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Scaling study and thermodynamic properties of the cubic helimagnet FeGe
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The critical behavior of the cubic helimagnet FeGe was obtained from isothermal magnetization data in very
close vicinity of the ordering temperature. A thorough and consistent scaling analysis of these data revealed the
critical exponents β = 0.368, γ = 1.382, and δ = 4.787. The anomaly in the specific heat associated with the
magnetic ordering can be well described by the critical exponent α = −0.133. The values of these exponents
corroborate that the magnetic phase transition in FeGe belongs to the isotropic 3D-Heisenberg universality class.
The specific heat data are well described by ab initio phonon calculations and confirm the localized character of
the magnetic moments.
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I. INTRODUCTION

The magnetic properties of the chiral helimagnet FeGe
[1–5] are of renewed interest after the prediction of skyrmion
ground states in cubic helimagnetic metals [6]. These vortex-
like magnetic structures were predicted to exist at temperatures
(T ) just below the critical temperature (Tc) and for weak
magnetic fields (H ) in a narrow pocket of the (H,T ) phase
diagram. Fingerprints of this new magnetic state have been
observed in thin films of FeGe by Lorentz transmission-
electron microscopy [7,8] and in bulk samples by small-
angle neutron scattering [9] as a characteristic distribution
of the lateral magnetization and a hexagonal Bragg-spot
pattern, respectively. The occurrence of a skyrmion phase
and the helical magnetism in zero field are the consequence
of the Dzyaloshinskii-Moryia interaction (DM). Its strength
together with the exchange interaction governs the pitch of
the spin spiral, the diameter of a single skyrmion, and the
saturation field (Hc2) required to fully align the magnetic
moments along the external field [10,11]. Like in other cubic
chiral magnets crystallizing in noncentrosymmetric crystal
structures, a confined precursor region exists in a narrow
temperature interval between the ordered and paramagnetic
(PM) state. Here the longitudinal magnetization strongly varies
and short-ranged chiral spin correlations prevail. This region
can be identified as an inhomogeneous chiral-spin (ICS) state.
In FeGe it extends from Tc = 278.2(3) K up to T0 � 280 K
[10–13].

Despite the interest in the field-induced complex magnetic
structures of FeGe, several basic thermodynamic properties
and the transition to the helical state in zero field have not been
studied in great detail. In this context the investigation of the
critical behavior of FeGe and related cubic helimagnets is of
prime interest as it yields important microscopic information
about the underlying magnetic interactions.

Several studies were devoted to determine the critical expo-
nents of some chiral cubic magnets. Nonetheless, the reported

values and universality classes across these compounds are
controversial and contradictory. Based on isothermal magneti-
zation data, it was suggested that MnSi belongs to the tricritical
mean-field universality class [14], whereas FeGe was proposed
to change the universality class across the phase transition
from 3D-Heisenberg (above Tc) to 3D-Ising or 3D-XY (below
Tc) [15]. However, a study on Fe0.8Co0.2Si using isothermal
magnetization and magnetotransport reported a consistent set
of critical exponents that fall in the 3D-Heisenberg universality
class [16]. Results of a scaling analysis based on temperature-
dependent ac-susceptibility data on Cu2OSeO3 led to the
conclusion that this insulating chiral magnet also belongs to
the 3D-Heisenberg universality class [17].

In particular the inconsistent findings reported for FeGe
[15] are puzzling as it can be regarded as a strong band
ferromagnet with a stable magnetic moment (μFe = 1μB),
a relatively high ordering temperature, and negligible spin
fluctuations [1,3,13,18,19]. In this respect FeGe is similar to
a classical band ferromagnet (FM), like Ni [20], but with the
peculiarity that the transition from the PM phase to helical
ordering is obscured by the ICS state. Therefore, a consistent
scaling analysis of the critical behavior should be performed
in fields strong enough to overcome the DM interaction and
to exclude any influence of the helical, conical, and skyrmion
states. Thus the criticality of the unperturbed magnetic spin
configuration should be studied at fields well above Hc2(T =
0 K) = 3.6 kOe [11] and for temperatures within a distance
ε = |1 − T/Tc| � 10−2 to Tc as for a classical FM to PM
transition at elevated temperatures [20].

