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Relativistic theory of spin relaxation mechanisms in the Landau-Lifshitz-Gilbert
equation of spin dynamics
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Starting from the Dirac-Kohn-Sham equation, we derive the relativistic equation of motion of spin angular
momentum in a magnetic solid under an external electromagnetic field. This equation of motion can be rewritten
in the form of the well-known Landau-Lifshitz-Gilbert equation for a harmonic external magnetic field and leads
to a more general magnetization dynamics equation for a general time-dependent magnetic field. In both cases
there is an electronic spin-relaxation term which stems from the spin-orbit interaction. We thus rigorously derive,
from fundamental principles, a general expression for the anisotropic damping tensor which is shown to contain
an isotropic Gilbert contribution as well as an anisotropic Ising-like and a chiral, Dzyaloshinskii-Moriya-like
contribution. The expression for the spin relaxation tensor comprises furthermore both electronic interband and
intraband transitions. We also show that when the externally applied electromagnetic field possesses spin angular
momentum, this will lead to an optical spin torque exerted on the spin moment.
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I. INTRODUCTION

In their seminal 1935 paper, L. D. Landau and E. M. Lifshitz
proposed the equation of motion governing the dynamics of
a continuum magnetization [1]. Eighty years after its original
formulation, the Landau-Lifshitz (LL) equation continues to
play a fundamental role in the understanding of magnetization
dynamics [2] and forms the cornerstone of contemporary
micromagnetic simulations (see, e.g., Refs. [3,4]).

Originally, the Landau-Lifshitz equation was derived on
the basis of phenomenological considerations [1]. It defines
the time evolution of a volume magnetization M(r,t) as

∂ M
∂t

= −γ M × Heff − λM × [M × Heff], (1)

where γ is the gyromagnetic ratio, Heff is the effective
magnetic field, and λ is an isotropic damping parameter.
The first term describes the precession of the local magne-
tization M(r,t) around the effective field Heff . The second
term describes the magnetization relaxation such that the
magnetization vector relaxes to the direction of the effective
field. The damping term in the LL equation was reformulated
by Gilbert [5,6] to give the Landau-Lifshitz-Gilbert (LLG)
equation,

∂ M
∂t

= −γ M × Heff + α M × ∂ M
∂t

, (2)

where α is the Gilbert damping constant. Note that both damp-
ing parameters α and λ are here scalars, which corresponds to
the assumption of an isotropic medium. Both LL and LLG
equations preserve the length of the magnetization during
the dynamics and are mathematically equivalent (see, e.g.,
Ref. [7]).

A number of explanations have been proposed for the
microscopic origin of the spin relaxation in magnetic metals
[8–18]. Already in their original work Landau and Lifshitz
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attributed the damping constant to relativistic effects [1].
More specific microscopic theories of spin relaxation in
ferromagnetic metals have been developed in the last decennia.
Kamberský proposed the breathing Fermi surface model [8]
and the related torque-correlation model [14,19]. Brataas
et al. proposed a scattering theory formulation [15] of the
Gilbert damping which is equivalent to a Kubo linear-response
formulation. A different form of the relaxation term caused
by spatial dispersion of the exchange interaction—this in
contrast to the isotropic medium assumption made in the
LL equation—was proposed by Bar’yakhtar and co-workers
[10,20,21].

More recently the debate on what the appropriate theory
to describe damping would be has focused on first-principles
electronic structure calculations and how these could provide
quantitative values of the Gilbert damping [22–30]. Recent
ab initio calculations of the Gilbert damping constant for
transition-metal alloys predicted values that correspond to the
experimental values within a range of a factor of two to three
[22–24,26–28], with significant deviations, however, for the
pure elemental ferromagnets. This indicates that there is still a
need to improve the fundamental understanding of the origin
of spin-moment relaxation. Also, very recent publications have
questioned the existing understanding of the Gilbert damping
[31,32].

Here we develop a theoretical description of spin relaxation
on the basis of the relativistic density functional theory (DFT).
To this end, we start from the relativistic Dirac-Kohn-Sham
(DKS) equation that adequately describes the electronic states
in a magnetic solid. From these we derive the general equation
of motion for spin angular momentum, which adopts the form
of the LLG equation. Within this framework we obtain explicit
expressions for the tensorial form of the Gilbert damping
term, which we find to contain an isotropic Gilbert-like contri-
bution and anisotropic Ising-like and chiral Dzyaloshinskii-
Moryia-like contributions. Our derivation follows similar
steps as a previous derivation by Hickey and Moodera [17],
however, as discussed below, it includes previously missing
terms and thus leads to different expressions for the spin
relaxation.
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II. THE RELATIVISTIC DIRAC HAMILTONIAN

As mentioned before, relativistic effects such as the spin-
orbit interaction are at the heart of spin angular momentum
dissipation in solids. To examine how these fundamental
physical interactions lead to magnetization damping we choose
therefore to start from the most general relativistic Hamilto-
nian, the DKS Hamiltonian. This Hamiltonian describes the
one-electron quantum state in an effective spin-polarized field
due to other electrons and nuclei in the solid, in addition
to externally applied fields. For spin-polarized electrons
in a magnetic material the DKS Hamiltonian is given as
[33–35]

HD = c α · ( p − eA) + (β − 1)mc2 + V 1 + e�1

−μBβ � · Bxc. (3)

Here V is the unpolarized Kohn-Sham self-consistent poten-
tial, Bxc is the spin-polarized part of the exchange-correlation
potential in the material, A = A(r,t) is the vector potential
of an externally applied electromagnetic field, e�(r,t) is the
scalar potential of this field, p = −i�∇, and μB is e�

2m
, the

Bohr magneton. 1 is the 4 × 4 identity matrix and α,β, and
� are the well-known Dirac matrices in Dirac bispinor space,
which contain the Pauli spin matrices σ and the 2 × 2 identity
matrix. At this point, it is important to observe that there

are two fundamentally different fields present in the DKS
Hamiltonian. There are the Maxwell fields, that is, (implicitly)
the external magnetic induction B(r,t) = ∇ × A(r,t) as
well as the external electric field, E(r,t) = − ∂ A(r,t)

∂t
− ∇�.

