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We calculate the electronic spin susceptibility and spin-lattice relaxation rate in a singlet superconductor near
a pair-breaking surface, or in a domain wall of the order parameter. We directly link the presence of high-density
Andreev bound states in the inhomogeneous region, combined with coherence factors, to the enhancement of the
susceptibility above the normal state’s value for certain q vectors. Besides the dominant peak at ferromagnetic
vector q = 0, we find significant enhancement of antiferromagnetic correlations at vectors q � 2kf , with q along
the domain wall in an S-wave superconductor, and across the domain wall in D-wave (nodes along the wall).
These features are destroyed by applying a moderate Zeeman field that splits the zero-energy peak. We solve
Bogoliubov-de Gennes equations in momentum space and discuss the deviation of our results from the lattice
models investigated previously. Large enhancement of the spin-lattice relaxation rate T −1

1 at the domain wall
provides a clear signature of the quasiparticle bound states, and is in good agreement with recent experiment in
organic superconductor κ-(BEDT-TTF)2Cu(NCS)2.
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I. INTRODUCTION

Soon after formulation of the BCS theory [1] Fulde, Ferrel
[2] and Larkin, Ovchinnikov [3] (FFLO) pointed out that
nonuniform superconducting states play an important role in
strong magnetic fields or in magnetically active materials. The
most characteristic feature of nonuniform superconductors are
distinct quasiparticle states that lie inside the energy gap
of the bulk phase. They appear at pair-breaking surfaces
in unconventional superconductors [4], vortex cores [5],
heterostructures [6], and recently they were connected to
topological properties of the order parameter [7,8]. Generally
known as Andreev bound states (ABSs) they are localized, for
example, near a surface of a superconductor and decay into
the bulk within a few coherence lengths ξc = �vf /2πkBTc. If
the bound states are all concentrated at one energy, producing
a strong peak in the density of states (DOS), they dramatically
change properties of the surface layer.

One important question is how the bound states affect
magnetic properties of a material, in particular electronic
spin susceptibility χ and spin-lattice relaxation rate T −1

1 .
For example, in triplet superfluid 3He these observables may
provide a way to probe surface Majorana states [9,10]. In
singlet superconductors they may be used to manipulate
magnetic properties of the surface layer, or help prove
or disprove existence of FFLO phases. This last goal is
particularly relevant for several materials. In heavy-fermion
superconductor CeCoIn5, can an FFLO phase be the origin
of coexistence [11–13] of antiferromagnetism (AFM) and
superconductivity? On the other hand, is recently observed
[14] enhancement of relaxation rate T −1

1 in organic super-
conductor κ-(BEDT-TTF)2Cu(NCS)2 indeed explained by
Andreev bound states at FFLO domain walls?

Previous investigations of how nonuniform FFLO order
parameter (OP) structures influence magnetic properties used
quasiclassical techniques, and real-space lattice models. The
quasiclassical calculations [15,16] show about 10% enhance-
ment of uniform magnetization inside FFLO domains at high
fields where the FFLO phase appears. However, this technique
cannot say anything about antiferromagnetic correlations with

ordering vectors beyond q ≈ 1/ξc. Several two-dimensional
lattice Hamiltonians have been solved via Bogoliubov-de
Gennes (BdG) equations to investigate coexistence of AFM
order and FFLO states [17–20]. This approach can treat
modulations on the order of Fermi momentum q ∼ 2kf . It was
found that incommensurate spin-density wave (SDW) order
can be induced inside the FFLO phase [17,18]. Other calcula-
tions show that transverse and longitudinal susceptibilities are
enhanced up to 20% in zero field [19]. The incommensurate
part of antiferromagnetic vector q was found mostly to point
along the FFLO planes (i.e., q ⊥ qFFLO) [17,18], independent
of whether the planes were oriented along nodes or antinodes
of the Dx2−y2 order parameter. q across FFLO planes was not
favored, except in the case of atomic-scale FFLO oscillations
[19,20]. The spatially averaged approach [19] has also only
considered small-period modulations of the order parameter.
In Ref. [18] appearance of AFM was correlated with presence
of multiple FFLO domain walls, but no mechanism directly
linking AFM and localized ABS was established.

The effects of the bound states have been investigated
in vortex phases, near vortex cores. The localized states in
cores and enhancement of local density of states (LDOS)
were predicted [21] to produce faster relaxation time T1 of
electronic spins, which was later seen by spatially resolved
NMR in an S-wave superconductor [22]. Bound states can
result in enhancement of T −1

1 over the normal state value
even in D-wave, [23] producing a false Hebel-Slichter peak
below Tc. In Pauli-limited D-wave superconductors vortices
can lead to SDW instability with q ‖ nodes by increasing DOS
for near-nodal directions [24]. Moreover, the core region of
vortices often have enhanced SDW correlations [25–27] with
q across the core, but again the role of the bound states for
these correlations has not been explicitly shown.

