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Order by disorder is a decision making process for frustrated systems but often leads to simple answers. We
study order by disorder in the kagome Kondo model known for its complexity seeking rich decision making
capabilities. At half-filling and large Kondo coupling to hopping ratio JK/t , the full manifold of 120◦ kagome
ground states are degenerate at second order in t/JK . We show this degeneracy lifts at sixth order when a fermion
can hop around a hexagon and feel the Berry flux induced by a given spin texture. Using the Monte Carlo method,
we then seek the ground state of this sixth-order Hamiltonian and find in a 4×4 unit cell system that a coplanar
12-site unit cell order is selected over the

√
3×√

3,q = 0 and cuboc1 states, a result that survives even in the
thermodynamic limit. This state is selected for its SU(2) flux properties induced by the spin texture. Given the
existence of numerous quantum Hall plateaus for electrons in a magnetic field, the existence of this 12-site unit
cell state suggests that complex decision making is possible on the manifold of 120◦ states and achievable in
different kagome Kondo models.

DOI: 10.1103/PhysRevB.94.144438

I. INTRODUCTION

Order by disorder [1] is a decision making process: different
ground states will be selected from the same degenerate
manifold depending on the type of fluctuations it experiences.
The ground state with the highest entropy, for example, is
selected when the thermal order by disorder effect is active.
The ground state with the least zero-point energy, on the other
hand, is selected when the quantum order by disorder effect
is active. These examples are pedagogically discussed in a
recent review [2]. In effect, the system computes the ground
state according to the active order by disorder mechanism. In
this way, the order by disorder effect fits into the subject of
complexity science [3].

Yet, in most cases, order by disorder, either thermal,
quantum, or another mechanism, selects a simple ground
state. Naturally, this is expected in the simplest cases such
as the J1-J2 model on the square lattice [4,5]. But for
kagome antiferromagnets the coplanar

√
3×√

3 state is often
[6] selected (or preferred if long-range order can not be
established) both by thermal fluctuations [7] and quantum
fluctuations [8,9]. This state has a tripled unit cell but is among
the simplest in the massively degenerate kagome ground-state
manifold. Even quantum order by disorder in pyrochlore
Heisenberg antiferromagnets selects a colinear state [10]
(though which colinear state is not clear at present [11]). Again,
this is simpler than a general state in the massively degenerate
manifold would suggest. So order by disorder seems to act as
a de-complexifying mechanism.

In this light, the discovery of order by disorder in classical
Kondo lattice models on highly frustrated lattices [12] is
interesting. Complex orders, some of which have multiple
wave vectors, are noncoplanar and are incommensurate, arise
in these models on the square lattice [13], cubic lattice [14],
triangular lattice [15], between the triangular and kagome
lattices [16], and kagome lattice [12,17,18]. Further, the order
by disorder effect on the kagome lattice model does not select
either the

√
3×√

3 order or q = 0 but possibly [12] the cuboc1
noncoplanar 1200 state [19]. So it seems possible that order by

disorder due to the fermion hopping in these models may
give rise to complex selection among a highly degenerate
ground-state manifold and that it is not decomplexifying.

Given the potential for complex orders, order by disorder
in classical Kondo models could also be interesting should
it produce an integer quantum Hall effect. This is possible
[20,21] and, indeed, has provided much of the motivation for
the study of these models [22]. In 2D, an effect is particularly
expected at finite temperature should the complex order have
a nonzero scalar spin chirality [23,24]. So, if the finite spin
chirality [19,25] cuboc1 state were the selected state in the
kagome case, order by disorder may provide a mechanism
for the stability of a state with an integer quantum Hall
effect.

In this paper, we revisit the order by disorder problem in the
kagome Kondo lattice model with classical spins at half-filling.
This problem is characterized by a small parameter t/JK , a gap
to electronic excitations and an SU(2) flux variable U felt by
the electrons as they hop around in a background classical spin
texture. By carrying out a perturbative expansion in t/JK to
sixth order, we show that the selection of a 120◦ state is due to
the flux felt by an electron as it hops around a hexagon. Using
the Monte Carlo technique, we then show that the state selected
in a 4×4 unit cell system cluster with periodic boundary
conditions has a 12-site unit cell. This state turns out to be
precisely in between a

√
3×√

3 state and q = 0 state: it has a
spin origami sheet [26,27] that is fully folded in one direction
and perfectly flat in the other. We have verified that it beats the√

3×√
3,q = 0 and cuboc1 state in the thermodynamic limit.