In the following we present a consistent scaling analysis of
FeGe to determine its universality class. This investigation is
based on isothermal magnetization data, M(H ), very close
to Tc (|ε| < 0.013) and specific heat data in zero field.
Furthermore, the lattice contribution to the specific heat
and thermal expansion is compared with ab initio phonon
calculations in the quasiharmonic approximation [21].
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II. METHODS

A. Experimental details

In this work high-quality single crystals grown by chemical
vapor transport have been used [22]. The zero-field cooled
isothermal magnetization data were measured on the same
crystal that was used in the study reported earlier [10]. Its
mass was 0.995 mg and it was carefully aligned with its [100]
direction along the external magnetic field. Isothermal M(H )
data were recorded with a commercial SQUID magnetometer
(MPMS Quantum Design) after zero field cooling from 320 K.
After each data set had been completed the field was swept to
zero in an oscillating fashion and then the sample was heated to
320 K where it was kept for five minutes before the next cycle
was started. In very close vicinity of Tc, i.e., 275 K � T �
283 K, the isotherms were recorded as close as �T = 0.2 K,
whereas further away from Tc they were at least �T � 1 K
apart. The field was incremented initially by �H = 500 Oe
and beyond H > 10 kOe in steps of �H = 2 kOe. The crystal
had a shape of an irregular but almost spherical polyhedron
and therefore the demagnetization factor N = 1/3 was used
to determine the internal magnetic field according to H =
Happl − N × ρM , with M the mass magnetization (in units of
emu/g) and ρ = 8.22 g/cm3, the mass density of FeGe.

The specific heat in zero field was measured on three single
crystals (mtot = 6.07 mg) in a PPMS Quantum Design device
using the heat-pulse method. One single crystal, which had
an arbitrary orientation with respect to the field, was used for
the specific heat measurements in external magnetic fields.
The thermal dilation measurements were carried out with
a homemade capacitive dilatometer using the parallel-plate
capacitance method [23–25]. The measurements were done
along the longest direction (≈ 0.8 mm) of two opposite parallel
surfaces of a polyhedral shaped single crystal. The temperature
was increased at a rate of 15 mK/s and averages were made
every 100 mK.

B. First-principle calculations

The phonon density of states was calculated numerically
within the direct method [26–28]. Here, the phonon frequen-
cies were calculated from restoring forces generated by a
distortion of the ideal crystal lattice due to small atomic dis-
placements. A Fourier transform of the force-constant matrix
yields the dynamical matrix and its diagonalization gives the
wave-vector dependent phonon frequencies. The forces were
obtained from first-principles supercell calculations within the
framework of density functional theory (DFT) with the Vienna
ab initio Simulation Package [29,30]. A scalar relativistic de-
scription was used in connection with the generalized gradient
approximation (GGA) by Perdew, Burke, and Ernzerhof [31].
The cutoff for the plane wave basis functions was chosen
as Ecut = 400 eV. The semicore 3p for Fe and 3d for Ge,
i.e., 3p63d74s1 and 3d104s24p1, respectively, were considered
explicitly in the potentials. The calculations were done with
a supercell of 3 × 3 × 3 primitive cells, containing 216 atoms
in total. For sufficient accuracy of the forces a k mesh of
4 × 4 × 4 points in the full Brillouin zone was employed
in connection with the Methfessel-Paxton finite temperature
integration scheme (smearing parameter σ = 0.1 eV). The

forces were calculated from four displacements of 0.04 Å
in size, each. In order to minimize errors from noise and
anharmonicities, displacements in opposite directions were
considered.

The PHON code by Alfè [32] was employed in combination
with the PHONON code by Parlinsky [33] to generate the
displacements, compute the phonon dispersion relations, and
calculate the free energy, specific heat, and entropy at a fixed
volume. To obtain thermodynamic averages in the quasihar-
monic approximation [21,34] phonons were calculated for five
different volumes of the primitive cell. The temperature and
volume dependent free energy was interpolated using a third
order spline scheme. Minimization with respect to the volume
at each constant temperature yields access to the equilibrium
volume, entropy, and the specific heat at zero constant pressure.