To clarify the role of the Andreev bound states and man-
ifestly connect them with magnetic properties, we consider
a prototypical nonuniform structure of Larkin-Ovchinnikov
kind: a domain wall that separates semi-infinite regions of
positive/negative amplitude of the order parameter, Fig. 1. Near
the wall the density of states is strongly peaked for zero-energy
excitations, arising as result of topological properties of
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FIG. 1. (a) Domain wall +� → −� in the x direction with
translational invariance along y. Inset shows relative orientation of
the domain wall plane and internal symmetry of the order parameter,
S (red) or D-wave (blue). (b) The normalized local density of states
N (ε,x)/Nf for S-wave domain wall, and (c) the same for D-wave
with nodes ‖ x. The zero-energy states appear at the domain wall. We
use �0 = 0.05εf throughout the paper that results in ξckf ∼ 12.

Dirac-type equation [7,8]. We consider itinerant two-
dimensional (2D) electrons with S- or D-wave pairing sym-
metry. For D-wave we orient the domain wall along gap nodes
[28], which also corresponds to a pair-breaking surface in
a half-space problem. We solve the Bogoliubov-de Gennes
equations in momentum space, which directly relates the
Fermi surface properties, symmetry of the order parameter,
and momentum dependence of the quasiparticle states to the
observables. This approach also naturally connects to the
quasiclassical theory.

We find that the bound states lead to increase in the
transverse spin susceptibility of a superconductor, which may
lead to SDW ordering. The specific ordering wave vectors q
connect hot spots on the Fermi surface with large bound-state
weights determined by coherence factors, which depend on
the symmetry of the order parameter. We find that generally
S-wave symmetry favors AFM ordering vector along the
domain wall, whereas inside the D-wave nodally oriented
domain wall the ordering vector points across it. We also
calculate relaxation rate T −1

1 for FFLO, that so far has been
lacking. The bound states give large relaxation rate T −1

1 when
quasiparticle transitions between bound states and continuum
states can occur. We find that application of Zeeman field
that splits the zero-energy states by 2μBH generally reduces
tendency toward AFM ordering inside the domain wall.

The remainder of this paper is organized as follows. In
Sec. II we define our two-dimensional model Hamiltonian
with a mean-field two-point order parameter �(x,x′). We solve
it via Bogoliubov-de Gennes equations and find quasiparticle
spectrum and amplitudes in momentum space, which we use to
calculate the electron susceptibility and spin-lattice relaxation
rate. We employ a new numeric technique using a fast Fourier
transform for all momenta near the Fermi surface, which is
more suitable to calculating momentum-dependent quantities.

In Sec. III we present results of the calculations, and we end
in Sec. IV with a discussion of the implications of our findings
for recent experiments. Finally, we provide Appendix with an
outline of the self-consistent method we are using.

II. MODEL

We work with the Hartree-Fock-Bogoliubov (HFB) mean-
field Hamiltonian for a single band

HHFB = 1

2

∫
dxdx′ �†(x)H(x,x′) �(x′), (1)

where we have defined the field operator �†(x) =
(ψ†

↑(x),ψ†
↓(x),ψ↑(x),ψ↓(x)), and H(x,x′) is a 4 × 4 block

matrix

H(x,x′) =
(
Ĥ0 δ(x − x′) �̂(x,x′)
−�̂∗(x,x′) −Ĥ∗

0 δ(x − x′)

)
. (2)

Ĥ0 = [−∇2

2m∗ − εf ]1̂ − μBHσz describes free electrons in a
Zeeman field, m∗ is the effective mass of the electron, εf is the
Fermi energy, H is the applied magnetic field, and μB is the
Bohr magneton. σα={x,y,z} are the Pauli matrices. The singlet
superconducting pair potential is self-consistently defined as

�̂(x,x′) = (iσ y)�(x,x′) (3)

�(x,x′) = V (x − x′)〈ψβ(x′)ψα(x)〉(iσ y)αβ, (4)

where summation over repeated spin indices is implied, and
〈. . .〉 denotes ensemble average. V (x − x′) is the effective
attractive interaction that leads to superconductivity, with the
cutoff energy �.

Since we expect presence of degenerate zero-energy states
we need to define Bogoliubov-Valatin canonical transforma-
tion with some care [6]. We take[

ψμ

ψ†
μ

]
(x) =

∑
n

U (+)
n,μν(x) γnν + U (−)

n,μν(x) γ †
nν, (5)

where the state index n for inhomogeneous superconductor
replaces momentum k, used to label states in uniform super-
conductor. To treat the zero-energy states in the same way
as finite-energy states, n labels all positive energy states, and
half of zero-energy states, as we explain below. The U

(±)
n (x)

are two eigenvectors of the Hamiltonian (2) corresponding to
positive and negative energy branches∫

dx′H(x,x′)U (±)
n (x′) = ±εnU

(±)
n (x). (6)

Due to particle-hole symmetry of HFB Hamiltonian, for each
n there is a pair of ±εn states, related to each other through

U (+)
n,μν(x) =

[
δμν un

−iσ
y
μνvn

]
, U (−)

n,μν(x) =
[−iσ

y
μνv

∗
n

δμν u∗
n

]
.

