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We explore the magnetic behavior of the kagome francisites Cu3Bi(SeO3)2O2X (X=Cl, Br) by using
first-principles electronic structure calculations. To this end, we propose an approach based on the effective
Hubbard model in the Wannier functions basis constructed on the level of local-density approximation. The
ground-state spin configuration is determined by a mean-field Hartree-Fock solution of the Hubbard model both
in zero magnetic field and in applied magnetic fields. Additionally, parameters of an effective spin Hamiltonian
are obtained by taking into account hybridization effects and spin-orbit coupling. We show that only the
former approach based on the Hartree-Fock approximation allows for a complete description of the anisotropic
magnetization process. While our calculations confirm that the canted zero-field ground state arises from a
competition between ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor couplings in
the kagome planes, weaker anisotropic terms are crucial for fixing spin directions and for the strong anisotropy
of the magnetization. We show that the Hartree-Fock solution of an electronic Hamiltonian is a viable alternative
to the analysis of effective spin Hamiltonians when magnetic ground states and their evolution in external field
are concerned.
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I. INTRODUCTION

The interest in novel frustrated magnetic compounds is
continuously increasing because of the wide diversity of
their crystal structures and magnetic configurations leading,
in turn, to many interesting phenomena that may be relevant to
different applications, such as spintronics [1,2]. For example,
systems composed of S = 1

2 spins on a two-dimensional
kagome-type lattice are usually strongly frustrated due to com-
peting exchange interactions that give rise to various exotic
ground states and peculiar properties at finite temperatures
and in applied magnetic fields [3].

Owing to difficulties in synthesizing inorganic com-
pounds with a low-dimensional arrangement of transition-
metal cations, one usually resorts to special strategies for
their construction. For instance, inorganic polyanionic groups
can be used as a spacer to form open volumes excluding
bonding along one or two directions of the crystal structure.
Ideal candidates for this purpose are stereochemically active
lone-pair cations (Se+4 or Bi+3), which are large enough to
expand a crystal structure and form bonds only with oxygen
ions [4,5]. Halogens are often used as well, because they
prefer low coordination numbers and thus act as terminating
species [6].

Cu3Bi(SeO3)2O2X with X = Br and Cl, hereinafter re-
ferred to as CBSOOX, are geometrically frustrated layered
compounds with noncollinear magnetic order [7]. They can
be derived from the natural mineral francisite and crystallize
in the orthorhombic Pmmn structure [8]. This structure can
be described as formed by copper(II)-oxygen layers with two
nonequivalent copper sites, Cu1 and Cu2 of the site symmetries
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−1 and mm2, respectively, that build up a hexagonal network
of CuO4 square plaquettes linked together by Se+4 and Bi3+

ions with different out-of-plane oxygen bonding [Fig. 1(a)].
This geometry can be regarded as buckled kagome-type lattice.

Anisotropic magnetic properties of CBSOOX were studied
by bulk magnetization measurements [8] and single-crystal
neutron diffraction [7] that revealed the magnetic ordering
transition around 27 K. In zero field, the magnetic ground
state is formed by antiferromagnetically coupled ab layers,
where magnetic moments on the Cu2 sites point along the
c axis, whereas those on the Cu1 sites are canted from c
towards b, thus producing the net magnetic moment within
each layer in the ab plane. These moments cancel out
macroscopically because of the weakly antiferromagnetic
interlayer coupling that can be overridden by a magnetic
field BC ≈ 0.8 T applied along the c axis. External field
triggers a metamagnetic transition, wherein magnetic moments
in every second layer flip, and the net magnetic moment is
formed macroscopically [7,9]. Qualitatively similar behavior
was observed in CBSOOCl [10], although no details of its
magnetic structure were reported.

Rousochatzakis et al. [11] used density-functional theory
calculations to derive isotropic and anisotropic exchange
couplings in kagome francisites. They constructed an effective
spin Hamiltonian that was subsequently analyzed on the
classical level and, for the isotropic part of the Hamiltonian,
using the coupled cluster method, where quantum effects were
included. According to Ref. [11], canted spin order in the ab

plane of kagome francisites originates from the competition
between ferromagnetic nearest-neighbor (J1 � −70 K) and
antiferromagnetic next-nearest-neighbor (J2 � 50 K) interac-
tions. The leading Dzyaloshinsky-Moriya component along
the a direction (d1a in the notation of Ref. [11]) restricts
canted spins to the bc plane. However, their orientation
within the bc plane and the alignment of the net magnetic
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FIG. 1. (a) Crystal structure of CBSOOX: ab (left) and bc (right) projections; (b) schematic view of intraplane (left panel) and interplane
(right panel) isotropic exchange parameters. Sites 1, 2, 3, 4 and 5, 6 stand for the Cu1 and Cu2 atoms, respectively. Equivalent bonds are shown
by the same color. The sign of the a component of the anisotropic exchange coupling D15 is shown by + and −.

moment along the c direction could not be reproduced,
and the anisotropic magnetization process was not described
quantitatively.