III. RESULTS AND DISCUSSION

A. Magnetization

Figure 1(a) shows isothermal M(H ) curves of FeGe at
selected temperatures for applied magnetic fields up to 50 kOe
along the [100] direction. The inherent curvature prevents
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FIG. 1. (a) Isothermal magnetization (M vs H ) of FeGe at se-
lected temperatures [35] for magnetic fields H ‖ [100]. (b) Rescaled
isotherms using the critical exponents β = 0.368 and γ = 1.382.
Only a subset of the measured data is shown for clarity [35]. The lines
are linear fits to the data (large symbols) for fields above Hcutoff = 9
kOe. In both panels the critical isotherm is highlighted in red and
in (b) the applied magnetic field was corrected for demagnetization
effects.
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a determination of the spontaneous magnetization Ms(T ) =
M(T ,H = 0) from a linear extrapolation of the high-field data
to H = 0. Also in conventional Arrott plots, i.e., presenting
the data as M2 vs H/M , the isotherms are nonlinear and
concave (not shown). Therefore, they cannot be used to obtain
Ms(T ) and χ−1(T ) from the intercepts of the ordinate and
abscissa, respectively. This implies that the magnetization of
FeGe cannot be described by mean-field theory, i.e., with
critical exponents β = 0.5 and γ = 1. Thus, for the scaling
analysis, the isothermal magnetization data have to be rescaled
and presented as M1/β vs (H/M)1/γ in a so-called modified
Arrott plot. For this purpose the critical exponents β for the
magnetization and γ for the normalized field are chosen in
such a way that the magnetization curves are linear and parallel
over a field range as large as possible with one set of critical
exponents. This is achieved in an iterative process.

As a first guess, exponents of the 3D-Heisenberg uni-
versality class were used to rescale the isotherms. Then
a straight line was fitted to all rescaled M(H ) curves. In
this fitting process magnetization data below a cutoff field
Hcutoff = 2.5 × Hc2(T = 0 K) = 9 kOe were not considered
in order to minimize the influence of the chiral states on the
high-field extrapolation and the determination of the critical
exponents. The intercepts of these linear fits with the ordinate
and abscissa yield Ms(T )1/β and χ (T )−1/γ , respectively. Their
temperature dependence was analyzed according to

Ms(T ) = Ms(0)

(
1 − T

Tc

)β

, T < Tc, (1)

χ (T )−1 = χ (0)−1

(
T

Tc

− 1

)γ

, T > Tc. (2)

This gave new values for the exponents which were used in
the next iteration step to rescale the M(H ) data and to extract
updated temperature dependencies of Ms(T ) and χ (T )−1. This
iteration process was repeated until the exponents between
two iterations converged. It is noteworthy that the iteration
process converged to the same values of the exponents and Tc,
independent of the initial values used if the fits to Ms(T ) and
χ (T )−1 were constrained to the temperature interval 275 K �
T � 283 K.

Figure 1(b) shows the rescaled M(H ) isotherms using β =
0.368 and γ = 1.382 for temperatures 275 K � T � 283 K.
In this narrow temperature range around Tc (�T/Tc � 1%) the
temperature increments between two isotherms with respect to
Tc is smaller than 0.1%. Only in these circumstances the slopes
of the linearized magnetization curves are the same within 2%
and hence the isotherms are almost parallel lines. Outside this
temperature window, however, the slopes steadily decrease and
are up to 10% smaller at 265 K and 300 K than at Tc. These
data were not considered as they lead to an overestimation of
Ms(T ) and χ (T )−1. As can be seen from Fig. 1(b) the linearity
of the data is perfectly adhered down to Hcutoff (large symbols).
However, an increasing deviation of the linear extrapolation
from the data (small symbols) is seen upon approaching H = 0
with increasing temperature. This exemplifies the importance
to constrain the fits to fields strong enough to overcome the
DM and exchange interactions and to ensure that the magnetic
moments are in a field-polarized state. The curve measured at
278.6 K is extrapolating to the origin and hence it represents
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FIG. 2. (a) Temperature dependence of the spontaneous magneti-
zation Ms(T ) (left) and inverse susceptibility χ (T )−1 (right) of FeGe.
The lines represent fits of Eqs. (1) and (2) to the data with the expo-
nents β = 0.368 and γ = 1.382. The inset shows the critical isotherm
M(H ). Its slope yields the exponent δ = 4.787. (b) The Kouvel-Fisher
plots of Ms(T )(dM/dT )−1 (left) and χ (T )−1(dχ (T )−1/dT )−1 (right)
yield the exponents β = 0.369 and γ = 1.337, respectively. The
vertical dashed line indicates Tc = 278.6 K.

the critical isotherm (highlighted in red). The positive slopes
of the isotherms suggest that the magnetic ordering in FeGe
is a continuous transition according to the Banerjee criterion
[36].