The non-zero-energy states are naturally represented by γnμ

and γ
†
nμ terms in (5). However as a consequence of the particle-

hole symmetry, the zero-energy states also come in pairs, and
assignment of γ0μ or γ

†
0μ to them is somewhat arbitrary. To

avoid double counting of zero-energy states in (5), we take
half of them and assign it to positive solutions (γ , U (+)) and
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the other half appear as the negative part (γ †, U (−)). To find
the positive energy states we solve Bogoliubov-de Gennes
equations, and in case of singlet superconductivity they are
spin independent:

εnun(x) = ξ (−i∇)un(x) +
∫

dx′�(x,x′)vn(x′)
(7)

εnvn(x) = −ξ (−i∇)∗vn(x) +
∫

dx′�∗(x,x′)un(x′),

where ξ (−i∇) = (−i∇)2/2m∗ − εf . In the Zeeman field the
quasiparticle excitation energy is simply shifted to εnμ =
εn − μBH σz

μμ and the full Hamiltonian in diagonal form

is HHFB = E0 + ∑
nμ εnμγ

†
nμγnμ. Finally, orthogonality of

solutions with n �= n′, and orthogonality of positive and
negative solutions for the same n result in two normalization
conditions:

∫
dx [un(x)u∗

n′(x) + vn(x)v∗
n′(x)] = δnn′ (8)∫

dx[un(x)vn′(x) − vn(x)un′(x)] = 0. (9)

For the domain wall, or stripes configuration, one has
translational invariance along the wall (ŷ) with momentum
quantum numbers {p}. In the transverse direction the wave
function for given p is expanded into the Fourier series

un(x) = eipy

N−1∑
j=0

ũn(kj )eikj x,

(10)

vn(x) = eipy

N−1∑
j=0

ṽn(kj )eikj x .

We employ a fast Fourier transform technique with

kj

kf

=
{

4πj/N, j � N/2
−4π (N − j )/N, j > N/2

and periodic boundary conditions at kf x = 0 and kf x = N/2
(kf is the Fermi momentum). The reasons for beginning
with a doubled Fourier domain (−2π,2π ] is because the
calculation of the relative momentum spin susceptibility will
halve the domain to (−π,π ] while doubling the spatial domain
to (−N/2,N/2). We use N = 212 = 4096 momentum grid
points.

For efficient numerics, we restrict our set of transverse
momenta {kj } for each p to include only those whose normal
excitation energy

ξ (p,kj ) = k2
j + p2

2m∗ − εf (11)

is below an energy cutoff, |ξp,kj
| � �. All higher-energy

solutions to (7) are considered normal with �(x,x′) = 0.
Furthermore, since we are interested in low-energy super-

conducting quasiparticles, we take a separable form of the
pair potential, described by the amplitude that depends on the
center of mass coordinate R, and the internal symmetry profile

g(r) that depends on the relative coordinate r,

R =x + x′

2
r = x − x′,

�(x,x′) =�(R,r) = �(R)

[∫
dL

(2π )2
gL̂eiL·r

]
, (12)

where L is the relative momentum in a Cooper pair. We
consider S-wave and D-wave pairing states:

S-wave: gL̂ = 1

D-wave: gL̂ = sin(2θL̂) or gL̂ = cos(2θL̂), (13)

where θL̂ is the angle of L measured from the x axis. The
profile of the order parameter across the domain wall depends
only on coordinate x, �(R) = �(x).

Using Eqs. (10) for the amplitudes, (7)
becomes a matrix eigenvalue equation for εn,
where the 2N Fourier coefficients, ŨT

n = [ũn(k0),
ũn(k1) . . . ũn(kN−1),ṽn(k0), ṽn(k1) . . . ṽn(kN−1)] form the
eigenvector for each longitudinal momentum p,

εnŨn =
⎛
⎝↔

ξ p

↔
�p

↔
�

∗
p −↔

ξ p

⎞
⎠Ũn, (14)

where
↔
ξ p and

↔
�p are N × N matrices with (i,j )th entries

↔
ξ p(i,j ) =

(
k2
i + p2

2me

− εf

)
δij (15)

↔
�p(i,j ) = gL̂ij

∫
dx �(x)e−i(ki−kj )x (16)

and Lij = ki+kj

2 x̂ + pŷ. Solving (14) we obtain 2N eigen-
states, out of which N have positive (and zero) energies, and N

has mirror negative (and zero) energies. We arrange solutions
from negative to positive energies, and the quantum number
n = (p,n) labels top N energy states. This guarantees that it
goes over all positive εn and half of zero-energy solutions.

