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Magnetic anisotropy of Sm2Fe17 single crystals
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The previously accepted notion that the spontaneous magnetization of Sm2Fe17 lies in the basal plane of the
crystal is true only approximately, and then only around room temperature. At low temperatures the magnetization,
whose orientation is not fixed by the symmetry, is found to deviate from the basal plane by as much as 10◦.
The threefold symmetry axis is a hard direction; to magnetize the crystal in this direction, a magnetic field of
about 9 T is required. The hard-axis magnetization arrives at saturation discontinuously, by way of a first-order
phase transition. The behavior is a general one for trigonal ferromagnets where K1 < 0 and the leading trigonal
anisotropy constant is nonzero, K ′

2 �= 0. Although of universal occurrence, the first-order transition is only visible
at low temperatures, where it is accompanied by a magnetization anomaly of sufficient size.
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I. INTRODUCTION

The binary system Sm2Fe17 attracted much attention in the
past. The interest was mainly due to its nitride, Sm2Fe17N3

[1–11], which in the decade of the 1990s was regarded as a
promising permanent magnet material, a potential successor
to Nd2Fe14B. At the heart of that vast research activity was
the process of interstitial nitrogenation [2–4], turning the
weak easy-plane anisotropy of Sm2Fe17 into an outstandingly
strong easy-axis anisotropy of Sm2Fe17N3 and at the same
time boosting the Curie temperature by as much as ∼360 K.
For a detailed study of the anisotropy transformation, it
was necessary to compare the anisotropies of the nitride
and of the parent compound. However, the latter proved
remarkably elusive. Despite the extraordinary research effort
and accordingly extensive literature, we are unaware of any
single-crystal study of pure Sm2Fe17. The true easy direction,
the anisotropy constants, and the related properties remain
unknown. The accepted opinion of Sm2Fe17 as an easy-plane
ferromagnet corresponds to reality only approximately, and
then only around room temperature. In fact, the orientation
of the spontaneous magnetization in Sm2Fe17 is not fixed by
the symmetry and has been unknown so far. One interesting
effect found in an earlier study of oriented Sm2Fe17 powder
[25] is a first-order phase transition induced by a magnetic
field applied along the threefold axis [001], which is a hard
direction. This transition was also observed in pseudobinary
single crystals of composition Sm2(Fe1−xAlx)17 [12]. For a
systematic study of the magnetic anisotropy, we set out to grow
single crystals of pure Sm2Fe17. This study is reported in the
subsequent sections, which are organized as follows. Section II
describes briefly the experimental techniques and Sec. III
presents the results of the measurements. The theoretical
model is introduced in Sec. IV. This is followed by a discussion
(Sec. V) and a summary (Sec. VI).
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II. EXPERIMENTAL DETAILS

The rhombohedral Sm2Fe17 phase forms by the peritectic

reaction L + γ -Fe
1553 K−−−→ Sm2Fe17. This means that directly

after melting, it is mostly α-Fe and Sm-rich phases that are
present in the as-cast ingots and, in order to achieve an almost
single-phase state, a long heat treatment at temperatures above
1273 K is required. We found that stoichiometric Sm2Fe17

ingots, even after being annealed for one to two months at
1323 K, still contained α-Fe inclusions, and the average grain
size was no more than 50−100 μm. This does not suffice
for a proper measurement of magnetic anisotropy. We found
it advantageous to start from a slightly off-stoichiometric
composition and to have a small amount of liquid Sm-rich
phase between the grains during the annealing. In this case, the
grain growth proceeded more rapidly, and no α-Fe was present
in the sample. Thus, by changing the stoichiometry of the
master alloy from Sm2Fe17 to SmFe7, grains of rhombohedral
Sm2Fe17 as large as 1 to 2 mm were obtained after annealing
the ingot for several weeks at temperatures above 1273 K. An
energy-dispersive x-ray spectroscopy (EDS) analysis revealed
for the grains a final composition of Sm2Fe16.97, while excess
samarium was found in the intergranular space.

