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Coarsening dynamics of topological defects in thin permalloy films
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We study the dynamics of topological defects in the magnetic texture of rectangular permalloy thin-film
elements during relaxation from random magnetization initial states. Our full micromagnetic simulations reveal
complex defect dynamics during relaxation towards the stable Landau closure domain pattern, manifested as
temporal power-law decay, with a system-size-dependent cutoff time, of various quantities. These include the
energy density of the system and the number densities of the different kinds of topological defects present in
the system. The related power-law exponents assume nontrivial values and are found to be different for the
different defect types. The exponents are robust against a moderate increase in the Gilbert damping constant and
introduction of quenched structural disorder. We discuss details of the processes allowed by conservation of the
winding number of the defects, underlying their complex coarsening dynamics.
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I. INTRODUCTION

The topic of coarsening dynamics of topological defects
in diverse systems ranging from liquid crystals [1–4] to
biosystems [5] and cosmology [6] has attracted considerable
interest as it is related to properties of symmetry-breaking
phase transitions. As the system is quenched from a high-
temperature disordered phase to a low-temperature ordered
phase, the symmetry of the disordered phase is broken and
topological defects are generated, subsequently exhibiting
slow coarsening dynamics [7]. Such phase-ordering kinetics is
often characterized by a power-law temporal decay ρ(t) ∼ t−η

of the density ρ of the defects, with the value of the exponent
η depending on the characteristics of the system and/or the
defects [8].

In ferromagnetic thin films dominated by shape anisotropy,
elementary topological defects within the magnetic texture,
i.e., vortices, antivortices, and edge defects, may occur [9–11].
For instance, magnetic domain walls can be envisaged as
composite objects consisting of two or more such elementary
defects, each characterized by their integer or fractional wind-
ing numbers [9]. Also, the presence of vortices is intimately
related to magnetic flux closure patterns minimizing the
stray field energy of micron or submicron magnetic particles
[12–14]. While coarsening of, e.g., the domain structures in
Ising and Potts types of models [15,16] as well as that of the
defect structure in the XY model [1,17] have been extensively
studied, less is known about the details of coarsening dynamics
in soft (low-anisotropy) ferromagnetic thin films, involving
the collective dynamics of vortices, antivortices, and edge
defects, when all the relevant effective field terms (exchange
and demagnetizing energies) are included in the description.

Here we study, by performing an extensive set of full
micromagnetic simulations of the magnetization dynamics in
permalloy thin films, the relaxation process of such magnetic
topological defects, starting from random magnetization initial
states, mimicking the high-temperature disordered paramag-
netic phase. Our zero-temperature simulations, resembling
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a rapid quench to the low-temperature ferromagnetic phase,
show how defects emerge from the disordered initial states
and subsequently exhibit coarsening dynamics. The focus
of our study is on the time period after a short initial
transient such that the length of the magnetization vectors is
approximately constant, and the system can be modeled by the
Landau-Lifshitz-Gilbert equation. In the coarsening process,
the densities of the various defect types, as well as the energy
density of the system [18], follow power-law temporal decay
toward the ground state with a flux-closure Landau pattern.
These power laws are characterized by nontrivial exponent
values which are different for the different defect types and
exhibit a cutoff time scale growing with the system size. We
also address the question of how the values of these exponents
are affected by changes in the Gilbert damping constant α and
introduction of random structural disorder within the film and
discuss the role of the conservation of the winding number
on the possible annihilation reactions, underlying the complex
coarsening dynamics of the various defect populations.

The paper is organized as follows: In the following section
(Sec. II), properties of the elementary topological defects in
soft ferromagnetic thin films are reviewed, and details of the
micromagnetic simulations and data analysis are presented
in Sec. III. In Sec. IV, we show our results on the defect
coarsening dynamics and analyze the possible annihilation
reactions underlying such dynamics. Finally, Sec. V finishes
the paper with discussion and conclusions.