The strongest field in a magnetic material is, however, the
exchange field, which stems from the Pauli exclusion principle.
The exchange field Bxc is fundamentally different from the
standard magnetic induction, as it obviously acts only on the
spin degree of freedom (see, e.g., Ref. [34]) and does not
couple to the orbital angular momentum. Also, it doesn’t fulfill
the Maxwell equations as the auxiliary electromagnetic field
(e.g., ∇ · B = 0), and it cannot be included as a vector potential
Axc in the linear momentum, i.e., p − eAxc, but instead needs
to be treated as a separate term in Eq. (3).

Next, we want to investigate the relativistic spin evolution
of spin-polarized electrons in a magnetic solid. To achieve
this we need the positive energy, that is, the electron solutions
that are given by the large component of the Dirac bispinor.
To arrive at an elucidating formulation in terms of the spin
operator we employ the Foldy-Wouthuysen transformation
approach [35,36] on the DKS equation for the case where
an exchange field Bxc is explicitly present (for details, see
Ref. [37]). Doing so, one obtains a Hamiltonian for the
electron solutions only, which we expand in orders of 1/c2

to select the largest relativistic contributions. This leads to a
semirelativistic, extended Pauli Hamiltonian (see Ref. [37]),

HEP = ( p − eA)2

2m
+ V − μB σ · B − μB σ · Bxc

eff + e� − ( p − eA)4

8m3c2
− 1

8m2c2
(p2V ) − e�

2

8m2c2
∇ · E

+ i

4m2c2
σ · ( pV ) × ( p − eA) − e�

8m2c2
σ · {E × ( p − eA) − ( p − eA) × E} + iμB

4m2c2
[( p × Bxc) · ( p − eA)]. (4)

Except for the last term in Eq. (4), all the appearing relativistic corrections involving the exchange interaction can be added
together giving an effective exchange field [38],

Bxc
eff = Bxc − 1

8m2c2
{[p2 Bxc] + 2( pBxc) · ( p − eA) + 2( p · Bxc)( p − eA) + 4[Bxc · ( p − eA)]( p − eA)}

≡ Bxc + Bxc
corr. (5)

The Hamiltonian HEP exactly includes all spin-dependent
relativistic terms (of the order of 1/c2) and all the terms
involving Bxc and the external electromagnetic fields. We
emphasize that for our purpose of unveiling the relativistic
mechanisms of spin dissipation it is obviously not sufficient
to work with the conventional Pauli Hamiltonian, which only
consists of the five first terms in the nonrelativistic limit. The
correct form of all relativistic terms can solely be obtained
when one starts from the DKS equation with exchange field.
We remark that in a previous study Hickey and Moodera [17]
used a Pauli Hamiltonian different from the above one, without
exchange field and without crystal potential and thus without
the intrinsic spin-orbit interaction [the first term in the second
line of Eq. (4)].

The meaning of the terms in Hamiltonian (4) can be
readily understood, see Ref. [37] for details. The fourth term
on the right is a Zeeman-like term due the presence of the
relativistically corrected exchange field, which acts as an
effective mean field. The ninth term is the one which in a

central potential V gives rise to the conventional form of the
spin-orbit coupling. The tenth term is a kind of spin-orbit
interaction but due to the external fields. The very last term is
a relativistic correction which depends on the Bxc field but is
independent of the spin. As we will see in the following, the
terms that are responsible for spin relaxation are the relativistic
terms that involve a direct coupling of the spin operator with
either the exchange field Bxc or one of the externally applied
fields (E or A).

III. SPIN EQUATION OF MOTION

The spin angular momentum operator is given by
S = (�/2)σ . To obtain an equation of motion for the spin
operator we have to evaluate the commutator [S,HEP(t)]. It is
obvious from the expression of HEP that only the terms which
are explicitly spin dependent will contribute as otherwise the
commutator vanishes. We can thus extract from HEP the spin
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Hamiltonian

HS(t) = H0 + Hint
soc + Hext

soc, (6)

where the Zeeman-like fields are added up to an effective
magnetic induction,

H0 = − e

m
S · (

B + Bxc + Bxc
corr

) ≡ − e

m
S · Beff . (7)

The part H0 contains the main nonrelativistic contribution;
all other terms in the spin Hamiltonian HS are of relativistic
origin. The intrinsic spin-orbit coupling is given by the
Hamiltonian

Hint
soc = i

2�m2c2
S · ( pV ) × ( p − eA). (8)

The crystal potential stems from the nuclei-electron and
electron-electron interactions and thus should have transla-
tional symmetry. Consequently, also the intrinsic spin-orbit
Hamiltonian has translational symmetry [39]. If the position
of any j th nucleus is Rj , the electron position is r , and the
electron position with respect to the nucleus is represented
by rj , then the crystal potential can be represented by a
sum of atom-centered potentials. Making now in addition
the central potential approximation (no angular dependence)
for each of the atom-centered potentials, the potential can be
written as V (rj ) = V (|r − Rj |). The translational symmetry
is realized by the fact that rj = r − Rj . With the definition of
spin-orbit interaction strength ξ (rj ) = 1

2m2c2
1
r
dV (rj )/dr , and

the Coulomb gauge, ∇ · A = 0, for homogeneous magnetic
fields, i.e., A = (B × r)/2, this Hamiltonian can further be
written as

Hint
soc = 1

2m2c2

1

r

dV

dr
S · L − er

4m2c2

dV

dr
S · B

+ e

4m2c2

1

r

dV

dr
(S · r)(r · B)

=
∑

j

ξ (rj )

[
S · L − e

2
(r2 S · B − (S · r)(r · B))

]
. (9)

We note, first, that the full spin-orbit Hamiltonian Hint
soc + Hext

soc
is gauge invariant [40], but for deriving expressions we need to
make a choice. The Coulomb gauge is a suitable choice here,
yet it can be used exactly only when a slowly varying and
homogeneous magnetic field is present. This gauge further
implies that only the transversal parts of E and of A are
retained, the latter being gauge invariant. Doing so, we have
thus recovered the “usual” spin-orbit coupling term and other
ultrarelativistic terms.