We consider a system where we apply a uniform static field
H0, and consider a magnetic response to a small perturbation
of the magnetic field δH(x,ω) = ∫

dteiωt δH(x,t)�(t), where
�(t) is the Heaviside step function. Up to first order in
perturbation the electron magnetization is

Mα(x,ω) = M0,α + δMα(x,ω) (17)

δMα(x,ω) =
∫

dx′ χ
αβ

(x,x′,ω) δHβ (x′,ω), (18)

where M0 is the magnetization in the superconducting state due
to the uniform field H0. The bare susceptibility χ

αβ
(x,x′,ω) is

given by the Kubo formula [29]

χ
αβ

(x,x′,ω) = iμ2
B

∫
dt eiωt 〈[Sα(x,t),Sβ(x′,0)]�(t)〉, (19)

where S(x,t) = ∑
μν ψ†

μ(x,t)σμνψν(x,t) is the spin operator
and ω = ω′ + iω′′ is assumed to have a small imaginary part
for convergence of the time integration (ω′′ � �0, �0 is the
gap energy at T = 0,H = 0).

Without effects that introduce spin-orbit coupling, the
isotropy of spin space is broken only by H0. Then the
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susceptibility tensor is diagonal in longitudinal (δH ‖ H0)
transverse (δH ⊥ H0) space. We are mostly interested in cases
when the induced or spontaneous magnetization is orthogonal
to uniform state δM(q,ω) ⊥ M0. Using the Bogoliubov-
Valatin transformation, the normalized transverse susceptibil-
ity is

χ⊥(x,x′,ω) = 2μ2
B

χ0

∑
nn′μ

[
Ann′(x)A∗

nn′(x′)�+
nμ;n′μ̄(ω)

+ 1

2
C∗

nn′(x)Cnn′(x′)�−
nμ;n′μ(ω)

+ 1

2
Cnn′(x)C∗

nn′(x′)�−
nμ;n′μ(−ω)

]
. (20)

Here μ̄ denotes spin state opposite to μ,

�±
nμ;n′ν(ω) = f (εnμ) − f (±εn′ν)

ω + εnμ ∓ εn′ν
, (21)

f (ε) is the Fermi distribution function, and χ0 = 2μ2
BNf is

the Pauli susceptibility in the normal state, Nf is the DOS
at the Fermi energy per spin projection. For energies close to
zero, or much less than temperature spread of the Fermi-Dirac
distribution,

�±
nμ;n′ν(ω) ≈ ∂f

∂ε

εnμ ∓ εn′ν

ω + εnμ ∓ εn′ν
= εnμ ∓ εn′ν

4T (ω + εnμ ∓ εn′ν)
.

Combinations of quasiparticle amplitudes

Ann′(x) = u∗
n(x)un′(x) + v∗

n(x)vn′(x) (22)

Cnn′(x) = un(x)vn′(x) − vn(x)un′(x) (23)

are the coherence factors (of type II corresponding to perturba-
tions that break time reversal symmetry [30]). They determine
the spatial dependence of susceptibility, while the remaining
terms are functions of energy and temperature.

We note that the combinations Ann′(x)A∗
nn′(x′) and

C∗
nn′(x)Cnn′(x′) in (20) under coordinate exchange x ↔ x′

(r ↔ −r) become complex conjugated. This symmetry guar-
antees that local susceptibility at wave vector q

χ(R,q,ω) =
∫

dr e−iq·rχ(R,r,ω) = χ ′ + iχ ′′ (24)

has real part χ ′ that depends only on the real part of �±
nμ;n′ν ,

and the imaginary part χ ′′ has contributions only from the
imaginary part of �±

nμ;n′ν .

Lastly, we find the spin-lattice relaxation rate T −1
1 due to the

hyperfine interaction between nuclear spins I(xs) and electron
spins S(x)

Hhf =
∫

dxdxs I(xs) · A(xs − x) · S(x). (25)

A(r) is the 3 × 3 hyperfine matrix. For transitions between
spin-1/2 nuclear states, which are well below the thermal
energy (εi − εf = ω � T ), and if A(r) is strongly peaked
near r = 0, the spin-lattice relaxation rate due to A⊥ is found

using first-order perturbation theory [31],

T −1
1 (R,ω) = 2T lim

ω→0

∑
q

|A⊥(q)|2 χ ′′
⊥ (R,q,ω)

ω
. (26)

The details of A⊥(q) depend on the interactions of the spin
fields, however, in an effort to focus on the DW effects we
consider only the simplest isotropic coupling, A⊥(q) = A0.

III. RESULTS AND ANALYSIS

We first find the profile of the order parameter for the
domain wall configuration. The details of the self-consistent
calculation are presented in Appendix and the general solution
is shown in Fig. 1(a). The local density of states for spin pro-
jection μ is Nμ(ε,x) = −(1/π )Im [GR