The starting SmFe7 alloy was prepared by melting high-
purity elements (Sm: 99.9%; Fe: 99.99%) in an induction
furnace under a purified atmosphere of argon. The resulting
ingot was sealed in an evacuated quartz tube and annealed in
a resistive furnace as follows. It was heated up to 1373 K
at a rate of 5 K/h. Then, it was slowly cooled down to
1273 K during 21 days, kept at this temperature for 10 days,
and subsequently quenched in water. Several 1–2 mm-large
grains were extracted and checked for single crystallinity. The
best one of them was selected for magnetic measurements
and oriented by back-scattering Laue x-ray diffraction. The
crystal structure of Sm2Fe17 is well established; it crystallizes
in the rhombohedral Th2Zn17-type structure (space group
R3̄m). The unit cell parameters determined by means of
powder diffraction (a = 8.551 Å and c = 12.449 Å) are in
good agreement with earlier reported studies. Temperature
and field dependence of the magnetization was measured
on the oriented crystal in static magnetic fields up to 14 T
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FIG. 1. Magnetization curves of Sm2Fe17 measured along the principal axes at (a) T = 300 K and (b) T = 5 K. Temperature evolution of
the magnetization curves along the (c) [001] axis and (d) [120] axis of Sm2Fe17.

at temperatures between 5 and 450 K using a commercial
magnetometer (Quantum Design PPMS-14).

III. RESULTS

Figure 1(a) displays the magnetization curves of Sm2Fe17

measured along the principal crystallographic directions at
300 K. Typical behavior of easy-plane magnetocrystalline
anisotropy is observed; the data measured along the threefold
symmetry axis [001] clearly identifies this as the hard
magnetization direction. The two curves recorded along [100]
and [120] directions are practically identical, reflecting a weak
magnetic anisotropy within the basal plane for this system
at room temperature. The anisotropy field, μ0Ha , determined
from the kink in the magnetic hard-axis curve amounts to 2.8 T
at 300 K. Another noteworthy observation is the anisotropy of
the magnetic moment, i.e., the hard-axis magnetization curve
does not fully approach the easy-axis one above μ0Ha . The
magnetization along the hard axis is 3% smaller than that along
the easy axis, even in an applied magnetic field of 14 T.

At 5 K [see Fig. 1(b)], a strong magnetic anisotropy is
present within the basal plane, as can be seen from the

marked difference between the magnetization curves along
the [100] and [120] directions. The ratio of the spontaneous
magnetizations along the [100] and [120] directions becomes
nearly equal to 0.868 ≈ cos (π/6), which confirms good
crystal quality and orientation. Furthermore, the magnetization
curve measured along the threefold symmetry axis exhibits a
first-order spin-reorientation transition at a critical field μ0Hcr

of about 9 T. Such magnetic field-induced phase transitions
are often called first-order magnetization process (FOMP)
[13]. The magnetization along [001] axis is saturated above
≈9.5 T; therefore, the observed FOMP is of type I, following
the nomenclature of Asti and Bolzoni [13]. Moreover, the
spontaneous magnetization has nonzero projection on the hard
direction, reflecting the deviation of the easy directions from
the basal plane.

Figure 1(c) presents the temperature evolution of the
magnetization curves of Sm2Fe17 along the hard axis. It
follows from these measurements that the magnetic behavior
in Sm2Fe17 is rather complex. The low-temperature magneti-
zation data reveal the presence of a FOMP at about 9 T. One
can see in Fig. 1(c) that both the critical field of the FOMP and
the magnetic anisotropy field decrease monotonically upon
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FIG. 2. Spontaneous magnetization of Sm2Fe17 as a function of
temperature.

heating. As temperature increases, the FOMP smears out
gradually, becoming imperceptible above 100 K. The angle
δ0 between the easy direction and the basal plane, determined
from the initial part of the magnetization curve along the hard
axis, decreases with temperature and becomes indiscernible
above 250 K.