The external spin-orbit coupling Hamiltonian is given by

Hext
soc = − e

4m2c2
S · {E × ( p − eA) − ( p − eA) × E},

which has a similar form as Hint
soc [Eq. (8)] but contains the

external Maxwell fields instead. Making use of Maxwell’s
equation ∇ × E = −∂ B/∂t , this Hamiltonian can be rewrit-
ten as

Hext
soc = − e

2m2c2
S · (E × p) + ie�

4m2c2
S · ∂ B

∂t

+ e2

2m2c2
S · (E × A). (10)

The last term in the Hamiltonian Hext
soc describes the inter-

action of the photon spin angular momentum density, j s =
ε0(E × A) [41], with the electron spins [40,42]. A related
interaction energy due to a coupling of the angular momentum
density of the electromagnetic field with the magnetic moment
was proposed recently on phenomenological grounds [43].
The relativistic light-spin interaction in the Hamiltonian (10)
adopts thus the form

Hext
light−spin = e2

2m2c2ε0
S · j s . (11)

This term, being second order in the external fields can become
important in the strong field regime. As we focus in the
first instance on the damping, we will not consider it in the
derivation of the spin damping, but we come back to it later on.

Now we have the necessary parts of the spin Hamiltonian,
and we are ready to calculate the spin dynamics equations.
According to the definition of magnetization, this quantity is
given by the expectation value of spin angular momentum [44]

M =
∑

j

gμB

V Tr{ρSj }, (12)

where V is a suitably chosen volume element. The summation
is taken over all the electrons j and the definition of the density
matrix is ρ = ∑

i pi |ψi〉〈ψi |, where the set of wave functions
|ψi〉 are in a mixed state and pi are the occupation numbers.
As is customary in spin dynamics models [12–20,24,26,45]
the contribution of the orbital angular momentum to the total
magnetization has been neglected because it is quenched
for the common transition metals (e.g., Fe, Ni, Co etc.).
The equation of motion of the magnetization is obtained
by taking the time derivative on both sides of Eq. (12) and
using that ∂ρ/∂t = 0 for quasiadiabatic processes [46], which
gives

∂ M
∂t

= gμB

V
1

i�

∑
j

Tr{ρ[Sj ,HS(t)]}. (13)

To obtain the magnetization dynamics we substitute the spin
Hamiltonian HS(t) = H0 + Hint

soc + Hext
soc on the right-hand

side of Eq. (13) and work out the trace term-by-term.
Before presenting the result we consider briefly the ap-

proximations made in the derivation. Notably, Eq. (13) is valid
for local processes and will hence provide a local damping
mechanism. However, it is known that nonlocal contributions
to the damping exist (see, e.g., Refs. [47–49]) that can be
caused by spin transport from one region to another [50–52].
Such effects can be treated using the continuity equation,
∂ρ/∂t + ∇ · J = 0, with J the current operator, leading to
an additional spin current term (see, e.g., Refs. [52,53]).

A further remark due at this point concerns the time
dependence of the exchange field. In line with the above, we
adopt the adiabatic approximation that is valid for systems not
too far from the ground state [54].

Working out the commutator, we find that the first or-
der dynamical equation of motion is given by the mostly
nonrelativistic part in the spin Hamiltonian H0. Using
the commutation relations for spin angular momentum,
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[Sj ,Sk] = i�εjklSl , the first order equation of motion becomes

∂ M
∂t

∣∣∣∣
0

= −γ M × Beff, (14)

where γ = g|e|/2m is the gyromagnetic ratio and g ≈ 2
for spin degrees of freedom. Using B = μ0(H + M), the
right-hand term can be rewritten in the conventional form as
−γ0 M × Heff , where γ0 = μ0γ . This equation provides the
common understanding of the Larmor precessional motion
of magnetization around an effective magnetic field, with a
distinction that there is a relativistic correction Bxc

corr to this
field that has not been noted before.

Next we treat the relativistic spin-orbit effects in the
magnetization dynamics. As we will see, these are the ones that
lead to local damping, i.e., the spin relaxation mechanisms in
a magnetic solid are of relativistic origin [1,9]. First, we focus
on the relativistic intrinsic spin-orbit coupling Hamiltonian
Hint

soc in Eq. (9). Due to the quenching of the orbital angular
momentum, the first term vanishes. The dynamics due to the
remaining two terms in the Hamiltonian is calculated as

∂ M
∂t

∣∣∣∣
int

soc

= e

4m2c2

〈
r
dV

dr

〉
M × B

− e

4m2c2
M ×

〈
r

1

r

dV

dr
(r · B)

〉

= e

2

∑
j

[〈ξ (rj )r2〉M × B − M × 〈ξ (rj )r (r · B)〉].

(15)

The first term in the dynamics of Eq. (15) can be seen as a
further relativistic correction to the magnetization precession.
The second term has a form similar to the first term, but with
opposite sign. The terms can be combined, but they do not
contribute to any relaxation processes as they do not contain a
time variation of the magnetic induction.

Next we consider the dynamics related to Hext
soc. We will

see below that it is mainly the relativistic extrinsic spin-orbit
coupling, i.e., the first two terms of Eq. (10), which give rise
to dominant local spin relaxation mechanisms in magnetic
solids. In addition, we observe here that these correspond
to the transverse spin relaxation. We consider here the long
wavelength approximation, where the wavelength of the field
is much larger than the size of the system. In other words
the GHz/THz electromagnetic field inside the ferromagnetic
film is assumed uniform throughout the film as long as the
film thickness is sufficiently small. We can thus use the
Coulomb gauge, i.e., A = (B × r)/2. This gauge allows us to
obtain the explicit time dependence of the Hamiltonian. The
transverse electric field in the Hamiltonian is then written as
E = 1

2 (r × ∂ B/∂t). Employing the gauge, the first two terms
in Eq. (10) can be re-written in an explicit, time-dependent
form:

Hext
soc = ie�

4m2c2
S · ∂ B

∂t

(
1 − (r · p)

i�

)

