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We propose to extract the quasiparticle density of states (DOS) of the superconductor directly from the
experimentally measured superconductor-insulator-superconductor junction tunneling data by applying the
maximum entropy method to the nonlinear systems. It merits the advantage of model independence with minimum
a priori assumptions. Various components of the proposed method have been carefully investigated, including
the meaning of the targeting function, the mock function, as well as the role and the designation of the input
parameters. The validity of the developed scheme is shown by two kinds of tests for systems with known
DOS. As a preliminary application to a Bi2Sr2CaCu2O8+δ sample with its critical temperature Tc = 89 K, we
extract the DOS from the measured intrinsic Josephson junction current data at temperatures of T = 4.2 K,
45 K, 55 K, 95 K, and 130 K. The energy gap decreases with increasing temperature below Tc, while above Tc,
a kind of energy gap survives, which provides an angle to investigate the pseudogap phenomenon in high-Tc

superconductors. The developed method itself might be a useful tool for future applications in various fields.
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I. INTRODUCTION

It has been more than two and a half decades since the
seminal discovery of high-temperature superconductivity in
cuprates [1]. In spite of the enormous progress made in
materials synthesis, crystal growth, experimental studies of
physical properties, and theoretical interpretation, there is still
no consensus regarding the superconductivity mechanisms, in
association with the so-called “pseudogap” phenomena [2], in
these cuprate compounds.

The study of the quasiparticle density of states (DOS)
plays a central role in condensed matter physics, especially
in strongly correlated many-body systems including high-
temperature superconductors. In this paper, we propose to
extract the electronic DOS from the directly measured I (V )
curve data of a superconductor-insulator-superconductor (SIS)
tunneling junction [3] with the application of the maximum
entropy method [4–10]. The advantage of such an approach
is that it is model-independent with minimum a priori
assumptions.

It is expected and desirable to apply such an inversion
method to the existing experimental data of the SIS tunneling
junction, and to interpret the underlying physics of the ex-
tracted DOS curves for the cuprate superconductors. However,
as a newly proposed method, we would like to focus more on
the method itself in this paper, i.e., to explain and attest the
validity of the method, and meanwhile, to use some of the
recently reported experimental tunneling data on the intrinsic
Josephson junctions (IJJs) of Bi2Sr2CaCu2O8+δ (BSCCO)
superconductors to show the capacity and the strength of the
method. In particular, we discuss the criterion to determine
the parameter α, which controls the competition between
the squared error term and the information entropy term
of the method. We suggest a stepwise process to adjust the
mock function which would keep our solutions steering on
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the right track. We design two kinds of tests to examine the
applicability of the inversion method.

As a preliminary study, we consider in this paper a
sample doped close to the optimal doping with its dop-
ing concentration as δ = 0.19 and the critical temperature
Tc = 89 K (OP89 K) [11,12]. The DOSs at temperatures of
T = 4.2 K, 45 K, 55 K, 95 K, and 130 K are successfully
extracted from the corresponding experimentally measured
I (V ) curves. Below Tc, it is observed that the energy gap
decreases with increasing temperature, while above Tc, the
gap actually survives. Considering the continuous evolution
of the quasiparticle DOS versus the temperature, we may find
that the present study has provided a fresh angle to tackle the
pseudogap phenomenon in high-Tc superconductors.

The paper is organized as follows: In Sec. II we extend the
maximum entropy approach to nonlinear systems and develop
a scheme to extract the quasiparticle DOS directly from the
experimentally measured I (V ) data. In Sec. III, we discuss
the flexibility of the mock function and show the validity of
our scheme with two examples. In Sec. IV, we apply the
approach to the IJJ data performed on the optimally doped
sample OP89K and present the obtained DOS curves. The
energy gap persisting well above Tc is discussed. A summary
is given in Sec. V.