Further, its SU(2) flux properties are also special: yielding
energetic benefits both for hopping around hexagons and on
bow ties (pairs of triangles). Finally, we have computed the
electronic band structure and verified the absence of an integer
quantum Hall effect as expected due to the vanishing scalar
spin chirality. We conclude with an outlook on how these
results may generalize to enable selection of other complex
ordering patterns within the kagome 120◦ states and thereby
achieve complex decision making among this manifold of
states.
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II. KONDO MODEL AND VARIATIONAL RESULTS

We begin with the Kondo Hamiltonian given by

H = Hhop + Hkondo = −t
∑
〈ij〉

c
†
iσ cjσ − Jk

∑
i

Si · si . (1)

Here, the Kondo term in the above Hamiltonian gives the
coupling between the on-site classical spin vector Si with
the local electron spin si = c

†
i τ ci with coupling constant Jk .

The first term above describes the electron hopping along
adjacent sites on the given lattice with amplitude t .

The problem of finding the ground state of this model is then
that of obtaining the optimal set of classical Si spin vectors
with the energy of any given set of Si vectors determined from
the Hamiltonian of noninteracting electrons hopping in the
presence of a local magnetic field hi = JKSi .

The case of weak coupling Jk

t
� 1 is well-known and it

was discovered that incommensurate noncoplanar multiwave
vector spin orderings dominate the phase diagram [12]. In
particular, aside from some exceptions, the Fermi surface
geometry dictated the complex orderings in this limit.

At the opposite end, it is well known that in the double
exchange model, i.e., the limit Jk → ∞, the ferromagnetic
state dominates over all other spin states at all but half-filling.
There, instead of ferromagnetism, a gap in the fermion spectra
opens up and antiferromagnetism is found [12]. The leading
antiferromagnetic term turns out to be just a nearest-neighbor
Heisenberg model.

A quick exploration of the landscape of magnetism is
easily achieved using a variational calculation that takes
into account just the collinear ferromagnetic and coplanar
antiferromagnetic q = 0 states. By exact diagonalizing the
above Hamiltonian on a finite 12×12 kagome lattice with
imposed periodic boundary conditions, we obtain the phase
diagram of Fig. 1, which qualitatively agrees with Ref. [12].

In Fig. 1, we have only portrayed the two simplest states
of many well-known states on the Kagome lattice with a
focus on the general competition between ferromagnetism and
antiferromagnetism. The figure suggests that for Jk

t
	 1, all

states tend to converge to the same energy at half-filling in the
double exchange model. However, one can slightly weaken
this condition, and only consider the approximation Jk

t
	 1

and consider which states dominate in this regime. To second
order in perturbation theory in Jk

t
, all 120◦ degree states are

degenerate [12].
In addition to q = 0 and

√
3×√

3 states, there are an infinite
number of other 120◦ spin configurations, both coplanar and
noncoplanar, that one may place on an arbitrarily large, finite
kagome lattice, and to second order in perturbation theory
are all degenerate in energy. In order to extract a true,
unique ground state out of the degenerate 120◦ spin state
manifold, we must proceed to higher orders in perturbation
theory.

In this paper, we will show that the degeneracy is lifted
exactly at sixth order and exhibit a newly found state with a 12-
site unit cell via a Monte Carlo simulation that beats the above
well-known 120◦ states. Here, we can begin to understand this
result with numerical evidence that the degeneracy is lifted at
sixth order.

FIG. 1. Simplified variational phase diagram of kagome Kondo
model with classical spins. Green: ferromagnetic, blue: q = 0. Over
432 sites where there are 12 triangles along the x axis and 12
triangles along the y axis. The horizontal axis represents the fraction
of electrons occupying a site. The vertical axis is the ratio Jk

t
.