Recent experimental studies revealed new unusual features
of kagome francisites. These compounds exhibit field- and
temperature-dependent microwave absorption over at least ten
decades of frequency [12,13]. This effect can be used for mi-
crowave filtering [12] and calls for a microscopic description of
the magnetization process. In the following, we will show how
this description can be achieved. The novelty of our approach
lies in the direct treatment of the electronic Hamiltonian, where
all isotropic and anisotropic exchange couplings are included
implicitly. We then use the same band structure to derive
parameters of the effective spin Hamiltonian, and demonstrate
salient differences between the modeling approaches based on
the electronic and spin Hamiltonians.

II. CONSTRUCTION OF WANNIER FUNCTIONS

Electronic structure calculations have been performed in
terms of the conventional local-density approximation (LDA)
[14] and projected augmented wave [15] formalisms, as
implemented in the Vienna ab initio simulation package [16].
Hopping parameters including spin-orbit coupling (LDA+SO)
were calculated in the QUANTUM ESPRESSO package [17].
To take into account on-site Coulomb correlations between
Cu 3d states, the LDA+U scheme has been employed [18].
In our studies, we adopt the experimental crystallographic
data from Ref. [8] listed in Table I. The unit cell contains
six copper atoms with fractional coordinates presented in
Table I.

The LDA and LDA+SO band structures of CBSOOX are
presented in Fig. 2(a). One of the most important features of
the electronic structure is the presence of six bands located
near the Fermi level and well separated from the rest of the
spectrum. These states are formed by Cu 3dx2−y2

and O 2p

states. The relevant Wannier functions [19] can be expressed
as the following linear combinations:

W1 = α1φ
x2−y2

Cu1 + 2β1φ
p

O1 + 2β2φ
p

O2 + 2γφSe (1)

and

W2 = α2φ
x2−y2

Cu2 + 2β1φ
p

O1 + 2β3φ
p

O3 (2)

for Cu1 and Cu2 sites, respectively, where contributions from
bismuth and halogen orbitals are supposed to be negligible.
The coefficients in Eqs. (1) and (2) are determined using
magnetic moments obtained from LDA+U calculations for the
ferromagnetic spin configuration. The values of α2

i are related
to the magnetization of copper ions, whereas the coefficients
for oxygen and selenium atomic orbitals can be found in the
same way from their magnetic moments divided by the number
of Wannier functions overlapping at these sites [20]. The
resulting Wannier functions obtained from LDA calculations
are presented in Fig. 2(b). Their structure is consistent with
Eqs. (1) and (2).

For LDA+U calculations, we used the on-site Coulomb
repulsion U = 9 eV and the intra-atomic exchange parameter
J = 1 eV. These values are in the common range for copper-
based compounds, as shown in Table II, and give quantitative
agreement with the experiment. We found the energy gap of
2.9 eV, which is compatible with the green color of francisite
crystals. The calculated magnetic moments used to estimate
the expansion coefficients, Eqs. (1) and (2), are presented in
Table III.

III. CONSTRUCTION OF THE HUBBARD MODEL

To describe electronic and magnetic properties of
CBSOOX, we construct the following one-orbital Hubbard

TABLE I. Lattice constants and fractional coordinates of copper
atoms of the Pmmn CBSOOX crystal structure as reported in Ref. [8].
See Fig. 1(b) for details.