The temperature dependence of Ms(T ) and χ (T )−1 ob-
tained from this rescaling procedure is depicted in Fig. 2(a).
The lines indicate fits of Eqs. (1) and (2) to these data
with β = 0.368 and γ = 1.33. Whereas β is consistent
with the value used to rescale the isotherms, γ is slightly
smaller. Nevertheless, both curves extrapolate to zero at
Tc = 278.7 K. It is noted that the extrapolation of χ (T )−1

to higher temperature (not shown) starts to deviate from the
data above 285 K. However, the extrapolation of the Ms(T ) fit
to lower temperature (not shown) yields a good description of
the experimental data.

An alternative approach to extract the critical exponents
and Tc is to analyze the temperature dependencies of
Ms(dMs/dT )−1 and χ−1(dχ−1/dT )−1. In these so-called
Kouvel-Fisher plots both quantities should depend linearly
on temperature [37,38]. This is indeed the case and from
the inverse of the slopes the critical exponents and from
the intercept with the temperature axis Tc can be inferred.
Fitting the data shown in Fig. 2(b) yields β = 0.369(8) and
γ = 1.337(9) in agreement with the values found for Ms(T )
and χ (T )−1 [see Fig. 2(a)].

The critical exponent δ can be extracted from the critical
isotherm as M and H are related by the Widom scaling
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shows the effective exponents βeff and γeff according to Eq. (5).
The vertical dashed line indicates Tc. (b) Scaling plot in a double-
logarithmic scale.

hypothesis according to

M = DH 1/δ , (3)

with D the critical amplitude [39–41]. This relation allows
the critical exponent δ to be determined experimentally
without using the scaling hypothesis that requires other critical
exponents. The inset to Fig. 2(a) shows the critical isotherm
in a double-logarithmic plot. From a linear fit (solid line) to
the data above Hcutoff = 9 kOe (large circles) δ = 4.787(5)
and D = 2.35(5) were obtained. The extrapolation of the fit to
lower fields (dashed line) starts to deviate from the data (small
circles) as here the field is not strong enough to fully align the
magnetic moments along the field direction.

A stringent test to exemplify the quality of the scaling is
a plot of the magnetic equation-of-state (EOS) in the critical
region (275 K � T � 283 K). The magnetic EOS is given by

M(H,T ) =
∣∣∣∣1 − T

Tc

∣∣∣∣
β

f±

(
H∣∣1 − T
Tc

∣∣β+γ

)
, (4)

with regular analytic functions f+ (for T > Tc) and f−
(for T < Tc) [39–41]. Thus, if the scaling is consistent, all
magnetization data fall on two universal curves. Figure 3
shows this scaling where the M(H ) data are plotted as M|ε|−β

vs H |ε|−β−γ . It is obvious that the M(T ,H ) data fall on
two curves, depending on their temperature [Fig. 3(a), top
curve: T < Tc]. Extending the field range and representing
the isotherms in a double-logarithmic plot reveals that all
data collapse on a universal curve that bifurcates at Tc

[see Fig. 3(b)].
To rule out any significant influence of competing magnetic

couplings and/or randomness on the critical behavior, the
effective exponents [40]

βeff = d(lnMs(ε))
d(lnε)

, γeff = d(lnχ (ε))
d(ln ε)

(5)

were determined as well. They are inferred from the gen-
eralized power laws for the critical behavior and approach
universal critical exponents in the limit ε → 0. The effective

TABLE I. Critical exponents β, γ , and δ as well as the critical
temperature Tc for FeGe obtained from the scaling analysis in a
narrow temperature interval (�T/Tc < 0.1%) around Tc. From these
exponents the values of δ and α were derived from β and γ via
the scaling relations given in Eqs. (6) and (8), respectively. For
comparison, the exponents for several universality classes are also
included.

