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The spin- 1
2 Heisenberg orthogonal-dimer chain is considered within the perturbative strong-coupling approach,

which is developed from the exactly solved spin- 1
2 Ising-Heisenberg orthogonal-dimer chain with the Heisenberg

intradimer and the Ising interdimer couplings. Although the spin- 1
2 Ising-Heisenberg orthogonal-dimer chain

exhibits just intermediate plateaus at zero, one-quarter, and one-half of the saturation magnetization, the
perturbative treatment up to second order stemming from this exactly solvable model additionally corroborates the
fractional one-third plateau as well as the gapless Luttinger spin-liquid phase. It is evidenced that the approximate
results obtained from the strong-coupling approach are in an excellent agreement with the state-of-the-art
numerical data obtained for the spin- 1

2 Heisenberg orthogonal-dimer chain within the exact diagonalization and
density-matrix renormalization group method. The nature of individual quantum ground states is comprehensively
studied within the developed perturbation theory.

DOI: 10.1103/PhysRevB.94.144410

I. INTRODUCTION

Fractional magnetization plateaus in low-dimensional
quantum Heisenberg spin systems are one of the most fas-
cinating and most targeted topics in modern condensed matter
physics, because they often resemble intriguing quantum
ground states with extremely subtle spin order [1–3]. From
the experimental point of view, the fractional plateaus have
been detected in magnetization curves of a variety of insu-
lating magnetic materials, which mostly provide real-world
representatives of zero-dimensional Heisenberg spin clusters
[4–10], one-dimensional Heisenberg spin chains [11–27], or
two-dimensional Heisenberg spin lattices [28–36].

The fractional magnetization plateaus of one-dimensional
quantum Heisenberg chains should satisfy the quantization
condition p(Su − mu) ∈ Z (p is a period of the ground state,
Su and mu are the total spin and total magnetization per
elementary unit, and Z is a set of the integer numbers), which
has been derived by Oshikawa, Yamanaka, and Affleck (OYA)
by extending the Lieb-Schultz-Mattis theorem [37–39]. It is
worthwhile to remark that the OYA criterion provides for a
given period of the ground state p a necessary (but not a
sufficient) condition for a presence of fractional magnetization
plateaus. To the best of our knowledge, all intermediate
plateaus of the quantum Heisenberg chains observed to date
experimentally are in agreement with the OYA rule when
assuming either simple period p = 1 or just the period dou-
bling p = 2. For instance, the experimental representatives of
the spin- 1

2 Heisenberg diamond chain [11–13], the trimerized
spin- 1

2 Heisenberg chain [14–16], and the mixed spin-(1/2,1)
Heisenberg chain [17] display one-third plateau, the exper-
imental realizations of the tetramerized spin- 1

2 Heisenberg
chain [18–20], the spin- 1

2 Heisenberg bond alternating chain
[21], as well as the spin-1 Heisenberg bond alternating chain
[22] exhibit one-half plateau, the experimental realization
of the spin-1 Heisenberg ladder [23,24] shows one-quarter
plateau, etc.

From this perspective, it is quite curious that the spin-
1
2 Heisenberg orthogonal-dimer (or equivalently dimer-

plaquette) chain seems at first sight to contradict the OYA
rule, which predicts just its three most pronounced fractional
plateaus at zero, one-quarter, and one-half of the saturation
magnetization when the period of ground state does not
exceed doubling of the unit cell (i.e., p = 2). Contrary to
this, it has been argued by Schulenburg and Richter on the
basis of exact numerical diagonalization data [40,41] that the
spin- 1

2 Heisenberg orthogonal-dimer chain exhibits in between
one-quarter and one-half plateaus an infinite series of smaller
fractional plateaus at n/(2n + 2) = 1/4,1/3,3/8, . . . ,1/2 of
the saturation magnetization corresponding to the ground state
with the period (n + 1) of the unit cell. It could be thus
concluded that the overall magnetization curve of the spin- 1

2
Heisenberg orthogonal-dimer chain is not consistent with any
finite period of the ground state.

In this regard, it appears worthwhile to revisit the zero-
temperature magnetization curve of the spin- 1

2 Heisenberg
orthogonal-dimer chain by some another rigorous method,
which may capture a formation of the fractional magnetization
plateaus of quantum origin. To this end, we will develop in
the present work a strong-coupling approach starting from
the exactly solved spin- 1

2 Ising-Heisenberg orthogonal-dimer
chain with the Heisenberg intradimer and Ising interdimer
interactions [42–44]. It will be demonstrated that the developed
strong-coupling approach actually brings insight into character
of individual quantum ground states realized at particular
fractional magnetization plateaus. The validity of the method
will be also examined by the comparison with the results of
the combined numerical approach described in Appendix A.

It should be also mentioned that the strong-coupling
approach and its modification, the localized-magnon approach,
has been recently applied to the asymmetric orthogonal-dimer
chain [45]. However, this study was merely restricted to high
magnetic fields and the effect of the asymmetry.

The organization of this paper is as follows. In Sec. II
we will introduce the model and suggest its approximate
perturbative treatment. The exact solution for the spin- 1

2
Ising-Heisenberg orthogonal-dimer chain is formulated within
the projection operator technique in Sec. III. In Sec. IV we
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FIG. 1. A schematic representation of the orthogonal-dimer chain
along with labeling of intradimer and interdimer coupling constants.

will develop the strong-coupling approach for the spin- 1
2

Heisenberg orthogonal-dimer chain from the exactly solved
Ising-Heisenberg model. The main results are summarized in
Sec. V.

II. HEISENBERG ORTHOGONAL-DIMER CHAIN AND
PERTURBATION METHOD

Let us consider the spin- 1
2 quantum Heisenberg orthogonal-

dimer chain given by the Hamiltonian:

H =
N∑

i=1

[
J (s1,i · s2,i) − h

(
sz

1,i + sz
2,i

)]

+
N/2∑
i=1

J ′(s1,2i + s2,2i) · (s2,2i−1 + s1,2i+1), (1)

which involves the coupling constants J and J ′ accounting
for the Heisenberg intradimer and interdimer interactions,
respectively, in addition to the usual Zeeman’s term h (see
Fig. 1 for a schematic illustration of the considered magnetic
lattice). It has been found that the model defined through
the Hamiltonian (1) exhibits a singlet-dimer ground state
for J ′ < 0.819J [46] at zero magnetic field and reveals the
peculiar infinite series of the fractional magnetization plateaus
in between 1/4 and 1/2 of the saturation magnetization
[40,41].