II. MAXIMUM ENTROPY METHOD

A. Statement of the problem

The tunneling current as a function of voltage bias across
the SIS tunneling junction can be often expressed as [13]

I (Vi) = 1

eRN

∫ +∞

−∞
N (ω)N (ω′

i)[f (ω) − f (ω′
i)]dω, (1)

where ω′
i = ω + eVi , f (ω) is the Fermi distribution function,

and RN is the resistance of the circuit. The index i denotes the
ith measurement of tunneling current with the bias voltage Vi .
In Eq. (1), N (ω) is the targeting quantity we are interested in.
For those conventional SIS tunneling junctions sandwiched

2469-9950/2016/94(14)/144505(8) 144505-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.144505


SUI, WANG, TANG, AND SU PHYSICAL REVIEW B 94, 144505 (2016)

between two identical isotropic s-wave superconductors,
Eq. (1) often works well in which case the N (ω) can be
identified as the physical density of states. On the other
hand, for the SIS intrinsic Josephson junctions growing on the
crystal layers of the unconventional cuprate high-temperature
superconductors, the N (ω) in Eq. (1) can be interpreted as
the second-order azimuthal moment of the DOS, which can
also be understood as a mean DOS averaging the angle-
resolved DOS with a proper weight function (see Appendix
for more details). However, as shown also in the Appendix,
the curves of the DOS and those of its second-order moment
are qualitatively similar to each other. We would like to keep
the above understandings in mind and ignore formally the dif-
ferences of the mentioned two cases such that we name N (ω)
the “density of states” throughout this paper for simplicity.

Since the tunneling current I (V ) of Eq. (1) in principle
can be measured precisely with advanced technology, can
we extract the DOS N (ω) with enough precision through
Eq. (1)? It is frequent to parametrize the DOS N (ω) with an ad
hoc expression, and the parameters are determined by fitting
Eq. (1) to the experimentally measured tunneling current Ie(Vi)
[14–20]. Obviously underlying physical assumptions have
been already built in implicitly in such parametrization
process. What we want is to have a model-independent way
to extract the DOS N (ω) directly from the experimentally
measured Ie(Vi) data via Eq. (1) with as few assumptions as
possible.

Equation (1) can be viewed as a functional response relation
with N (ω) as its input and Ic(V ) its outcome, where index
c means that the current Ic(V ) is calculated by Eq. (1).
Our interest is to acquire the most probable DOS N (ω)
which produces the outcome Ic(Vi), in coincidence with the
experimentally measured tunneling current Ie(Vi) as precisely
as possible.

B. The inversion method

For this purpose, we introduce the posterior probabil-
ity P [N (ω)|Ie(Vi)], which is the conditional probability
of N (ω) with the event Ic(Vi) to have occurred as the
measured Ie(Vi). It is known [6–9] that P [N (ω)|Ie(Vi)] ∝
P [Ie(Vi)|N (ω)]P [N (ω)], in which the prior probability
P [N (ω)] is the probability that the DOS as its functional argu-
ments takes the designated form N (ω), and P [Ie(Vi)|N (ω)],
the so-called likelihood functional, is the conditional probabil-
ity of producing the experimentally measured data Ie(Vi) from
a given function N (ω).

By applying the maximum entropy method, the posterior
probability

P [N (ω)|Ie(Vi)] ∝ e−L (2)

with L = 1
2χ2 − αS, where the generalized Shannon-Jaynes

entropy [4]

S =
∫

dω

[
N (ω) − M(ω) − N (ω) ln

N (ω)

M(ω)

]
(3)

is contributed by the prior probability P [N (ω)], and the sum
of squared errors

χ2 =
∑

i

[Ie(Vi) − Ic(Vi)]
2/σ 2

i (4)

is due to the likelihood functional P [Ie(Vi)|N (ω)]. In the
above expressions, σi is the i-dependent root-mean-square
error and M(ω) is a model function, reflecting our best
prior knowledge for N (ω), which is crucial for correctly
extracting the DOS from the experimental I (V ) curve, and
should respect the following constraints: (i) it is positive;
(ii) it becomes 1 when |ω| → ∞. Then the most probable
N (ω) can be obtained by optimizing the posterior probability
P [N (ω)|Ie(Vi)] [Eqs. (2)–(4)] with respect to N (ω). Formally,
this has the appearance of a conditional extrema problem: to
maximize the entropy S subject to a constraint on χ2 with a
Lagrange multiplier 1

α
.