Method Tc (K) β γ δ α

Fig. 1(b) 278.6 0.368 1.382
Eqs. (6),(8) 4.755 −0.12
Ms(T ) 278.7(3) 0.368(7)
χ (T )−1 278.7(1) 1.33(2)
Eqs. (6),(8) 4.6(1) −0.07(3)
M(dT /dM) 278.7 0.369(8)
χ−1(dT /dχ−1) 278.7 1.337(9)
Eqs. (6),(8) 4.62(8) −0.08(2)
M = DH 1/δ 278.6(1) 4.787(5)
Eq. (4) 279.0(1) 0.368 1.382
3D-Heisenberg [41] 0.3689 1.396 4.783 −0.133
3D-Ising [42] 0.3250 1.241 4.817 0.109
3D-XY Ising [43] 0.3454 1.316 4.810 −0.01

exponents shown in the inset to Fig. 3(a) are consistent with
the values of β and γ (indicated by the lines) obtained above
and rule out any competing magnetic interaction.

The various critical exponents and temperatures determined
above are summarized in Table I. In addition, the critical
scaling hypothesis [39]

δ = 1 + γ

β
(6)

allows δ to be calculated for each set of β and γ exponents
derived experimentally. Overall, a consistent set of exponents
is found. However, the γ values obtained from the Kouvel-
Fisher plot (Fig. 2) are slightly smaller as those used in the
rescaled M(H ) curves [Fig. 1(b)] and the scaling plot (Fig. 3).
As a consequence, the values of δ are also slightly smaller
than the one inferred from the critical isotherm. But Eq. (6)
can be used to calculate γ by using the consistent values
β = 0.368 [from Figs. 1(b) and 3] and δ = 4.787 from the
isotherm [inset Fig. 2(a)]. This yields γ = 1.39(3). Thus this
provides convincing evidence that the set of critical exponents
for FeGe inferred from the M(H ) data is very close to the
values predicted for the 3D-Heisenberg universality class [41].
A clear deviation from the exponents of the other universality
classes is obvious. Therefore, it can be concluded that FeGe is
an isotropic 3D-Heisenberg ferromagnet and does not change
universality class across the transition as reported recently
[15]. Furthermore, this scaling study confirms that (i) the
magnetic system of these chiral magnets is basically that of a
simple ferromagnet and (ii) in the hierarchy of the magnetic
couplings the DM interaction is much weaker than the isotropic
exchange.

The different methods to analyze the M(H ) data led to a
critical temperature Tc = 278.8(2) K (Table I) that is slightly
higher than Tc = 278.2(3) K obtained from ac susceptibility
measured in zero field [10]. This is not surprising as the
relatively strong magnetic fields used to induce a collinear spin
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alignment will alter the correspondent PM to helical-ordering
transition temperature. The latter has to be different to the one
found for the crossover from the ICS state to the helical phase
in zero field.

This study shows that FeGe belongs to the 3D-Heisenberg
universality class like the other chiral magnets Fe0.8Co0.2Si
[16] and Cu2OSeO3 [17]. However, in contrast to this, MnSi
has been argued to exhibit tri-critical mean-field behavior [14].
Thus the question arises why MnSi should be so different
from the other cubic helimagnets despite the same underlying
magnetic interactions. Unfortunately, this question cannot be
unambiguously answered as no scaling study has been made
in the appropriate regime for MnSi so far. As pointed out
above, a scaling analysis can only provide a meaningful answer
if it is done in the critical region (ε ≈ 10−2) and on the
unperturbed magnetic system, i.e., for fields well above Hc2.
These requirements are obviously quite challenging for MnSi,
given its low Tc and relatively high Hc2 values, and were not
fulfilled in the reported scaling studies [14,44]. Moreover, the
spin polarization of the weak itinerant band-ferromagnet MnSi
[45] is strongly affected by the longitudinal spin fluctuations
in contrast to the stable spin polarization of Fe in the strong
band-ferromagnet FeGe [1,3,13,18,19]. This effect is seen in
a very large high-field susceptibility in MnSi which further
complicates the scaling analysis. Thus a detailed and careful
investigation close to Tc is required to unveil the critical
behavior of the putative PM-to-FM transition in MnSi.