Our numerical argument follows by presenting the energy
data for three well-known 120◦ states. The energy data for
these spin configurations were obtained by exact diagonalizing
the Hamiltonian given in equation (1) and summing the lower
half of the eigenvalue spectrum, corresponding to half-filling.
On a 24×24 kagome lattice, the first few energy values in
terms of the coupling constant Jk are as in the table below.

Jk q = 0 q = √
3×√

3 cuboc1

1 −3388.466 −3409.835 −3387.137
2 −4530.299 −4535.492 −4535.302
3 −5967.679 −5968.139 −5968.586
4 −7522.879 −7522.914 −7523.120
5 −9138.454 −9138.446 −9138.537

We easily see that at small Jk , the energy data for the three
120◦ states differ slightly, due to nontrivial subleading terms
in higher-order perturbation theory. However, as we increase
Jk , terms of order n in perturbation theory are suppressed by
the factor 1

J n−1
k

, and hence the energies begin to converge. By

Jk/t = 3, the cuboc1 state is dominating, closely followed by
the q = √

3×√
3 state and then the q = 0 state. By Jk/t =

5, the rankings of the states by energies are shifted, and we
have the ranking of states cuboc1 < q = 0 <

√
3×√

3 which
persists in the limit Jk/t → ∞.

We now extend this numerical evidence for degeneracy
splitting among the 120◦ states at sixth order. By acquiring
energy data as in the above for the spectrum Jk = 1 to 100,
and taking the differences in energies, we obtain Fig. 2 and
clear evidence that the degeneracy is lifted at sixth order.
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FIG. 2. Graph of Jk vs Energy. The energy values from Jk = 1 to
100 are plotted. The blue dots correspond to the difference between
the states q = 0 and q = √

3×√
3 and the yellow dots correspond to

the difference between the states cuboc1 and q = √
3×√

3 states. The
f x axis is 1

J 5
k

as Jk goes from 1 to 100, and the y axis are the energy

values. The linearity of the two plots shows that the degeneracy breaks
first at sixth order in perturbation theory. Energy calculations were
run on a 24×24 kagome lattice.

Having shown numerically that degeneracy breaks at sixth
order, one may calculate the contributions from each order
in perturbation theory via numerical fitting. Specifically, by
carrying out an asymptotic fitting of the energy data we obtain
the results in the following table. However, due to noise,
the accuracy drops with increasing order. We find order 2 is
accurate to ±1, order 3 accurate to ±50, and order 5 accurate
to ±250 (since orders 3 and 5 should be zero in the table).

Order of 1
Jk

Numerical coefficients

2 −2591.73
3 45.4979
4 2751.6
5 −233.15

Looking at these results in isolation, the fifth-order term
extracted this way suggests a probable nontrivial coefficient.
So these numerical data would not be sufficient to determine
the exact formula for any contributions from higher orders in
perturbation theory. However, it does provide us with a check
on our analytic calculation below.

III. FEYNMAN DIAGRAM APPROACH

A. Road map of Feynman diagram calculation

Here, we provide a road map for our Feynman diagram
calculation. We proceed through the canonical method, writing
down the path integral Z using our free Hamiltonian (1)
without the hopping term. As usual, completing the square
yields the propagator for the free theory. Adding the interaction
(hopping term) and taking functional derivatives yields the
full propagator for our theory. By taylor expanding in the
perturbation Hhop, we obtain the interaction Uij , which may be
readily computed via unitary diagonalization as a 2×2 matrix
describing the hopping between nearest neighbor sites. We
then calculate the energy corrections via the formula (8), which

was calculated using the linked cluster theorem. We further
highlight the procedure for the first two orders in perturbation
theory and show that they agree with results from the usual
quantum mechanical procedure.

