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Exotic conditions for the existence and evolution of nonlinear spin ensembles (domain walls, spin solitons,
skyrmions) in molecular-based magnets are incarnated in the macroscopic response of magnetization corre-
sponding to collective stochastic behavior. The molecular ferrimagnet K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6

manifests three types of magnetic relaxation: (a) continuous decay of magnetic moment, (b) stepwise relaxation
by stochastic magnetization jumps, and (c) a single jump of magnetization in threshold magnetic field. Continuous
relaxation at 20–50 K is provided by domain wall movement described in the frames of a strong pinning model,
while a low-temperature continuous component of relaxation does not follow this model. Stepwise stochastic
relaxation was observed below 8 K in both a sweeping reverse magnetic field and a stationary reverse magnetic
field. Statistical treatment of the postponed magnetization jumps revealed a multimodal amplitude distribution of
stochastic magnetization jumps corresponding to magnetic moment transitions between few clear distinguishable
levels. Spectral density of magnetization jumps in a stationary magnetic field corresponds to white noise, while
spectral density in a sweeping magnetic field manifests pink noise ∼1/f provided by self-organized criticality.
Postponed emission of magnetic noise in the 10−6 − 5 × 10−1 Hz frequency range was observed in stationary
conditions in contrast to Barkhausen noise.

DOI: 10.1103/PhysRevB.94.144421

I. INTRODUCTION

Diversity of unusual spin structures or nonlinear spin
ensembles was found in chiral molecular magnets, which
manifest competition of magnetic anisotropy in sublattices,
coexistence of symmetrical and nonsymmetrical exchange
interactions, and large lattice parameters comparable with
domain wall width. The abovementioned factors provide
nonlinear magnetic response of chiral molecular magnets
recognized in anomalous temperature dependences of mag-
netization [1], generation of nonlinear spin excitations by
microwave magnetic field [2], bistability of the ferromagnetic
resonance [3], and Peierls dynamics of domain walls [4]. In
thin helimagnetic films of inorganic materials [MnSi, FeGe,
(FeCo)Si], nonlinear ensembles of spins are well known
as skyrmions demonstrating sudden restructuration under an
applied critical magnetic field [5–7].

In contrast to regular transitions in skyrmion lattices,
stochastic magnetization jumps can be observed in most
ferromagnetic media as Barkhausen jumps appearing due
to the irreversible displacement of domain walls, decay of
single domain states, or nucleation of new domains [8].
Though stochastic Barkhausen jumps can be expected in
metal-organic molecular magnets, no experimental evidence
of domain wall existence as well as observation of stochastic
jumps were published, to our knowledge. Additionally to
domain wall avalanches, magnetization jumps can appear
due to a sudden rearrangement of spin exchange interaction
in linear chains [9] or transformation of internal structure
of spin solitons [10]. Stochastic magnetization jumps man-
ifested in a sweeping reverse magnetic field were exper-
imentally found in recent papers [11,12]. Direct experi-
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mental evidence of the spin-soliton origin of magnetization
jumps in a Cr1/3NbS2 chiral helimagnet was reported in
Ref. [13]. Experimental observation of magnetization jumps
in a K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6 ferrimagnet
[11,12] did not allow one to estimate the energy landscape
of elementary demagnetization events. Continuous magnetic
relaxation in molecular magnets is also an exotic unclear
process mentioned in very few articles [14]. Do molecular
magnets follow exponential or logarithmic relaxation dynam-
ics? Is it possible to describe a magnetic field and temperature
dependences of relaxation by existing models of the domain
wall unpinning [15,16]? These questions are still open, and we
will create experimental conditions to answer them.