II. TOPOLOGICAL DEFECTS IN MAGNETICALLY
SOFT THIN FILMS

In the absence of an external magnetic field, the orientation
of the spins in thin films of magnetically soft material such
as permalloy is determined by the competition of shape
anisotropy and exchange interaction. For small films or
nanodots (up to few tens of nanometers depending on the
film or dot thickness [19]), the exchange interaction energy
dominates and the ground state is a single magnetic domain
[20]. In larger films, up to a couple of tens of microns [21], the
ground-state configuration consists of one or more elementary
topological defects, depending on the geometry of the film [9].
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FIG. 1. The elementary topological defects: (a) vortex, (b) an-
tivortex, (c) positive edge defect, and (d) negative edge defect. The
film is viewed from the direction of the z axis, with the arrows showing
the magnetization direction in the xy plane. The vortex-antivortex
cores pointing out of plane are denoted with ⊗. In the case of edge
defects, the cores (not necessarily out of plane) are marked with ©
and the black bar represents the edge of the sample.

Square thin films can contain three types of stable elementary
magnetic defects: vortices, antivortices, and edge defects.
Other structures, such as domain walls, are composed of these
elementary defects.

Magnetic vortex is a point defect with core radius ap-
proximately equal to the magnetic exchange length of the
material (between 5 and 6 nm in permalloy [22]). The core
magnetization, often referred to as the polarization of the
vortex, points out of the thin film plane, while the surrounding
magnetization rotates around the core [Fig. 1(a)]. Vortices are
thus characterized by two quantities: the core polarization,
and the rotation direction of the surrounding magnetization
(clockwise or counterclockwise).

An antivortex is another type of point defect with out-of-
plane polarization, with a core radius similar to that of vortices.
Unlike vortices, however, the magnetization around an antivor-
tex does not rotate around the core of the defect. Instead, the
magnetization points into the core from two opposite directions
and out of the core from two perpendicular directions, with the
rest of the surrounding magnetization assuming orientation in
between these main directions [Fig. 1(b)] [10].

Vortices and antivortices are both bulk defects; i.e., they
form in the bulk of the film and tend to stay away from the edges
unless driven there by the relaxation or an outside influence
such as an external magnetic field. The third type of defects,
edge defects, are confined to the edge and cannot move to the
bulk [9]. The edge defects are also different from vortices and
antivortices in that the core magnetization of the defect does
not necessarily point out of plane. Edge defects can further be
divided into two types, henceforth referred to as the positive
edge defect [Fig. 1(c)] and negative edge defect [Fig. 1(d)],
according to their winding numbers.

The topological defects can be characterized by the winding
number W , defined as a normalized line integral of the mag-
netization vector angle θ over a closed loop around the defect
[10], W = 1

2π

∮
S
θ (φ)ds, where φ is the angle of the vector

from the defect core to the point on the line being integrated
over, and S is the integration path. The winding number (or
topological charge) is +1 for vortices and −1 for antivortices.
Though edge defects cannot be similarly circled around, they
can be shown to have fractional winding numbers of ±1/2 [9].

The total winding number of a thin film is a conserved
quantity. In a film with n holes, the total winding number
is W = ∑k

i=1 Wi = 1 − n, where Wi is the winding number
of defect i and k is the number of defects [9]. The total
number of defects can be quite high in large magnetically
unrelaxed films, but the number will eventually decay due to
the collision-induced annihilations of the defects. In a film
with no holes, such as the ones simulated in this paper, the
total winding number is equal to 1. This corresponds to a
few possible configurations, out of which the single vortex
state (flux closure or Landau pattern) is energetically most
favorable [13].

III. MICROMAGNETIC SIMULATIONS

A. Simulation details

During the relaxation of the magnetization from a ran-
domized initial state, the time evolution of the magnetic
moments m = M/Ms is described by the Landau-Lifshitz-
Gilbert (LLG) equation,

∂m
∂t

= γ Heff × m + αm × ∂m
∂t

, (1)

where γ is the gyromagnetic ratio, Heff is the effective
magnetic field, Ms is the saturation magnetization, and α is
the Gilbert damping constant. Heff takes into account four
energy contributions, which are the aforementioned exchange
energy, energy due to magnetocrystalline anisotropy, Zeeman
energy (energy of an external field), and the demagnetizing
field energy. In the context of this work, the Zeeman and
anisotropy contributions are negligible, as no external fields
are being applied and the magnetocrystalline anisotropy of
permalloy is insignificant.