B. Derivation of Feynman rules

We first determine the Feynman rules for our interaction
vertex. To do this, note that we must calculate the amplitude
for hopping between two sites given by some unitary 2×2
matrix Uij , corresponding to up and down spin states. We
begin with Eq. (1) in the matrix representation

H =
( −JkS

z −JkS
x − iJkS

y

−JkS
x + iJkS

y JkS
z

)
. (2)

Diagonalizing is then just choosing a basis where Si points in
the z direction. We obtain the unitary matrices

U =
(−Sx−iSy√

2+2Sz

Sx+iSy√
2−2Sz

Sz+1√
2+2Sz

−Sz+1√
2−2Sz

)
, U † =

(−Sx+iSy√
2+2Sz

Sz+1√
2+2Sz

Sx−iSy√
2−2Sz

−Sz+1√
2−2Sz

)
.

(3)

Expressing the hopping Hhop in terms of unitary matrices, we
obtain

H1 = −t
∑
〈ij〉

(Ui†
σσ ′U

j

σσ ′′)c
†
iσ ′cjσ ′′ + H.c. (4)

Finally, writing out the product of the unitary matrices
explicitly, for hopping between two sites with classical spin
vectors Si and Sj , we obtain

U11 = 1√
2 + 2Szi

√
2 + 2Szj

(Sxi

Sxj − iSyi

Sxj + iSxi

Syj

+ Syi

Syj + Szi

Szj + Szi + Szj + 1),

U12 = 1√
2 + 2Szi

√
2 − 2Szj

(−Sxi

Sxj + iSyi

Sxj − iSyj

Sxi

− Syi

Syj − Szi

Szj + Szi − Szj + 1),

U21 = 1√
2 − 2Szi

√
2 + 2Szj

(−Sxi

Sxj + iSyi

Sxj − iSxi

Syj

− Syi

Syj − Szi

Szj + Szj − Szi + 1)

U22 = 1√
2 − 2Szi

√
2 − 2Szj

(Sxi

Sxj − iSyi

Sxj + iSxi

Syj

+ Syi

Syj + Szi

Szj − Szi − Szj + 1). (5)

We now derive the propagator Feynman rules for our
theory using the path integral approach. Proceeding via
Grassman variables, we take Hkondo = −Jk

∑
〈ij〉 Si · si as the

unpertrubed Hamiltonian with partition function

Z =
∫

DcDc̄ exp

(
i

∫
dt

[∑
i

ic̄iσ ∂t ciσ − H

])

=
∫

DcDc̄ exp

(
i

∫
dt

[∑
i

ic̄iσ ∂t ciσ

+ Jk

∑
i

Si · c̄iσ τσσ ′ciσ ′ +
∑

i

(η̄iσ ciσ + c̄iσ ηiσ )

)
. (6)
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To calculate the propagator for our free theory, we Fourier
transform to frequency space, complete the square, and
transform to the z basis, which we fixed in the diagonalization
above, obtaining the Green’s function

G
σ1σ2
j1j2

= δj1,j2δ
σ1,σ2

ω − Jkτ 3
σ1,σ2

+ iεsgn(ω)
, (7)

where the upper indices denote spin indices, and the lower
indices denote points in position space.

C. Energy calculation

In full, the above calculation gives us the following
Feynman rules:

Gσσ′
ij

i, σ j, σ′

Uσσ′
ij

i, σ j, σ′

To calculate an nth order process, the Taylor expansion tells us
to connect n G’s and n U’s in an alternating order. Intuitively,
one may think of the propagator as the virtual electron hopping
between nearest neighbors, and the interaction U as imposing
the constraint that the path traversed by the virtual electron
must be connected.

Before moving to sixth order, we give a sample calculation
to first and second order. We begin with first order, to check that
our path integral does indeed give zero for only one hopping.

i, σ j, σ′

The expression to calculate the energy is given by

E = − i

T
ln(Z0) − i

T
ln

(〈
exp

(
−i

∫
dtHI

)〉)

= E
(0)
G − i

T
ln

(〈
exp

(
− i

T

∫
dtHI

〉
0

)
. (8)

Hence, proceeding with the calculation for first-order pro-
cesses, we obtain

E′ =
∫

dτ − t
∑
ij

〈ciσ (t)Uσσ ′
ij cjσ ′(t)〉

= tT r

∫ t2

t1

dτ
∑
ij

Gij (t − t)Uij

= tT
∑
ij

∫
dω

2π
Gij (ω)Uij. (9)

Now, noting that the Green’s function gives the delta function
Gij ∝ δij and that Uij vanishes identically for i = j , we see
that the correction vanishes.

