making use of Eq. (F1)
with f (ω) taken at the finite experimental temperature, and the
density of states N (ω) was described by the Dynes formula.
Fitting parameters �̄ and � which have been used in those fits
are shown in Table I.

Note that with decreasing film thickness d, the pair-
breaking parameter � increases (the slight nonmonotonicity
of the �(d) dependence will be discussed later), while the
ideal superconducting gap �̄ decreases. Let us first discuss the
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TABLE I. Fitting parameters �̄ and � which have been used in
Fig. 1 of the main text for films with varying thickness d .

d(nm) 3 5 10 30

�(meV) 0.19 0.63 1.12 1.22
�(meV) 0.16 0.21 0.1 10−3

d dependence of �. If our interpretation of the Dynes formula
in terms of the Lorentzian distribution of pair-breaking fields
is applicable to the data of Szabó et al. [4], then the width of
the distribution Pm(V ) has to increase with decreasing d. This
will obviously happen if the effective concentration of the pair
breakers grows with decreasing d. One possible scenario of
how this could happen is to assume that the pair breakers are
located in the vicinity of the interface between the film and the
substrate.

Next we discuss the thickness dependence of �̄. Since �

in the thickest sample is negligible and since T 	 �̄, we will
assume that the T = 0 gap of a system without pair breakers,
�(0), is equal to the value of �̄ for d = 30 nm, in other
words �(0) = 1.22 meV. Switching on a finite pair-breaking
� should lead then to a decrease of �̄(0) described by
�̄(0) = √

�(0)[�(0) − 2�], see main text. This prediction is
shown in Fig. 7, together with the experimental data taken from
Table I. Here we have assumed that the T = 0 values �̄(0) can
be approximated by the measured values of �̄. This should
be a good approximation, except perhaps for the thinnest
sample, whose Tc is roughly only two times larger than the
experimental temperature.

30 nm
10 nm

5 nm

3 nm

0.0 0.1 0.2 0.3 0.4 0.5
0.0
0.2
0.4
0.6
0.8
1.0

Γ/Δ(0)

Δ(
0)
/Δ
(0
)

I

FIG. 7. Theoretical prediction for the evolution of the ideal
superconducting gap �̄(0) with the pair-breaking parameter � of
a Dynes superconductor. Experimental data are shown as red dots.

Figure 7 shows that the initial decrease of �̄(0) with
increasing � is captured well by our theory. However, the
agreement between theory and experiment breaks down for
the two thinnest films. This signals that different physical
phenomena, not included in our theory, start to play role in
such very thin films. We have learned recently that there are
indications that in those films, which are close to the Ioffe-
Regel limit, the normal-state density of states might exhibit
the Altshuler-Aronov singularity [26]. If this were true, then
the normal-state conductance GN (V ) would not be constant
and, in the most naive approach, different G(V )/GN (V ) curves
would have to be fitted by the Dynes formula. It is plausible
that also the nonmonotonic behavior of �(d) might be caused
by the same physics.
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