Simulations were performed with a Graphics Processing
Unit-based micromagnetic code MUMAX3, using the adaptive
Dormand-Prince method and finite differences for temporal
and spatial discretization, respectively [23]. Simulations were
run for square samples of thickness 20 nm, with four different
linear film sizes L of 512, 1024, 2048, and 4096 nm. The
dimensions of a single simulation cell were chosen to be 4 ×
4 × 20 nm, so that the smallest film corresponds to 128 × 128
cells; the number of out-of-plane z-direction cells is 1. Here,
typical parameter values of permalloy [13,18,24] are used,
i.e., Ms = 860 × 103 A/m and A = 13 × 10−12 J/m. Unless
stated otherwise, we consider α = 0.02, which corresponds to
slightly Nd-doped [25] or Pt-doped [26] permalloy. We also
investigate the effect of α on the relaxation process, using
values ranging from the typical 0.01 for pure permalloy up
to 0.1 representing highly doped permalloy, and a couple
of very high values, α = 0.5 and α = 0.9. While the latter
two α values are clearly too high to realistically describe
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FIG. 2. The relaxation process in a square thin film with lateral
size L = 1024 nm. The color wheel in the center shows the direction
of the magnetization corresponding to each color. In this case, the
final vortex (black dot at the center of the bottom right picture) is a
−z-polarized clockwise vortex.

magnetization dynamics of permalloy, they allow us to address
the more general question of the effect of damping on the defect
coarsening dynamics. Moreover, we also check the stability of
our results with respect to adding quenched structural disorder
to the system [27–31], by performing a Voronoi tessellation
to divide the films into grains, mimicking the polycrystalline
structure of the material [30,31]; we consider average grain
sizes of 10, 20, and 40 nm. Disorder is then implemented
by either setting a random saturation magnetization in each
grain (from a normal distribution with mean Ms and standard
deviation of 0.1Ms or 0.2Ms) [27,30], or decreasing the
exchange coupling across the grain boundaries by 10%, 30%,
or 50% [30,31].

At the start of the simulation, the magnetization is ran-
domized in each cell, after which the system is left to relax
at zero temperature without external magnetic fields. Four
example snapshots of the relaxation process are shown in
Fig. 2. The relaxation process consists of approximately three
phases. In the beginning of the relaxation (usually from 0
to approximately 1 ns, though less with stronger damping),
the system experiences large fluctuations in magnetization
without well-defined magnetic defects or domains. After these
fluctuations have settled, the dynamics consist of defects mov-
ing and annihilating each other; the properties of this defect
coarsening dynamics are the main focus of the paper. The
final relaxation stage consists of a single vortex experiencing
damped gyrational motion toward the center of the film. The
configuration of the resulting ground state displays the Landau
pattern: four large domains separated by diagonal domain

walls starting from the corners of the film and meeting at a
90◦ angle in a vortex at the center [12–14].

One should note that during the very early stages of the
relaxation starting from the disordered paramagnetic state,
the LLG equation does not fully describe the magnetization
dynamics since it assumes that the lengths of the magnetic
moments are conserved; the latter is not strictly speaking the
case during the first stage of quenching the system across
the phase boundary from the high-temperature paramag-
netic to the ferromagnetic phase. However, multiple studies
[32–34] concerning the longitudinal relaxation of the magnetic
moments point out that in low temperatures, the longitudinal
relaxation is orders of magnitude faster than the transverse
relaxation and takes place in the femto- and picosecond time
scale. Thus, after the first few picoseconds, and especially
in the annihilation-dominated relaxation regime which is
the focus of the present study, longitudinal relaxation is
nonexistent, and the LLG equation suffices to fully describe
the magnetization dynamics.

B. Locating and characterizing defects

Here, we describe the algorithm used to find the defects
from the magnetization data. Finding bulk defects (vortices
and antivortices) is relatively simple, as they have strong
z-directional magnetization at the core. The cores of the
defects are determined by comparing the z magnetization
with the nearest neighbors and finding the local maximum
or minimum, and comparing it to a threshold value of 0.5Ms .
The type of the defect is then determined by performing a
discretized version of the winding number integration: The
nearest neighbors are looped through in a circle, and the
rotation direction of the magnetization vector is monitored.
Doing a counterclockwise loop, the vector in two consecutive
cells would turn left in the case of a vortex and right in the
case of an antivortex [Figs. 3(a) and 3(b)]. Ideally, the angle

(a) (b)

(c) (d)

FIG. 3. A schematic view of the different defects and the (ideal)
surrounding magnetization in the nearest neighbors in the xy plane,
as in Fig. 1. The numbers in the corners of the cells show the cell
traversal order when determining the defect type.
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between two consecutive neighbors in the xy plane would be
45◦. Since each magnetization vector is normalized to Ms, the
length of the cross product of two consecutive magnetization
vectors in the vortex case (choosing counterclockwise turn as

positive) would yield ||mi × mi+1|| = M2
s sin 45◦ = M2

s√
2
. The

corresponding result for an antivortex would be −M2
s /

√
2.