Recently, we have exactly solved the simplified version
of this frustrated quantum spin model, the so-called spin-
1
2 Ising-Heisenberg orthogonal-dimer chain defined by the
Hamiltonian:

H =
N∑

i=1

[
J (s1,i · s2,i) − h

(
sz

1,i + sz
2,i

)]

+
N/2∑
i=1

J ′(sz
1,2i + sz

2,2i

)(
sz

2,2i−1 + sz
1,2i+1

)
, (2)

which takes into account the Heisenberg intradimer interaction
J and the Ising interdimer interaction J ′ [42,43]. The only
difference between two models lies in replacing the Heisenberg
interdimer coupling in the Hamiltonian (1) through the Ising
interdimer coupling in the Hamiltonian (2). The simplified
spin- 1

2 Ising-Heisenberg orthogonal-dimer chain (2) can be
rigorously solved either by the transfer-matrix method [42,43]
or the mapping transformation technique [44], whereas this
model still exhibits some common features with its full Heisen-

berg counterpart like intermediate magnetization plateaus at
one-quarter and one-half of the saturation magnetization.
However, the exactly solved Ising-Heisenberg model given
by the Hamiltonian (2) does not reproduce either an infinite
series of the fractional magnetization plateaus in between
one-quarter and one-half of the saturation magnetization or
an existence of the Tomonaga-Luttinger spin-liquid phase
above the intermediate one-half plateau. Instead it shows
the macroscopically degenerate ground-state manifold at each
critical field accompanied by the magnetization jump [43].
This fact enables us to develop an approximate theory
for the spin- 1

2 Heisenberg orthogonal-dimer chain based on
the exactly solved spin- 1

2 Ising-Heisenberg orthogonal-dimer
chain when treating the XY part of the interdimer coupling
perturbatively.

To this end, let us decompose the total Hamiltonian (1) of
the spin- 1

2 Heisenberg orthogonal-dimer chain into two parts:

H = H (0) + H (1) =
N∑

i=1

H
(0)
i +

N∑
i=1

H
(1)
i , (3)

where the former unperturbed (ideal) part H (0) corresponds to
the exactly solved spin- 1

2 Ising-Heisenberg orthogonal-dimer
chain [42] rewritten as

H
(0)
2i = J (s1,2i · s2,2i) − hc

(
sz

1,2i + sz
2,2i

)
,

H
(0)
2i+1 = J ′[(sz

1,2i+sz
2,2i

)
sz

1,2i+1+sz
2,2i+1

(
sz

1,2i+2+sz
2,2i+2

)]
+J (s1,2i+1 · s2,2i+1)−hc

(
sz

1,2i+1+sz
2,2i+1

)
, (4)

while the latter perturbed part H (1) contains all remaining
terms from the total Hamiltonian (1) of the spin- 1

2 Heisenberg
orthogonal-dimer chain

H
(1)
2i = (hc − h)

(
sz

1,2i + sz
2,2i

)
+J ′

xx

∑
α=x,y

(
sα

1,2i + sα
2,2i

)(
sα

2,2i−1 + sα
1,2i+1

)
,

H
(1)
2i+1 = (hc − h)

(
sz

1,2i+1 + sz
2,2i+1

)
. (5)

It is noteworthy that the perturbed Hamiltonian H (1) includes,
except for the XY part of the interdimer coupling, also the
difference between the true magnetic field h and its respective
critical value hc, around each of which one should separately
perform the perturbative expansion due to a macroscopic
degeneracy of the ground-state manifold of the spin- 1

2 Ising-
Heisenberg orthogonal-dimer chain [42,43]. The macroscopic
degeneracies at the critical fields and their values will be given
and discussed in the next section. Though we have singled
out the XY part of the interdimer interaction J ′

xx explicitly,
the isotropic limit of the quantum Heisenberg model will be
later recovered by putting J ′

xx = J ′ in all final expressions.
Besides, our further consideration will be limited only to the
most interesting case with the antiferromagnetic interactions
J,J ′ > 0 under the simultaneous constraint J ′ < 0.819J ,
which favors the singlet-dimer phase as the zero-field ground
state of the spin- 1

2 Heisenberg orthogonal-dimer chain [46].
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III. EXACT SOLUTION OF THE ISING-HEISENBERG
ORTHOGONAL-DIMER CHAIN IN TERMS OF THE

PROJECTION OPERATORS

Although the exact solution of the spin- 1
2 Ising-Heisenberg

orthogonal-dimer chain given by the Hamiltonian (2) [or
equivalently by the Hamiltonians (4)] have been already
reported by two independent methods, i.e., the transfer-matrix
method [42,43] and the mapping transformation technique
[44], it appears worthwhile to rederive it by making use of
the projection operators in view of a subsequent development
of the perturbative strong-coupling approach. For this purpose,
let us introduce first the dimer-state basis

|0〉i = 1√
2

(|↑〉1,i |↓〉2,i − |↓〉1,i |↑〉2,i),

|1〉i = |↑〉1,i |↑〉2,i ,

|2〉i = 1√
2

(|↑〉1,i |↓〉2,i + |↓〉1,i |↑〉2,i),

|3〉i = |↓〉1,i |↓〉2,i , (6)

and the corresponding projection operators [47–49]

Aab
i = |a〉i〈b|i . (7)

One can find the representation of spin operators through the
introduced projection operators Aab

i (the explicit correspon-
dence is given in Appendix B) and rewrite in terms of these
operators the local Hamiltonians (4) pertinent to the vertical
and horizontal Heisenberg dimers (see Fig. 1):

H
(0)
2i = J

(
1

4
− A00

2i

)
− hc

(
A11

2i − A33
2i

)
, (8)

H
(0)
2i+1 = J

(
1

4
− A00

2i+1

)
− hc

(
A11

2i+1 − A33
2i+1

)

+J ′

2

[(
Sz

2i + Sz
2i+2

)(
A11

2i+1 − A33
2i+1

)
+(

Sz
2i − Sz

2i+2

)(
A20

2i+1 + A02
2i+1

)]
. (9)

Here Sz
2i = sz

1,2i + sz
2,2i = A11

2i − A33
2i denotes the z component

of the total spin on the 2ith vertical dimer, whereas an explicit
form of the total spin Sz

2i and Sz
2i+2 on two neighboring vertical

dimers has been retained in Eq. (9) for the sake of compactness.
It is quite evident that the Hamiltonians H

(0)
2i of the vertical

dimers (8) are already diagonal in the dimer representation,
while the Hamiltonians H

(0)
2i+1 of the horizontal dimers (9) can

be diagonalized by a unitary transformation:

U2i+1 = (
A11

2i+1 + A33
2i+1

) + cos
α2i+1

2

(
A00

2i+1 + A22
2i+1

)
+ sin

α2i+1

2

(
A20

2i+1 − A02
2i+1

)
,

cos α2i+1 = J√
J 2 + J ′2(Sz

2i − Sz
2i+2

)2
,

sin α2i+1 = J ′(Sz
2i − Sz

2i+2

)
√

J 2 + J ′2(Sz
2i − Sz

2i+2

)2
. (10)

It should be stressed that cos α2i+1 and sin α2i+1 depend
on eigenvalues of the operators Sz

2i , Sz
2i+2, and they can be

reduced to an algebraic form using the van der Waerden
identity (see, e.g., Refs. [50,51]). The explicit expressions
for cos α2i+1

2 and sin α2i+1

2 is given in Appendix C. Apparently,
two polarized triplet states |1〉 and |3〉 are invariant under the
unitary transformation (10), while the singlet |0〉 and the zero
component of the triplet state |2〉 are mutually entangled to a
more complex quantum state:

|0̃〉2i+1 = U2i+1|0〉2i+1

= cos
α2i+1

2
|0〉2i+1 + sin

α2i+1

2
|2〉2i+1,

|2̃〉2i+1 = U2i+1|2〉2i+1

= − sin
α2i+1

2
|0〉2i+1+ cos

α2i+1

2
|2〉2i+1. (11)

After performing the local unitary transformation (10) one
consequently obtains the diagonal form of the Hamiltonian
H̃

(0)
2i+1 = U2i+1H

(0)
2i+1U

+
2i+1 of the (2i + 1)st horizontal dimer

H̃
(0)
2i+1 =

(
J ′(Sz

2i + Sz
2i+2

)
2

− hc

)(
A11

2i+1 − A33
2i+1

)

+J

(
1

4
− A00

2i+1

)

+1

2
I
(∣∣Sz

2i − Sz
2i+2

∣∣)(A22
2i+1 − A00

2i+1

)
,

I
(∣∣Sz

2i − Sz
2i+2

∣∣) = δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 1
)
(
√

J 2 + J ′2 − J )

+δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 2
)
(
√

J 2 + 4J ′2 − J ).