+ e

4m2c2
(S · r)

(
∂ B
∂t

· p
)

. (16)

At this point it is needed to inspect the hermiticity of
the Hamiltonian. It can be shown that the total spin-orbit
Hamiltonian in Eq. (16) is hermitian (see Appendix A),
however, for the individual terms it is different. Writing down
the Hamiltonian in component form with the usual summation
convention, we obtain

Hext
soc = ie�

4m2c2
Si

∂Bi

∂t︸ ︷︷ ︸
anti-hermitian

− e

4m2c2

∑
i �=j

Si

∂Bi

∂t
rjpj

︸ ︷︷ ︸
non-hermitian

+ e

4m2c2

∑
i �=j

Siri

∂Bj

∂t
pj

︸ ︷︷ ︸
hermitian

. (17)

Previously, Hickey and Moodera considered the effect of the
spin-orbit Hamiltonian on damping, but only obtained the
first two terms in Eq. (10) [17]. They proposed then only
the anti-hermitian part of the Hamiltonian as an intrinsic source
of Gilbert damping [17]. Anti-hermitian Hamiltonians under-
standably are always dissipative [55,56]. Consequently, their
choice of taking the anti-hermitian term only was criticized,
given that the full spin-orbit Hamiltonian should be hermitian
and that it therefore should not exhibit dissipation [55].

In our case the total spin-orbit Hamiltonian (16) is man-
ifestly hermitian, yet we will show below that it does give
rise to spin moment damping. The point is that even when the
full Hamiltonian is hermitian, it only has this property when
one considers the dynamics of the full system. It is, however,
customary in spin moment dynamics [12–20,24,26,45] to
integrate out the orbital degree of freedom and other magnetic
degrees of freedom (as background fluctuations of the system)
thus restricting the focus on the single spin moment dynamics.
In the thereby restricted Hilbert space the hermiticity is lost and
hence the whole Hamiltonian can contribute to the damping.

Calculating now the commutation relation [S,Hext
soc] and

taking the summation of the trace over all electrons, the spin
moment dynamics adopts the form

∂ M
∂t

∣∣∣∣
ext

soc

= − ie�

4m2c2
M × ∂ B

∂t

(
1 − 〈r · p〉

i�

)

− e

4m2c2
M ×

〈
r
(

∂ B
∂t

· p
)〉

. (18)

A rewriting of these terms is required to elucidate further the
spin relaxation.

IV. THE DAMPING EQUATIONS

To obtain explicit expressions for the damping terms,
we employ the general relation between magnetic induc-
tion B, magnetization M, and magnetic field H , given as
B = μ0(M + H). We take the time derivative on both sides,

∂ B
∂t

= μ0

[
∂ M
∂t

+ ∂ H
∂t

]
. (19)

This relation is generally valid, also for the stationary case,
even though the magnetization M(t) and magnetic field H(t)
are time dependent. At this point it is instructive to consider
what kinds of magnetic fields H(t) can occur. The simplest
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case is when at some time t0 only a static field H0 is present,
then obviously only the first term in Eq. (19) contributes. If the
field H(t) is explicitly time dependent, we can distinguish two
cases: an ac driven, periodic magnetic field, as is commonly
used in measurements, or a more general field, for example a
magnetic field pulse. In the latter case, one could proceed to
derive the spin dynamics by keeping explicitly the term ∂ H

∂t
.

As a result, one obtains a LLG-like equation, where, however,
the magnetic field couples into the damping term. The thus-
obtained modified LLG equation is given and analyzed further
below, in Sec. V.

In the former case, the effect of the magnetic response
becomes apparent when an ac magnetic field is applied.
For ferromagnetic materials, where there is a net magneti-
zation present even in the absence of the applied field, the
magnetic susceptibility can be introduced by the definition:
χ = ∂ M/∂ H . Using a chain rule for the time derivative,
∂ H
∂t

= ∂ H
∂ M

∂ M
∂t

, Eq. (19) can be written as

∂ B
∂t

= μ0(1 + χ−1) · ∂ M
∂t

, (20)

where 1 is the 3 × 3 identity matrix. This relation has been
used in the ensuing magnetization dynamics.

Substituting Eq. (20) in the first term of Eq. (18), we obtain

∂ M (1)

∂t

∣∣∣∣
ext

soc

= − ie�μ0

4m2c2
M ×

[
(1+ χ−1) · ∂ M

∂t

](
1 − 〈r · p〉

i�

)
.

(21)

This term can already be recognized to have the form of the
Gilbert damping, M × [α · ∂ M

∂t
], yet with a tensorial damping

constant.
For the full damping we have to combine with the second

term in Eq. (18), which is rewritten as

∂ M (2)

∂t

∣∣∣∣
ext

soc

= − eμ0

4m2c2
M ×

〈
r
([

(1 + χ−1) · ∂ M
∂t

]
· p

)〉
.

(22)

To join the terms we proceed with using vector components.
Equation (21) becomes

∂ M (1)

∂t

∣∣∣∣
ext

soc

= − eμ0

4m2c2

∑
ijkln

Mk

[
(1 + χ−1)ij

∂Mj

∂t

]

× (i� − 〈rnpn〉)εkil êl , (23)

with εijk the Levi-Civita tensor and ê a unit vector. This term
can be written as

∂ M (1)

∂t

∣∣∣∣
ext

soc

=
∑
ijkl

Mk

∂Mj

∂t
�ij εkil êl , (24)

with �ij = − eμ0

4m2c2

∑
n (i� − 〈rnpn〉)(1 + χ−1)ij . The second

term (22) can be written in a similar form, but with a
tensor �ij = − eμ0

4m2c2

∑
n〈ripn〉(1 + χ−1)nj . Combining these

two terms gives the total damping term,

∂ M
∂t

∣∣∣∣
ext

soc

=
∑
ijkl

Mk[�ij + �ij ]
∂Mj

∂t
εkil êl , (25)

where it is convenient to define Aij ≡ �ij + �ij ,

Aij = − eμ0

4m2c2

∑
n

[i� − 〈rnpn〉 + 〈rnpi〉](1 + χ−1)ij

= − eμ0

8m2c2

∑
n,k

[〈ripk + pkri〉 − 〈rnpn + pnrn〉δik]

× (1 + χ−1)kj . (26)

Note that a summation over i is not intended in the right-hand
side expressions. In vector form the spin-orbit damping term
becomes

∂ M
∂t

∣∣∣∣
ext

soc

= M ×
[

A · ∂ M
∂t

]
. (27)

Summarizing our result, we observe that we have obtained a
damping parameter Aij of Gilbert type that is, however, in its
general form not a scalar but a tensor. The tensorial character
of the Gilbert damping was also concluded recently in other
investigations [16,57]. In this form it accounts for transversal
spin relaxation that conserves the length of the magnetization,
i.e., ∂(M · M)/∂t = 0.