Cu3Bi(SeO3)2O2Cl Cu3Bi(SeO3)2O2Br

a (Å) 6.3540 6.3900
b (Å) 9.6350 9.6940
c (Å) 7.2330 7.2870

Cu1 1 (0.0,0.0,0.0) (0.0,0.0,0.0)

2
(

1
2 , 1

2 ,0.0
) (

1
2 , 1

2 ,0.0
)

3
(
0.0, 1

2 ,0.0
) (

0.0, 1
2 ,0.0

)
4

(
1
2 ,0.0,0.0

) (
1
2 ,0.0,0.0

)
Cu2 5

(
1
4 , 1

4 ,0.7920
) (

1
4 , 1

4 ,0.7925
)

6
(

3
4 , 3

4 ,0.2080
) (

3
4 , 3

4 ,0.2075
)
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FIG. 2. (a) Bands located near the Fermi level as obtained from LDA+SO (up) and LDA (down) calculations for CBSOOBr. The red lines
show the Wannier parametrization. The notation of k points is X( 1

2 ,0,0), �(0,0,0), Y (0, 1
2 ,0), S( 1

2 , 1
2 ,0), and R( 1

2 , 1
2 , 1

2 ) in reciprocal lattice units.
(b) Wannier functions centered on copper atoms, as obtained from LDA calculations for CBSOOBr.

model [21]:

Ĥ =
∑

RR′,σσ ′
tσσ ′
RR′ â

†
Rσ âR′σ ′ + 1

2

∑
R,σσ ′

UR â
†
Rσ â

†
Rσ ′ âRσ ′ âRσ

+ 1

2

∑
RR′,σσ ′

JH
RR′ â

†
Rσ â

†
R′σ ′ âRσ ′ âR′σ , (3)

where â
†
Rσ (âRσ ) creates (annihilates) an electron of spin σ

at site R, UR and JH
RR′ are the local Coulomb and nonlocal

exchange interactions, respectively, and tσσ ′
RR′ is the hopping

matrix element corresponding to the LDA+SO band structure.
The hopping integrals were calculated from a Wannier

parametrization of the LDA and LDA+SO band structures
[22]. Their values for the interaction paths shown in Fig. 1(b)
are presented in Table IV, while the rest of the hopping inte-
grals can be obtained by applying symmetry operations of the
Pmmn space group. The LDA-based hopping parameters and
real parts of the LDA+SO-based hoppings match quite well.
The LDA+SO hopping integrals additionally contain large
imaginary nondiagonal elements due to spin-orbit coupling. As
we show below, these imaginary components are responsible
for anisotropic exchange interactions.

TABLE II. List of the on-site Coulomb interaction U and intra-
atomic exchange interaction J for the Cu 3d shell used for LDA+U

calculations of Cu-based compounds.

U (eV) J (eV)

This work 9.0 1.0
Cu3Bi(SeO3)2O2Br, Ref. [11] 9.5 1.0
LiCu2O2, Ref. [20] 10.0 1.0
SrCu2(BO3)2, Ref. [23] 9.4 1.0
La4Ba2Cu2O10, Ref. [24] 6.7 0.7
CdCu2(BO3), Ref. [25] 9.5 1.0

The on-site Coulomb and nonlocal exchange interaction
parameters are defined in the atomiclike basis using atomic
decomposition of individual Wannier orbitals, Eqs. (1) and
(2) [20,23]. This way, we obtain UR ≈ α4U = 5.09 eV in
agreement with the effective Hubbard U calculated within
the constrained random phase approximation: for example,
Ueff = 5.5 and 3.65 eV were obtained for copper metal [26]
and La2CuO4 [27], respectively.

The exchange parameter of Eq. (3) is defined as follows
[20,23]:

JH
RR′ = β4Jp,O + γ 4Jp,Se, (4)

where Jp,O and Jp,Se are the intra-atomic exchange inter-
actions for oxygen and selenium ions, respectively. Their
values can be estimated from LDA+U calculations as the
shift of band centers for the majority C↑ and minority
C↓ spin components, Jp,I = (C↑

I − C
↓
I )/MI , where MI is

the magnetic moment of the corresponding atom [28]. We
find Jp,O = 1.5 eV and Jp,Se = 0.9 eV. Our estimate of
Jp,O is consistent with the values of 1.6 eV [28] and
1.2 eV [29] reported in the previous literature. The resulting
JH

RR′ = 4.26 meV is further justified a posteriori by good
agreement between nearest-neighbor ferromagnetic exchange
couplings obtained in our work (Table V) and in the direct
LDA+U+SO calculation of Ref. [11]. Moreover, this value

TABLE III. Magnetic moments (in μB ) and corresponding
expansion coefficients in Eqs. (1) and (2) obtained from LDA+U

calculations for the ferromagnetic configuration.