Summing the results for each neighbor pair, this method
would ideally give 2

√
2M2

s for vortices and −2
√

2M2
s for

antivortices. Due to nonidealities in rotation and the fact
that the spins in the cells neighboring the core also tend to
have nonzero z components, the sums can be smaller. Thus,
threshold values for recognizing defects are set to M2

s and -M2
s

for vortices and antivortices, respectively.
In addition to the winding number, the vortices can

have clockwise or counterclockwise rotation. The rotation is
determined as above, but considering the center-to-neighbor
vector and the magnetization vector for each neighbor. This ap-
proach would ideally yield 4Ms(1 + √

2) for counterclockwise
rotation and −4Ms(1 + √

2) for clockwise rotation, since the
angle between the vectors would be 90◦. Due to nonidealities,
threshold values were set to 5Ms and −5Ms , respectively.

Edge defects are somewhat harder to detect, as they usually
do not have polarized cores. Thus the defects are determined
only by performing a loop through the nearest neighbors as
in the case of bulk defects [(Figs. 3(c) and 3(d)]. Though
the method performed quite well in finding the edge defects,
the difficulty of singling out the core sometimes resulted in
multiple detections in the same region. This problem was
somewhat mitigated by introducing an area around the edge
defects in which similar defects would be ignored. Figure 4
shows a snapshot of the relaxation with defects pinpointed by
the detection algorithm.

FIG. 4. The various kinds elementary defects present in the
relaxation of the largest film: clockwise vortices (squares), counter-
clockwise vortices (circles), antivortices (+ signs), and edge defects
(triangles). The color of a bulk defect shows its polarization (black for
−z and white for +z). For the edge defects, the color indicates whether
the winding number of the defect is positive (black) or negative
(white).
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FIG. 5. The total average winding numbers for the four film sizes
used. The inset shows that the winding number for the largest sizes
takes more time to converge into 1.

In the simulations, the initial random fluctuations cause
many false defect detections. This can be seen as the total wind-
ing number fluctuating in the beginning before converging
close to 1 (Fig. 5). The tendency of the total winding number
to be below 0 in the beginning is due to the initial fluctuations
being more easily categorized as antivortices, since they do
not have a rotation direction threshold. The winding number
can also change momentarily during annihilations due to the
detection algorithm having difficulties determining defects
that are very close to one another. Moreover, sometimes
a disturbance (such as a spin wave from an annihilation)
near a defect could cause the defect to become momentarily
unrecognizable to the algorithm. To lessen the fluctuation in
defect amounts, a persistence time of 20 ps for the already
detected defects was introduced. During the persistence time,
the algorithm considers a defect to exist in the location it was
last detected even if it cannot find it at the present time. The
persistence time reduces the noise in the number of defects.

IV. RESULTS

Depending on the system size, the relaxation from random
magnetization to the single-vortex ground state took usually
approximately from 5 to 40 ns. Hence the simulations were
run for 20 ns for the two smallest film sizes, 30 ns for the
L = 2048 nm film, and 50 ns for the largest film. Usually the
ground state was reached relatively quickly compared to the
simulation time. Only with the largest film size there were a
couple of instances in which the system had not relaxed to the
single-vortex state or a metastable state before the simulation
time ran out, though in these cases the system was still close
to the relaxed state with only 2–4 defects left.

Metastable states were encountered in 10 of the total 80
simulations. With the smallest film, only one simulation ended
up in a metastable state, whereas each larger size had three
simulations finished in a metastable state. Of these states, two
different kinds were common: a simple one with two negative
edge defects on two opposite sides and two vortices close to
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(a) (b)

FIG. 6. The two most commonly encountered metastable states,
shown for the system with L = 1024 nm. (a) A two-edge-defect,
two-vortex state which also displays significant bending of domain
walls. (b) A more complex state, showing an isolated vortex and an
arc of other defects.

the center [Fig. 6(a)] and a more complicated state with an
antivortex, three vortices, and two edge defects [Fig. 6(b)], in
which one vortex is isolated and the other defects are in an arc
close to one of the edges.