Here we give a brief description of the numerical scheme
adopted. First of all, we should discretize the continuous
variable ω into a set of discrete numbers {ωk}. The densities of
states defined on {ωk} are denoted by {xk} ≡ {N (ωk)}. Without
loss of generality we consider the nth {x(n)

k } generated in the
nth round of iteration. Since the intervals of the {ωk} sequence
usually may not be divided exactly by the values of the bias
voltage eVi , in order to carry out the integral over ω on the
right-hand side of Eq. (1), we should construct by interpolation
a continuous function {N (n)(ω)} which is the continuation of
the discrete set {x(n)

k }. To make the evaluation more efficient,
the obtained B-spline representation of the interpolated DOS
should be further converted to a piecewise polynomial rep-
resentation [21]. We may then calculate the current I (n)

c (Vi)
for each Vi as well as the entropy S(n) with the density of
states in Eqs. (1) and (3) substituted by the interpolated DOS
{N (n)(ω)}, respectively. We may further introduce the χ (n)2

with the Ic(Vi) in Eq. (4) replaced by I (n)
c (Vi). Finally, we

obtain, for the nth round, L(n) = 1
2χ (n)2 − αS(n). We stress

that, due to {N (n)(ω)} being deduced from the sequence {x(n)
k }

by interpolation, the L(n) is an implicit function of the {x(n)
k }

sequence. Kept with such an understanding, L(n) can be written
as L(n) ≡ L[x(n)

1 ,x
(n)
2 · · · ] ≡ L[{x(n)

k }]; then the convergence
criterion of the iteration process is that the following inequality
is satisfied: √√√√∑

k

∣∣∣∣∣∂L(n)

∂x
(n)
k

∣∣∣∣∣
2

< ε, (5)

where the gradients are calculated by the finite-difference
method and ε is the gradient tolerance.

If the convergence criterion cannot be satisfied at the nth
round, we then have to get into the (n + 1)th round of iteration
and to generate the {x(n+1)

k } with the application of the quasi-
Newton method [22].

C. The competition between χ 2 and S

There are two terms in the exponent of the posterior
probability. The second is a term of information entropy S,
which plays a role to make the DOS N (ω) to meet the mock
function as much as possible, while the first term 1

2χ2, a
term of summation of the squared errors, tends to make the
DOS N (ω)-resulted tunneling current Ic(Vi) to be close to
the experimentally measured tunneling current Ie(Vi). The
parameter α plays a role to control the competition between
these two terms. A big α will make the entropy term take over
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the squared error term and the resulting DOS will be close to
the mock functions. If the parameter α becomes smaller and
smaller, the first term will dominate over the second one and
the extracted solutions will deviate from the mock function
and give smaller χ2.

It appears that with the Ic(Vi) getting closer to the input
Ie(Vi), the resulting DOS N (ω) will meet the physical solution.
However, since the optimization procedure referring to the first
term is imposed directly on the Ic(Vi) which is a complicated
integral over the unknown function N (ω), such optimized
N (ω) is not unique. In particular, fictitious solutions often
occur with unphysical oscillations. On the other hand, the
optimization with respect to the second term will not result
in such fictitious oscillations due to the harmonic nature of
the entropy. Although the mock function provides only partial
information on the physical solutions, it is supposed to favor
solutions lying along the physically right track.