mCu1 mCu2 mO1 mO2 mO3 mSe mBi

X
(
α4

1

) (
α4

2

) (
β4

1

) (
β4

2

) (
β4

3

)
(γ 4)

Cl 0.757 0.746 0.160 0.046 0.047 0.018 0.006
(0.573) (0.557) (0.0028) (0.0022) (0.0022) (0.0003)

Br 0.758 0.750 0.158 0.044 0.042 0.020 0.006
(0.575) (0.563) (0.0028) (0.0019) (0.0018) (0.0004)
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TABLE IV. Hopping integrals tσσ ′
ij (in meV) as obtained from LDA+SO and LDA calculations. The leading couplings are bold-faced.

The corresponding interatomic distances are given by d . The superscripts a, b, and c denote next-nearest neighbors along the corresponding
crystallographic directions. Indices 1, 2, 3, 4 and 5, 6 represent the Cu1 and Cu2 sites, respectively. See Fig. 1(b) for details.

Cu3Bi(SeO3)2O2Cl Cu3Bi(SeO3)2O2Br

d (Å) LDA LDA+SO d (Å) LDA LDA+SO

Intraplane

t13 4.817 −78.9
(−78.4 − 3.9i −2.6i

−2.6i −78.4 + 3.9i

)
4.846 −72.4

(−71.3 − 2.4i −1.1i

−1.1i −71.3 + 2.4i

)

t14 3.177 −0.1
(−1.2 − 5.6i 9.3

−9.3 −1.2 + 5.6i

)
3.195 −8.1

(−10.2 − 19.9i 17.6

−17.6 −10.2 + 19.9i

)

t15 3.254 −46.4
(−45.8 − 12.9i 10.1 − 25.1i

−10.1 − 25.1i −45.8 + 12.9i

)
3.273 −33.1

(−32.7 − 8.3i 15.8 − 32i

−15.8 − 32i −32.7 + 8.3i

)

t12 5.771 26.4
(24.7 − 2.1i 4.8

−4.8 24.7 + 2.1i

)
5.805 28.1

(25.0 − 3.3i 7.1 − 0.8i

−7.1 − 0.8i 25.0 + 3.3i

)
tb
11 6.354 −5.9

(−3.1 − 0.5i −2.1i

−2.1i −3.1 + 0.5i

)
6.390 −11.4

(−8.2 − 1.1i −3.0i

−3.0i −8.2 + 1.1i

)
ta
55 9.639 23.5

(17.2 − 0.9i −1.4 − 0.3i

1.4 − 0.3i 17.2 + 0.9i

)
9.693 30.6

(19.1 − 0.7i −2.8 − 0.4i

2.8 − 0.4i 19.1 + 0.7i

)
t ′
16 5.548 −35.2

(−33.8 − 1.6i 1.4 − 0.6i

−1.4 − 0.6i −33.8 + 1.6i

)
5.579 −31.5

(−29.3 + 1.3i −1.6 + 0.7i

1.6 + 0.7i −29.3 − 1.3i

)
Interplane

t c
11 7.233 10.8

(8.2 + 0.1i −0.2 + 0.2i

0.2 + 0.2i 8.2 − 0.1i

)
7.287 7.5

( 4.4 −0.3 + 0.1i

0.3 + 0.1i 4.4

)
t c
55 7.233 22.5

(19.8 − 0.1i −0.1

0.1 19.8 + 0.1i

)
7.287 17.3

(14.5 − 0.1i −0.1

0.1 14.5 + 0.1i

)
t c
15 6.426 9.3

(6.3 0.0

0.0 6.3

)
6.463 8.7

(6.9 0.0

0.0 6.9

)

of the JH
RR′ parameter delivers a quantitative description of the

experimental magnetic structure and magnetization process
(see Sec. V below).

The Hubbard model constructed in Eq. (3) can be solved
directly. Alternatively, one can follow the strategy of Ref. [11]
and extract parameters of the spin Hamiltonian that is further
solved on the classical level or using advanced numerical tech-
niques that take into account quantum effects. In the following,
we will follow both approaches and demonstrate that the
second approach suffers from a truncation problem, because
only a limited number of the anisotropy terms can be included
in the spin Hamiltonian. On the other hand, the first approach
relying on a direct solution of the Hubbard Hamiltonian is
free from this problem and, therefore, provides quantitative
description of the magnetic properties in francisites.