The isothermal magnetization curves of Sm2Fe17 taken
along the [120] direction at several fixed temperatures between
5 K and 300 K are illustrated in Fig. 1(d). The magnetization
saturates at low field following steep initial increase. The slope
of the initial linear sections is independent of temperature
and determined by the demagnetizing factor. The spontaneous
magnetization MS was deduced from the magnetization curves
along [120] axis by linear extrapolation to zero internal
field and is estimated to be 161 A m2/kg at T = 5 K. Above
room temperature, MS was obtained from Arrott-Belov plots
[14,15]. The spontaneous magnetization of Sm2Fe17 is plotted
against temperature in Fig. 2. The solid line is a fit to the
following expression [16]:

MS(T ) = MS(0)

[
1 − s

(
T

TC

) 3
2

− (1 − s)

(
T

TC

)5/2]1/3

, (1)

with MS(0) = 161 A m2/kg, TC = 380 K, and s = 0.7. Such
a shape of MS(T ), with s = 0.7, is typical for Fe-based
intermetallic ferromagnets [16,17].

The anisotropy constant K ′′
3 , defined by Eq. (2) below, was

determined as one-half of the area between the magnetization
curves along [120] and [100] measured at the same temper-
ature. The corresponding temperature dependence of K ′′

3 is
presented in Fig. 3. The in-plane anisotropy decreases rapidly
with T and becomes negligible towards room temperature.

IV. THEORY

A. The model

We adopt a one-sublattice approximation for Sm2Fe17. The
magnetic moments of Sm and Fe are aligned by a strong
exchange interaction (Bex = 380 T [10]) so that the angle
between them is small (∼2◦) and can be neglected. Therefore,

FIG. 3. Temperature dependence of the anisotropy constant K ′′
3 .

in the following analysis Sm2Fe17 is regarded as a simple
ferromagnet. For simplicity, we shall first limit ourselves to
T = 0 and postulate that the magnetization vector does not
change its magnitude as it rotates, |M| = M0 = const. The
magnetization process can then be described by means of a
simple expression for the energy of the system, consisting of
its anisotropy energy and a Zeeman term:

E = K1 sin2θ + K2 sin4θ + K ′
2sin3θ cosθsin 3ϕ

+K3sin6θ + K ′
3sin3θ cosθ (11cos2θ − 3)sin 3ϕ

+K ′′
3 sin6θ cos6ϕ − μ0 H · M. (2)

Equation (2) complies with the point symmetry group D3d

(3̄m) and is limited to sixth-order terms. According to the
International Tables for Crystallography [19], the z (hexagonal
c) axis is set along the threefold symmetry axis and the x

(a) axis is parallel to a twofold axis, as in Fig. 4. (In theory
literature, one often finds a different setting of the x axis,
whereby it lies in one of the mirror planes [20]; in that case,
sin 3ϕ in Eq. (2) should be replaced with cos 3ϕ.)

B. Orientation of spontaneous magnetization

We begin the analysis of Eq. (2) by considering a special
case of H = 0. Since the sixth-order Stevens factor of
samarium is zero, the sixth-order anisotropy terms—those in
K3, K ′

3, and K ′′
3 —are expected to be small and will be omitted

from Eq. (2).
The leading anisotropy constant, K1, is negative because

z is a hard axis. The second anisotropy constant, K2, will
be neglected in the subsequent analysis. The reason is that
a nonzero K2 does not qualitatively change any of the
conclusions reached in the simplified model with K2 = 0.
Moreover, the magnetization curve along the z axis is fitted
best with K2 = 0. The other fourth-order anisotropy constant,
K ′

2, is peculiar to the trigonal symmetry. It will turn out to play
a central role in the model.