Based upon the above considerations, it is desirable to
choose α small enough to make Ic(Vi) as close as possible to
the input Ie(Vi), and sufficiently large to carry the information
of the mock function and suppress fictitious oscillations. A
reasonable proposal for the choice of the value α is to request
the order of magnitude of [Ic(Vi) − Ie(Vi)]2 to be comparable
with the given root-mean-square error of the ith measurement
σ 2

i or

Ne∑
i=1

[Ic(Vi) − Ie(Vi)]2

σ 2
i

∼ Ne, (6)

where Ne is the number of points of the experimental
measurements.

We would like to suggest a scheme as a preliminary test
of the inversion approach proposed above. We calculate the
tunneling current Ĩe(Vi) resulting from a known density of
states Ñ (ω). We may then pretend that the DOS Ñ (ω) is
unknown, and apply our scheme to Eq. (1) with the Ie(Vi)
identified as the input current Ĩe(Vi) to extract the most
probable DOS N (ω). A careful comparison between the
obtained most probable DOS N (ω) and the known Ñ (ω) would
provide a test of our proposed approach.

In such a test scheme, because of the lack of mean-square
errors, we set them simply to a constant σ 2. Then, as a result,
the parameters α and σ 2 become no longer independent, which
would lead a scaling relation as that, the increase of α can be
compensated by the decrease of σ 2.

A detailed realization of this scheme together with the
corresponding results is shown in the next section.

III. TESTS OF THE MAXIMUM ENTROPY METHOD

In the application of the maximum entropy method, the
mock function M(ω), reflecting our best prior knowledge,
plays an important role. In the process of extraction, we may
adjust the mock function and hence, improve our results by
iteratively inputting increasing amounts of prior knowledge.
Generally, the extracted result with some mock function will
suggest additional information which may help us tune the
mock function in the next round calculation. Especially in
our studies, if we know little about the quasiparticle density
of states, we may use a flat model m1(ω) = 1 to extract

a result N1(ω) and then recalculate the density of states
with a modified mock function m2(ω) which includes some
information of N1(ω) (e.g., a peak). Such a stepwise way
of successive improvement of the mock function as well as
the corresponding resulting DOS curves is recommended, and
meanwhile adopted in the following discussions.

In our calculations, to mimic the quasiparticle DOS of a
superconductor, we take the mock function as the following:
for T < Tc

M(ω) =
{

δ + (1 − δ)
(

ω
ω0

)s
, for 0 � ω � ω0,

1, for ω > ω0,
(7)

with s = 0, 1, or 2. When s = 0, the mock function returns to
the flat model. When s = 1 or 2 with δ = 0, ( ω

ω0
)s resembles

the low-energy behavior of the DOS for a d-wave or an
s-wave superconductor. If the density of states at ω = 0 is
expected to be finite, we may set a finite δ. Moreover, ω0

simulates the possibly existing energy gap, which can be
estimated experimentally as the half of the first peak position
of the experimental dI/dV curve, or theoretically as the peak
position of the extracted DOS with the flat mock function; for
T > Tc,

M(ω) = 1 (8)

for all energies.
The inversion calculation is performed in the domain

ω ∈ [0,ωd ] with ωd much larger than the speculated gap so
that N (ω) is assumed as N (ω) = 1 when ω > ωd . The domain
is discretized inhomogeneously by N points {ωk}, k = 1,
2, . . . , N , with more points distributed over an extension of the
expected DOS peak. In our calculation, we take ωd and N as
large as ωd = 170 meV and N = 70, respectively. The root-
mean-square error σi’s are all set to be 0.1. In the calculation
of I (V ) curve [Eq. (1)], an upper cutoff ωc = 400 meV is
introduced. It is pointed out that our numerical results are not
sensitive to these parameters.

A. Test with s-wave Dynes formula

A modified Bardeen-Cooper-Schrieffer (BCS) density of
states first proposed by Dynes [23],

Ns(ω) = Re

[
ω − i	√

(ω − i	)2 − 
2

]
, (9)

is often used to mimic the tunneling current data, where

 denotes the superconducting gap and 	 accounts for the
lifetime broadening of the quasiparticle states.