In this paper, we report on the new magnetic phenomenon,
which is postponed emission of magnetic noise in the
10−6 − 5 × 10−1 Hz frequency range. In contrast to ordinary
Barkhausen jumps, we observed stochastic magnetization
jumps in a stationary magnetic field after it was stabilized down
from a saturation field. Metastable spin ensembles relaxing
under thermal fluctuations require long expectation time up to
∼10 min before they contribute to a spin avalanche. Delayed
demagnetization of the sample is provided by a rearrange-
ment of intrinsic structure of large spin ensembles coupled
by exchange interaction. The importance of observation of
postponed magnetization jumps consists of the contribution of
this phenomenon to the list of the fundamental and unusual
physical effects associated with nonlinear systems. One of the
most famous examples of such nonlinear emission is laser
manifesting delayed relaxation of metastable excited atomic
states. Similarly to that, magnetization jumps observed in our
work in a stationary magnetic field are a spontaneous emission
of the events corresponding to relaxation of metastable
spin states of nonlinear magnetic ensembles. The origin of
postponed magnetization of the jumps is strongly different
from well-known Barkhausen jumps because the last ones
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require a magnetic field sweep to provide S-shaped instability
of the domain wall dynamics. The absence of this condition
in our experiments proves a new kind of magnetic instability
corresponding to the observed jumps.

We present the analysis of statistical regularities of
stepwise demagnetization of a K0.4[Cr(CN)6][Mn(R/S)-pn]
(R/S)-pnH0.6 ferrimagnet in sweeping and stationary magnetic
fields as well as search for discrete magnetization and energy
levels corresponding to conformations of spin solitons and
other spin ensembles. Continuous magnetic relaxation and its
comparison with existing models developed for domain wall
mechanisms of relaxation are also of interest.

II. EXPERIMENTAL

Chemical synthesis, x-ray analysis, and express attestation
of the simplest magnetic properties (coercive field Hcoer and
Curie temperature TC = 53 K) of studied crystals are well
known [17]. The needle-shaped single crystal was 1.5 ×
0.5 × 0.1 mm3 in size. The volume of the elementary crystal

cell containing Mn2+ and Cr3+ ions was V0 = 3318.75 Å
3
.

The total number of spins in volume V of the sample was
N = V/V0 ≈ 2.26 × 1016.

The magnetic moment of the sample and its time, field,
and temperature dependences were recorded by a MPMS
5XL Quantum Design superconducting quantum interference
device (SQUID) magnetometer. All measurements were per-
formed in the 2–50 K temperature range, where the sample
was ferrimagnetically ordered excepting the low-temperature
range (2–10 K), manifesting spin canted phase due to the
Dzyaloshinskii-Moriya interaction [1,18]. The sample was
cooled before experiments in zero magnetic field and mag-
netized in a saturation field. The external magnetic field was
directed along the easy magnetization axis. The saturation
magnetization at T = 2 K in the magnetic field H � 400 Oe
corresponds to the effective magnetic moment MSAT = 2 μB

being in agreement with the antiparallel orientation of Cr3+
and Mn2+ spins in the crystal unit cell.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Two types of experiments were performed: the sweeping
magnetic field varied in the range from +30 to −10 Oe
(with negligibly small steps of magnetic field 0.2 Oe); the
stationary magnetic field stabilized down from the saturation
value HSAT = 400 Oe. Examples of magnetic hysteresis loops
at 2 and 8 K are presented in Fig. S1 (see Supplemental
Material [19]). Time dependences of the magnetic moment
M(t) were recorded in the −50 to +30 Oe magnetic field range.
A set of time dependences recorded in the same conditions
(T = 2 K, measurement field H ∗ = +10 Oe) is presented in
Fig. S2 (see Supplemental Material [19]).

A. Magnetization jumps in a linearly sweeping reverse field

In a linearly sweeping magnetic field dH/dt > 0, magne-
tization of the sample was continuous, i.e. no magnetization
jumps were observed. Demagnetization of the sample in
a reverse magnetic field dH/dt < 0 was accompanied by
stochastic jumps of the magnetic moment [see insertion

(a)

(b)

FIG. 1. (a) Dependence of the magnetic moment on the magnetic
field M(H) at 8 K. Threshold magnetic fields initiating RJ HC1 and SJ
HC2 are shown by arrows. (b) Superimposed time series of stochastic
magnetization jumps collected from 16 independent measurements.
Time dependence of magnetic field is presented in the upper panel.

in Fig. 1(a)]. The presence of magnetization jumps in the
reverse magnetic field was reliably reproducible in the 2–
50 K temperature range. The decrease of the magnetic field
sweeping rate from 0.0125 to 0.00125 Oe/s resulted in the
strong increase in jump number. Maximal flow density of the
jumps was observed at the minimal possible sweeping rate
of 0.00125 Oe/s. Two types of magnetization jumps were
observed. The former type described in detail in Ref. [11]
appeared at the reproducible threshold magnetic field HC1