Our model is distinct from the one used previously [21] to
interpret a FOMP in an isostructural compound Nd2Fe14Si3.
In Ref. [21], also, Eq. (2) was taken for a starting point;
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FIG. 4. Top view of the rhombohedral unit cell of Sm2Fe17 with
six easy directions. The x axis (hexagonal a) lies in the plane of the
drawing, while the z axis points out of the plane, passing through the
center.

however, all but the first two anisotropy constants were set
to zero. The trigonality of Nd2Fe14Si3 was thus neglected, and
the calculations (Fig. 9 of Ref. [21]) failed to reproduce the
magnetization projection on the hard axis, characteristic of
trigonal ferromagnets.

Upon division by |K1|, Eq. (2) becomes

E′ = −sin2θ ± κsin3θ cosθ sin 3ϕ, (3)

where

E′ = E/|K1| (4)

and

κ = |K ′
2|/|K1|. (5)

Thus, by definition, κ is a positive quantity.
The orientation of easy directions is sought by minimizing

E′ with respect to θ and ϕ. The trivial solutions, θ = 0 and
θ = π , can be excluded a priori since these are known to cor-
respond to hard directions (maxima of E′). The minimization
with respect to ϕ yields six possible azimuthal orientations,

ϕn = −π/6 + nπ/3, n = 1,2, . . . ,6. (6)

Setting these values into the necessary condition of a
minimum of E′ with respect to θ results in

±κ = 2(−1)n cos θ

sin θ (1 − 4cos2θ )
. (7)

It will be recalled that κ is an essentially positive quantity,
the ± signs in Eqs. (3) and (7) being equal to the sign of K ′

2.
The six values of the polar angle corresponding to the easy

directions are given by

θn = π/2 ∓ (−1)nδ0, n = 1,2, . . . ,6, (8)

where δ0 is an acute angle satisfying the following equation,

κ = 2 tan δ0

1 − 4sin2δ0
. (9)

Like κ , δ0 is a positive quantity, 0 < δ0 < π/6. It describes
the deviation of the easy direction from the basal plane. The
angle δ0 is a single parameter characterizing the peculiar
noncoplanar shape of the asterisk of easy axes. In the following
sections, it will become apparent that δ0 (or alternatively κ) is
also a sole parameter governing the shape of the magnetization
curves. Equation (9) provides a one-to-one relation between
both parameters.

While κ (or δ0) characterizes the degree of noncoplanarity
of the easy asterisk, the sign of K ′

2 determines its orientation
in relation to the rhombohedral unit cell (see Fig. 4). There are
two possibilities in this respect.

(1) K ′
2 < 0, which are the lower signs in Eqs. (3), (7),

and (8). The easy directions corresponding to n odd numbers
deviate from the basal plane upwards, tending towards the
invisible (dashed) edges of the cell. At the same time, the easy
directions with even numbers deviate by the same amount
downwards from the basal plane, to become nearly parallel
to the visible (solid) edges of the rhombohedron. One can
speak in this case of [100]-like easy axes, in the sense of their
proximity to the edges of the rhombohedral cell.

(2) K ′
2 > 0, which are the upper signs in Eqs. (3), (7), and

(8). The odd-numbered easy directions deviate downwards,
while those with even numbers deviate upwards. The easy
asterisk is turned through π/3 with respect to its orientation
in the previous case. The easy axes now tend towards the
secondary body diagonals of the rhombohedron—they are
[111]-like. (The main body diagonal does not count; it is a
hard direction.)

Thus, the magnitude of K ′
2 (in relation to that of K1)

determines the degree of noncoplanarity of the easy asterisk, as
described by the angle δ0. The sense of the noncoplanarity—
either [100]- or [111]-like—is determined by the sign of K ′

2.
This sign is unknown at present, and it cannot be found from
the magnetization curves presented in Fig. 1.

C. Magnetization curves: H ‖ [001]

Let the applied magnetic field be nonzero and point in
the positive z direction. Equation (2), with K2 = K3 = K ′

3 =
K ′′

3 = 0, then becomes

E = K1 sin2θ + K ′
2sin3θ cosθ sin 3ϕ − μ0HM0 cosθ. (10)

Minimization with respect to ϕ—on condition of θ being
acute—yields

ϕ0 = − (π/6)sign K ′
2,

or, equivalently, ϕ0 + 2π/3 or ϕ0 + 4π/3. In either case,

min
ϕ

(K ′
2 sin 3ϕ) = −|K ′

2|.