μ(ε,x)] where GR
μ(ε,x)

is the retarded Green’s function,

GR
μ(ε,x) = − i

∫ ∞

0
dt ei(ε+i0)t 〈[ψμ(x,t), ψ†

μ(x,0)]+〉

=
∑

n

[ |un(x)|2
ε − εnμ + i0

+ |vn(x)|2
ε + εnμ̄ + i0

]
,

average 〈. . . 〉 is over the ground state of the superconductor.
LDOS is presented in Figs. 1(b), 1(c) for S- and D-wave pair-
ings. The large zero-energy peak appears at the domain wall,
confined on the scale of 10ξc (ξc = vf /2πTc). In magnetic field
the spectrum is Zeeman shifted and the bound states appear at
energies ±μBH0 for up/down spins. We perform calculations
by introducing a cutoff in energy � = 5�0, above which we
treat states as if in normal metal, and checked that doubling
of � does not change our results. We set the zero-temperature
gap in terms of Fermi energy �0 = 0.05εf , which results in
coherence lengths ξ s

c = 11.2/kf (S-wave) and ξd
c = 13.6/kf

(D-wave). The cutoff provides a rough separation of low- and
high-energy scales, and one can break the double sum over n
and n′ in susceptibility (20) into three contributions

(i) εn < �, εn′ < � low-ε

(ii) εn < �, εn′ > �; (n ↔ n′) mixed-ε

(iii) εn > �, εn′ > � high-ε

A. Real susceptibility

We calculate the deviation of local susceptibility in nonuni-
form superconductor from the known normal state value

δχ (x,q,ω) = χ (x,q,ω) − χN (|q|,ω), (27)

which means cancellation of high-energy part (iii) in (20).
Mixed terms (ii) are only slightly affected by superconductivity
and we find their contribution to δχ/χN to be < 1% for all
relevant q vectors. Thus, to reduce numerical cost and to obtain
high-resolution figures, we compute only the dominant low-
energy region terms that we denote δχ

I
.

In Fig. 2 we show zero-field results for local static
susceptibility (ω = 0) in the middle of the domain wall (x = 0)
as a function of the ordering vector q. The susceptibility is
clearly increased for uniform magnetization q ≈ 0, due to
the large density of bound states at zero energy. There are
also several regions of nonzero q ∼ kf , for which χ⊥ is
significantly enhanced over the normal state value, showing
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FIG. 2. Top panels show static susceptibility δχ
I
(0,q,0) as a function of ordering vector q at the center of the domain wall in the limit of low

field μBH/�0 = 0.01 and temperature kBT /�0 = 0.05. The purple region around q = 0 (uniform magnetization) has enhancement δχ ′
I

> 0.5
due to large density of bound states and has been removed to better highlight the main features. The S-wave superconductor (left) favors q||ŷ,
along the domain wall. A domain wall along nodes of D-wave superconductor (middle) increases tendency for AFM with qx ∼ 1.75kf , across
the domain wall. For antinodally oriented domain wall (right) enhancement of χ shows for q/kf ∼ (0,2) and (1.25,1). Bottom panels show
ordering vectors q that connect points on the Fermi surface with same signs of �k̂f and �k̂′f that give largest coherence factors between
zero-energy bound states. The OP at the final end of quasiclassical trajectory k̂, �k̂f , is a product of the domain wall spatial profile (inner
circle) and the symmetry factor gk̂ (outer profile). black/red denote signs ±1.

tendency towards antiferromagnetic ordering. In S-wave su-
perconductor, Fig. 2 (left), the direction of such q vectors is
along the y axis, i.e., pointing along the domain wall.

When the domain wall is along nodes of D-wave order
parameter, Fig. 2 (middle), the ordering vector q showing
enhanced susceptibility is along the diagonal directions for
small qx/kf ≈ ±qy/kf , and for (qx,qy) ∼ (1.75kf , 0) that
shows about 15% enhancement over χ0. The latter means that
if antiferromagnetic SDW order is induced by the nonuniform
superconductivity, its modulation vector will be normal to the
order parameter domain wall, or normal to the pair-breaking
surface if we consider the semi-infinite superconductor. For
the domain wall in antinodal orientation, Fig. 2 (right),
enhancement appears at multiple qs, including the ŷ direction
similar to S-wave, and diagonal q ∼ (1.25,1)kf .

We associate these regions of enhancement exclusively with
correlations between bound states. Overall, one expects the
biggest change in static ω = 0 susceptibility from terms in (20)
that have vanishing denominators of (21), i.e., εnμ ± εn′μ′ →
0. Thus, the (nμ; n′ν) term, which connects two bound states
with zero energies should give a large contribution. The
magnitude of this contribution, however, is also determined
by the phase space, or the weight of the zero-energy state, and
spatial dependence of the coherence factors. This determines
the direction of q for maximally enhanced δχ .

To understand the role of coherence factors one can use the
Andreev approximation to estimate the BdG un,vn amplitudes.
The state index can be written as n = (k̂,n), where k̂ is the unit
vector that defines a quasiclassical trajectory, and n labels
states along this trajectory:

un(x) = uk̂,n(x)eipf k̂·x, vn(x) = vk̂,n(x)eipf k̂·x.

The Andreev equations follow from BdG equations (7):

(εk̂,n + ivf k̂∇)uk̂,n(x) = �(x,pf k̂)vk̂,n(x)
(28)

(εk̂,n − ivf k̂∇)vk̂,n(x) = �∗(x,pf k̂)uk̂,n(x).