At T = 10 K, 100 K, and 200 K with (
,	) = (36,5),
(33,8), (23,10), respectively, we, on the one hand, calculate the
Dynes DOSs designated as Ñ (ω) and generate the Ĩe(Vi) for
Ne = 75 values of Vi via Eq. (1); on the other hand, we take the
generated Ĩe(Vi) as the “experimental data” and solve the DOS
N (ω) with our numerical scheme. The comparisons between
the designated and the extracted DOS curves are presented in
Figs. 1 and 2.

At first, we take the mock function as M(ω) = 1 and
explain how to determine α. For a given α, we may extract
a N (ω) by minimizing L = 1

2χ2 − αS and then calculate the
corresponding χ2(α) with the extracted DOS. As shown in
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FIG. 1. (a) Variations of the calculated χ 2 with the extracted DOSs at different α’s. αc is determined with χ 2(αc) = Ne. (b) Extracted N (ω)
at α = 40 (red circles), 80 (blue diamonds), and 150 (magenta triangles). The solid line denotes the DOS calculated with the Dynes formula
[Eq. (9)] with (
,	) = (36,5). The temperature T = 10 K.

Fig. 1(a), αc is then determined with χ2(αc) = Ne. In Fig. 1(b),
we show the calculated N (ω)’s for different α’s. It is found
that the extracted N (ω) changes slowly with the variation
of α.

In Fig. 2, we explore the evolution of the DOSs with in-
creasingly improved mock functions at different temperatures.
The primary mock function is taken to be the flat model
M(ω) = 1. Such extracted N (ω) fits well with the inserted
Dynes formula at low temperature (T = 10 K). At higher
temperatures (T = 100 K, 200 K), the peak position deviates
more and more. Considering the peak in the DOS curve, we
then set a BCS s-wave-like mock function [Eq. (7) with s = 2
and δ = 0] and recalculate the DOSs at T = 10 K, 100 K, and
200 K with ω0 = 40 meV, 39 meV, and 32 meV, respectively,
where the ω0 value is the corresponding DOS peak position
extracted from the first-round calculation with the flat mock
function. As shown in Fig. 2, the extracted results can now
give the correct peak position. However, an unexpected small
peak appears around 10 meV due to the mistaken assumption
of zero DOS at zero energy. With the help of a finite δ and
hence, a finite DOS at zero energy implemented in Eq. (7), we
further improve the mock function and extract the DOSs most

consistent with the inserted Dynes formula at low and high
temperatures.

B. Test with a d-wave superconductor

Another interesting example of the suggested test scheme
is the SIS tunneling current in the d-wave BCS theory, where
the DOS Ñ (ω) is known as [24]

Ñ (ω)/N0 =
{

2
π
xK(x), for x � 1,

2
π
K(x−1), for x > 1,

(10)

in which x = ω/
 with 
 the superconducting energy gap
and K(x) the complete elliptic integral.

Differently from the phenomenological Dynes formula, the
DOS now vanishes at zero energy. More interestingly, the
gap is a universal function of the temperature for a BCS
superconductor if it is scaled by the gap value measured at
zero temperature and by the critical temperature Tc, so the
DOS curves calculated at a single temperature characterize
the full temperature dependence. However, in the maximum
entropy inversion approach engaged here, such scaling relation
could break down due to the introduction of the mock function

FIG. 2. Extracted DOSs at temperatures (a) T = 10 K, (b) T = 100 K, and (c) T = 200 K with three different mock functions: (i) flat mock
function M(ω) = 1 (blue squares), (ii) s-wave-like mock function Eq. (7) with s = 2 and δ = 0 (red circles), and (iii) mixed mock function
Eq. (7) with s = 2 and a finite δ of 0.15, 0.24, and 0.4 at temperature of 10 K, 100 K, and 200 K, respectively (magenta triangles). The solid
line in (a)–(c) denotes the DOS of the Dynes formula [Eq. (9)] calculated with (
,	) = (36,5) (a), (33,8) (b), and (23,10) (c), respectively.
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FIG. 3. Extracted DOSs at various temperatures from T = 10 K to T = 190 K with the mock function of (1) M(ω) = 1 (blue squares) and
(2) Eq. (7) with s = 1, δ = 0, and ω0 = 36 meV (a), 35 meV (b), 33 meV (c), 26 meV (d), 20 meV (e), and 10 meV (f) (red circles). The solid
line in (a)–(f) denotes the DOS of the d-wave superconductor [Eq. (10)] calculated at the given temperature.