We now consider the integral to second order. In this case,
we have the diagram

i, σi

k, σk

j, σj

l, σl

Here, we have two horizontal lines corresponding to two
vertices on the kagome lattice. Although not indicated, we
choose the convention with the direction of propagation to
the right, hence, we may only connect, using a propagator, a
vertex at the left with a vertex at the right. For instance, we may
connect (k,σk) with (j,σj ), but not (k,σk) with (i,σi). Note that
there are only two distinct ways to connect using propagators
as indicated below.

i, σi

k, σk

j, σj

l, σl

i, σi

k, σk

j, σj

l, σl

As shown, the second diagram is disconnected, and hence
it does not contribute to the energy correction at second order.
Evaluating the first diagram as usual, one can verify that we
obtain the correction

E′ = Tr

⎛
⎝∫

dω

2π

∑
ijkl

GliUijGjkUkl

⎞
⎠

= −3

8
J 2

k , (10)

where the spin indices have been suppressed where the second
line has been evaluated for the case of 120◦ states. This answer
agrees with our calculation using the unitary matrices and the
usual quantum mechanical perturbative energy formula.

We may carry this procedure out to sixth order, with which
we will obtain the expression

E′6 = Tr

(∫
dω

2π

∑
GUGUGUGUGUGU

)
, (11)

where spatial and and spin indices have been suppressed. We
remark that there is no need to connect all the possible lines
in a single six-order Feynman diagram since the energy sums
over all possible spatial indices. Hence, with these Feynman
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rules, we may derive perturbative energy corrections to any
order with a single Feynman diagram.

Remarkably, we can interpret each term in the sum over
six site plaquettes that contribute to E′6 as an SU(2) flux. The
SU(2) gauge field here is classical and we can identify it in the
Hamiltonian if we place it in the form

H =
∑
〈ij〉

c
†
i Uij cj + H.c. −

∑
i

c
†
i A0i(t)ci, (12)

where in the basis of Eq. (1) we have A0i = JKSi · τ [see
Eq. (2)] and Uij = τ0, while after the basis transforma-
tion that follows Eq. (2), we have A0i = JKτ3 and Uij =
Ui†Uj given by Eq. (5). Thus the change of basis can be
viewed as an SU(2) gauge transformation. Additionally, the
propagators Gij transform under a gauge transformation as
Gij (t) → Gij (t)ei(θi (0)−θj (t)) and so are proportional to the
time-component of the Wilson line of the SU(2) gauge field

Gij (t) ∝ δijT ei
∫ t

0 dt ′A0i (t). (13)

One can determine the proportionality constant [28] but we
do not need it here. Thus, after inverse Fourier transforming
Eq. (11) from frequency space to real time, we see it is a
time average over Wilson loops that enclose the hexagon but
additionally propagate along the time direction. An example
is shown in Fig. 3. Thus the degeneracy in the large Jk/t

FIG. 3. Plot of example loop given by Eq. (11). The paths
indicated by Uij represent virtual hoppings in momentum space,
while the paths given by the Green’s function G, represent virtual
hoppings forward or backward in time. The nontrivial flux is given
by the combination of electric and magnetic flux; it is easy to see that
taking only the magnetic flux gives a trivial result.

expansion is lifted by the time average of the SU(2) flux
penetrating time-dependent Wilson loops.

IV. NUMERICAL CALCULATIONS

A. Analytical preliminaries

Clearly, it is necessary to numerically evaluate the analytical
expression obtained from Feynman diagrammatic techniques
for energy corrections of order n > 2. To do this, we separate
Eq. (11) into a linear combination of Pauli matrices as shown
below.