IV. MICROSCOPIC ANALYSIS OF MAGNETIC
INTERACTIONS

In the limit t � U that holds for francisites, one can
construct a Heisenberg-type model by using the superexchange
theory proposed by Anderson [30,31]:

H =
∑
RR′

JR R′ ŜR ŜR′ +
∑
RR′

DRR′ [ŜR × ŜR′ ], (5)

where JRR′ and DRR′ are the isotropic and anisotropic
(Dzyaloshinsky-Moriya) exchange interactions between the
Rth and R′th sites, respectively.

In terms of the Hubbard model parameters, Eq. (3), the
isotropic exchange interaction is expressed in the following
form:

JRR′ = 2

UR
Tr{t̂R′ R t̂RR′} − 2JH

R R′ . (6)

The first term in Eq. (6) is the kinetic Anderson’s exchange in-
teraction, while the second one is the ferromagnetic exchange
arising from the overlap between the neighboring Wannier
functions [20]. As seen from Figs. 1(b) and 2(b), it has a
nonzero value for the 1–4 and 1–5 copper bonds.

The resulting isotropic exchange parameters calculated
using Eq. (6) from the LDA+SO band structure are presented
in Table V. We find a strong intraplane ferromagnetic (FM)
coupling defined by the nearest-neighbor Cu1-Cu2 and Cu1-
Cu1 interactions, J15 and J14, respectively. The dominant
intraplane antiferromagnetic (AFM) exchange interaction J13

is found between the neighboring Cu1 sites, for which the
corresponding magnetic orbitals do not overlap on the oxygen
atoms. This coupling is about two times smaller than the
FM one.

Our results are in good agreement with the previous
theoretical analysis [11] that reported J13 = 4.74 (5.08) meV,
J14 = −6.54 (−6.46) meV, and J15 = −5.68 (−5.77) meV
for X = Cl (Br). The copper atoms in adjacent layers are
coupled antiferromagnetically, and the interplane interaction
is essentially weak (about 10–20 times smaller than the
corresponding intraplane interactions). The isotropic exchange
parameters are very similar for X = Cl and Br, which implies a
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TABLE V. Isotropic Jij and anisotropic Dij exchange parameters
(in meV) between copper dx2−y2

orbitals as obtained from LDA+SO
calculations. The leading couplings are bold-faced. The superscripts
a, b, and c denote next-nearest neighbors along the corresponding
crystallographic directions. Indices 1, 2, 3, 4 and 5, 6 represent the
Cu1 and Cu2 sites, respectively. See Fig. 1(b) for details.

Cu3Bi(SeO3)2O2Cl Cu3Bi(SeO3)2O2Br

J13 4.84 4.01

J14 −8.43 −8.29

J15 −6.17 −7.43

J12 0.50 0.54

J b
11 0.01 0.06

J a
55 0.23 0.29

J ′
16 0.90 0.68

J c
11 0.05 0.02

J c
55 0.31 0.17

J c
15 0.03 0.03

D13 (0.18, 0.0, 0.27) (0.07, 0.0, 0.15)

D14 (0.0, 0.10, 0.06) (0.0, 0.16, 0.18)

D15 (1.02, 0.41, 0.33) (0.93, 0.46, 0.24)

small contribution of halogen’s p states to the localized bands
near the Fermi level.

Dzyaloshinskii-Moriya (DM) interactions. Anisotropic ex-
change parameters can be derived by extending the superex-
change theory to the relativistic case with spin-orbit coupling.
They have the following form [30,32]:

DRR′ = − i

UR
[Tr{t̂R′ R}Tr{t̂RR′σ } − Tr{t̂RR′}Tr{t̂R′ Rσ }],

(7)

where σ is a vector of the Pauli matrices. The values of
anisotropic exchange parameters are presented in Table V.
The dominant anisotropic exchange coupling is found between
the atoms 1 and 5 (D15), and its component along the
a axis is by far the largest among the DM couplings.
The value of D15 is mostly determined by the relatively
large hopping parameters t15. Moreover, the a component
of D15 has different orientations in two adjacent hexagonal
networks of the same ab layer [Fig. 1(b)], and is responsible
for the stabilization of the canted magnetic order [11].
It also puts spins in the bc plane, but does not choose
spin directions within this plane [11].