Every tensor can be decomposed in a symmetric and
an antisymmetric part. Hence, the damping tensor can be
decomposed into a scalar (α) multiplied by the unit matrix,
a symmetric tensor (I), and an antisymmetric tensor (A, with
Aij = 1

2 (Aij − Aji)). The latter tensor can in turn be expressed
as Aij = εijk Dk with D being a vector. Finally, the damping
dynamics can then be written as

∂ M
∂t

∣∣∣∣
ext

soc

= α M × ∂ M
∂t

+ M ×
[
I · ∂ M

∂t

]

+ M ×
[

D × ∂ M
∂t

]
. (28)

The first term is the conventional Gilbert damping. It originates
from the decomposition of the symmetric part of the tensor
into an isotropic Heisenberg-like (α1) contribution as well
as an anisotropic Ising-like (I) contribution which leads to
the second term. Along with that it is not surprising that the
last term implies a Dzyaloshinskii-Moriya-like contribution.
The anisotropic nature of the Gilbert damping has been noted
before [18,57], but not the appearance of the Dzyaloshinskii-
Moriya-like damping. This type of damping could be related to
the chiral damping of magnetic domain walls that was reported
recently [58].

For the case of a constant, scalar Gilbert damping parameter
it is straightforward to transform the LLG equation to obtain
the LL equation with the phenomenological damping term
proposed by Landau and Lifshitz [1]. However, this is no
longer the case for tensorial Gilbert damping, for which the
transformation is much more involved. The spin-dynamics
equation in the Landau-Lifshitz form now becomes (see
Appendix B)

(�21 + G) · ∂ M
∂t

= −γ0� M × Heff − γ0 M × [(α1 + I) · (M × Heff)],

(29)
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where � = 1 + M · D and the tensor G is defined through

G = α2 M21 − [(M · I · M) − tM2](α1 + I)

− (tM − M · I)M · I − M2I2 + M(M · I2), (30)

with the trace, t = Tr (I). In general the trace of such a
matrix I is nonzero, however its value will depend on how
the symmetric tensor A

sym
ij = 1

2 (Aij + Aji) = Iij + αδij is
decomposed. If the decomposition in Ising and Heisenberg
parts is such that the isotropic part is chosen as α = 1

3 Tr(Asym
ij ),

then the trace of I will vanish, t = 0. Note that the term (15)
due to the intrinsic spin-orbit interaction has been left out, as it
is expected to give only a small correction to the effective
magnetic field. The damping term thus adopts the form
−γ0 M × [� · (M × Heff)], similar to the phenomenological
damping considered by Landau and Lifshitz [1], but with
damping tensor �. A more general form of the LL damping
as a tensor was already considered much earlier (see, e.g.,
Ref. [59]), and it is reflected also in our derivation. However, a
distinction is that here the leading ∂ M/∂t term on the left-hand
side in Eq. (29) is, in its general form, multiplied not with a
scalar (1 + α2M2) but with a tensor which moreover depends
on the direction of M.

It is worth noting that in the absence of the Dzyaloshinskii-
Moriya and anisotropic relaxation contributions, i.e., setting
D = I = 0 we retrieve the original LL and LLG equations
with scalar damping parameters. The validity range of our
derived equations of spin motion is thus larger than the
originally proposed equations of motion. It should also be
emphasized that the Dzyaloshinskii-Moriya-like contribution
appears in the Gilbert damping, however, it does not appear in
the damping term of the LL equation (29). Instead, it leads to
the renormalization of the standard dynamical terms in the LL
equation as can be seen from the appearance of the quantity
� in Eq. (29). We lastly note that the here obtained relaxation
terms do not allow a variation with respect to the coordinates,
i.e., they do not include effects of spatial dispersion.

V. DISCUSSION

A. Analysis of the damping expression

Equation (26) for the Gilbert damping pertains to the relax-
ation of spin motion in the presence of spin-orbit interaction.
This damping is of relativistic origin as is exemplified by
its 1/c2 dependence. The expression for the Gilbert tensor is
different from that obtained previously [17], where only the
constant term i� in the square bracket was found. The new
parts 〈ripj 〉 relate to how the electronic band energies Eνk of
Bloch states |νk〉 disperse with k-space direction. It can be
rewritten as (see Appendix C)

〈ripj 〉 = − i�

2m

∑
ν,ν ′,k

f (Eνk) − f (Eν ′k)

Eνk − Eν ′k
pi

νν ′p
j

ν ′ν, (31)

where pνν ′ ≡ 〈νk| p|ν ′k〉 and f (Eνk) is the Fermi function.
The sum contains interband and intraband contributions. The
intraband (Fermi surface) contribution (ν = ν ′) can be written
as

〈ripj 〉 = − im

2�

∑
νk

(
∂f

∂E

)
Eνk

(
∂Eνk

∂ki

)(
∂Eνk

∂kj

)
. (32)

This expression has a similarity with other previously derived
expressions, as, e.g., the breathing Fermi surface model [8,24]
that has been applied to metallic ferromagnets. The expression
for the 〈ripj 〉 terms has furthermore a form similar to that for
the conductivity tensor in linear-response theory [60]; it is in
particular well suited for ab initio calculations. We note further
that the influence of electron interaction with quasiparticles can
be introduced by replacing Eνk − Eν ′k by Eνk − Eν ′k + iδ,
where the small δ gives a finite relaxation time to the electronic
states.