[Eqs. (7) and (8)]. In particular, it is desirable to see whether
our approach can still produce meaningful results when the
gap shrinks with increasing temperature.

The tests are performed with two different mock functions
at T = 10 K, 50 K, 100 K, 150 K, 170 K, and 190 K, with

the gap value 
 at T = 0 K chosen to be 36 meV. The
comparisons between the extracted N (ω)’s and Ñ (ω) are
shown in Fig. 3.

With the flat mock function M(ω) = 1, the extracted N (ω)’s
reproduce the peak structure and fit the inserted d-wave DOS
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FIG. 4. Extracted DOSs at T = 150 K with α = 1 (dashed line),
50 (red circles), 100 (blue squares), and 200 (magenta triangles). The
solid line denotes the d-wave DOS [Eq. (10)] at T = 150 K.

Ñ (ω) quite well at low and moderate temperatures except
a finite but tiny value at zero energy. At high temperatures
(T = 170 K, 190 K), the deviations at low energies become
large and especially, some oscillations appear on the right of
the peak.

Considering the peak structure, we then use a d-wave-like
mock function as described in Eq. (7) with s = 1, δ = 0,
and ω0 = 36 meV (T = 10 K), 35 meV (T = 50 K), 33 meV
(T = 100 K), 26 meV (T = 150 K), 20 meV (T = 170 K),
and 10 meV (T = 190 K). Now, the results are improved
much; i.e., the extracted N (ω)’s coincide well with the inserted
Ñ (ω)’s at each temperature and the oscillations diminish
greatly.

As discussed in Sec. II, spurious oscillations may enter
into our results. To get more insights, in Fig. 4, we show
the extracted DOSs with four different α’s at T = 150 K. The
oscillations are easily seen at small α and are depressed quickly
at large α. Generally, we may improve our results with a higher
accuracy, and more effectively, with a better mock function
containing more information of our target quantity.

From Figs. 1, 2, 3, and 4, we can see that the maximum
entropy method is effective in extracting the DOS from the
experimental data. The solutions are quite stable and can be
ameliorated by an increasingly improved mock function. In the
process of extraction, it is suggested to provide our best prior
knowledge and speculate a suitable mock function as close as
possible to the real case.

IV. PRELIMINARY APPLICATION TO Bi2Sr2CaCu2O8+δ

Now we apply our approach to the recently reported I (V )
curve, which is a precise measurement performed on intrinsic
Josephson junctions (IJJs) of Bi2Sr2CaCu2O8+δ superconduc-
tors with the CuO2 double layers as superconducting electrodes
and BiO/SrO interlayers as the tunnel barrier [11,12]. In our
process of extraction, the mock function is chosen as in Eqs. (7)
and (8) with δ = 0.

It is well established that the superconducting gap in high-
Tc superconductors has a dominant d-wave symmetry across

FIG. 5. Extracted DOSs from the I (V ) curve measured at T =
4.2 K with α = 50, ω0 = 30 meV, s = 1 (filled circles), and s = 2
(open triangles).

the entire phase diagram, although a smaller s component
cannot be ruled out [25]. The pairing symmetry may also
depend on inhomogeneities, doping, and impurities. For a d-
wave superconductor, the quasiparticle density of states has a
logarithmic peak at ω = 
sc and increases linearly with ω for
small ω/
sc. In a pilot calculation, we have tested the DOS
inversion calculation for a specified I (V ) curve measured at
T = 4.2 K, with s = 1 and 2, yet ω0 = 30 meV being kept
fixed. As shown in Fig. 5, the two calculated DOS curves
coincide with each other pretty well except a little difference at
small ω, which will not affect our main conclusions. Although
we have no preference for the parameters s = 1 or 2, we will
set s = 1 in the following calculations.