By approximating the domain wall profile with a step function,
�(x,pf k̂) = �sgn(x) gk̂ , the amplitudes for the zero-energy
bound states are[

uk̂,n

vk̂,n

]
(x) = 1√

2

[
1

−i sgn(�∗
k̂f

)

]
exp

(
−

∣∣∣∣∣�gk̂ x

vf k̂x

∣∣∣∣∣
)

, (29)

where � is the bulk amplitude of the order parameter, and
�k̂f = �sgn(k̂x) gk̂ is the order parameter at the final end of
the quasiclassical trajectory k̂. Using this one finds that the
coherence amplitudes between bound states at points k̂,k̂′ on
the Fermi surface in the middle of the domain wall (x = −x′ =
r/2) are

A0
k̂k̂′(x)A0

k̂k̂′(x
′)∗ =

∣∣∣∣1 + sgn(�k̂f �∗
k̂′f

)

2

∣∣∣∣
2

× e−ipf (k̂−k̂′)·r e
− �

vf

(∣∣∣ g
k̂

k̂x

∣∣∣+∣∣∣ g
k̂′

k̂′
x

∣∣∣)|r·x̂|
(30)

C0
k̂k̂′(x)C0

k̂k̂′(x
′)∗ =

∣∣∣∣∣
1 − sgn(�k̂f �∗

k̂′f
)

2

∣∣∣∣∣
2

× eipf (k̂+k̂′)·r e
− �

vf

(∣∣∣ g
k̂

k̂x

∣∣∣+∣∣∣ g
k̂′

k̂′
x

∣∣∣)|r·x̂|
. (31)

The ordering vector q = pf (k̂ − k̂′) that maximizes AA∗ in
(30) corresponds to combinations of k̂ and k̂′ that have same
sign of �k̂f and �k̂′f . For CC∗ the ordering vector is q =
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pf (k̂ + k̂′) and with replacement k̂′ → −k̂′ Eq. (31) results in
the same relation between �k̂f and �k̂′f . These vectors are
illustrated in the bottom panel of Fig. 2. For S-wave gk̂ = 1,
and the two trajectories must end up on the same side of the do-
main wall, resulting in the q ordering generally along the
domain wall. For D-wave, the two trajectories can be inside
the same lobe on the same side of the domain wall giving
small q2 vectors, or there is a large wave vector q1 � 2kf

that connects points on the mirror lobes, corresponding to
trajectories ending up on different sides of the domain wall.

Another slight enhancement for D-wave (node) can be seen
as a circle of radius kf centered at (0,kf ), especially near wave
vector q/kf = (0.7,1.7) and the ones obtained by symmetry
operations. This enhancement cannot be explained by bound
states, since for these wave vectors the amplitudes in (30)–
(31) vanish. We suggest that these ordering vectors correspond
to correlations between the bound states and the low-energy
propagating states for near-nodal directions |�k̂| � εn � �0.
The free-propagating particle (p) and hole (h) type solutions
e±ikk̂·x are[

uk̂,n

vk̂,n

]
∝

[
ε + vf k

�∗
k̂

]
eikk̂·x,

[
�k̂

ε + vf k

]
e−ikk̂·x (32)

with vf k = √
ε2 − |�k̂|2. Considering particle and hole scat-

tering on the domain wall, we can find the exact wave
functions of the propagating states along k̂. For energies
near the continuum edge, the eigenvectors are [uk̂,n, vk̂,n] ∝
[1, sgn(�k̂)] times appropriate reflection/transmission coef-
ficients. The main feature of the propagating solutions is that
they are real. Then combination of a bound-state vector (29)
for k̂ with propagating-state vector for k̂′ results in

Ak̂k̂′A
∗
k̂k̂′ (0,r) ∝ e−ipf (k̂−k̂′)·r e

− �
vf

∣∣ g
k̂

k̂x

∣∣|r·x̂|
, (33)

where dependence of the coherence factors on signs of the
order parameter has disappeared, and similarly for CC∗. Thus,
we have enhancement of susceptibility for vectors q that have
tails at the bottom node of the gap and the heads tracing
the bound states along the Fermi surface. We note, however,
that such correlations at the domain wall are weighted by the
particle/hole transmission and reflection coefficients, that can
be small for ε � |�k̂|.

In external field the energies of spin-up/spin-down quasi-
particles are shifted by ±μBH , and the zero-energy peak is
split into two peaks, separated by energy 2μBH . This leads
to reduction of �± factors (21) and δχ

I
shows very little en-

hancement over the normal state. In Fig. 3 we present δχ
I

at the
center of domain wall for applied field μBH = 0.4�0, close
to Pauli field, μBHP ≈ 0.7�0 (S-wave), 0.55�0 (D-wave).
At lower temperatures [Figs. 3(b), 3(d), 3(f)] the zero-field
enhancement regions are still distinguishable but are much
smaller, including the q = 0 uniform magnetization, since
there is no zero-energy peak anymore. In D-wave (node)
the enhancement at antiferromagnetic qx ∼ 1.75kf is almost
entirely wiped out. The higher-temperature Figs. 3(a), 3(c),
3(e) reveal a further reduction of χ ′(q) due to a smaller
self-consistent gap and overall thermal smearing of the sum
in (20). We note that higher fields and temperatures mostly
reduce correlations involving bound states. This suppression
of δχ