For numerical evaluation of the damping tensor the suscep-
tibility tensor χ is furthermore needed, which is in general
wave-vector and frequency dependent, χ (q,ω). Thus, also the
Gilbert damping tensor is here a frequency and q-dependent
quantity, in accordance with recent measurements [32]. Suit-
able expressions for χ have been considered previously in
the context of Gilbert damping [13,16,45]. Linear-response
formulations that express χ as a spin-spin correlation function
include the Pauli and Van Vleck susceptibility contributions
[61], and expressions for the orbital susceptibility have been
derived as well [62]. These expressions are fitting for ab
initio calculations of χ within a DFT framework. The spin-
orbit interaction will have an additional influence on χ ,
however, unlike the main Gilbert damping contribution which
is proportional to the spin-orbit coupling, this will only be a
higher order effect.

We can consequently distinguish here two origins for the
damping: The first one is related to the terms 〈ripj 〉, which
represent dissipation contributions into the orbital degrees of
freedom. The second nature is due to the magnetic susceptibil-
ity χ which represents losses through the magnetic structure
of the material. Both effects are simultaneously present, and
nonzero, for metallic ferromagnets as well as insulators.

It is also important to mention that the damping tensor in
our derivation does not include spin-relaxation effects due to
interaction of spin-polarized electrons with quasiparticles as
magnon or phonons or scattering with defects. Longitudinal
spin relaxation due to spin-flip processes caused by electron-
phonon scattering have been recently calculated ab initio for
the transition-metal ferromagnets [63–65], and magnon spin-
flip scattering has been considered as well [66]. Spin angular
momentum transfer due to explicit coupling of the spins to
the lattice has been treated in several models [67–69]. As
mentioned above, although the spin-lattice dissipation channel
is not encompassed in our derivation, an approximate way to
include its influence has been introduced before, by a suitable
spectral broadening of the Bloch electron energies (see, e.g.,
Refs. [24,70]).

Lastly, we remark that in the present derivation we obtain
only first-order time derivatives of M(r,t). Second-order time
derivatives of M(r,t) have recently been related to moment of
inertia of the magnetization [71].

B. Exchange field and nonlocal contributions

Thus far we have not explicitly discussed the exchange in-
teraction. The influence of the exchange field can be accounted
for in various levels of approximation, for example, within the
Heisenberg model or evaluated within time-dependent DFT
[72,73]. In the former, a suitable simplification of the exchange
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interaction in a magnetic solid is to express it through the
Heisenberg Hamiltonian Hxc = −∑

α>β JαβSα · Sβ , where
the Jαβ are exchange constants and Sα is the atomic spin on
atom α. Using this Hamiltonian to express the exchange field
leads to Landau-Lifshitz-Gilbert equations of motion for the
dynamics of atomic moments (see, e.g., Refs. [74–76]).

More general, the exchange field depends on the spatial
position which implies that there can exist an influence
of spatial nonuniformity of the exchange field on the spin
relaxation. An influence on the dynamics occurring due
to magnetization inhomogeneity (∇2 M) appearing in the
effective field was already suggested by Landau and Lifshitz
[1]. Such a term is in fact needed to properly describe spin
wave dispersions [77]. A nonlocal damping mechanism due
to spatial dispersion of the exchange field was proposed by
Bar’yakhtar on the basis of phenomenological considerations
such as symmetry arguments and Onsager’s relations [10].
This leads to a modified expression for the damping term
in the Landau-Lifshitz-Bar’yakhtar equation which contains
the derivative of the exchange field ∇2 Bxc [10,20]. The
existence of such a nonlocal damping term can be related
to the continuity equation connecting the spin density and spin
current; it is important for obtaining the correct asymptotic
behavior of spin wave damping at large wave vectors k [20]
known for magnetic dielectrics, see Ref. [59]. Such nonlocal
damping is important, too, for describing spin current flow in
magnetic metallic heterostructures [78]. These nonlocal damp-
ing terms are furthermore related to the earlier proposed mag-
netization damping effects due to spin diffusion [52,79–81]
that have been studied recently [82]. As a consequence of
the spin current flow the local length of the magnetization is
not conserved. In the present work such nonlocal terms are
not included since we focus on the local dissipation and have
thus omitted the spin current contribution of the continuity
equation. A future full treatment that takes into account both
local and nonlocal spin dissipation mechanisms would permit
us to describe magnetization dynamics and spin transport on
an equal footing in a broader range of inhomogeneous systems.

C. General time-dependent magnetic fields

When the driving magnetic field is not an ac harmonic
field the dependence of M(r,t) on H(t) will induce a more
complex dynamics. In this case it is possible to derive a closed
expression for the spin dynamics by explicitly keeping the term
∂H
∂t

in Eq. (19). A similar derivation as presented in Sec. IV
for the ac driving field leads then to the following expression
for the magnetization dynamics

∂ M
∂t

= −γ0 M × Heff + M ×
[

Ā ·
(

∂ M
∂t

+ ∂ H
∂t

)]
, (33)

where the damping tensor Ā is given by

Āij = − eμ0

8m2c2

∑
n

[〈ripj + pjri〉 − 〈rnpn + pnrn〉δij ].

(34)

The time-dependent magnetic field thus leads to a mod-
ified, previously overlooked spin dynamics equation. The
time derivate of H(t) introduces here an additional torque,

M × ∂ H
∂t

. This field-derivative torque might offer ways to
achieve fast magnetization switching. Consider for example
an initially steep magnetic field pulse that thereafter relaxes
slowly back to its initial value. The derivative of such a
field will exert a large but shortly lasting torque on the
magnetization, which could initiate switching. Irradiation of
magnetic thin films with a picosecond THz field pulse was
recently shown to trigger ultrafast magnetization dynamics
[83], and suitable shaping of the THz magnetic field pulse
could hence offer a route to achieve switching on a picosecond
time scale.