Another parameter ω0 in Eq. (7) is estimated as half of
the first peak position of the experimental dI/dV curve. At
T = 4.2 K, 45 K, and 55 K, the obtained ω0 equals 37 meV,
36 meV, and 35 meV, respectively. These values are consistent
with the peak positions of the extracted DOSs with the flat
mock function. For brevity, we do not show these curves
here.

With the mock function as well as the parameters discussed
above, we extract N (ω)’s at temperatures T = 4.2 K, 45 K,
55 K, 95 K, and 130 K, as shown in Fig. 6. Below Tc, a sharp
peak structure, corresponding to an energy gap, is found in
the N (ω) curve. This energy gap decreases with increasing
temperature. Interestingly, a wide, but still well-shaped, peak
can be also observed above Tc, which indicates that a kind of
energy gap is opened when the superconductivity disappears.
We emphasize that the result of a finite gap surviving at
temperature T > Tc is obtained without any a priori input
through the mock function [Eq. (8)]. Although the pseudogap
above Tc has been observed in various experiments and has
been extensively discussed for many years (see, for example,
Refs. [2] and [3]), its origin and its relation to the mechanism
of high-Tc superconductivity are still unclear. Our study
provides an angle to investigate this phenomenon, exhibiting
its evolution continuously from below Tc to high above it.
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FIG. 6. Extracted DOSs in OP89K at temperatures T = 4.2 K
(black squares), 45 K (blue circles), 55 K (cyan stars), 95 K (red
triangles), and 130 K (magenta diamonds).

More results, including the extracted N (ω)’s around Tc

and those DOS curves obtained in the underdoped and
overdoped samples, will be presented elsewhere, together with
a discussion on the complicated phase diagram of high-Tc

superconductors [26].

V. SUMMARY

In this paper, we propose to extract the quasiparticle density
of states of a superconductor directly from the experimentally
measured superconductor-insulator-superconductor (SIS) tun-
neling data by applying the maximum entropy method to the
tunneling current expression Eq. (1). Various ingredients of
the proposed method have been carefully examined, including
the meaning of the target function N (ω) in Eq. (1), the role and
the designation of the input parameters α, as well as the mock
function. The method has the advantage of being independent
of microscopic/theoretical models for the superconductors
under investigation. The validity of the developed scheme
is shown by two tests for systems with known DOSs, of
which one is an s-wave superconductor with its DOS given
by the Dynes formula and the other is the BCS d-wave
superconductor with the known quasiparticle DOS given by
Won and Maki [24]. The resulting numerical solutions are
stable with minimum a priori physical assumptions and can
be improved by successive refinements of the mock function.

In a preliminary application to the cuprate superconductor
Bi2Sr2CaCu2O8+δ (OP89K), we obtain a series of DOS
curves at temperatures T = 4.2 K, 45 K, 55 K, 95 K, and
130 K. Below Tc, the energy gap decreases with increasing
temperature. Above Tc, the energy gap survives when super-
conductivity disappears. Imaged by the continuous evolution
of the quasiparticle DOS versus temperature, the energy gap
inferred from these calculated DOS curves evolves smoothly
from the temperature below Tc to that above Tc, which may
provide a fresh angle to tackle the pseudogap phenomenon in
high-Tc superconductors.

Our method might be an interesting and possibly useful
tool for future applications in various fields, particularly, for
the study of the nature of cuprate high-Tc superconductivity.