We define the variables

μ = 1

2

(
1

ω − Jk + iε
+ 1

ω + Jk − iε

)
,

ν = 1

2

(
1

ω − Jk + iε
− 1

ω + Jk − iε

)
, (14)

and

α = 1

2

(
1√

2 + 2Sx3

√
2 + 2Sy3

(Sx · Sy − iSx2Sy1

+ iSx1Sy2 + Sx3 + Sy3 + 1)

+ 1√
2 − 2Sx3

√
2 − 2Sy3

(Sx · Sy − iSx2Sy1

+ iSx1Sy2 − Sx3 − Sy3 + 1)

)
,

δ = 1

2

(
1√

2 + 2Sx3

√
2 + 2Sy3

(Sx · Sy − iSx2Sy1

+ iSx1Sy2 + Sx3 + Sy3 + 1)

− 1√
2 − 2Sx3

√
2 − 2Sy3

(Sx · Sy − iSx2Sy1

+ iSx1Sy2 − Sx3 − Sy3 + 1)

)
,

β = 1

2

(
1√

2 + 2Sx3

√
2 − 2Sy3

(−Sx · Sy + iSx2Sy1

− iSy2Sx1 + Sx3 − Sy3 + 1)

+ 1√
2 − 2Sx3

√
2 + 2Sy3

(−Sx · Sy + iSx2Sy1

− iSy2Sx1 − Sx3 + Sy3 + 1)

)
,

γ = 1

2

(
1√

2 + 2Sx3

√
2 − 2Sy3

(−Sx · Sy + iSx2Sy1

− iSy2Sx1 + Sx3 − Sy3 + 1)

− 1√
2 − 2Sx3

√
2 + 2Sy3

(−Sx · Sy + iSx2Sy1

− iSy2Sx1 − Sx3 + Sy3 + 1)

)
, (15)
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and rewrite the Green’s function and unitary matrices as

1

ω − Jkτ
3
σ2σ2

= μτ 0 + μτ 3

Uσσ ′
ij = ατ 0 + βτ 1 + δτ 2 + γ τ 3. (16)

Consequently, we may rewrite Eq. (11) by substituting in
these linear combinations, and evaluate it numerically in
MATHEMATICA. We find to third and fifth order that the energy
correction vanishes as expected from the numerical results.

Intuitively, we may think of the numerical result that
degeneracy is first lifted at sixth order as follows. Second
order in perturbation theory selects out a degenerate manifold
of 120◦ states. Since third and fifth order vanishes, the
fourth-order term is the only possible nontrivial contribution.
However, if we think of the electron as hopping around paths
with the condition that it begins and ends on the same vertex,
it is easy to see that there are no nontrivial loops that could
be achieved via four hoppings. This is only viable at sixth
order, in which the electron may hop across bow-tie loops
and hexagon loops. In particular, we verify numerically using
the above procedure that fourth order terms are identical
for the well-known 120◦ states on the kagome lattice. We at-
tribute the nontrivial sixth order contribution as resulting from
the Berry’s phase.

We further proceeded via a simulation on a 4×4 kagome lat-
tice, on which we evaluated the above expression numerically
and verified that the cuboc1 state dominates over the q = 0
state at sixth order as expected. Having derived this expression,
this motivates us to carry out a Monte Carlo simulation to find a
global minimum of this theory. In the next section, we detail the
results that we obtained using a nonlinear local optimization
method.

B. Numerical nonlinear local optimization

Using the expression derived above, we may numerically
evaluate the sixth-order contributions from any spin configura-
tion on the kagome lattice. To do this, we create an ensemble of
1000 random spin configurations on the 4×4 kagome lattice.
We chose the system size of a 4×4 kagome lattice since we
want a small size system to simplify calculations. In particular,
this is the smallest size system without six-site loops due to
periodic boundary conditions that do not occur in the infinite
size limit. We then proceed to numerically minimize each
random spin configuration by imposing the 120◦ condition,
i.e., neighboring on-site spin vectors must have an inner
product of − 1

2 using the NMinimize method in MATHEMATICA.
We then calculate the sixth-order contribution of each of these
120◦ states. Upon doing this, we encountered a new state, with
energy lower than any other well-known state, which we will
detail below.