A. Time evolution of energy and defect densities

In Fig. 7, the time evolution of the energy towards the
value E(tR) is shown for all four system sizes, averaged over
20 simulations for each size. Here tR is the time after which
the number of defects in the system does not decrease, which
corresponds to either the single-vortex state, a metastable state
with more than one defect, or the state the system had time to
reach before the simulation time ran out.

The total energy of the system drops very little in the first 0.1
ns and then starts decreasing in a slightly oscillating fashion
in the initial fluctuation regime (0–1 ns). Stable defects start to
form at roughly 0.5 ns, but the energy evolution is dominated
by the global fluctuations in the system. As can be seen from
the figure, during the initial phase the time evolution of the
energy, normalized by the initial value, is independent of the

FIG. 7. The time evolution of the total energy of the films,
consisting of an initial fluctuation phase independent of the system
size and a defect annihilation-coarsening phase displaying power-law
relaxation terminated by a cutoff time increasing with the film size.
The linear dependence of energy density and defect density during
the coarsening phase is shown in the inset.

system size. This results from the fact that during the initial
fluctuations the magnetization is largely random, and thus the
energy contributions from the exchange interaction and the
stray fields are proportional to the system size.

In the defect annihilation or coarsening phase, the time
evolution of the energy resembles a power law E(t) − E(tR) ∝
t−ηE , with an exponent ηE = 1.22 ± 0.08. In this phase, the
total energy of the system consists mostly of the energy
contained in the domain walls connecting the elementary
defects and the stray fields created by the (anti)vortex cores in
which magnetization points out of plane. The largest system
sizes are the slowest to reach the energy minimum and thus
show the most clearcut power-law behavior. The inset of
Fig. 7 shows that during the coarsening phase the energy
density ρE = E/L2 of the system is linearly proportional to
the density of the defects ρd = Nd/L

2, where Nd is the total
number of all defects. This implies that the defects are the
main contributors to the energy at this stage of the relaxation,
a result previously obtained for the XY model by Qian et al.
[17]. The slope changes slightly with system size, likely due to
the fact that while the edge defects also contribute to the total
energy, their number scales with the lateral film size as 4L

instead of the L2 scaling of bulk defects. Thus as the film are
smaller, the relative amount of edge defects at the beginning of
the simulation is greater. In smaller films the reduction of total
number of defects involves more annihilations of edge defects,
compared to vortex-antivortex annihilations that dominate in
larger films. If the edge defects are energetically less expensive
than bulk defects (which would seem reasonable, considering
that they do not usually have large out-of-plane components
and the overall change in magnetization direction around the
defect is less than that of bulk defects), these annihilations
result in smaller decrease in energy than vortex-antivortex
annihilations. Hence, for smaller systems, the energy decreases
more slowly as a function of the total number of defects.

In the coarsening phase, also the densities of the different
defect types decay as power laws, with different exponents
for each type of defect. These exponents are determined only
by the topological charge of the defect, given that considering
separately the chirality and/or core polarization (in the case
of vortices and antivortices) did not have an effect on the
exponent. The total number density of all defects (counting
vortices, antivortices, and both types of edge defects) decays
as a power law ρd(t) − ρd(tR) ∝ t−ηd with the exponent
ηd = 1.42 ± 0.06 [Fig. 8(a)]. Here tR is again the time after
which no annihilations take place. The exponent value is
considerably higher than the asymptotic value (ηd = 1) found
in simulations of the XY model with linear damping and local
interactions [1,17,35].