D. The optical spin torque

The interaction of the spin moment with the optical spin
angular moment j s is given by the Hamiltonian Hext

light-spin. We
note that such relativistic interaction is important for recent
attempts to manipulate the magnetization in a material using
optical angular momentum, i.e., helicity of the laser field
[40,84,85]. This interaction leads to spin dynamics of the form

∂ M
∂t

∣∣∣∣
ext

light−spin

= − e2

2m2c2ε0
M × j s , (35)

where M × j s is the optical spin torque exerted by the optical
angular moment on the spin moment. This equation expresses
that the spin moment in a material can be manipulated by
acting on it with the optical spin angular moment of an external
electromagnetic field in the strong field regime.

VI. CONCLUSIONS

On the basis of the relativistic Dirac-Kohn-Sham equation
we have derived the spin Hamiltonian to describe adequately
the dynamics of electron spins in a solid, taking into account all
the possible spin-related relativistic effects up to the order 1/c2

and the exchange field and external electromagnetic fields.
From this manifestly hermitian spin Hamiltonian we have
calculated the spin equation of motion which adopts the form
of the Landau-Lifshitz-Gilbert equation for applied harmonic
fields. For universal time-dependent external magnetic fields
we obtain a more general dynamics equation which involves
the field-derivative torque. Our derivation does notably not
rely on phenomenological assumptions but provides a rigorous
treatment on the basis of fundamental principles, specifically,
Dirac theory with all relevant fields included.

We have shown the existence of a relativistic correction
to the precessional motion in the obtained LLG equation
and have derived an expression for the spin relaxation terms
of relativistic origin. One of the most prominent results of
this paper is the derived expression for the tensorial Gilbert
damping, which has been shown to contain an isotropic Gilbert
contribution, an anisotropic Ising-like contribution, and a chi-
ral, Dzyaloshinskii-Moriya-like contribution. Transforming
the LLG equation to the Landau-Lifshitz equation of motion,
we showed that the LLG equation with anisotropic tensorial
Gilbert damping cannot trivially be written as a LL equation
with an anisotropic LL damping term, but an additional matrix
appears in front of the ∂ M/∂t term. The Dzyaloshinskii-
Moriya-like contribution serves as a renormalization factor
to the common LL dynamical terms. The obtained expression
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for the Gilbert damping tensor in the case of a periodic driving
field depends on the spin-spin susceptibility response function
along with a term representing the electronic spin damping
due to dissipation into the orbital degrees of freedom. As
there exists an on-going discussion on what the fundamental
origin of the Gilbert damping is and how it can accurately
be evaluated from first-principles calculations [28,30–32], we
point out that the two components of the derived damping
expression (spin-spin and current-current response functions)
are suitable for future ab initio calculations within the density
functional formalism.
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APPENDIX A: HERMITICITY OF HAMILTONIAN Hext
soc

The extrinsic spin-orbit HamiltonianHext
soc, given in Eq. (16),

can indeed be shown to be hermitian, however its individual
terms are not all hermitian. Adapting the Einstein summation
convention, this Hamiltonian can be written in component
form as

Hext
soc = e

4m2c2
(i�Si∂tBi − Si∂tBirjpj + Siri∂tBjpj ), (A1)

with ∂t ≡ ∂ /∂t . To demonstrate that it is hermitian, we take
the Hermitian conjugate, and rewrite it in a few steps.

[
Hext

soc

]† = e

4m2c2
(−i�Si∂tBi − Si∂tBipj rj + Si∂tBjpj ri)

= e

4m2c2
(−i�Si∂tBi − Si∂tBirjpj + Si∂tBj ripj − Si∂tBi(pjrj ) + Si∂tBj (pj ri))

= e

4m2c2
(−i�S · ∂t B − (S · ∂t B)(r · p) + (S · r)(∂t B · p) − (S · ∂t B)( p · r) + S · {(∂t B · p)r})

= e

4m2c2
(−i�S · ∂t B − (S · ∂t B)(r · p) + (S · r)(∂t B · p) + i�(S · ∂t B)(∇ · r) − i�S · {(∂t B · ∇)r})

= e

4m2c2
(−i�S · ∂t B − (S · ∂t B)(r · p) + (S · r)(∂t B · p) + 3i�S · ∂t B − i�S · ∂t B)

= e

4m2c2
(i�S · ∂t B − (S · ∂t B)(r · p) + (S · r)(∂t B · p)) = Hext

soc. (A2)

For the individual terms of the Hamiltonian it is straightforward to show their hermitian or non-hermitian character:

Hext
soc = ie�

4m2c2
Si∂tBi︸ ︷︷ ︸

anti-hermitian

− e

4m2c2

∑
i �=j

Si∂tBirjpj

︸ ︷︷ ︸
non-hermitian

+ e

4m2c2

∑
i �=j

Siri∂tBjpj

︸ ︷︷ ︸
hermitian

. (A3)

As noted before all three terms of the hermitian Hamiltonian contribute to the spin relaxation process.

APPENDIX B: FROM LLG TO LL EQUATIONS OF MOTION

We found that the generalized LLG equation of spin dynamics can be written in the form [see Eq. (27)]

∂ M
∂t

= −γ M × Beff + M ×
[

A · ∂ M
∂t

]
. (B1)

As discussed earlier, using the tensor decomposition, one can also write

∂ M
∂t

= −γ M × Beff + α M × ∂ M
∂t

+ M ×
[
I · ∂ M

∂t

]
+ M ×

[
D × ∂ M

∂t

]
. (B2)

The Dzyaloshinskii-Moriya-like damping terms can be expanded, using a × (b × c) = b(a · c) − c(a · b), to give M × [D ×
∂ M
∂t

] = − ∂ M
∂t

(M · D). Since the magnetization length is conserved we therefore have M · ∂ M/∂t = 0. Defining (1 + M · D) =
�, the LLG equation of spin motion reduces to

�
∂ M
∂t

= −γ M × Beff + α M × ∂ M
∂t

+ M ×
[
I · ∂ M

∂t

]
. (B3)
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Note that � is both a magnetization and Dzyaloshinskii-Moriya vector dependent quantity. Next, we have to calculate the second
and third terms on the right-hand side of Eq. (B3). Taking a cross product with M on both sides of the last equation gives