Our results for the exchange parameters obtained within
Moriya’s microscopic theory [Eq. (5)] are in good agreement
with those estimated from LDA+U+SO total energies [11].
They also follow symmetry constraints imposed by the crystal
structure. The D13 and D14 vectors lie in the ac and bc planes,
respectively, because these exchange bonds are crossed by
the mirror planes. On the other hand, D15 has an arbitrary
direction, because it pertains to the exchange bond between
the atoms Cu1 and Cu2, which are not related by symmetry.

V. HARTREE-FOCK SOLUTION
OF THE ELECTRONIC HAMILTONIAN

As an alternative to the parametrization of the spin Hamil-
tonian, Eq. (5), we consider direct solution of the effective
Hubbard model, Eq. (3), both in zero field and in applied
magnetic fields, which are modeled by including the Zeeman
term:

ĤZ =
∑

R

μBgs B · ŜR, (8)

where ŜR = 1
2

∑
σσ ′ âRσσ σσ ′

â
†
Rσ ′ stands for the localized

magnetic moment, μB is the Bohr magneton, and gs ≈ 2.0 is
the gyromagnetic ratio. Generally, the Zeeman term describes
the full magnetic moment interacting with an external field.
However, since the one-orbital model is employed, the orbital
magnetic moment is neglected and we consider only its spin
counterpart.

The Hubbard Hamiltonian is solved in the Hartree-Fock
approximation. Although mean-field in nature, this approxi-
mation should capture all relevant physics of kagome fran-
cisites, where both charge and spin fluctuations are weak.
Indeed, the insulating state of francisites with a sizable band
gap of 2.9 eV is clearly established by LSDA+U calculations.
This is also obvious from the light-green color of francisite
crystals and implies that charge fluctuations are absent. Spin
fluctuations play a minor role as well, because experimental
ordered moments are about 0.90μB in zero field and increase
up to 0.99μB in the applied field of 1 T [7], thus approaching
the full moment of 1.0μB for the spin- 1

2 Cu2+ ion.
By using the mean-field Hartree-Fock approximation, the

one-orbital Hubbard model can be solved as follows [33]:(
t̂k + Û + V̂H + V̂H

k

)|ϕk〉 = εk|ϕk〉, (9)

where t̂k = ∑
RR′ t̂RR′e−ik(R−R′) is the Fourier image of the

LDA+SO hopping parameters, εk and |ϕk〉 are eigenvalues and
eigenvectors in the basis of Wannier functions, respectively,
Û = ∑

R ÛR, V̂H = ∑
R V̂H

R , and V̂H
k = ∑

RR′ V̂H
k,R R′ are the

Hartree-Fock potentials, where the first term includes the on-
site Coulomb and Zeeman interactions:

ÛR =
(

URn
↓↓
R + μBBz −URn

↓↑
R + μB(Bx − iBy)

−URn
↑↓
R + μB(Bx + iBy) URn

↑↑
R − μBBz

)
, (10)

while the other two terms originate from the nonlocal exchange coupling:

V̂H
R = −

∑
R′

JH
RR′

(
n

↑↑
R′ n

↓↑
R′

n
↑↓
R′ n

↓↓
R′

)
(11)
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FIG. 3. (a) Magnetic lattice as obtained from the mean-field Hartree-Fock approximation at zero applied magnetic field. Sites 1, 2, 3, 4 and
5, 6 stand for the Cu1 and Cu2 atoms, respectively. (b) Total magnetization per site in CBSOOBr for three different directions of magnetic field
B and their comparison with experimental data [7].

and

V̂H
k,R R′ = JH

RR′eik(R−R′)

(
n

↑↑
RR′ + n

↓↓
RR′ 0

0 n
↑↑
RR′ + n

↓↓
R R′

)
,

(12)

where the on-site and intersite density matrices are defined
as n̂R = ∑

k |ϕk〉〈ϕk| and n̂RR′ = ∑
k |ϕk〉〈ϕk|e−ik(R−R′), re-

spectively. Iterative solution of the Hartree-Fock equations is
obtained self-consistently with respect to the total energy:

EHF =
occ∑
k

εk − 1

2

∑
R

Tr[ÛRn̂R]

− 1

2

∑
R

Tr
[
V̂H

R n̂R

] − 1

2

∑
RR′

JH
RR′ ñR R′ ñR′ R, (13)

where ñRR′ = n
↑↑
RR′ + n

↓↓
RR, and irreducible representations

of the Pmmn space group [7] are chosen as starting spin
configurations. In our calculations, we use the LDA+SO
hopping parameters presented in Table IV, the effective on-site
Coulomb interaction UR = 5.09 eV and nonlocal exchange
interaction JH