(12)

Here δ(· · · ) is a symbolic notation of Kronecker delta.
Its algebraic representation through the spin and projection
operators can be found in Appendix C [see Eq. (C2)].

Using this procedure, the total Hamiltonian (2) of the spin- 1
2

Ising-Heisenberg orthogonal-dimer chain has been put into a
fully diagonal form and the ground state of the model can be
easily found by minimizing a sum of its local diagonal parts
(8) and (12) (see also Ref. [42]). By inspection, one finds just
four different ground states in the investigated parameter space
J ′ < 0.819J and h > 0, namely,

(1) singlet-dimer (SD) phase:

|SD〉 =
N∏

i=1

|0̃〉i ,

(2) modulated ferrimagnetic (MFI) phase:

|MFI〉 =
N/4∏
i=1

{
|0̃〉4i−3|0̃〉4i−2|0̃〉4i−1|1̃〉4i ,

|0̃〉4i−3|1̃〉4i−2|0̃〉4i−1|0̃〉4i ,

(3) staggered bond (SB) phase:

|SB〉 =
N/2∏
i=1

{
|1̃〉2i−1|0̃〉2i ,

|0̃〉2i−1|1̃〉2i ,

(4) saturated (SAT) phase:

|SAT〉 =
N∏

i=1

|1̃〉i .
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It is worthwhile to recall that the ground state is macroscop-
ically degenerate at the critical fields, where the magnetization
discontinuously jumps due to successive field-induced (first-
order) phase transitions SD → MFI → SB → SAT upon
strengthening of the magnetic field. The explicit form of the
critical fields corresponding to the relevant ground-state phase
boundaries were found in Ref. [42]:

(1) SD-MFI: hc1 = 2J − √
J 2 + J ′2,

(2) MFI-SB: hc2 = √
J 2 + J ′2,

(3) SB-SAT: hc3 = J + J ′.
The ground-state manifold along with its macroscopic

degeneracy at a given critical field can be obtained from
the condition of the phase coexistence of both individual
ground states. For instance, all horizontal dimers have to be
in the singletlike state |0̃〉2i−1 at SD-MFI boundary, while
the polarized triplet states |1̃〉2i can be randomly distributed
on the vertical dimers on the assumption that the hard-core
repulsion between the nearest-neighboring polarized states on
the vertical dimers is fulfilled (the remaining vertical dimers
have to be in the singletlike state |0̃〉2i). Thus, the ground-state
manifold at SD-MFI phase boundary can be defined through
the following projection operator:

PSD-MFI =
N/2∏
i=1

A00
2i−1

(
A00

2i + A00
2i−2A

11
2i A

00
2i+2

)
. (13)

Similarly, the ground-state manifold at SB-SAT boundary can
be built from any random configuration of the singletlike
states |0̃〉2i−1 and |0̃〉2i on the horizontal and vertical dimers,
which satisfies the hard-core repulsion between the singletlike
states on the nearest-neighbor dimers (the remaining dimers
should occupy the polarized triplet states |1̃〉2i−1 and |1̃〉2i).
The ground-state manifold at SB-SAT phase boundary is thus
given by the following projection operator:

PSB-SAT =
N∏

i=1

(
A11

i + A11
i−1A

00
i A11

i+1

)
. (14)

The situation at MFI-SB phase boundary is much more
intricate and it does not allow such a transparent represen-
tation. However, the ground-state manifold at MFI-SB phase
boundary can be defined through the projection operator as
follows:

PMFI-SB =
N/2∏
i=1

[
A00

2i−2A
11
2i−1A

00
2i + A00

2i−1

× (
A11

2i−2A
00
2i + A00

2i−2A
11
2i + A11

2i−2A
11
2i

)]
. (15)

IV. STRONG-COUPLING APPROACH DEVELOPED FROM
THE EXACTLY SOLVED ISING-HEISENBERG MODEL

The strong-coupling approach is based on the many-
body perturbation theory (see, e.g., Ref. [52,53]), where the
unperturbed H (0) and perturbed H (1) parts of the Hamiltonian
can be singled out:

H = H (0) + λH (1) (16)

and the eigenvalue problem for the ideal part H (0)|�i〉 =
E

(0)
i |�i〉 becomes exactly tractable. If P is the projection

operator on a ground state |�0〉 of the unperturbed model

subspace H (0) and Q = 1 − P , the perturbative expansion can
be formally found out for the effective Hamiltonian acting in
the projected subspace P :

Heff = PHP

+λ2PH (1)Rs

∞∑
n=0

[(QH (1)−δE0)Rs]
nQH (1)P,

Rs = Q
1

E
(0)
0 − H (0)

=
∑
m�=0

|�m〉〈�m|
E

(0)
0 − E

(0)
m

=
∑
m�=0

Qm

E
(0)
0 − E

(0)
m

, (17)

where δE0 = E0 − E
(0)
0 . Note that the perturbative expansion

(17) is still exact, but one usually has to truncate it due
to computational difficulties arising out from higher-order
contributions H

(n)
eff of the effective Hamiltonians. In the

present work we will restrict ourselves to the second-order
perturbative expansion, which will take into account the
zeroth-, first- and the second-order contributions to the ef-
fective Hamiltonian: H

(0)
eff = PH (0)P , H

(1)
eff = λPH (1)P , and

H
(2)
eff = λ2PH (1)RsH

(1)P , respectively. In what follows we
will develop the perturbation theory for the spin- 1

2 Heisenberg
orthogonal-dimer chain from the exactly solved spin- 1

2 Ising-
Heisenberg orthogonal-dimer chain by considering separately
the macroscopically degenerate ground-state manifold at each
its phase boundary.