Substituting −|K ′
2| for K ′

2 sin 3ϕ in Eq. (10) and dividing
the result by |K1|, we obtain

E′ = −sin2θ − κsin3θ cosθ − hcosθ, (11)

where h is a dimensionless magnetic field,

h = μ0HM0

|K1| , (12)
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and E′ and κ are as defined above [see Eqs. (4) and (5)]. The
necessary condition of a minimum of E′(θ ) is

h sinθ = 2 sinθ cosθ + κ sin2θ (4cos2θ − 1), (13)

whence either θ = 0 or

h = 2 cosθ + κ sinθ (4 cos2θ − 1). (14)

A third solution, θ = π , can be discarded at this stage since
it obviously corresponds to a maximum of E′(θ ).

The trivial solution, θ = 0, pertains to a saturated state
where M ‖ H . This state is stable if H is sufficiently large.

The nontrivial solution (14) describes the process of
magnetization rotation in weaker fields. It is convenient to
rewrite Eq. (14) in terms of reduces magnetization in the z

direction, m = cos θ ,

h = 2m + κ(4m2 − 1)
√

1 − m2. (15)

The most peculiar part of this expression is the second term,
plotted in Fig. 5(a) (solid line). It features a minimum at m = 0,
a change of sign at m = 1

2 , a maximum at m = 1
2

√
3, and a

very steep descent to zero at m = 1. The negative of the second
term is also shown in Fig. 5(a) (dashed line); both curves are
readily recognized as parts of the well-known Lissajous curve
for the frequency ratio 1:3.

The first term in Eq. (15) puts these features on a linearly
growing background, as shown in Fig. 5(b). The parameter
κ (κ > 0) controls the relative weight of the second term in
Eq. (15) and therefore the shape of the entire magnetization
curve. The smaller κ , the narrower the interval of negative h

on the left and the falling part on the right. However, neither
of these two features will disappear completely at any finite κ .
In particular, the negative slope on the right will survive: The
negative derivative due to the second term in Eq. (15) tends
to −∞ as m → 1 and prevails over the finite positive slope
contributed by the first term.

We finally turn to the more usual presentation of the
magnetization curve as m vs h and discard its unphysical part
lying in the second quadrant [see Fig. 5(c)]. The following
conclusions can be drawn.

(1) The shape of the magnetization curve is uniquely
determined by the parameter κ [or by the angle δ0, which is
uniquely related to κ through Eq. (9)]. In particular, the initial
magnetization along z equals sin δ0. For small κ , sin δ0 ≈ κ/2.
Thus, a nonzero offset magnetization will remain present as
long as κ �= 0.

(2) On approach to saturation, there is a zone of instability,
where ∂m/∂h < 0. This zone is overcome by way of a first-
order transition accompanied by a step-wise magnetization
growth to saturation (a FOMP of type I according to Asti
and Bolzoni [13]). The smaller κ , the smaller the jump in the
magnetization curve. However, the jump will remain present
for any finite κ . Moreover, the FOMP will not be destroyed if a
nonzero K2 and/or six-order anisotropy constants are allowed
for. The presence of a FOMP in the magnetization curve along
the (hard) threefold axis is thus a characteristic of trigonal
ferromagnets. It is due to their symmetry and is not contingent
upon any special relation among the anisotropy constants. In
this respect, the FOMP under examination here is distinct
from that in uniaxial magnets, earlier studied by Onopriyenko

(a)

(b)

(c)

FIG. 5. Construction of the magnetization curve along the c axis:
(a) the second term of Eq. (15) with κ = 1 (solid line) and its negative
(dashed); (b) the complete Eq. (15) with κ = 0.4 (solid line) and its
first term alone (dashed); (c) the same as (b) but presented as m vs h.