(Fig. 1(a); also Fig. S1 in the Supplemental Material [19]).
As it was mentioned in Ref. [11], the origin of this jump is a
commensurate-incommensurate transition in the spin soliton
lattice controlled by the competitive Dzyaloshinskii-Moriya
and Heisenberg interactions. The experimental data related
to these kind of regular jumps (RJs) are not included in
this paper. The contribution of these RJs is easily recognized
because its amplitude �M > 2.5 × 10−5 emu is much higher
in comparison with other jumps, and HC1 lies in the narrow
field range from +14 to +18 Oe. The RJ contribution to
statistics will be discriminated.

Magnetization jumps of the latter type are irregular
stochastic jumps (SJs) whose amplitude is smaller than
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2.5 × 10−5 emu. Here, we will focus on the analysis of
stochastic jumps of smaller amplitudes. Statistics of these
jumps is rich. The minimal amplitude of reliably resolved
jumps was �M = 3 × 10−6 emu. The magnetic field at which
the SJ appeared HC2 was varied in a wide range from +30
to −30 Oe in both direct and reverse magnetic field scanning
modes. The correspondent volume of the sample involved in

the minimal jump was VJ = 6 × 1017 Å
3 = 2 × 1014 V0 (V0 is

volume of the elementary crystal cell). Thus, 1% of atoms are
involved in minimal SJ.

A series of independent experiments including 16 reverse
field dependences was recorded in the same conditions to
obtain a statistical distribution of SJs and regularities of
their appearance. An example of 16 superimposed �M(t)
dependences is presented in Fig. 1(b). The autocorrelation
coefficient of SJ RA < 0.1 was small independently on
correlation lag. The correlation coefficient of jump amplitude
�M and magnetic field HC2 was R�MH < 0.1. The values of
RA and R�MH indicate the absence of correlations and support
the stochastic origin of SJs.

The main parameters of the jumps (normalized amplitude
�M/MSAT and magnetic field HC2) were independent on
neither previous cycle of experiments nor each other, i.e.
the jumps were stochastic. Statistical analysis of the jump
distribution in normalized amplitude �M/MSAT and field
HC2 [Fig. 2(a)] reveals a regularity of jump appearance. All
magnetization jumps can be grouped in accordance with the
few most probable Mi values between which the jumps occur.
Few modes of magnetization jumps correspond to discrete
�Mi values.

The power spectral density of magnetization SJs S(f )
[Fig. 2(b)] was determined by the following algorithm:

(1) Measurements of a set of identical M(t) dependences
in the same conditions and accumulation of data array large
enough to allow statistical regularities of jump amplitudes �M
and time correlations to be analyzed.

(2) Selection of a series of magnetization jumps (ti ,�Mi)
for each M(t) dependence (ti is current time of the ith jump,
�Mi is the ith jump amplitude).

(3) Association of the obtained time series.
(4) Partition of the time scale into N intervals �t , including

no more than one magnetization jump. This partition results
in a uniform time series (tn,�Mn), n = 1. N is time interval
number, tn = n × �t,�Mn is the amplitude of the magneti-
zation jump occurring during time interval (tn − �t/2; tn +
�t/2; �Mn = 0 if no jumps occur in the correspondent time
interval).

(5) Calculation of the linear autocorrelation coefficient
r(�Mn; �Mn−k) for all allowable lag values k = 1. N and
determination of r(k) dependence [correlogram of (tn,�Mn)
series] by the formula

r(�Mn,�Mn−k) = �Mn · �Mn−k − �Mn · �Mn−k

σ (�Mn) · σ (�Mn−k)
.

Here,

σ (�Mn) =

√√√√√ 1

N − k

N∑
n=1+k

�M2
n −

(
N∑

n=1+k

�Mn

)2

(a)

(b)

FIG. 2. (a) Distribution of amplitude �M and magnetic field HC2

of the stochastic magnetization jumps at 8 K in sweeping magnetic
field. (b) Spectral density S(f ) of the magnetization SJs in a sweeping
magnetic field and its approximations by (1/f )α function (theoretical
curves for α = 1 and α = 2 are shown by dashed and solid lines,
respectively).

and

σ (�Mn−k) =

√√√√√ 1

N − k

N∑
n=1+k

�M2
n−k −

(
N∑

n=1+k

�Mn−k

)2

are standard deviations of jump amplitudes, and

�Mn =
N∑

n=1+k

�Mn, �Mn−k =
N−k∑
n=1

�Mn,

and

�Mn · �Mn−k = 1

N − k

N∑
n=1+k

�Mn · �Mn−k

are sample means in samples involved in comparison to obtain
r(�Mn; �Mn−k).