By calculating the sixth-order flux contributions to E′6 on
each six site plaquette discussed previously, we can understand
how different spin configurations compete for the ground
state in the large Jk/t limit. This calculation is summarized
graphically in Fig. 4, which portrays the relative contributions.

As shown, the sixth-order contribution from the “snake
state” dominates over both the q = 0 and cuboc1 states. We

FIG. 4. Spin pattern plots that contribute at sixth order. For each
bow-tie and hexagon loops, we compute using Eq. (11) where we
take each U to correspond to an edge along the path between spin
sites. Since there are two distinct bow-tie loops, we pick a canonical
choice of traversing the bow-tie loop. We compare the relative values
of these energy contributions from paths of length six using a
temperature scale. The colors correspond to the values of the fluxes
through the loops, i.e., “hotter” colors are greater and “colder” colors
are smaller. Top figure is the q = 0 state, middle figure is the cuboc1
state, and the bottom figure is the “snake” state.

now proceed to discuss some properties of the newly found
state.

To give a better visualization of our state, we will employ
the technique of spin origami [26,27] as plotted in Fig. 5.
For each hexagon in the kagome lattice, we may assign a
“height vector” hi,i ∈ {1, . . . ,N}, where N is the number
of hexagons. Observe that every pair of adjacent hexagons
corresponds uniquely to a spin vector, defined by a given spin
configuration. To construct the spin origami sheet, let h0 =
{0,0}, corresponding to an arbitrary initial hexagon. We may
then recursively obtain the next height vector h1 ≡ h0 ± S0,1

where S0,1 is the unique spin vector lying between the two
hexagons, and the sign is defined by the corresponding spin
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FIG. 5. Spin origami plots [26,27] that map a 120◦ state to a
folded sheet of paper. Left state is the q = 0 pattern that maps to a
flat sheet of paper. Middle is the

√
3×√

3 state that maps to a single
triangle (completely folded sheet of paper). Right is the snake state
that maps to a strip that is flat in one direction and completely folded
in the other. Each of these patterns corresponds to an 8×8 kagome
lattice with open boundary conditions. As indicated, the snake spin
state exhibits a spin origami pattern that appears to lie between the
q = 0 and q = √

3×√
3 spin origami plots.

vector in a q = 0 reference state with spins lying in the plane
of the lattice and pointing from the centers of one hexagon to
another. For instance, if the corresponding spin vector in the
q = 0 lattice was oriented from H0 to H1, where Hi , denotes
the ith hexagon, then the corresponding height vector would
be defined by h1 ≡ h0 + S0,1, and a minus sign otherwise.

Figure 6 explains our name for this newly found state. The
traversal of “ABABAB . . . ” movements takes on a “snakelike”
shape on the kagome lattice. Further evidence that the “snake”
state is indeed the minimum of all our present states is given
by Fig. 7 (cf. Fig. 2), which also exhibits the breaking of de-
generacy of all three states at sixth order due to the linearity of
the plots. As clearly shown on the same figure, the snake state
indeed exhibits lower energies than the q = 0,q = √

3×√
3,

and cuboc1 states as calculated on the 24×24 kagome lattice.
The reader should note that this verification is completely
independent of our perturbation theory. This was calculated
using only the Hamiltonian for the system and inputting the
relevant data for the classical spin vectors for the snake state.

We now make one further remark regarding the spin plots
displayed in Fig. 4. For coplanar 120◦ states on the kagome
lattice, it can be shown that only hexagonal fluxes contribute
to the breaking of degeneracies since the bow-tie loops all
contribute the same energy. As detailed in the table below, the
contributions of hexagonal fluxes are completely consistent

FIG. 6. The newly found state is called the snake state due to the
above behavior of alternating colors traced out by the black path. It
is a coplanar state with red, green, and blue colors corresponding to
the usual spins on the q = 0 and q = √

3×√
3 states. The unit cell is

portrayed as the parallelogram bounded by the dashed gray lines.

FIG. 7. The additional green line denotes the difference in
energies for Jk = 1 to 100 between the snake and q = √

3×√
3 states.