The M(H ) isotherms of FeGe can also be used to determine
the temperature variation of the magnetization as shown in
Fig. 4. The M(T ) curve measured in H = 0.5 kOe, the lowest
field in this experiment, shows a steep increase close to Tc,
identical to literature data [12]. At this field and below Tc,
FeGe enters the conical phase and the magnetization becomes
constant [10–12]. At 1 kOe, the temperature range of the
present study was not extending to low enough temperatures to
reach this plateau. Fields of 5 kOe and above are well beyond
Hc2, where FeGe will be always in the field-polarized state
[10]. These data will be analyzed and discussed further below.
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B. Specific heat and thermal expansion

The specific heat data shown in Fig. 5 were also included in
the scaling analysis. The Cp(T ) data near Tc can be analyzed
according to

Ccrit
mag(T ) = C0 +

{
A+

(
T
Tc

− 1
)−α

, T > Tc,

A−
(
1 − T

Tc

)−α
, T < Tc,

(7)

with the critical exponent α, the critical amplitudes A± [39,40],
and a constant background C0. For this analysis two data
sets measured in zero field were used. In order to eliminate
precursor effects close to Tc [10,11], data points in the range
277.15 K < T < 280.15 K have been excluded. A reasonable
fit of Eq. (7) to the data was possible with a fixed value α =
−0.133, i.e., the critical exponent for isotropic 3D-Heisenberg
magnets (solid line in Fig. 5) [41]. The best fit was obtained
using Tc = 279.7 K, A+ = −29.7 J/(mol K), A− = −22.4
J/(mol K), and C0 = 68.9 J/(mol K). This fit results in a λ-like
peak that is located slightly above the temperature where the
experimental Cp(T ) data attain a maximum. The deviation
from the experimental data points very close to the maximum
is expected as the fit describes a PM-to-FM phase transition,
whereas the helical fluctuations in the ICS phase are present in
the experimental data. The ratio of the amplitudes A+/A− =
1.3 is close to ratios known from other experiments (1.40 �
A+/A− � 1.52) [46] and theory (A+/A− = 1.56) for the
3D-Heisenberg universality class [41].

The exponent α describing the critical behavior of the
magnetic part of the specific heat is connected to exponents
obtained from the scaling analysis in Sec. III A via the scaling
relation [39–41]

α = 2 − 2β − γ . (8)

With this relation α can be calculated from the sets of
exponents given in Table I. This gives α ≈ −0.08(2) for the
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FIG. 6. (a) Specific heat Cp(T ) of FeGe (circles). Nonmagnetic
contributions to the specific heat are well described by a Einstein-
Debye model (dashed line) and by ab initio phonon DOS calculations
(solid line). Inset: Cp(T ) in the vicinity of Tc at various magnetic
fields. (b) Magnetic contribution to the specific heat, C

mag
p (T ), after

subtraction of the electronic part and lattice contributions, based on
a Debye-Einstein model (circles) or the phonon DOS calculation
(squares). (c) Magnetic entropy Smag determined from the integration
C

mag
p (T )/T [circles in (b)].

exponents obtained from the modified Arrott and Kouvel-
Fisher plots (see Table I). Although this value is only in fair
agreement with the value used to fit the specific heat, it seems to
be obvious that values for α corresponding to other universality
classes are not able to describe the specific heat data of FeGe.

The M(T ) data shown in Fig. 4 can be used to determine the
change in entropy �S(T ) across the phase transition. One of
the fundamental Maxwell relations of thermodynamics relates
the field-induced entropy change at constant temperature with
the temperature derivative of the magnetization at constant
field. This leads to

�S(T ,�H ) =
∫ H

0

(
dM

dT

)
H ′

dH ′. (9)

Thus this is an indirect method to calculate the magnetocaloric
effect (MCE) and to measure the decrease of the total entropy
during an isothermal field sweep. �S(T ,�H ) was determined
according to Eq. (9) by numerical integration of the data shown
in Fig. 4 and is depicted in the inset to Fig. 5. It shows a broad
maximum centered at 283 K. This indicates, that the transition
from the PM into the magnetically ordered state in zero field
is broadened by the helical fluctuations prevailing in the ICS
phase. Compared to other B20 helimagnets, like Fe1−xCoxSi
alloys [47], the MCE is about three times as large but in contrast
to rare-earth based ferromagnets it is considerably smaller
[48].