(6) Accordingly, with the Wiener-Khinchin theorem [20],
the spectral density of noise power S(f ) can be evaluated from
correlogram r(k) by the discrete Fourier transform

S(fn) =
N∑

k=1

r(k) · e−(2πi/N )kfn�t , (1)

144421-3



R. B. MORGUNOV AND A. D. TALANTSEV PHYSICAL REVIEW B 94, 144421 (2016)

where fn = n
N�t

, n = 1. N is output frequency set of the
discrete Fourier transform.

This algorithm is used because the set of events (�Mk; tk)
is discrete. If the set of events �M(t) is continuous and the
Fourier transform of �M(t) exists, spectral power S(f ) can be
found from �M(t) directly

S(f ) = 1

T
ϕ(f ) · ϕ∗(f ) = 1

T
|ϕ(f )|2,

ϕ(f ) =
∫ T

0
�M(t)e−2πif tdt,

where ϕ(f ) is the Fourier transform of the signal, and T is
recording time. The spectral density of SJs in our experiments
is presented in Fig. 2(b).

The frequency range f corresponds with periods exceeding
the scanning time of the magnetic field. The approximation
of the spectral density by (1/f )α function resulted in the
best fitting at α = 1 ± 0.1. The value α = 1 corresponds
with 1/f pink noise [21]. This kind of noise is a fingerprint
of self-organized criticality indicating multiscale parallel
relaxation processes. The corresponding fractal organization
of the relaxation processes is evidence of interaction between
relaxing spin ensembles and the scale-invariant character of
the studied events [21].

B. Postponed magnetization jumps in stationary
reverse magnetic field

In this section, relaxation of the magnetic moment [time
dependences M(t)] was recorded in a stationary magnetic
field H varied in the range from −50 to +30 Oe. The
experimental consequence is shown in Fig. S3 (see Sup-
plemental Material [19]). On the background of continuous
relaxation (the series of the selected jump-free M(t) curves
is shown in Fig. S4; see Supplemental Material [19]), a
series of sharp jumps of the magnetic moment is clearly
distinguishable in the 9–10.5 Oe field range [Fig. 3(a)]. The
jump amplitude �M was determined as a difference between
magnetic moments corresponding to initial and final zero
values of the dM/dt derivative [insertion in Fig. 3(a)]. A series
of 20 measurements of the same sample in the same conditions
(temperature, magnetic field, duration of measurements, etc.)
was performed to accumulate the data bank large enough for
statistical treatment (Fig. S2; see Supplemental Material [19]).
A superimposition of 20 time dependences is presented in
Fig. 3(b). The distribution of the jump amplitude �M and time
tC passed after stabilization of the switched magnetic field H
is presented in Fig. 4(a). One can distinguish discrete starting
magnetization levels Mi and a few discrete values of the
magnetization jumps �Mi corresponding with energy levels
of the spin system Ei numerated by integer value i [Fig. 4(b)].
The changes in the Zeeman energy of the spin ensemble
accompanying the transition from energy level E1 to energy Ei

is �En = (�Mi − �M1) × HC, where i = n + 1,n is number
of transitions. Thus, unimodal, bimodal, and three-modal
distributions of the magnetization jump amplitude were found
in the studied crystals. Each mode corresponds to discrete
change in energy of the spin ensemble �En, manifesting a
discrete energy spectrum of the system. Observed jumpwise
relaxation is not Barkhausen noise because the latter is a re-

(a)

(b)

FIG. 3. (a) Time dependence of the magnetic moment M(t)
recorded after a magnetic field +10 Oe was stabilized at T = 2 K. In
the insertion, the derivative dM(t)/dt is presented. Arrows indicate
magnetization jumps. (b) Superimposed time series of stochastic
magnetization jumps collected from 20 independent measurements.
Time dependence of magnetic field is presented in the upper panel.