For the total amounts of vortices (summing both clockwise
and counterclockwise rotations and both core polarizations)
the time evolution is well described by a power law ρv(t) −
ρv(tR) ∝ t−ηv , with ηv = 1.51 ± 0.05 [Fig. 8(b)]. The expo-
nent of the time evolution of the antivortex density ρav is
consistently found to be somewhat larger: We find a power law
ρav(t) − ρav(tR) ∝ t−ηav with an exponent ηav = 1.62 ± 0.09
[Fig. 8(c)]. Since the typical relaxed state achieved in the
simulations is a single-vortex state, ρav(tR) is usually 0,
though few unrelaxed or metastable end states have 1 or 2
antivortices.
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(a) (b)

(c) (d)

FIG. 8. The time evolution of the densities of (a) all defects, (b) vortices, (c) antivortices, and (d) edge defects, with solid lines corresponding
to power law fits as guides to the eye. The power laws can be seen most clearly in the largest film sizes. In the case of edge defects, the positive
edge defects are noted with dashed symbols.

The density of negative edge defects is higher than that of
the positive ones in all the simulations. Positive edge defects
were observed to be short-lived by-products of annihilations of
vortices and negative edge defects. This supports the notion in
Ref. [9] that negative edge defects are energetically preferable
over positive edge defects for films with Lt > L2

ex, where
L and t are the lateral length and thickness of the film,
respectively, and Lex is the exchange length. Like vortices and
antivortices, the density of negative edge defects appears to
show power-law behavior ρned(t) − ρned(tR) ∝ t−ηned , with an
exponent ηned = 0.82 ± 0.09 [Fig. 8(d)]. One should note here
that for edge defects, ρned = Nned/4L is a line density instead
of an area density. The number density of positive edge defects
decays close to zero soon after the initial fluctuations and there
is no visible power-law behavior.

B. Defect dynamics during relaxation

Examining the motion of defects during the relaxation
and coarsening process reveals complex dynamical defect
behavior, including various kinds of annihilations, vortex and
antivortex emissions, and core switching. All of these events
are restricted by the conservation of the total winding number.

The possible annihilation events are limited to four
types: positive and negative edge defect annihilation, vortex-
antivortex annihilation, vortex and 2× negative edge defect
annihilation, and antivortex and 2× positive edge defect
annihilation. Out of these four annihilation processes, only
two were primarily encountered in the simulations: vortex-
antivortex annihilation, and vortex and 2× edge defect

annihilation. In the former case, the parallel or antiparallel
nature of the polarizations of the annihilating vortex-antivortex
pair affects the nature of the annihilation process. This is
related to the conservation of another topological quantity,
the skyrmion number [36].

When the polarizations of the annihilating vortex and
antivortex are parallel, the skyrmion number is conserved,
resulting in a continuous and relatively slow annihilation
process. The vortex and antivortex approach each other
until they are indistinguishable and start accelerating in a
direction perpendicular to a line connecting them. During the
acceleration, the combined vortex-antivortex defect widens
and diffuses continuously into the surrounding magnetization.
This process is depicted in Fig. 9(a). By contrast, if the
polarizations are antiparallel, the skyrmion number is not
conserved, and a more abrupt annihilation (referred to as
exchange explosion by some authors [10]) takes place: The
vortex and antivortex circle around one another in decaying
orbits until meeting at the center and explosively releasing
circular spins waves [Fig. 9(b)].

The steps of the annihilation process where a vortex
annihilates with two negative edge defects are harder to
pinpoint. In a typical vortex–edge defect annihilation, one of
the edge defects changes sign and emits an antivortex, which
annihilates with the approaching vortex. The remaining edge
defects, now having opposite signs, then annihilate with each
other. This kind of annihilation also causes an emission of spin
waves (Fig. 10). An edge defect could also absorb or emit a
vortex or an antivortex and change sign without a vortex or an
antivortex close by to annihilate with, since a +1/2 edge defect
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(a) (b)

FIG. 9. The annihilation of a vortex and an antivortex with (a) antiparallel and (b) parallel polarizations.

emitting a vortex or absorbing an antivortex and changing
into a −1/2 defect conserves the winding number. Such
emissions and absorptions were observed in the simulations,
though in most cases the emitted vortex-antivortex was
shortly absorbed again accompanied with an emission of spin
waves.