The Cp(T ) data of FeGe down to 4.2 K presented in Fig. 6(a)
allow further details to be extracted and to be compared with
quasiharmonic ab initio phonon calculations. The transition
into the magnetically ordered phase is seen as pronounced cusp
centered at Tc = 278.0(5) K on top of the lattice contribution
to the specific heat. Above the transition, at 298 K the specific
heat, entropy, and enthalpy are Cp = 51.7(10) J/(mol K),

S = 65.7(11) J/(mol K), and H = 10.27(20) J/mol, respec-
tively. The anomaly caused by the transition broadens consid-
erably in an external field and seems to shift steadily towards
higher temperatures [280 K at 10 kOe; see inset to Fig. 6(a)].

The low-temperature part of the specific heat in zero field
is decomposed into an electronic Cel(T ) = γelT and a lattice
contribution C lat

p (T ) = βlatT
3, Cp(T ) = Cel

p + C lat
p . From a

plot of Cp/T vs T 2 (not shown) the Sommerfeld coefficient
γel = 10.6 mJ/(mol K2) and the value βlat = 6.56 × 10−5

J/(mol K4) were obtained. They are in a good agreement with
literature data [49–51]. The small value of γel together with
other experimental [1,3,13] and theoretical [18,19] findings
manifests the stable character of the Fe moments like in a
strong band ferromagnet. From βlat the Debye temperature
is calculated to �D = 390 K. Fitting a Debye function to
the data up to 175 K with a fixed γel yields �D = 348 K,
also in agreement with reported values [49,50]. A weighted
sum of Debye function and Einstein mode in the same
temperature interval gives �D = 370 K and �E = 137 K
with w = 0.1, the weighted contribution of the Einstein mode
[dashed line in Fig. 6(a)]. This describes the data quite well
but it underestimates the heat capacity above Tc slightly.

In order to have a better estimate for the phonon contribution
to the specific heat, lattice vibrations were calculated from first
principles. For the phonon dispersion and vibrational density
of states shown in Fig. 7, optimized structural parameters,
i.e., an equilibrium lattice constant of a = 4.669 Å, internal
structural parameters of the B20 structure (space group P 213)
u = 0.1354 for Fe, u = 0.8418 for Ge, and a bulk modulus
B0 = 158 GPa were used. These values as well as the
electronic density of states (not shown) agree excellently
with experiment [22,52] and previous DFT results [19]. The
configuration is dynamically stable and imaginary frequencies
are absent. According to the difference in the masses, the
energies below 24 meV are dominated by Ge modes, while Fe
modes dominate at higher frequencies.

Adding the experimentally determined electronic spe-
cific heat to the calculated phonon contribution yielded the
nonmagnetic contribution to Cp(T ) shown as solid line in
Fig. 6(a). It is very close to the experimental data, also above
the magnetic transition. From this it becomes apparent that
the magnetic contribution to the specific heat, C

mag
p (T ) =

Cp(T ) − C lat
p (T ) − Cel

p (T ), extends over a remarkably wide
temperature range down T ≈ 150 K [Fig. 6(b)]. Thus, apart
from the transition at Tc, the complex reorientation of the
magnetic structure, commencing below about 245 K [4], seems
to contribute and broaden C

mag
p (T ) considerably. This is also

highlighted by Smag(T ), the magnetic part of the total entropy,
plotted in Fig. 6(c). At Tc it contributes about 3% to the total
entropy.

From the electronic contribution to the specific heat, γel, the
electronic DOS at the Fermi level in a free-electron model is
obtained as N (EF) = 17.8 states/(eV unit cell). This value
should be compared to N (EF) = 9.6 states/(eV unit cell)
obtained from spin-polarized LDA band calculations [53].
Taking a reasonable estimate for the electron-phonon coupling
λ = 0.2 into account [53] results in γel = 1

3π2k2
BN (EF)(1 +

λ) ≈ 7 mJ/(molK2). This compares quite well with the
experimental value and the rather small value of γel shows
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FIG. 7. Calculated vibrational density of states (VDOS) and phonon dispersion of FeGe along lines between selected high symmetry points
in the Brillouin zone. The color coding refers to the elemental character of the phonon modes (blue for Fe and orange for Ge).

that spin fluctuations play a minor role in the electronic
properties of FeGe. The electron mass enhancement of FeGe
can be estimated to m∗/m0 ≈ 10, using the calculated value for
γ0 = 1 mJ/(molK2) under the assumption of two free electrons
per FeGe.