sponse of the system to a rapidly sweeping magnetic field. The
autocorrelation coefficient of SJs in stationary conditions was
weak (RA = 0.1) as well as the correlation coefficient between
the jump amplitude �M and expectation time tC(R�M−tc <

0.1). The Fourier transform described by the formulas in
Eq. (1) results in frequency-independent spectral density, i.e.
1/f α, α = 0 ± 0.1 [Fig. 4(c)]. This kind of stochastic event is
known as white noise [21]. Thus, we observed a unique switch
of pink to white noise by changing experimental conditions
from a sweeping to a stationary magnetic field.

The power spectra of white, pink, and brown noise suggest
the generalization [22–26] towards power-law functions S(f )
with arbitrary exponents. Fractional Brownian motion (FBM)
is a statistical process where both real and imaginary parts of
the Fourier amplitudes ϕ(f ) are Gaussian-distributed random
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(a)

(b)

(c)

FIG. 4. (a) Distribution of amplitude �M and expectation time
tC of the magnetization SJs in stationary magnetic field at 2 K. (b)
Distribution of amplitude �M and starting magnetic moment Mi of
the magnetization SJs in stationary magnetic field at 2 K. (c) Spectral
density S(f ) of the magnetization SJs in stationary magnetic field.
Expected value is shown by horizontal solid line.

variables with ϕ(f ) = 0 and ϕ(f )φ(f ′)∗ = S(f )δ(f − f ′)
with S(f ) ∝ |f |−β .

Exponent β is called spectral exponent of the process.
White, pink, and brown noises are FBMs with β = 0, 1,
and 2, respectively. The term FBM can be motivated from its
relationship to fractional derivatives or fractional integration.
Generally, deriving function �M(t) in time corresponds to
multiplying its Fourier amplitudes ϕ(f ) by 2πif [26]. The

FIG. 5. Sketch of (1) single kink and (2) double kink formed
on the domain walls in periodical potential relief of crystal lattice
(a is lattice parameter), U is potential energy of amplitude UMAX.
Self-contraction forces are shown by arrows.

fraction derivative can be defined as

∂α

∂tα
�M(t) =

∫ ∞

−∞
ϕ(f )(2πif )αe2πif tdf

for arbitrary real numbers α. This definition as applied to
negative values of α leads to fractional integration. In this
sense, FBM with spectral exponent β arises from applying
fractional integration with |α| = β/2 to white noise. Thus, in
terms of fractional derivatives, pink noise (β = 1) arises from
applying half of a derivative to Brownian motion (β = 2) or
half of integration to white noise (β = 0).

Since pink noise results from fractional integration of
white noise, one can conclude that a sweeping magnetic
field provides fractional integration of the noise appearing
in stationary conditions. The changes in the noise spectra
under a sweeping magnetic field are obvious. In our previous
publication [4], an important feature of the studied molecular
ferrimagnets was analyzed. The balance between exchange
interaction and magnetic anisotropy provides comparatively
narrow domain walls, which width W is ∼3–4 a (a is the
crystal lattice parameter). In accordance with the classical
models of domain wall dynamics [27], narrowness of the
domain walls results in unusual nonlinear dynamics similar to
dislocation kink dynamics in deformed solids [28]. Periodical
potential relief (Peierls relief) strongly contributes to the
formation of solitonlike spin ensembles along a domain wall
[28]. The formation of single and double kinks along the
domain wall (Fig. 5) can be described by the sine-Gordon
equation [28]. In the presence of an external magnetic field, the
formation of kinks is a thermoactivated process similar to that
in dislocation theory. The activation energy of kink nucleation
is comparable with the height of the Peierls relief UMAX. In
the absence of an external magnetic field or in a diminished
field, kink annihilates under self-interacting forces (Fig. 5).
Kink annihilation as well as its nucleation is a thermoactivated
process. Random potential of structural defects results in kink
pinning and can be overcome during expectation of thermal
fluctuation. The activation energy of this process Ea controlled
by structural defects is generally different from UMAX. Each
observed magnetization jump includes contributions of many
kinks, which nucleation and annihilation can be correlated
by interkink magnetic interactions. Indirect evidence of
the proposed description is a nonmonotonous temperature
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dependence of critical magnetic field of the magnetization
jump [11]. This nonmonotonous behavior possibly originates
from the competition between annihilation and nucleation of
the kinks.