[22] (see also Melville et al. [23], Asti and Bolzoni [13],
and Asti [24]). In the uniaxial case, both the sign and the
magnitude of the second anisotropy constant K2 are essential
for a FOMP to occur. By contrast, neither the sign nor the
magnitude of K ′

2, nor even the presence of a nonzero K2, matter
for the occurrence of the indestructible FOMP in a trigonal
magnet. The only way to get rid of the FOMP is to renounce
the trigonality altogether by setting K ′

2 = 0 (κ = 0). One is
compelled to conclude that this FOMP is a general property of
trigonal magnets, which they owe to their symmetry.

For a quantitative description of the FOMP, one should
equate the energies of the phases on both sides of the first-order
transition, as given by Eq. (11) with θ = 0 and θ = θcr. This
results in a relation between the critical field and the critical
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angle:

hcr = (1 + cosθcr)(1 + κ sinθcrcosθcr). (16)

At the same time, the angled phase must satisfy the
equilibrium condition, i.e., Eq. (14) with h = hcr and θ = θcr.
Eliminating hcr from the conjunction of both equations, one
obtains a relation between the critical angle and the main model
parameter κ:

κ = 1 − cos θcr

sin θcr

1

3cos2θcr − cos θcr − 1
. (17)

This can be conveniently rewritten directly in terms of the
critical magnetization, mcr = cos θcr:

κ =
√

1 − mcr

1 + mcr

1

3m2
cr − mcr − 1

. (18)

D. Magnetization curves: H ‖ [100]

In this case the relative strengths of the anisotropy terms
in Eq. (2) are rather different. The magnetization vector is
very close to the basal plane, the angle θ tending to π/2 as
the field grows. In a good approximation, one can simply set
θ = π/2, making the terms in K ′

2 and K ′
3 vanish. The axial

(nonprimed) terms are now constant and can be neglected. The
energy expression takes a simple form,

E = K ′′
3 cos 6ϕ − μ0HM0 cos ϕ. (19)

The minimization with respect to ϕ is straightforward and
leads to a result known for hexagonal magnets,

h = m(4m2 − 1)(4m2 − 3). (20)

Here, m stands for reduced magnetization, m = cos ϕ, and
h is reduced magnetic field,

h = μ0HM0

12K ′′
3

. (21)

V. DISCUSSION

The experimental results presented in Sec. III reveal that
the magnetic behavior of Sm2Fe17 is most interesting at low
temperature and in a magnetic field parallel to the threefold
axis [001] [see Fig. 1(b)]. According to our data, at zero
field the magnetization has a nonzero projection on the [001]
direction. Then a progressive growth of the magnetization
occurs. A further steplike rise at about 9 T brings the
magnetization to saturation at M0 = 161 A m2/kg.

Taking from our experiment mcr ≈ 0.9, we find by means
of Eq. (18) that κ ≈ 0.4. This corresponds to δ0 ≈ 10◦, cf.
Eq. (9). Such values of κ and δ0 are not unusual. According to
Eq. (9), the theoretical upper bound for δ0 is 30◦, and a value
as high as 26◦ was observed in an isostructural compound
Pr2Co17 [26,27], corresponding to κ = 4.2. On the other hand,
a smaller δ0 was found in Nd2Co17, δ0 = 7.5◦ [26,27], which
corresponds to κ = 0.28. At any rate, the conclusion made in
Ref. [12]—that δ0 = 0 for pure Sm2Fe17—is a mistake. It was
too rash to extrapolate to x = 0 the dependence δ0(x) obtained
for Sm2(Fe1−xAlx)17 between x = 0.075 and x = 0.145 only.