A. SD-MFI boundary

The phase boundary between SD and MFI ground states of
the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain is defined
by the critical field hc1 and the projection operator to the
macroscopically degenerate ground-state manifold is given by
Eq. (13). The straightforward application of Eq. (17) results in
the first-order term:

H
(1)
eff = PSD-MFIH̃

(1)PSD-MFI

= (hc1 − h)

(
N/2∑
i=1

A11
2i

)
PSD-MFI, (18)

where H̃ (1) = UH (1)U is the unitary-transformed perturbation
operator. The second-order term H

(2)
eff requires the calculation

of the matrix elements and is much more involved (see the
details of the calculations in Appendix D):

H
(2)
eff =

N/2∑
i=1

h(2)A11
2i PSD-MFI,

h(2)=− (J ′
xx)2(c+

1 +c−
1 )2

2

{
(c+

1 )2

√
J 2+J ′2 + (c−

1 )2

J+√
J 2+J ′2

}
, (19)

c±
1 = 1√

2

√
1 ± J√

J 2 + J ′2 . (20)

Summing up all contributions up to second order we get the
following effective Hamiltonian:

Heff =
N/2∑
i=1

(hc1 + h(2) − h)A11
2i PSD-MFI. (21)
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Obviously, the effective Hamiltonian (21) is essentially a
one-dimensional classical model with a simple mapping cor-
respondence to the lattice-gas model, which can be established
by considering the singletlike (polarized triplet) states on the
vertical dimers as being empty (filled) sites: |0〉 → empty site,
|1〉 → filled site, A00

2i = (1 − ni), A11
2i = ni . The effective

Hamiltonian in the lattice-gas representation is extraordinarily
simple and it satisfies the hard-core constraint for the polarized
triplet states on the nearest-neighbor vertical dimers as dictated
by the projection operator (13):

Heff =
N/2∑
i=1

(hc1 + h(2) − h)(1 − ni−1)ni(1 − ni+1). (22)

The ground state corresponds either to the lattice-gas model
with all empty sites for h < hc1 + h(2) or the half-filled case
for h > hc1 + h(2). The former condition with all empty sites
(ni = 0 for all i) is consistent with SD ground state of the
original spin model (1), while the latter condition with a regular
alternation of empty and filled sites apparently corresponds to
MFI phase. It could be thus concluded that the second-order
perturbative expansion around SD-MFI phase boundary does
not create any novel ground state, but it only renormalizes
the critical field hc1 + h(2) of a discontinuous phase transition
between SD and MFI ground states accompanied by the
magnetization jump from zero to one-quarter of the saturation
magnetization. It is quite evident from Eq. (19) that the
second-order correction to the first critical field is negative
(h(2) < 0), which is consequently shifted to lower values of
the magnetic field in excellent accordance with the state-
of-the-art numerical data obtained from the density-matrix
renormalization group (DMRG) and exact diagonalization
(ED) calculations described in Appendix A (cf. Figs. 2 and 3).

B. MFI-SB boundary

The phase boundary between MFI and SB ground states of
the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain occurs
at the second critical field hc2, at which the projector
(15) determines the macroscopically degenerate ground-state
manifold. One may use the same procedure as before in order
to get the effective Hamiltonian. The first-order contribution
to the effective Hamiltonian is determined by the diagonal
elements of the perturbed part of the Hamiltonian:

H
(1)
eff = (hc2 − h)

(
N/2∑
i=1

A11
2i

)
PMFI-SB. (23)

After cumbersome calculations one gets the following result
for the second-order contribution to the effective Hamiltonian
(see Appendix E for further details):

H
(2)
eff =

N/2∑
i=1

{
D00A

00
2i−2A

00
2i+2 + D11A

11
2i−2A

11
2i+2

+D01
(
A11

2i−2A
00
2i+2 + A00

2i−2A
11
2i+2

)}
A11

2i PMFI-SB,

D00 = − (J ′
xx)2(c+

1 +c−
1 )2

2

(
(c+

1 )2

√
J 2+J ′2 + (c−

1 )2

J+√
J 2+J ′2

)
,

 0.4

 0.8

 1.2

 1.6

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

h/
J

J'/J

(b)

SD

MFI [1/4-plateau]

SB [1/2-plateau]

saturated

1/3-plateau

SL

strong-coupling IH
Heisenberg

 1.14

 1.16

 1.18

 1.2

 0.65  0.7

1/3-plateau

3/8-plateau
2/5-plateau

other tiny plateaux
1/2-plateau

 0.4

 0.8

 1.2

 1.6

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

h/
J

J'/J

(a)

SD

MFI [1/4-plateau]
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Heisenberg

 1.14

 1.16

 1.18

 1.2

 0.65  0.7

1/3-plateau

3/8-plateau
2/5-plateau

other tiny plateaux
1/2-plateau

FIG. 2. The ground-state phase diagram of the spin-1/2
orthogonal-dimer chain in the J ′/J − h/J plane: (a) The exact
results for the Ising-Heisenberg model (broken lines) versus the
numerical data for the Heisenberg model (dotted lines with symbols).
(b) The perturbative strong-coupling approach (solid lines) versus the
numerical data (dotted lines with symbols) for the Heisenberg model.
The numerical method is specified in Appendix A.

D11 = −(J ′
xx)2

(
(c+

1 )2

3J + J ′ − √
J 2 + J ′2

+ (c−
1 )2

3J + J ′ + √
J 2 + J ′2

)
,

D01 = − (J ′
xx)2

4

{
2(c+

1 )2

J + J ′ + √
J 2 + J ′2

+ 2(c−
1 )2

3J + J ′ + √
J 2 + J ′2

+(c+
1 + c−

1 )2

(
(c+

1 )2

J
+ (c−

1 )2

J + √
J 2 + J ′2

)}
. (24)

Since all three expansion coefficients are negative
(D00,D11,D01 < 0) one generally has 〈H (2)

eff 〉 � 0 and 〈H (2)
eff 〉 =

0 if horizontal dimers are in the singletlike states. It is quite
straightforward to show that the ground state corresponds to
the state with |0〉2i−1, i.e., A11

2i−1|GS〉 = 0. Therefore, the states
with the polarized horizontal triplets can be excluded from the
consideration if we are seeking only for the ground state. Let
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FIG. 3. A comparison of the exact zero-temperature magnetiza-
tion curve of the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain
(broken lines) with the zero-temperature magnetization curve of
the spin- 1

2 Heisenberg orthogonal-dimer chain obtained within the
strong-coupling approach (black solid lines) and the numerical
method specified in Appendix A (red solid lines) for two different
values of the interaction ratio: (a) J ′/J = 0.5; (b) J ′/J = 0.7. In the
insets we show in an enlarged scale the field region with an infinite
sequence of the fractional plateaus, whereas the dotted line denotes
the case when tiny magnetization plateaus at n/(2n + 2) become
indistinguishable for n > 5 within the chosen scale.

us introduce the notation A00
2i = ni , A11

2i = (1 − ni) in order to
rewrite the Hamiltonian (24) in the lattice-gas representation:

Heff =
N/2∑
i=1

[D11+hc2 − h+(2D01−3D11−hc2+h)ni

+ (D00 + D11 − 2D01)ni−1ni+1]PMFI-SB. (25)