RR′ = 4.46 meV.
In the absence of magnetic field, we find a canted order

in the ab plane and antiferromagnetic stacking of these
ferrimagnetic layers [Fig. 3(a)]. Magnetic moments on the
Cu2 sites are strictly parallel to the c axis, while magnetic
moments on the Cu1 sites alternate from this parallel direction
towards the b axis and form canted magnetic texture with the bc

angles θ = 50.1◦ and 53.8◦ for X = Cl and Br, respectively.
This result is in good agreement with the experimental [7]
and theoretical [11] values of the canting angle θ for X = Br,
51.6◦ and 52.1◦, respectively. Moreover, we obtain the Cu2
moment directed along the c axis purely from ab initio,
which is different from Ref. [11], where an additional ad hoc
assumption for the b and c components of D15 was required.

The magnetic moments for X = Cl and Br are mCu1 =
(0.01, 0.77, 0.64)μB and mCu2 = (0.0, 0.0, 1.0)μB , and
mCu1 = (0.0, 0.81, 0.59)μB and mCu2 = (0.0, 0.0, 1.0)μB , re-
spectively. Their directions are close to those obtained from
the neutron diffraction measurements [7] for X = Br, mCu1 =

(0.0, 0.72, 0.57)μB and mCu2 = (0.0, 0.0, 0.90)μB . On the
other hand, quantum renormalization of the magnetic moments
(reduction from 1.0μB to ∼0.9μB due to quantum fluctuations
[11]) is not taken into account because of the mean-field nature
of the Hartree-Fock approximation.

By applying symmetry operations of the Pmmn space
group, it follows that the magnetic ground state corresponds
to the �3 representation for both Cu sites. This representation
allows for an additional canting out of the bc plane, and
according to Ref. [11], this canting should be indeed present
in kagome francisites, although it has not been detected in
the experiment. Indeed, our zero-field ground state derived
from the Hartree-Fock solution of the electronic Hamiltonian
features a weak out-of-plane canting γ = 0.8◦ and 0.4◦
for X = Cl and Br, respectively. The out-of-plane canting
involves only the Cu1 spins and is much smaller compared to
the in-plane canting.

In the case of the magnetic field B‖c, the zero-field AFM
ground state becomes unstable and gives way to a high-field
ferrimagnetic state with the critical field BC = 0.87 and 0.74 T
for X = Cl and Br, respectively [Fig. 3(b)], in agreement
with the experimental value of ∼0.8 T [7]. Since the AFM
components are still present, we do not observe a full saturation
to the FM state.

For the magnetic fields along the a and b axes, no
metamagnetic transitions are observed, and the magnetic
moments change continuously in each layer. In the case of
B‖a, which acts against the leading a component of D15 and
turns the magnetic moments out of the bc plane, we find an
almost linear increase of the magnetization up to ∼17.0 T
and ∼16.0 T for X = Cl and Br, respectively, that is close to
the (extrapolated) experimental value of ∼15.0 T for X = Br
[7]. For B‖b, which changes the direction of the net moment
without taking spins out of the bc plane, the magnetization
increases faster. Net moments of individual layers are polarized
at ∼5.8 T and ∼5.5 T for X = Cl and Br, respectively, which
is close to the experimental value of ∼7.0 T for X = Br [7].
The smaller slope of the magnetization with respect to the
magnetic field B‖a is a result of the dominant a component of
D15. Altogether, we achieve a decent quantitative description
of the anisotropic magnetization process of kagome francisites.
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TABLE VI. Experimental quantities and their predictions based
on LDA+SO, LDA+U+SO, and Hartree-Fock (HF) calculations:
in-plane canting angle θ in the bc plane, out-of-plane canting angle
γ for Cu1 spins, slopes of the magnetization curves κa and κc for
B‖a and B‖c, respectively, and the work (per site) Wb done by the
magnetic field B‖b when spins are polarized.