I
with magnetic field at the domain wall is in stark contrast

FIG. 3. Effects of magnetic field and temperature on δχ
I
(q) at

the center of domain wall. The zero-energy peaks are shifted by
±μBH = ±0.4�0, significantly reducing AFM correlations. Panels
are for different temperatures: (a) kBT = 0.35�0; (c), (e) kBT =
0.2�0; (b), (d), (f) kBT = 0.05�0. Color scales to the right apply to
the rows.

to behavior of susceptibility in the bulk, where magnetic field
facilitates appearance of SDW correlations [32–34].

B. Relaxation rate

We also calculate the imaginary part of susceptibility taking
ω → 0 (well defined for unconventional superconductors only
[35])

χ ′′
⊥ (x,x,ω′) ∝

∑
nn′μ

[
|Ann′(x)|2[f (εnμ) − f (εn′μ̄)]

× δ(ω′ + εnμ − εn′μ̄) + 1

2
|Cnn′(x)|2[f (εnμ)

− f (−εn′μ)]δ(ω′ + εnμ + εn′μ)

− 1

2
|Cnn′(x)|2[f (εnμ) − f (−εn′μ)]

× δ(εnμ + εn′μ − ω′)
]

to find the local spin-lattice relaxation rate (26) in static limit
T −1

1 (R = x,ω′) = A2
02T [χ ′′

⊥(x,r = 0,ω′)/ω′]ω′→0:

1

T1(x)T
= −2A2

0

∑
nn′μ

∂f (εnμ)
∂ε

{|Ann′(x)|2δ(εnμ − εn′μ̄)

+ |Cnn′(x)|2δ(εnμ + εn′μ)}, (34)

where for numerical evaluation we use δ(ε) = ω′′/π [ε2 + ω′′2]
with ω′′ = 2.5 × 10−3εf = �0/20.

The deviations of relaxation rate from the normal state’s
Korringa limit [36] are due to the spin-flip transitions between
the low-energy states. Figures 4(a) and 4(b) provide numeric
results for relaxation rate at the domain wall for S- and
D-wave symmetry, with self-consistently determined bulk
order parameter �(T ,H ). In S-wave one notices that the
Hebel-Slichter coherence peak below Tc for H → 0 is absent
in the middle of the domain wall, due to spatial asymmetry
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FIG. 4. The relaxation rate at the center of domain wall, normalized to the Korringa limit, T −1
1 /T −1

K (solid lines), and the bulk gap �/�0

(dotted lines) as a function of temperature t = kBT /�0 for different applied fields h = μBH/�0. For higher fields, the enhancement of the
relaxation rate above normal state value is due to transitions between bound states and the continuum states, when �(T ,H ) = 2μBH (see
Fig. 5), while at low fields the enhancement is due to transitions between bound states. This behavior is very different from that of the bulk
relaxation rate (dot-dashed lines, shown for h = 0.1). In bulk S-wave one can see a Hebel-Schlicter peak that is suppressed for fields above
h ∼ 0.15.

of the order parameter. However, a peak develops for higher
fields, but it lies not immediately below Tc(H ), but at lower
temperatures. Similar enhancement of relaxation rate above
the normal state’s value can also be seen in D-wave. This
peak appears due to transitions between the bound states and
the continuum states, when εkμ ∼ � ± μBH = ∓μBH = ε0μ̄

(ω′ → 0 limit), as schematically shown in Fig. 5.
For small fields in the static limit 2μBH ≈ ω′ → 0 the

relaxation rate is divergent due to the sharp DOS of bound
states, that should be compared to the logarithmic divergence
in S-wave bulk superconductor associated with the sharpness
of BCS coherence peaks [30].

IV. CONCLUSIONS AND DISCUSSION

To summarize, we found that the concentration of zero-
energy Andreev bound states (in zero field) at a domain wall

FIG. 5. Splitting of the energy states by Zeeman magnetic field.
The bound states contribute to the relaxation rate T −1

1 at the domain
wall either at small fields, where transitions between spin-flipped
bound states are allowed, or at fields 2μBH = � that allow transitions
between bound states and the low-lying continuum states at �.

defect in the order parameter leads to significant enhancement
of the bare susceptibility. Since variations of the order
parameter occur on scale of coherence length ξc � 1/kf , the
new quasiparticle environment inside the domain wall may
lead to overall divergence of the total local susceptibility

χRPA(R,q) = χ⊥(R,q)

1 − Jq χ⊥(R,q)

for antiferromagnetic ordering vector q (q ∼ kf ), given
sufficiently large exchange interaction Jq. We find that the
direction of the SDW modulation vector depends on the
symmetry of the order parameter and orientation of its nodes
relative to the domain wall. For S-wave gap, q is along
the domain wall (i.e., q ⊥ qFFLO), while for D-wave, when
domain wall is aligned with its nodes, the q-vector points
across domain wall. The susceptibility enhancement is related
to the increased correlations between bound states. These
correlations disappear with magnetic field and temperature,
something that was not seen in lattice models.