The velocities of the defects do not typically exceed
the core switching velocity of permalloy (340 ± 20 m/s)
[37]. However, sometimes an exception occurs in antiparallel
vortex-antivortex annihilations. In this case the increasing
velocity of the vortex and/or antivortex causes the formation of
a dip particle, an antiparallelly polarized magnetization region
close to the fast-moving core [38]. Just before annihilation,
the vortex or antivortex exceeds the core switching velocity
and the dip particle separates into a vortex-antivortex pair.
The consecutive annihilations of the two pairs then take place
(Fig. 11). In addition to velocity, the environment of a vortex
also affects the possibility of a core switch. Some core switches
were observed to happen even for relatively stationary vortices,

FIG. 10. Though somewhat difficult to see, during this edge
defect-vortex annihilation, the lower edge defect emits an antivortex
with which the vortex actually annihilates.

usually after being excited by a spin wave originating from a
nearby annihilation.

Another core switching behavior was sometimes found at
the corners of the film: A vortex could bounce (shortly get
absorbed and then again emitted by the edge defect) between
two edge defects on different edges of the film while reversing
polarization with each bounce (Fig. 12) and emitting spin
waves. This kind of bouncing always ended up in both the
vortex and the edge defects annihilating at the corner. Typically
there were two or three such core switches before the final
annihilation.

C. Effects of damping and quenched disorder

Here, we discuss briefly how the above results are affected
by changes in the damping constant α, and when introducing
quenched disorder to the system. Figure 13 shows the time

FIG. 11. In this antiparallel annihilation, the negatively polarized
antivortex (black dot) generates a dip particle, which then splits into a
positively polarized vortex-antivortex pair. Thus two annihilations
occur: an antiparallel annihilation of the original antivortex and
the generated vortex (AVO-VG), and a parallel annihilation of the
generated antivortex and the original vortex (AVG-VO).
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FIG. 12. The core switching of a vortex due to a momentary
absorption into an edge defect. Usually before and after the absorption
and emission of the bouncing defect, the edge defect cores gain
short-lived out-of-plane magnetization components.

evolution of the total defect density ρd(t) in a pure system for
different values of α in the range from 0.01 to 0.9; notice that
while the higher values of α considered are clearly unphysical
for permalloy, they allow to address the question of how the
defect coarsening process is modified when the overdamped
limit (as often considered in coarse-grained models of defect
coarsening, such as the XY model) is approached. As indicated
by the inset of Fig. 13, the power-law exponent ηd evolves
from the low-α value of ηd ≈ 1.4 to a lower value of ηd =
1.07 ± 0.05 for the highest α value considered. We note
that ηd obtained here in the limit of large α is close to
that obtained for XY model in earlier works [1,17,35]. The
corresponding exponents for the different defect types also
exhibit similar evolution with α, with the values obtained

FIG. 13. Main figure shows the average time evolution of the total
number density of defects ρd for L = 4096 nm with four different α

values. For larger α, the power-law character of the relaxation (black
lines indicate the the power-law fits used) starts earlier due to the
strongly damped initial magnetization fluctuations. The inset shows
the resulting ηd exponent as a function of α.

for α = 0.9 found to be ηv = 1.09 ± 0.06, ηav = 1.13 ± 0.06,
ηned = 0.72 ± 0.09 for vortices, antivortices, and edge defects,
respectively (not shown). Qualitatively, with increasing α from
0.01 toward 0.1, the initial fluctuations tend to settle down
somewhat faster, and core switching events are found to be less
abundant. For the highest α values considered (0.5 and 0.9),
the system forms well-defined defects almost instantaneously,
with their subsequent motion being quite sluggish. Also, no
core switches or bounces of vortices from edge defects are
observed. As a result, the duration of the coarsening phase
increases significantly, with the largest system taking more
than 70 ns to fully relax in some simulation runs.

Finally, introducing random structural disorder due to the
polycrystalline nature of permalloy to the films with α = 0.02
has the effect that some of the simulation runs finish with
more than one defect pinned by the disorder. However, for
the parameter values used in our simulations for the grain
size, exchange coupling reductions across the grain boundary,
and saturation magnetization variations in different grains (see
Sec. III), the exponents of the power-law relaxations remain the
same as in the corresponding pure system (not shown). When
the exchange coupling between grains is weakened, the defects
prefer to move along the grain boundaries. Additionally, core
switches were observed to occasionally occur when a vortex
or antivortex crosses over a grain boundary. The probability
for such core switches appears to increase with weaker
intergrain exchange coupling strength. Varying the saturation
magnetization in the grains makes the movement of the defects
somewhat choppy and increases the chance of defect pinning,
but otherwise the dynamics of the relaxation process remains
similar to that in the nondisordered permalloy films considered
above.