Similarly to the previous case one obtains the classical effective
Hamiltonian with the hard-core potential, but there also
appears some additional next-nearest-neighbor interaction.
When looking for the lowest-energy states of the effective
lattice-gas model given by the Hamiltonian (25), one finds
three different ground states either with empty, one-third-
filled, or half-filled states upon varying the external magnetic
field. These lowest-energy states correspond to the fractional

plateaus at the one-half, one-third, or one-quarter of the
saturation magnetization, whereas two conditions of a phase
coexistence determine the critical fields associated with the
respective magnetization jumps:

h(1/4 → 1/3) = hc2 + 4D01 − 3D00,

h(1/3 → 1/2) = hc2 + 3D11 − 2D01. (26)

The perturbation expansion around the MFI-SB phase bound-
ary thus surprisingly verifies an existence of the fractional
one-third magnetization plateau, which is totally absent in
a zero-temperature magnetization curve of the spin- 1

2 Ising-
Heisenberg orthogonal-dimer chain [see Fig. 3(a)]. Besides,
the method also brings insight into a microscopic nature of
the spin arrangement realized within the 1/3 plateau, in which
singletlike states are spread over all horizontal dimers and
each third vertical dimer. It can be seen from Fig. 2(b) that
the developed perturbation theory predicts the critical field
h(1/4 → 1/3) between 1/4 and 1/3 plateaus in a perfect
agreement with the numerical results (see Appendix A), while
the other critical field h(1/3 → 1/2) between 1/3 and 1/2
plateaus lies in a middle of the tiny region involving an
infinite sequence of the fractional magnetization plateaus
n/(2n + 2). There are strong indications that the other tiny
fractional magnetization plateaus could be also recovered if
the perturbation expansion would be performed up to higher
orders. In this case, the repulsion between further neighbors
in the lattice-gas representation appears leading to the one-
quarter-filled, one-fifth-filled, ...states. These states correspond
to the 3/8, 2/5 plateaus in the original spin model using the
relation m/msat = (1 − 〈ni〉)/2.

C. SB-SAT boundary

The phase boundary between SB and SAT ground states
of the spin- 1

2 Ising-Heisenberg orthogonal-dimer chain repre-
sents a quite exceptional case, because the perturbative strong-
coupling approach will lead in this specific case to the effective
Hamiltonian of a quantum nature. The critical field relevant
to this phase boundary is given by hc3 = J + J ′, while the
macroscopically degenerate ground-state manifold is defined
by the projection operator (14). Applying the perturbation
theory one obtains the following first-order contribution to
the effective Hamiltonian:

H
(1)
eff = (hc3 − h)

(
N∑

i=1

A11
i

)
PSB-SAT. (27)

After tedious calculations (see Appendix F) one may also find
the second-order perturbation term:

H
(2)
eff =

N/2∑
i=1

PSB-SAT
{
L1

(
A00

2i−1A
11
2i+1 + A11

2i−1A
00
2i+1

−A10
2i−1A

01
2i+1 − A01

2i−1A
10
2i+1

)
+L0A

00
2i−1A

00
2i+1

}
PSB-SAT. (28)

Above we have introduced the following notation for the
coefficients:

L0 = − (J ′
xx)2

2J

4J + J ′

4J + 3J ′ and L1 = − (J ′
xx)2

4J
, (29)
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which enable us to write the second-order contribution (28)
to the effective Hamiltonian in a more compact form. Next,
let us proceed to a notion of the quantum lattice gas achieved
through the following transformation: A00

i = ni , A11
i = (1 −

ni), A01
i = a+

i , A10
i = ai (ai and a+

i are Pauli operators which
anticommute on one site and commute on different sites). The
overall effective Hamiltonian can be subsequently rewritten in
the particle representation as

Heff =
N/2∑
i=1

PSB-SAT{(h − hc3)n2i

+(h−hc3+2L1)n2i+1+(L0−2L1)n2i−1n2i+1

−L1(a+
2i−1a2i+1+a2i−1a

+
2i+1)}PSB-SAT. (30)

The effective quantum lattice-gas model (30) contains two
types of particles. The particles on odd sites are mobile
and they hop in between nearest-neighbor odd sites, while
the particles on even sites are localized. The projection
operator (14) additionally leads to the hard-core repulsion,
which blocks the occupation of nearest-neighbor sites. To
get the ground state, one has to find such a configuration
of the localized particles on the even sites given by the
set of occupation numbers {n2i}, which corresponds to the
lowest-energy eigenstate of the quantum subsystem on the odd
sites. It is worthy to note that the corresponding quantum part
is split into two open chains at each even site n2i = 1 occupied
by the particle, whereas occupation of the neighboring odd
sites 2i − 1 and 2i + 1 should be then excluded (n2i−1 =
n2i+1 = 0). In the following we will show that the energy
of the system increases whenever the empty even site changes
to the filled one (i.e., n2i changes from 0 to 1). This fact should
be proven separately for two cases: h > hc3 and h < hc3.
Let us denote by E0(1) the energy for the empty (filled) even
site n2i = 0(1). It is quite clear from previous arguments that
E1 = EL + ER + (h − hc3), where EL and ER are the lowest
energies of the left and right parts of the system split by n2i = 1
(see Fig. 4). The following inequality can be also obtained
E0 � EL + ER , which furnishes the proof for h > hc3:

E0 � E1 + hc3 − h < E1. (31)

In the opposite case h < hc3 we have to use the property that
a sum of the ground-state energies of two separate chains and
clusters is larger than the ground-state energy of the whole
system, which is obtained by joining the separate subsystems
together. This property implies a validity of the following
inequality:

E0 � EL + EM + ER. (32)

2i2i−12i−22i−32i−42i−5 2i+1 2i+2 2i+3 2i+4 2i+5

EL E ERM

FIG. 4. A schematic representation of the effective quantum
lattice-gas model (30). The black painted ellipse denotes the singlet
state of the vertical dimer, the red painted ellipses denote neighboring
horizontal dimers where the singlet state is forbidden due to the
hard-core repulsion.

After some algebra one can also show that the following
inequality holds for h < hc3:

E0 � E1 + h − hc3 + 2L1 < E1. (33)

Accordingly, the ground state should correspond to the
particular case with all empty even sites (n2i = 0 for all
i), whereas the effective Hamiltonian (30) of the quantum
lattice-gas model then reduces to

Heff =
N/2∑
i=1

{(h−hc3+2L1)n2i+1+(L0−2L1)n2i−1n2i+1

−L1(a+
2i−1a2i+1+a2i−1a

+
2i+1)}. (34)

The SAT ground state corresponds to the empty state in the
particle language (n2i−1 = n2i = 0 for all i), while the SB
ground state pertinent to the 1/2-plateau emerges when all odd
sites are filled by particles and all even sites are being empty
(n2i−1 = 1, n2i = 0 for all i). To get the respective values of
the critical fields, it is more convenient to convert the effective
quantum lattice-gas model (34) into a pseudospin language.
As a matter of fact, one gets the effective Hamiltonian of the
spin- 1

2 XXZ Heisenberg chain using s̃x
i = (a+

2i−1 + a2i−1)/2,
s̃
y

i = −i(a+
2i−1 − a2i−1)/2, s̃z

i = a+
2i−1a2i−1 − 1/2:

Hxxz
eff =

N/2∑
i=1

(
J z

effs̃
z
i s̃

z
i+1 + J xx

eff

(
s̃x
i s̃x

i+1 + s̃
y

i s̃
y

i+1

) − heffs̃
z
i

)
,

J z
eff = (J ′

xx)2J ′

J (4J + 3J ′)
> 0,

J xx
eff = (J ′

xx)2

2J
> 0,

heff = hc3 − L0 − h. (35)

The critical fields for the quantum antiferromagnetic XXZ

Heisenberg chain are exactly known: hupper/lower = ±(J z
eff +

J xx
eff ) = ±(L0 − 4L1). Bearing this in mind, the saturation field

hsat and the upper critical field h1/2 for the 1/2-plateau can be
found from the relations

h1/2 = hc3 − L0 − hupper = J + J ′ − 2(J ′
xx)2J ′

J (4J + 3J ′)
,

hsat = hc3 − L0 − hlower = J + J ′ + (J ′
xx)2

J
. (36)

It can be seen from Fig. 2(b) that both critical fields
h1/2 and hsat obtained from the perturbative strong-coupling
approach quantitatively agree with the numerical DMRG
data up to a relative strength between the inter- and in-
tradimer couplings J ′/J ≈ 0.5, while the critical field h1/2

(hsat) is slightly underestimated (overestimated) for greater
values of the interaction ratio J ′/J � 0.5. Most importantly,
the perturbative expansion around SB-SAT phase boundary
predicts the gapless Tomonaga-Luttinger spin-liquid (SL)
ground state in a relatively wide range of the magnetic
fields h ∈ (h1/2,hsat) in spite of the fact that the simplified
Ising-Heisenberg model does not exhibit this ground state at
all [cf. Figs. 2(a) and 2(b)]. It should be also pointed out that
the spin- 1

2 Heisenberg orthogonal-dimer chain undergoes true
continuous (second-order) quantum phase transitions at the
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critical fields h1/2 and hsat delimiting a stability region of the SL
ground state in contrast with discontinuous (first-order) phase
transitions associated with the magnetization jumps between
the other fractional plateaus (see Fig. 3). Last but not least, the
perturbative strong-coupling approach brings a deeper insight
into the character of the SL phase, because the number of the
odd filled sites within the effective quantum lattice-gas model
continuously decreases with increasing of the magnetic field
by keeping all even sites empty. When returning back to the
spin language this result is taken to mean that the total number
of (mobile) singlet states on the horizontal dimers gradually
decreases within the SL ground state from its maximum value
at the critical field h1/2 down to zero at hsat while keeping all
vertical dimers in the polarized triplet state.

V. CONCLUSIONS

The present work dealt with the perturbative strong-
coupling calculation for the quantum spin- 1

2 Heisenberg
orthogonal-dimer chain in a magnetic field, which has been
developed from the exactly solved spin- 1

2 Ising-Heisenberg
orthogonal-dimer chain with the Heisenberg intradimer and
Ising interdimer interactions up to the second order. Notably,
the quantum spin- 1

2 Heisenberg orthogonal-dimer chain rep-
resents a paradigmatic example of quantum spin chain with
a plethora of outstanding quantum ground states, which are
manifested in a zero-temperature magnetization curve either
as extensive zero, one-quarter, and one-half magnetization
plateaus, an infinite sequence of tiny fractional n/(2n + 2)
(n > 1) magnetization plateaus, or the Tomonaga-Luttinger
spin-liquid phase. Despite this complexity, we have con-
vincingly evidenced an impressive numerical accuracy of
the strong-coupling approach stemming from the exactly
solved Ising-Heisenberg model through a direct comparison
of the derived results with the state-of-the-art numerical data
obtained within DMRG and ED methods. It has been found that
the strong-coupling approach not only substantially improves
phase boundaries between the already existing ground states of
the idealized Ising-Heisenberg orthogonal-dimer chain, but it
also gives rise to completely novel quantum ground states such
as the fractional one-third plateau or the Tomonaga-Luttinger
spin-liquid phase. Based on the effective lattice-gas model at
MFI-SB boundary, we presumed that higher-order perturba-
tion terms result in the repulsion interactions of a longer range.
It is an indication that other tiny fractional plateaus in between
the one-quarter and one-half of the saturation magnetization
could be recovered within the higher-order perturbation theory.

It is also worth noticing that the perturbative strong-
coupling approach could be alternatively developed from
the limit of isolated dimers as it is shown in Appendix G.
However, this simpler version of the perturbative treatment has
serious deficiency in that it does not reproduce in the second
order either one-quarter or one-third magnetization plateaus. It
could be thus concluded that the perturbative strong-coupling
method developed from the exactly solved Ising-Heisenberg
orthogonal-dimer chain is quite superior with respect to its
simplified version derived from the limit of isolated dimers. It
therefore appears worthwhile to remark that there exist several
exact solutions for the hybrid Ising-Heisenberg models, which
could be used as useful starting ground for the perturbative

analysis (see Ref. [54] and references cited therein). Quite
recently, the similar perturbation procedure starting from the
exactly solved spin- 1

2 Ising-Heisenberg diamond chain has
been applied to corroborate an existence of the Tomonaga-
Luttinger spin-liquid phase in between the intermediate one-
third plateau and saturation magnetization of the quantum
spin- 1

2 Heisenberg diamond chain [55]. Our further goal
is to apply the developed strong-coupling approach to the
quantum spin- 1

2 Heisenberg model on the Shastry-Sutherland
lattice to verify or disprove a presence of the questioned
fractional magnetization plateaus by making use of the exact
solution reported for the spin- 1

2 Ising-Heisenberg model on the
Shastry-Sutherland lattice [56].
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APPENDIX A: GROUND STATE OF THE SPIN- 1
2

HEISENBERG ORTHOGONAL-DIMER CHAIN:
NUMERICAL STUDY

To study the magnetization process and the ground-state
phase diagram, we have to distinguish two cases: m � msat/2
and m � msat/2. For the first case Schulenburg and Richter
showed that the magnetization curve has a steplike form with
the magnetization plateaus at m/msat = n/(2n + 2) for integer
n � 0 [40]. They noticed that the singlet state on the vertical
dimer defragments the model onto noninteracting parts. The
ground-state energy of the phase with the magnetization
m/msat = n/(2n + 2) can be found by calculating the energy
of the cluster with n-subsequent vertical dimers in S2i = 1
state [40]. We find this energy using the exact diagonalization
method of ALPS package [57] and build the magnetization
curve for m � msat/2 in Figs. 2 and 3.

For m � msat/2 the ground state corresponds to the situa-
tion when all vertical dimers are in the triplet state S2i = 1.
Using the spin-1 representation for the total spin on vertical
dimers [59], the ground state of the orthogonal-dimer chain
can be found among the lowest-energy states of the mixed
1
2 − 1

2 − 1 Heisenberg chain:

H =
N/2∑
i=1

{
J ′[(s2,2i−1 · S2i) + (S2i · s1,2i+1)]

+J (s1,2i−1·s2,2i−1)−h
(
sz

1,2i−1+sz
2,2i−1+Sz

2i

)}
, (A1)

where S2i represents the composite spin-1 particle. To this
end, we have performed the DMRG computation using ALPS
package [57] for the systems of N = 128.
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It should be noted that an analogous numerical approach
was used for the orthogonal-dimer chain with triangular
clusters [58].