ACKNOWLEDGMENTS

The authors would like to thank Prof. S. P. Zhao for
providing the experimental data as well as for helpful
discussions. This work is partly supported by the Natural
Science Foundation of China (11121403 and 11434015) and
973 projects (2010CB922904 and 2011CB921500).

APPENDIX

It is known that the tunneling current as a function of voltage
bias across the SIS tunneling junction can be expressed as [27]

I (eV ) = 2e
∑
	k, 	p

|T	k, 	p|2
∫ ∞

−∞

dω

2π
A(R)(	k,ω)

×A(L)( 	p,ω + eV )[f (ω) − f (ω + eV )], (A1)

where A(R)(	k,ω) and A(L)( 	p,ω + eV ) are the spectral func-
tions for the right- and left-hand side superconductors of the
tunneling junction, respectively. For a conventional isotropic
superconductor sandwiched with a tunneling junction, the
momentum dependence of tunneling matrix elements can be
often ignored, i.e.,

|T	k, 	p|2 ∼ |T |2; (A2)

then the tunneling current Eq. (A1) can be simplified to the
form Eq. (1), in which the coefficient

1

eRN

= 4πe|T |2, (A3)

and

N (ω) = 1

2π

∑
	k

A(	k,ω) (A4)

is the physical DOS [27]. For the layered high-Tc supercon-
ductor samples such as BSCCO, the intrinsic SIS junctions are
grown on the crystal layers. The tunneling quasiparticle moves
along the C-axis direction perpendicular to the CuO planes,
with a velocity estimated to be proportional to cos2(2ϕ), where
ϕ is the in-plane angle of the particle momentum. Following
Bardeen [28] and Harrison [29], the tunneling matrix element
is proportional to the velocity of the quasiparticle, which
results in [30]

|T	k, 	p|2 ∼ 4|T0|2 cos2(2ϕL) cos2(2ϕR). (A5)

Substituting expression Eq. (A5) into Eq. (A1), it can be
verified straightforwardly that the tunneling current can be put
into a form again coincident with Eq. (1), yet the N (ω) is no
longer DOS, and becomes

N (ω) = 1

2π

∑
	k

2 cos2(2ϕ)A(	k,ω) (A6)

as the second-order azimuthal moment of the DOS.
We may introduce

Nd (ω,ϕ) =
∑

	k
δ(ϕ − ϕk̂)A(	k,ω) (A7)

with 	k = (kx,ky) = (k cos ϕk̂,k sin ϕk̂), which has the physical
meaning as the angle-resolved DOS of the quasiparticles.
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FIG. 7. Calculated DOS N (ω) from Eqs. (A8) and (A9) with m =
0 (dotted line) and m = 1 (solid line), respectively. 
 = 36 meV.

Then, both Eqs. (A4) and (A6) can be expressed as

N (ω) = 2m

2π

∫ 2π

0
cos2m(2ϕ)Nd (ω,ϕ)dϕ (A8)

with m = 0 and 1, respectively, where a unified boundary
condition lim

ω→∞ N (ω) = 1 is invoked. Equation (A8) can also

be viewed as a mean DOS averaging the angle-resolved
DOS over the azimuthal angle ϕ with a weight function
2m cos2m(2ϕ) [16–19].

For comparison of the two cases, we calculate numerically
N (ω) curves following Eq. (A8) with the application of d-wave
BCS theory as that

Nd (ω,ϕ) = Re

[
ω√

ω2 − 
2 cos2 2ϕ

]
, (A9)

where 
 is chosen to be 36 meV. As shown in Fig. 7, the DOS
curves with m = 0 and 1 exhibit similar shape with a peak
at the same position. The discrepancy between them becomes
apparent in the low-energy region, where the curve of m = 0
approaches zero linearly while that of m = 1 drops down to
zero much more quickly.

We note that in the case in which the tunneling is specular
for a planar junction, the two summations

∑
	k and

∑
	p in

Eq. (A1) become no longer independent of each other due to
the conservation of in-plane momentum. Then, Eq. (1) breaks
down [29].
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