� M × ∂ M
∂t

= −γ M × (M × Beff) + α M ×
(

M × ∂ M
∂t

)
+ M ×

(
M ×

[
I · ∂ M

∂t

])

= −γ M × (M × Beff) − α M2 ∂ M
∂t

− M2

[
I · ∂ M

∂t

]
+ M

(
M ·

[
I · ∂ M

∂t

])
. (B4)

Similarly, to evaluate the last term of Eq. (B3), we take the dot product with the symmetric part of the tensor, followed by a cross
product with the magnetization,

� M ×
[
I · ∂ M

∂t

]
= −γ M × [I · (M × Beff)] + α M ×

[
I ·

(
M × ∂ M

∂t

)]
+ M ×

(
I ·

{
M ×

[
I · ∂ M

∂t

]})
. (B5)

At this point we already observe that the first term on the right hand side has adopted a form of the LL damping but with a tensor.
The second and third terms are treated in the following. The second term can be written in component form as

α M ×
[
I ·

(
M × ∂ M

∂t

)]
= αMlImkMi

∂Mj

∂t
εijkεlmn ên. (B6)

We use the following relation for the product of two antisymmetric Levi-Civita tensors

εijkεlmn = δil(δjmδkn − δjnδkm) − δim(δjlδkn − δjnδkl) + δin(δjlδkm − δjmδkl), (B7)

and, defining the trace of the symmetric tensor Tr(I) = t, a little bit of tensor algebra results in

α M ×
[
I ·

(
M × ∂ M

∂t

)]
= αM2

(
I · ∂ M

∂t

)
− αt M2 ∂ M

∂t
+ α(M · I · M)

∂ M
∂t

− αM
[

M ·
(
I · ∂ M

∂t

)]
. (B8)

Now we proceed to calculate the last part of Eq. (B5); the components of this term are given by

M ×
(
I ·

{
M ×

[
I · ∂ M

∂t

]})
= MmInlMkIij

∂Mj

∂t
εkilεmno êo. (B9)

Using once again the relation in Eq. (B7) and expanding in different components we find

M ×
(
I ·

{
M ×

[
I · ∂ M

∂t

]})
= [(M · I · M) − tM2]

(
I · ∂ M

∂t

)
+ (tM − M · I)

[
M ·

(
I · ∂ M

∂t

)]

+ (M · M)

[
I ·

(
I · ∂ M

∂t

)]
− M

[
M ·

{
I ·

(
I · ∂ M

∂t

)}]
. (B10)

Now we have the necessary terms to formulate the LL equation of motion. Taking these together, the LLG dynamics of
Eq. (B3) can be written as

�2 ∂ M
∂t

= −γ� M × Beff − γ M × [(α1 + I) · (M × Beff)] − G · ∂ M
∂t

, (B11)

with the general tensorial form of G which is given by

G = α2 M21 − [(M · I · M) − tM2](α1 + I) − (tM − M · I)M · I − M2I2 + M(M · I2).

Using B = μ0(H + M), the transformation from the LLG to the LL equation results in the form

(�21 + G) · ∂ M
∂t

= −γ0� M × Heff − γ0 M × [(α1 + I) · (M × Heff)]. (B12)

As mentioned before, in general the Landau-Lifshitz damping cannot be described by a scalar. We find that in the damping term
the effect of the anisotropic Ising-like damping is present, while the influence of the Dzyaloshinskii-Moriya-like damping is
accounted for through the renormalizing quantity �.

APPENDIX C: EXPRESSIONS FOR MATRIX ELEMENTS

We provide here suitable expressions for ab initio calcula-
tions of the matrix elements 〈ripj 〉. We consider thereto the
Bloch states |νk〉 in a crystal to calculate the expectation value

〈ripj 〉 =
∑
ν,ν ′,k

〈νk|ri |ν ′k〉〈ν ′k|pj |νk〉f (Eνk), (C1)

where f (Eνk) is the Fermi-Dirac function. The momentum
and position operators are connected through the Ehrenfest
theorem, p = im

�
[H,r], which we employ to obtain matrix

elements of the position operator

〈ν ′k|r|νk〉 = − i�

m

〈ν ′k| p|νk〉
(Eν ′k − Eνk)

. (C2)

144419-9



RITWIK MONDAL, MARCO BERRITTA, AND PETER M. OPPENEER PHYSICAL REVIEW B 94, 144419 (2016)

Substitution in equation (C1) gives

〈ripj 〉 = − i�

m

∑
ν,ν ′,k

f (Eνk)
pi

νν ′p
j

ν ′ν

Eνk − Eν ′k

= − i�

2m

∑
ν,ν ′,k

f (Eνk) − f (Eν ′k)

Eνk − Eν ′k
pi

νν ′p
j

ν ′ν . (C3)

The double sum over quantum numbers can be further
rewritten by separating according to interband matrix elements

(ν �= ν ′) and intraband matrix elements (ν = ν ′). The latter
part becomes

〈ripj 〉 = −1

2

i�

m

∑
ν,k

(
∂f

∂E

)
Eνk

pi
ννp

j
νν, (C4)

which can be reformulated using pi
νν = m

�
(∂Eνk/∂k)i to

give expression (32). The expressions (C3) and (C4) are
similar to Kubo linear-response expressions for elements of
the conductivity tensor and are suitable for first-principles
calculations within a DFT framework.
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[8] V. Kamberský, Can. J. Phys. 48, 2906 (1970).
[9] V. Korenman and R. E. Prange, Phys. Rev. B 6, 2769 (1972).

[10] V. G. Bar’yakhtar, Sov. Phys. JETP 60, 863 (1984).
[11] D. A. Garanin, Phys. Rev. B 55, 3050 (1997).
[12] E. Šimánek and B. Heinrich, Phys. Rev. B 67, 144418 (2003).
[13] Y. Tserkovnyak, G. A. Fiete, and B. I. Halperin, Appl. Phys.

Lett. 84, 5234 (2004).
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