V. CONCLUSIONS

In this paper, we have investigated the magnetic relaxation
starting from disordered initial states of permalloy thin films
of various sizes by extensive micromagnetic simulations.
We conclude that the resulting coarsening dynamics involve
complex processes and display a multitude of phenomena,
such as defect annihilations, core switching, and vortex
absorption and emission, many of which have previously
been individually studied in detail. Together these phenomena
result in highly nontrivial dynamics for single defects which
then give rise to interesting time evolution of system-wide
quantities such as the total energy density and the defect
densities.

In the defect coarsening and annihilation phase, this
complexity is manifested in particular as slow power-law
temporal decay characterized by nontrivial exponents of
quantities such as the energy density of the system, of
the form of ρ(t) − ρ(tR) ∝ t−ηE , with ηE = 1.22 ± 0.08 for
the energy density time evolution. For the defect densities,
different values of η were observed depending on the defect
type: For vortices, antivortices, and negative edge defects we
find ηv = 1.51 ± 0.05, ηav = 1.62 ± 0.09, and ηned = 0.82 ±
0.09, respectively. The temporal decay of the total density
of defects is characterized by the exponent ηd = 1.42 ± 0.06.
These exponents show little change (within error bars) when
using the Gilbert damping constant α within the range of
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0.01–0.1 and are found to be robust against adding quenched
disorder of moderate strength. When α is increased further, the
relaxation exponents approach the asymptotic value for the XY
model with local interactions (ηd = 1) [1]. This should be due
to the large damping practically eliminating the precessional
motion of the magnetic moments so that they align with the
local effective field almost immediately; thus, the dynamics
of the magnetic moments starts to resemble that of the XY
model in the no-inertia (overdamped) limit. Our results thus
suggest that the relatively low damping of permalloy has a key
role in the emergence of the nontrivial values of the relaxation
exponents, and that quenched disorder, present in any real
samples, is irrelevant for the relaxation exponent values.

Due to the relatively small size of the films and as a
consequence the number of defects (about 500 in the largest
films at the initial stages of the coarsening phase), the power-
law relaxation phase of energy and defect densities was limited
in time to roughly one or two orders of magnitude. Thus, sim-
ulations and experiments with larger films and, consequently,
longer relaxation times, would be useful. For experimental

investigation, time-resolved x-ray imaging techniques should
have good enough spatial and temporal resolutions (25–30 nm
and 70–100 ps, respectively) [39–41] to observe the defects and
their dynamics. Even though these resolutions are still limited
when compared to our simulations, the longer relaxation times
and larger interdefect separations expected during the later
stages of the relaxation process in larger films (e.g., with linear
sizes in the range of tens of microns) should make it possible
to experimentally observe the approximate time evolution of
the vortex-antivortex number densities.
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[20] A. Hubert and R. Schäfer, Magnetic Domains: The Analysis of

Magnetic Microstructures (Springer, Berlin, 2008).
[21] K. Yu. Guslienko, J. Nanosci. Nanotechnol. 8, 2745 (2008).

[22] G. S. Abo, Y.-K. Hong, J. Park, J. Lee, W. Lee, and B.-C. Choi,
IEEE Trans. Magn. 49, 4937 (2013).

[23] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F.
Garcia-Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133
(2014).

[24] K.-S. Lee and S.-K. Kim, Appl. Phys. Lett. 91, 132511 (2007).
[25] C. Luo, Z. Feng, Y. Fu, W. Zhang, P. K. J. Wong, Z. X. Kou, Y.

Zhai, H. F. Ding, M. Farle, J. Du, and H. R. Zhai, Phys. Rev. B
89, 184412 (2014).

[26] S. Mizukami, T. Kubota, X. Zhang, H. Naganuma, M. Oogane,
Y. Ando, and T. Miyazaki, Jpn. J. Appl. Phys. 50, 103003 (2011).

[27] H. Min, R. D. McMichael, M. J. Donahue, J. Miltat, and M. D.
Stiles, Phys. Rev. Lett. 104, 217201 (2010).

[28] J. Leliaert, B. Van de Wiele, A. Vansteenkiste, L. Laurson, G.
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Reeve, M. Hänze, C. F. Adolff, F.-U. Stein, G. Meier, M. Kläui,
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