θ γ κa κc Wb

(deg) (deg) (μB/T) (μB/T) (μBT)

Br LDA+SO 38.5 1.3 0.24 0.0082 0.076
HF 53.8 0.4 0.045 0.0077 2.0

LDA+U+SO [11] 52.1 0.7 0.16 0.0060 0.2
Experiment [7] 51.6 – 0.066 0.0074 2.9

Cl LDA+SO 51.4 1.0 0.15 0.0073 0.046
HF 50.1 0.8 0.044 0.0061 2.2

VI. ELECTRONIC VS SPIN HAMILTONIANS

We are now in a position to compare our Hartree-Fock
solution of the electronic Hamiltonian with the effective spin
Hamiltonian obtained from the same LDA+SO band structure.
To this end, we use several characteristic parameters derived
in Ref. [11]. The primary canting angle θ and the out-of-plane
canting angle γ are given by

J13 sin 2θ + J15 sin θ + Da
15 cos θ − Da

13 cos 2θ = 0 (14)

and

γ = −Db
15 − Db

14 cos θ

2J14 + J15 sec θ + Da
13 tan θ

. (15)

The slopes of the magnetization curves for B‖a and B‖c are
given by κa and κc, as follows:

κa = (gμB)2

12

J15(1 + 2 cos θ )2 csc θ + Da
13 − 4Da

15 cos θ

Da
15

(
J15 + Da

13 sin θ
) − J15D

a
13 cos θ

,

(16)

κc = (gμB)2/3

2J13 + [
Da

15 − Da
13 cos θ (1 + 2 sin2 θ )

]/
sin3 θ

. (17)

Finally, the slope of the magnetization curve for B‖b is defined
by the work Wb required to polarize spins along the field:

Wb = 1

3

(
Db

15 + Db
14 cos θ

)2

−2J14 + 2J13 + Da
15 csc θ − Da

13 cot θ
. (18)

In Table VI, we list the experimental values of these parameters
along with the results of Ref. [11] for X = Br, where parame-
ters of the spin Hamiltonian are obtained from LDA+U+SO
calculations.

The values based on the spin Hamiltonian from LDA+SO
and LDA+U+SO calculations (X = Br) are qualitatively
very similar, while minor quantitative differences can be
traced back to different band-structure codes. The most
tangible discrepancy is seen for the primary canting angle
θ , where LDA+SO underestimates the canting because of

the overestimated ferromagnetic couplings J14 and J15. This
overestimate is likely related to the approximate nature of
Eq. (4) for non-90◦ ferromagnetic superexchange.

The Hartree-Fock solution of the electronic Hamiltonian
mitigates the problem of the ferromagnetic superexchange and
results in the realistic value of θ . Even more importantly, this
solution largely improves the description of the magnetization
curves, where, for example, LDA+SO and LDA+U+SO
underestimate Wb by an order of magnitude. The Hartree-Fock
solution correctly puts Cu2 spins (and thus the net magnetic
moment) along the c axis, which is not expected from the
spin Hamiltonian, where both b and c components of D15 (d1b

and d1c in the notation of Ref. [11]) are clearly non-negligible
suggesting a tilted direction of the net magnetic moment in the
bc plane.

VII. SUMMARY AND CONCLUSIONS

We have shown that the spin Hamiltonian approach has
its limitations in describing magnetic anisotropy of kagome
francisites. Deficiencies of this approach are related to the fact
that only the leading isotropic and anisotropic exchange cou-
plings could be included in the theoretical analysis of Ref. [11].
For example, symmetric components of the anisotropy, albeit
weak, were neglected, although they can also affect spin
directions and induce peculiarities of the magnetization pro-
cess. However, in a complex system like francisites, inclusion
of the symmetric anisotropy renders the spin Hamiltonian
cumbersome and makes the whole problem intractable for both
analytical and numerical methods. In this case, the Hartree-
Fock mean-field approximation for the electronic Hamiltonian
provides a viable alternative that delivers the ground-state mag-
netic configuration both in zero and applied magnetic fields,
so that the magnetization process can be modeled ab initio.

Our approach also has its limitations. Effects of thermal
fluctuations are not included and only zero-temperature
behavior is analyzed, while at zero temperature effects of
quantum fluctuations are largely neglected. These effects do
not compromise our analysis of francisites, because quantum
fluctuations are weak in these systems, and experimental
ordered moments are close to the spin-only value of 1.0μB

[7]. In complex spin systems, the effects of thermal and
quantum fluctuations are usually incorporated on the level
of spin Hamiltonians. Therefore, these two approaches based
on the spin and electronic Hamiltonians are complimentary.
Together they provide a complete microscopic scenario of a
magnetic material.
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