Turning back to our model, we obtain from Eq. (16) with
cos θcr = mcr = 0.9 and κ = 0.4,

hcr = 2.2. (22)

Contrasting this value with the experimental critical field
at T = 5 K, μ0Hcr = 9.0 T [Fig. 1(b)], we obtain 4.1 T for
the conversion factor between the dimensionless field h and
the usual field in teslas. Now the theoretical magnetization
curve of Fig. 5(c) can be rescaled and presented together
with the experimental data [see Fig. 1(b) (dashed curve)]. The
vertical scaling factor equals the saturation magnetization, M0.
Finally, setting into Eq. (12) h = hcr = 2.2, H = Hcr = 9.0 T,
and M0 = 161 A m2/kg, we get

K1 = −660 J/kg (23)

and

|K ′
2|= κ|K1| = 260 J/kg. (24)

The sign of K ′
2 cannot be determined from our data.

The anisotropy constants K2 and K3 are apparently so small
that they cannot be deduced from our data. They were set to
zero, initially in order to simplify the model. Our subsequent
attempts to improve the fit shown in Fig. 1(b) by allowing for
K2 �= 0 proved unsuccessful. If anything, a nonzero K2 made
the agreement with experiment worse. Therefore, K2 = 0 was
left as the best-fit value. Some improvement in the middle of
the [001] curve in Fig. 1(b) (at fields around 5 T) could be
achieved by assuming a small nonzero K ′

3 (|K ′
3| ∼ 10 J/kg)

of the same sign as K ′
2. We did not pursue this route further

because the effect was small and did not help to improve
the initial part of the curve, below 2 T, where the agreement
with experiment is conspicuously poor. At this point, we are
inclined to ascribe the disagreement to magnetic domains,
which are not taken into account by the model.

Let us now turn to the anisotropy constant K ′′
3 . The values

plotted against temperature in Fig. 3 (dark circles) were
deduced directly from the experimental curves, as explained
in Sec. III. The solid line in Fig. 3 is a fit to the following
expression,

K ′′
3 (T ) = K ′′

3(0)

0.0384
B

(5)
5/2

(
25

7

μBBex

kT

)
. (25)

Here K ′′
3 (0) = 75 J/kg is the low-temperature limit. In fact,

this value is just the ordinate of the left-most data point,
whose abscissa is T = 5 K. The symbol B

(5)
5/2(x) stands for

the generalized Brillouin function [28] of order 5 for J = 5/2,
as appropriate for Sm3+; the numerical constant 0.0384 serves
to normalize the function to unity at T = 0. The argument of
the generalized Brillouin function contains the exchange field
on Sm, Bex, which is a temperature-dependent quantity that
falls off with temperature proportionally to the spontaneous
magnetization. So the expression on the right-hand side of
Eq. (25) was used to compute Bex(T ), whose low-temperature
limit, Bex(0), was the only adjustable parameter in the entire
procedure. We found Bex(0) = 315 T to be the best-fit value.
This is about 20% less than the value deduced from the
observation of intermultiplet transitions in an inelastic neutron
scattering experiment [10], Bex = 380 T.
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One may find it strange that temperature dependence of K ′′
3 ,

a sixth-order anisotropy constant, is given by the fifth-order
generalized Brillouin function and not by the sixth-order
one, as stipulated by the linear theory [28]. The reason is
that the ground multiplet of samarium has a rather small
angular momentum, J = 5/2, and so the main, intramultiplet
contribution to the sixth-order anisotropy vanishes because
the triangle rule (n � 2J ) is not fulfilled for n = 6. In the
next approximation, as the first excited multiplet is taken into
account (J -mixing), two extra contributions to K ′′

3 arise, in
B

(5)
5/2(x) and in B

(7)
5/2(x) [29,30]. The latter is nil for Sm, on

account of the same triangle rule: B
(7)
5/2(x) ≡ 0. Therefore, the

first nonvanishing contribution to K ′′
3 is the one in B

(5)
5/2(x).