One can suppose that postponed magnetization jumps can
be observed in the class of materials satisfying the condition
W ∼ a. This class of ferromagnets includes strong rare-
earth magnets RE-TM-B [29], yttrium garnet films [30], and
other materials, in which exchange interaction and magnetic
anisotropy result in narrow domain walls. In the materials,
where domain walls are wide, the Peierls relief does not
contribute to domain wall mobility. In that case, a sharp
decrease of the external magnetic field (in particular, the
decrease down to zero field) does not result in postponed
magnetization jumps because there are no driving forces in
the absence of kinks (self-interaction of kinks is absent).

The above-discussed interpretation is in agreement with
the experimentally observed difference between colors of
magnetic noise in a sweeping magnetic field (pink noise,
see Sec. III.A) and a stationary magnetic field (white noise,
Sec. III.B). Magnetic field sweeping causes nucleation of
kinks possessing self-organizing criticality, i.e. multiplication
of elementary events resulting in pink noise takes place.
In the stationary magnetic field, spontaneous independent
annihilations of the kinks dominate. In that case, there are no
self-organized processes. White noise indicates the absence of
self-organization.

Obviously, Fig. 5 is a simplified conditional image of the
Peierls relief. Real crystal structure and spin ordering in studied
crystals are more complicated. The Dzyaloshinskii-Moriya
interaction produces helicity of spin magnetic structure in
the studied crystals accompanied with vortex Hubert domain
walls [31]. Nevertheless, we believe in the correctness of
the above-described mechanism of postponed magnetization
jumps because vortex domain walls are sensitive to periodical
lattice potential [31].

C. Continuous component of magnetic relaxation

Finally, we will discuss the continuous component of
relaxation of the magnetic moment. For that purpose, jump-
free M(t) curves were recorded in +50 to −30 Oe fields
(Fig. 6; also see Fig. S4 in the Supplemental Material [19]).
Continuous relaxation occurs in positive (Fig. 6, curve 1)
and negative fields H* (Fig. 6, curves 2, 3), both. The slope
of the relaxation curve increases as H* approaches coercive
field Hcoer. Magnetic relaxation provided by dynamics of
the domain walls can be studied successfully by analyzing
time dependences of magnetization. Most of the ferromagnetic
materials manifest logarithmic dependences of the magnetic
moment M(t) in a reverse magnetic field [32,33]

M = M0 − S · ln(t − t01), (2)

where S is magnetic viscosity, t01 is time of reverse field
stabilization, M0 is the initial magnetic moment stabilized
after magnetic field fixation. Magnetic viscosity characterizes
activation energy of the process responsible for magnetic
moment relaxation. The distribution of relaxation times f (τ )
can be derived from the temperature and field dependences of

FIG. 6. Jump-free fragments of continuous magnetic relaxation
in stationary magnetic field (1) 30 Oe, (2) 20 Oe, and (3) −18 Oe
at T = 2 K. Approximations by the formula in Eq. (2) are shown by
solid lines. The sample was magnetized in saturating magnetic field
HSAT = 400 Oe during the 5 min before experiments.

magnetic moment due to the following equation [32,33]:

M(t) =
∫ τ1

0
M0 exp

(
− t

τ

)
f (τ ) dτ .

Straightening of the M(t) dependences in semilogarithmic
coordinates (Fig. 6) indicates the validity of the formula
in Eq. (2) and the equiprobable distribution of potential
demagnetization barriers among their relaxation time τ and
correspondent height [32,33]. The approximation of the M(t)
dependences recorded in reverse magnetic field H* by the
formula in Eq. (2) (Fig. 6), allows us to determine S values
at different temperatures. Instead of S, we used normalized
viscosity SV since it is independent on demagnetization factors
and sample shape SV = S/χirr, where χirr is irreversible
magnetic susceptibility determined by the equation χirr =
χ/(1 + Nχ ) [15,16,32,33], χ = dM/dH is the tangent slope
for the demagnetization part of the hysteresis loop and N ≈
0 is the demagnetizing factor of the needle-shaped sample.
The temperature dependence of normalized magnetic viscosity
SV(T ) is presented in Fig. 7. In the T = 2 − 20 K temperature
range, the SV value decreases, while at T > 20 K the SV value
increases. The linear temperature dependence of magnetic
viscosity agrees well with the theory of domain wall pinning
[15,16,32,33], allowing us to estimate activation volume V ∗
of the obstacle overcome by a domain wall