This clearly shows that to sixth order, degeneracy among the 120◦

states is broken, and our snake state is the winner. Energy calculations
were run on a 24×24 kagome lattice.

with our observations that at sixth order, we have the ordering
of states: snake < cuboc1 < q = 0 < q = √

3×√
3. Bow tie

1 was defined by traversing the bow-tie loop by crossing
diagonally from the first triangle to the second, while bow tie
2 was defined by crossing from the first to the second triangle
along the same side.

Classical State Bow tie 1 Bow tie 2 Hexagon

q = √
3×√

3 0.158203 −0.251953 0.333984
q = 0 0.158203 −0.251953 0.158203
Cuboc1 0.0214844 −0.115234 −0.0878906
Snake 0.158203 −0.251953 −0.193359

C. Chern number for the snake state

Finally, we have computed the electronic band structure
of the snake state and its associated Chern number. The band
structure for the filled bands is shown in Fig. 8. We have further
computed the Chern number following Ref. [29]. We find both

Γ X K Γ Y K
98.5

99.0

99.5

100.0

100.5

101.0

101.5

102.0

E
ne
rg
y

[e
V]

FIG. 8. Electronic band structure for the electrons hopping in
the background of magnetic ordering of the snake state. Here the
Brillouin zone is rectangular with sides at the X and Y points and
corners at the K point.
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for the bottom group of 16 bands and the next group of eight
bands (together making the 24 filled bands out of 48 bands
present in the snake state) have a vanishing Chern number. So
order by disorder, at least as determined within our 4×4 unit
cell calculation, is not selecting a state that could support an
integer quantum Hall effect.

V. CONCLUSION

In this paper, we explored the problem of state selection
at half-filling of the kagome Kondo model with classical
spins. We were motivated to derive an analytical expression
for higher orders in perturbation theory in order to better
understand the degenerate 120◦ state manifold and achieved
this to sixth order.

Proceeding via a numerical nonlinear local optimization
algorithm, we find, out of an ensemble of 1000 random 120◦
states, a state that beats all the other well-known state as readily
verified numerically via Fig. 7. In particular, combining the
120◦ state minimization along with the sixth order expression
in the algorithm, we find that many of the runs readily converge
to this state. Further work in this direction would include
working with a larger ensemble with a more powerful machine
in an attempt to find an even better ground state. In particular,
we would like to fully understand the contribution of the
fluxes to the sixth order correction. While we are drawn to
the conclusion that the hexagon fluxes are responsible for the
relative correction among the coplanar 120◦ states, we are not
completely sure as to how the bow-tie and hexagon fluxes
contribute to the noncoplanar 120◦ states.

It is remarkable that the snake state we find has a unit cell
with 12 spins but was found in a calculation with 48 spins (4×4
unit cells). This suggests, another state with an even larger unit
cell may ultimately win the order by disorder competition.
However, even if this is not the case, order by disorder due

to fermion hopping and associated Berry flux has selected a
1200 state that to our knowledge has never been considered
before. Hence complex ground states can arise from an order
by disorder mechanism.

There is also the question of whether there are other order by
disorder mechanisms that generalize the case considered here
and whether these would produce different decision making
among the 120◦ manifold of states. The answer is likely yes:
one could increase the spin representation of the fermion
degree of freedom from spin 1/2 to another spin S as in the
study of Ref. [17] who also consider the kagome lattice. This
would enable the order by disorder effect to occur at other
fillings than 1/2 with potentially different Berry flux desires.
Spin representation could therefore introduce a hierarchy
of order by disorder mechanisms each possibly selecting a
different state. Another generalization is the case where the
electron hops over a spin and feels its presence via a term

Hspin hop = −tspin

∑
〈ij〉

c
†
iσ

�Sij · τσσ ′ciσ ′ + H.c. =
∑
〈ij〉

c
†
i Uij cj .

(17)

This term involves a spatial SU(2) gauge field Uij and so
should select states different from the temporal SU(2) gauge
field A0i of Eq. (12) (possibly favoring spin chirality). So,
order by disorder via fermion hopping with Berry flux could
provide a rich set of decision making capabilities on the
kagome 120◦ manifold and other such manifolds common in
highly frustrated magnetism.
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