APPENDIX B: PROJECTION OPERATORS

The correspondence between the spin and projection
operators can be found by a straightforward calculation [47]:

s+
1,i = 1√

2

(
A12

i + A23
i − A10

i + A03
i

)
,

s+
2,i = 1√

2

(
A12

i + A23
i + A10

i − A03
i

)
,

s−
1,i = 1√

2

(
A21

i + A32
i − A01

i + A30
i

)
,

s−
2,i = 1√

2

(
A21

i + A32
i + A01

i − A30
i

)
,

sz
1,i = 1

2

(
A11

i − A33
i + A02

i + A20
i

)
,

sz
2,i = 1

2

(
A11

i − A33
i − A02

i − A20
i

)
. (B1)

APPENDIX C: COEFFICIENTS OF UNITARY TRANSFORMATION

Coefficients of the unitary transformation cos α2i+1

2 , sin α2i+1

2 can be obtained from Eq. (10) using the formulas for trigonometric
functions of half argument:

cos
α2i+1

2
= 1 + (c+

1 − 1)δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 1
) + (c+

2 − 1)δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 2
)
,

sin
α2i+1

2
= c−

1 δ′(∣∣Sz
2i − Sz

2i+2

∣∣ − 1
) + c−

2 δ′(∣∣Sz
2i − Sz

2i+2

∣∣ − 2
)
,

c±
1 = 1√

2

√
1 ± J√

J 2 + J ′2 , c±
2 = 1√

2

√
1 ± J√

J 2 + 4J ′2 , (C1)

δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 1
) = ((

Sz
2i

)2 − (
Sz

2i+2

)2)2 = (
A11

2i +A33
2i

)(
A00

2i+2+A22
2i+2

) + (
A00

2i +A22
2i

)(
A11

2i+2+A33
2i+2

)
,

δ
(∣∣Sz

2i − Sz
2i+2

∣∣ − 2
) = 1

2Sz
2iS

z
2i+2

(
Sz

2iS
z
2i+2 − 1

) = A11
2i A

33
2i+2 + A33

2i A
11
2i+2,

δ′(∣∣Sz
2i−Sz

2i+2

∣∣ − 1
) = (

Sz
2i−Sz

2i+2

)
δ
(∣∣Sz

2i−Sz
2i+2

∣∣−1
)

= (
A11

2i −A33
2i

)(
A00

2i+2+A22
2i+2

) − (
A00

2i + A22
2i

)(
A11

2i+2 − A33
2i+2

)
,

δ′(∣∣Sz
2i−Sz

2i+2

∣∣ − 2
) = 1

2

(
Sz

2i−Sz
2i+2

)
δ
(∣∣Sz

2i−Sz
2i+2

∣∣−2
) = A11

2i A
33
2i+2 − A33

2i A
11
2i+2. (C2)

APPENDIX D: EFFECTIVE HAMILTONIAN AT SD-MFI BOUNDARY

For obtaining the second-order perturbation defined by Eq. (17) we have to calculate at first:

H̃
(1)
2i PSD-MFI = J ′

xx

2
(c+

1 +c−
1 )

[
A10

2i−1A
21
2i

(
c+

1 A00
2i+1−c−

1 A20
2i+1

)−(
c+

1 A00
2i−1+c−

1 A20
2i−1

)
A21

2i A
10
2i+1

]
PSD-MFI,

RsH̃
(1)
2i PSD-MFI = J ′

xx

2
(c+

1 +c−
1 )

{
c+

1 A11
2i−1A

22
2i A

00
2i+1

�E2l(120)
A10

2i−1A
21
2i A

00
2i+1−

c−
1 A11

2i−1A
22
2i A

22
2i+1

�E2l(122)
A10

2i−1A
21
2i A

20
2i+1

−c+
1 A00

2i−1A
22
2i A

11
2i+1

�E2l(021)
A00

2i−1A
21
2i A

10
2i+1−

c−
1 A22

2i−1A
22
2i A

11
2i+1

�E2l(221)
A20

2i−1A
21
2i A

10
2i+1

}
PSD-MFI,

�E2l(120) = −
√

J 2 + J ′2, �E2l(122) = −J −
√

J 2 + J ′2. (D1)

Here �E2l(n2l−1,n2l ,n2l+1) = EGS − E2l(n2l−1,n2l ,n2l+1) is the difference between the ground-state energy and the energy of
the excitation on three consecutive coupled dimers 2l − 1, 2l, and 2l + 1 in states n2l−1, n2l , and n2l+1. Using the relation
PSD-MFIH̃

(1)
2i = (H̃ (1)

2i PSD-MFI)+, we can obtain the second-order term in Eq. (17) explicitly:

H
(2)
eff =

N/2∑
i=1

PSD-MFIH̃
(1)
2i RsH̃

(1)
2i PSD-MFI =

N/2∑
i=1

PSD-MFIh
(2)A11

2i PSD-MFI,

h(2) = (J ′
xx)2(1 + 2c+

1 c−
1 )

2

{
(c+

1 )2

�E2l(120)
+ (c−

1 )2

�E2l(122)

}
. (D2)
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APPENDIX E: EFFECTIVE HAMILTONIAN AT MFI-SB BOUNDARY

Following the same procedure as in Appendix D, we get

H̃
(1)
2i PMFI-SB = J ′

xx

2

{(
A11

2i−2 + (c+
1 + c−

1 )A00
2i−2

)
A10

2i−1A
21
2i

(
c+

1 A00
2i+1 − c−

1 A20
2i+1

)
+(

c+
1 A00

2i−1 + c−
1 A20

2i−1

)
A21

2i A
10
2i+1

(
A11

2i+2 − (c+
1 + c−

1 )A00
2i+2

)}
PMFI-SB, (E1)

RsH̃
(1)
2i PMFI-SB = J ′

xx

2

{[
c+

1

(
A11

2i−2A
11
2i−1A

22
2i A

00
2i+1A

00
2i+2

�E2i(11200)
+ A11

2i−2A
11
2i−1A

22
2i A

00
2i+1A

11
2i+2

�E2i(11201)

)

−c−
1

(
A11

2i−2A
11
2i−1A

22
2i A

22
2i+1A

00
2i+2

�E2i(11220)
+ A11

2i−2A
11
2i−1A

22
2i A

22
2i+1A

11
2i+2

�E2i(11221)

)
A20

2i+1

+c+
1 (c+

1 + c−
1 )

(
A00

2i−2A
11
2i−1A

22
2i A

00
2i+1A

00
2i+2

�E2i(01200)
+ A00

2i−2A
11
2i−1A

22
2i A

00
2i+1A

11
2i+2

�E2i(01201)

)

−c−
1 (c+

1 + c−
1 )

(
A00

2i−2A
11
2i−1A

22
2i A

22
2i+1A

00
2i+2

�E2i(01220)
+ A00

2i−2A
11
2i−1A

22
2i A

22
2i+1A

11
2i+2

�E2i(01221)