SV = kBT/(V ∗MSAT), (3)

where kB is the Boltzmann constant. In the 20–50 K tem-
perature range, the dependence SV(T ) can be considered
as a linear one in agreement with the prediction by the
formula in Eq. (3) (top x and right y axes in Fig. 7). The
approximation of this dependence by the formula in Eq. (3)

results in activation volume V ∗ = 4.4 × 1010 Å
3 = 107 V0.
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FIG. 7. Temperature dependence of normalized magnetic viscos-
ity SV in reverse magnetic field H = −Hcoer. Approximation of the
high-temperature part of the SV (T) dependence by the formula in
Eq. (3) is shown by solid line.

This parameter is a few orders of magnitude higher than
the volume corresponding with the turn of a single 180°
domain wall caused by remagnetization: V1

∗ = δ3 = 1.98 ×
106 Å

3 ∼ 103 V0(δ = π (A/K)1/2 is domain wall thickness [4]
determined by exchange constant A = 1.6 × 10−8 erg/cm and
K = 105 erg/cm anisotropy constant). However, V ∗ is smaller
than the volume involved in the magnetization jump VJ =
6 × 1017 Å

3 = 2 × 1014 V0. Thus, the estimation resulted from
thermoactivation analysis gives an intermediate value: V1

∗ �
V ∗ � VJ. This volume corresponds to the ensemble of domain
walls simultaneously contributing to continuous relaxation.

The estimated activation volume expressed in δ3 units
V ∗ ∼ 104 δ3 exceeds typical values in inorganic magnets,
where V ∗ ∼ 10δ3 [34]. This difference appears due to the large
size of the elementary cell in molecular magnets and exceeds
the typical value of this parameter in inorganic materials
up to ∼10 times. At T < 10 K, cooling causes a sharp
increase of the SV value (Fig. 7) that is in contradiction
with the classical theory of domain wall motion. The possible
explanation of this phenomenon is a rearrangement of the
intrinsic spin structure of large spin ensembles responsible
for the observed jumps. One can suppose that the same

spin ensembles, whose contribution to the stepwise relaxation
was observed by us at low temperatures, can also contribute
to continuous demagnetization unresolved by slow SQUID
technique. In that case, one can perceive the continuous part of
the M(t) dependence as an envelope of small demagnetization
jumps.

IV. CONCLUSION

Postponed jumpwise relaxation of the magnetic mo-
ment in a stationary magnetic field was found in a
K0.4[Cr(CN)6][Mn(R/S)-pn](R/S)-pnH0.6 molecular ferri-
magnet. Statistical analysis of magnetization jumps (their
amplitude and time) revealed discrete magnetization levels and
corresponding energy spectra of the nonlinear spin ensembles.
The discrete energy spectrum characterizes the intrinsic struc-
ture of the unknown spin ensemble, whose structure is different
from that of standard domain walls and skyrmions. White
noise corresponding with relaxation of the spin ensembles in
a stationary magnetic field can be turned to pink noise in
a sweeping magnetic field. A continuous part of magnetic
relaxation indicates the presence of new spin ensembles at low
temperatures (2–10 K). Magnetic viscosity determined from
the analysis of the flowing part of the magnetic relaxation
corresponds to avalanches of domain walls at high tempera-
tures (20–50 K). The obtained results seem to be important for
discussion of new nonlinear spin ensembles (solitons) early
reported in numerous articles [1,10–12,17,18] and references
therein. In general, the significance of the results relates to the
physics of nonlinear phenomena, where magnetic excitations
(spin waves, solitons, breathers, skyrmions, etc.) can be
considered as modeling situations reproducible in laboratory
conditions. At the same time, the conclusion can be extended
to other areas where periodicity of space potential contributes
to the formation of nonlinear excitations. Another possible
contribution of the obtained results consists of realization of
fractional integration transforming white noise to pink noise
under the action of a sweeping magnetic field.
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