It would be instructing to compare our set of anisotropy
constants (T = 5 K),

K1 = −660 J/kg, |K ′
2| = 260 J/kg,

K ′′
3 = 75 J/kg, K2 = K3 = K ′

3 = 0,

with earlier data obtained on polycrystalline samples. Unfor-
tunately, the possibilities for such a comparison are rather
limited because Sm2Fe17 is not particularly suitable for making
oriented powder samples. One finds in the literature a K1

that is 1.7 times too small (K1 = −381 J/kg [18], T = 4.2 K);
this should not be viewed as unreasonable. No information is
available on the other anisotropy constants. As regards other
magnetic characteristics of Sm2Fe17, they are in fair agreement
with the literature. Thus, our Curie temperature and saturation
magnetization, TC = 380 K and M0 = 161 A m2/kg, compare
well to those found in polycrystalline samples, TC = 385 K
[18] and M0 = 165 A m2/kg [31]. For the critical field of the
FOMP, we find a value of 9 T, as against 11.2 T obtained on
oriented powder [25].

To complete the picture, one also needs a theoretical
magnetization curve with the magnetic field being parallel
to a hard direction in the basal plane, i.e., H||[100]. The
calculated magnetization curve is shown in Fig. 1(b) (dashed
line). The values of the parameters used in the calculation were
as previously determined from the experiment: K ′′

3 = 75 J/kg
at T = 5 K (see Fig. 3) and M0 = 161 A m2/kg. Thus, h = 1
corresponds to about 5.6 T. Comparing the experimental and
calculated [100] curves, one observes that the former is well
reproduced by the calculations.

Turning to the room-temperature data, we note a significant
moment anisotropy: The hard-axis magnetization does not
become quite as high as the easy-axis one, even above the
anisotropy field. A finite gap between the two curves persists up

to the highest available field, 14 T. Magnetization anisotropy
was predicted by Callen and Callen [32,33] and observed in
various intermetallic systems. In Sm2Fe17, the difference is not
particularly large, 3.5 A m2/kg or 3% at room temperature. For
comparison, in La2Co7 it is as high as 10% at room temperature
[34].

Finally, our model predicts a compulsory FOMP in a
magnetic field H ‖ [001] for all trigonal magnets where [001]
is a hard direction. Reference [25] confirms this prediction for
Pr2Fe17 and Nd2Fe17. However, no FOMPs were observed in
either Pr2Co17 or Nd2Co17 single crystals [27]. It should be
noted though, that in the high-field experiments of Ref. [27],
magnetization was measured once every 5 tesla, so having
missed a FOMP cannot be ruled out at present. A more careful
measurement is highly desirable.

VI. SUMMARY

The low-temperature magnetic structure of Sm2Fe17 can
be described as a noncoplanar easy asterisk. There are six
equivalent easy directions close to the [120] axes but deviating
from the basal plane by ±10◦ (at T = 5 K). The threefold
symmetry axis [001] is a hard magnetization direction.

The magnetization behavior can be described by a simple
model. The magnetization process along [100] is governed
by a single anisotropy constant and proceeds in a similar
fashion as in hexagonal magnets. Of most interest is the
magnetization process in the hard direction [001], where
the trigonality of Sm2Fe17 comes to the fore. The main
feature of this process is the presence of an indestructible
symmetry FOMP, which takes place regardless of the values
of model parameters. In the simplest approach, the pro-
cess can be presented as interplay of just two anisotropy
terms, the ratio of the corresponding anisotropy constants
κ being the sole parameter of the model. This parameter
determines the shape of the [001] magnetization curve, in
particular, the heights of the initial offset and of the final
jump associated with the FOMP. As κ decreases, the height of
the FOMP tends to zero asymptotically. The magnetization
will stay discontinuous—the FOMP will not turn into a
second-order phase transition—as long as the crystal remains
essentially trigonal (κ �= 0).
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