Figure 8 shows the temperature dependence of the coeffi-
cient of the linear thermal expansion αL = (1/L)(dL/dT ). A
small cusp in αL(T ) develops at the magnetic transition (T =
278.8 K) as depicted in the inset to Fig. 8. The 50% criterion
was used to approximate the temperature where the jump
occurred (T = 281.3 K). From the extrapolated anomaly it
is obvious that its height is positive. Together with the positive
contribution �(C/T ) = 22 mJ/(molK2) at the anomaly in the
specific heat it follows from the Ehrenfest relation, dTc/dp ∝

0 100 200 300
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20
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3

FeGe

α L
(1
0-
6 K

-1
)

T (K)

Δα
L
(1
0-
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FIG. 8. Linear thermal expansion αL(T ) of FeGe. The experi-
mental data (line) show a small cusp at 278.8 K (arrow) that is caused
by the magnetic transition. The lattice contribution (dashed line) to the
thermal expansion was obtained from the specific heat data according
to Eq. (10). The dotted line is based on the phonon DOS calculations
and represents αL(T ) = αV (T )/3. Inset: experimental �αL(T ) data
close to Tc after the subtraction of a linear background from αL(T ).

�αL/�(C/T ), that Tc will initially increase with pressure.
A pressure study on FeGe revealed that Tc was already
suppressed to 274 K at 2.1 GPa [52], i.e., well below its
ambient pressure value. Thus the thermal expansion data imply
that dTc/dp will change its sign and becomes negative within
about 2 GPa.

The lattice contribution to the linear thermal expansion can
be calculated using αL(T ) = αV (T )/3 with

αV (T ) = �κC lat
p (T )/Vm , (10)

where C lat
p (T ) is the experimentally determined lattice contri-

bution to the specific heat, � is the phonon-Grüneisen param-
eter, and κ = −(1/V )dV/dp the isothermal compressibility.
Using the experimentally determined value κ−1 = 130 GPa
[22] and setting � = 1.9 results in the αL(T ) shown in
Fig. 8 (dashed line). This is in very good agreement with
the experimental αL(T ) behavior for T � 175 K, i.e., below
the temperature where the helical propagation direction flips
(T ≈ 210 K) [4]. Thus magnetovolume effects, caused by
establishing the magnetic order, give an additional contribution
to αL(T ) at higher temperatures. The thermal expansion esti-
mated from first-principles (dotted line in Fig. 8) overestimates
the experimental data by about 12% at Tc, which can still
be considered an acceptable agreement. Deviations must be
expected from finite temperature changes to the electronic
structure and the magnetic configuration or phonon-phonon
interactions, which were not taken into account in this
quasiharmonic approach.

IV. CONCLUSION

Isothermal magnetization data of FeGe in close vicinity of
the helical ordering transition have been used for a thorough
scaling analysis. The rescaled Ms(T )1/β vs (H/M)1/γ curves
yield straight and almost parallel lines for β = 0.368 and γ =
1.382 and result in scaling plots with universal curves. The
exponent δ = 4.785 was inferred from the critical isotherm.
Furthermore, similar values of exponents were obtained
from the temperature dependence of Ms(T ) and χ−1(T ) as
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well as from corresponding Kouvel-Fisher plots. Thus this
self-consistent scaling analysis manifests that the magnetic
ordering in FeGe falls in the isotropic 3D-Heisenberg univer-
sality class. The exponent α = −0.133 of this universality
class describes very well the specific heat anomaly in the
vicinity of Tc. The overall temperature dependence of the
lattice contribution to the specific heat is accounted for
by ab initio phonon calculations. It becomes apparent that
the magnetic contribution to the specific heat is noticeable
above 150 K which reflects the complex reorientation of the
helical propagation vector taking place in this temperature
region.Based on these results a quantitative phenomenological

model of the magnetic structures of FeGe can now be
established.
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[17] I. Živković, J. S. White, H. M. Rønnow, K. Prša, and H. Berger,
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