Our weak-coupling model does not support the scenario
of FFLO-induced magnetism in CeCoIn5. First, the Q phase
appears in high magnetic fields [11,12] where we find bound-
state enhancement effects are wiped out. Moreover, even if
the enhancement of susceptibility survives the field, from our
calculation the direction of the SDW modulation is expected to
be along the field (assuming qFFLO ||nodes||H), inconsistent
with observations [13]. This, however, has to be checked
further, since in our model we do not use the material-specific
anisotropic Fermi surface. The nesting properties of the Fermi
surface will be important for obtaining correct SDW vectors
and instability conditions. On the other hand, some features of
the high-field phase are rather more consistent with behavior
of uniform state susceptibility [33,34], and are independent of
the exact shape of the Fermi surface. Direct comparison of our
free-electron model with lattice models [18,19] is also difficult,
for the same reason of having quite different input electronic
energy dispersions. While both approaches give effective
attraction between FFLO-type superconducting order and the
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antiferromagnetic order, the directions of emergent SDW
vectors are not in complete alignment. Another difference
between the these approaches could be related to the small size
of the lattice grids, typically around 40 × 40 sites, which forces
use of length scales qFFLO ∼ 1/ξc ∼ q ∼ kf (for comparison,
we use ξckf ∼ 12, and STM measurements [37,38] in CeCoIn5

give ξc ∼ 60 Å, kf ∼ (π/4.6) Å−1 and kf ξc ≈ 40). This all
calls for future more detailed investigation of emergent
magnetic properties in nonuniform superconductors, which
would clarify effects of the order parameter symmetry, spatial
modulations, realistic Fermi surface anisotropy, and field’s
orientation.

Finally, in the nonuniform superconductor we find an in-
crease of the spin-lattice relaxation rate T −1

1 over the Korringa
limit. This enhancement mostly appears due to transitions
between Andreev bound states and the propagating continuum
states that can occur in high fields, μBH = 0.5�, close to the
Pauli limiting field in D-wave μBHP = 0.55�0. The range of
fields where it appears is in good agreement with experimental
observations in κ-(BEDT-TTF)2Cu(NCS)2 near the first-order
superconducting-normal transition [14], although we find the
magnitude of the enhancement is somewhat smaller than the
measured value.
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APPENDIX: SELF-CONSISTENT ORDER PARAMETER

To calculate the susceptibility χ (q,R), which is a function
of relative momentum q, we choose a natural momentum-
based Fourier expansion (10) to find self-consistent solutions
of BdG amplitudes un(x),vn(x) from (7) with order param-
eter (4). In the past, a variety of numeric or approximate
methods have been used to address this problem: spatial
lattice [19,39,40], Chebyshev polynomial expansion [41] or
quasiclassical Green’s functions. [15,28] Though effective,
they are less suitable for our purpose.

The separable order parameter �(x,x′) = �(R)g(r) with
relative r = x − x′ and center-of-mass R = (x + x′)/2 co-
ordinates is obtained from mean-field definition (4) using
Bogoliubov transformation (5):

�(R)g(r) =V (r)
∑

n

′ {un(x)v∗
n(x′)[f (εn↓) + f (εn↑)]

− un(x′)v∗
n(x)[f (−εn↓) + f (−εn↑)]}, (A1)

where f (εnμ) = 〈γ †
nμγnμ〉 is the Fermi occupation number of

state εnμ with spin μ. The prime on the sum denotes the cutoff
restriction on the attractive potential V (r), |εn| < � [40],
which for this paper we set at � = 5�0, where �0 = 0.05εf

is the zero-temperature bulk order parameter. The amplitude
of the order parameter is decomposed into CoM momentum
Q (only x component for the domain wall)

�(Rx) =
∫

dQ �̃(Q) eiQRx . (A2)

Using the Fourier expanded amplitudes (10) for momenta
p along the domain wall, and k = {ki} in the x direction,
and introducing relative momentum, r → q, we write the gap
equation

�̃(Q) gq̂ =
∑
n,p,k

′
ũn(k)ṽ∗

n(k − Q)

× {Ṽ (q − K)[f (εn↓) + f (εn↑)]

− Ṽ (q + K)[f (−εn↓) + f (−εn↑)]}. (A3)

Here K = (k − Q/2)x̂ + pŷ, with magnitude |K|,|q| ∼ kf .
We take separable interaction Ṽ (q − K) = −V gq̂ g∗

K̂
with a

constant V . Then

�̃(Q) = V
∑

n,p,k,μ

′
ũn(k)ṽ∗

n(k − Q)gK̂ tanh

[
εnμ

2T

]
. (A4)

The interaction parameter V is eliminated together with the
cutoff � using the zero temperature and zero field value �0. We
recursively solve (14) with (A4) until sufficient convergence
for profile �(Rx) is reached.
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