)
A20

2i+1

]
A10

2i−1A
21
2i

+
[
c+

1

(
A00

2i−2A
00
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(00211)
+ A11

2i−2A
00
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(10211)

)

+c−
1

(
A00

2i−2A
22
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(02211)
− A11

2i−2A
22
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(12211)

)
A20

2i−1

−c+
1 (c+

1 + c−
1 )

(
A00

2i−2A
00
2i−1A

22
2i A

11
2i+1A

00
2i+2

�E2i(00210)
+ A11

2i−2A
00
2i−1A

22
2i A

11
2i+1A

00
2i+2

�E2i(10210)

)

−c−
1 (c+

1 + c−
1 )

(
A00

2i−2A
22
2i−1A

22
2i A

11
2i+1A

00
2i+2

�E2i(02210)
+ A11

2i−2A
22
2i−1A

22
2i A

11
2i+1A

00
2i+2

�E2i(12210)

)
A20

2i−1

]
A21

2i A
10
2i+1

}
PMFI-SB, (E2)

�E2i(01200) = −
√

J 2 + J ′2, �E2i(01220) = �E2i(01221) = −J −
√

J 2 + J ′2,

�E2i(11201) = 1

2
(−3J − J ′ +

√
J 2 + J ′2), �E2i(11221) = �E2i(11220) = 1

2
(−3J − J ′ −

√
J 2 + J ′2), (E3)

�E2i(11200) = 1

2
(−J − J ′ −

√
J 2 + J ′2), �E2i(01201) = −J.

Here we introduce �E2i(n2i−2,n2i−1,n2i ,n2i+1,n2i+2) analogously to the notation in Appendix D. Combining Eqs. (E1) and (E2),
we get for the second-order term the following result:

H
(2)
eff = PMFI-SB

N/2∑
i=1

H̃
(1)
2i Rs

N/2∑
j=1

H̃
(1)
2j PMFI-SB = (J ′

xx)2

4

N/2∑
i=1

PMFI-SB

{
2(c+

1 + c−
1 )2

(
(c+

1 )2

�E2i(01200)
+ (c−

1 )2

�E2i(01220)

)
A00

2i−2A
00
2i+2

+2

(
(c+

1 )2

�E2i(11201)
+ (c−

1 )2

�E2i(11221)

)
A11

2i−2A
11
2i+2 +

[
(c+

1 )2

�E2i(11200)
+ (c−

1 )2

�E2i(11220)

+ (c+
1 + c−

1 )2

(
(c+

1 )2

�E2i(01201)
+ (c−

1 )2

�E2i(01221)

)](
A11

2i−2A
00
2i+2 + A00

2i−2A
11
2i+2

)}
A11

2i PMFI-SB. (E4)

APPENDIX F: EFFECTIVE HAMILTONIAN AT SB-SAT BOUNDARY

Analogously the following expressions for the case of the SB-SAT boundary can be obtained:

H̃
(1)
2i PSB-SAT = J ′

xx

2

[
A11

2i−2A
10
2i−1A

21
2i A

11
2i+1−A11

2i−1A
21
2i A

10
2i+1A

11
2i+2+A11

2i−2A
10
2i−1A

21
2i

(
c+

1 A00
2i+1−c−

1 A20
2i+1

)
A11

2i+2

−A11
2i−2

(
c+

1 A00
2i−1 + c−

1 A20
2i−1

)
A21

2i A
10
2i+1A

11
2i+2

]
PSB-SAT, (F1)
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RsH̃
(1)
2i PSB-SAT = J ′

xx

2

{[
A11

2i−2A
11
2i−1A

22
2i A

11
2i+1A

00
2i+2

�E2i(11210)
+ A11

2i−2A
11
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(11211)

+c+
1 A11

2i−2A
11
2i−1A

22
2i A

00
2i+1A

11
2i+2

�E2i(11201)
− c−

1 A11
2i−2A

11
2i−1A

22
2i A

20
2i+1A

11
2i+2

�E2i(11221)

]
A10

2i−1A
21
2i

−
[

A00
2i−2A

11
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(01211)
+ A11

2i−2A
11
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(11211)

+c+
1 A11

2i−2A
00
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(10211)
+c−

1 A11
2i−2A

20
2i−1A

22
2i A

11
2i+1A

11
2i+2

�E2i(12211)

]
A21

2i A
10
2i+1

}
PSB-SAT, (F2)

�E2i(11211) = �E2i(11210) = −J,

�E2i(11201) = − 1
2 (3J + J ′ −

√
J 2 + J ′2), (F3)

�E2i(11221) = − 1
2 (3J + J ′ +

√
J 2 + J ′2).

Then, the second-order perturbation term is as follows:

H
(2)
eff = (J ′

xx)2

4

N/2∑
i=1

PSB-SAT

{
−

(
A10

2i−1A
01
2i+1 + A01

2i−1A
10
2i+1

)
�E2i(11211)

+
(
A00

2i−1A
11
2i+1 + A11

2i−1A
00
2i+1

)
�E2i(11211)

+
(

2(c+
1 )2

�E2i(11201)
+ 2(c−

1 )2

�E2i(11221)

)
A00

2i−1A
00
2i+1

}
PSB-SAT. (F4)

We introduce the further notations:

L0 = − (J ′
xx)2

2

(
(c+

1 )2

�E2i(11201)
+ (c−

1 )2

�E2i(11221)

)
= − (J ′

xx)2

2J

4J + J ′

4J + 3J ′ , L1 = − (J ′
xx)2

4�E2i(11211)
= − (J ′

xx)2

4J
, (F5)

then

H
(2)
eff =

N/2∑
i=1

PSB-SAT
{
L1

(
A00

2i−1A
11
2i+1 + A11

2i−1A
00
2i+1 − A10

2i−1A
01
2i+1 − A01

2i−1A
10
2i+1

) + L0A
00
2i−1A

00
2i+1

}
PSB-SAT. (F6)

APPENDIX G: STRONG-COUPLING APPROACH FROM THE LIMIT OF ISOLATED DIMERS

Here we consider the strong-coupling expansion around the limit of noninteracting dimers. In this case, we treat the total
interdimer coupling as a perturbation:

H = H (0) + H (1) =
N∑

i=1

H
(0)
i +

N∑
i=1

H
(1)
i , H

(0)
i = J (s1,i · s2,i) − hc

(
sz

1,i + sz
2,i

)
,

H
(1)
2i = (hc − h)

(
sz

1,2i + sz
2,2i

) + J ′(s2,2i−1 + s1,2i+1) · (s1,2i + s2,2i), H
(1)
2i+1 = (hc − h)

(
sz

1,2i+1 + sz
2,2i+1

)
. (G1)

The Hamiltonian of isolated dimers H (0) exhibits two phases in the ground state. If h < hc = J the ground state consists of singlet
dimers, otherwise it is polarized in the direction of the field. At the boundary the ground state is macroscopically degenerate
where each dimer can be in any of two states singlet or triplet. We rewrite the Hamiltonian in terms of the projection operators
(7) and perform the many-body perturbation theory (17) to get the following effective Hamiltonian up to second order terms:

Heff =
N∑

i=1

(
J ′

2
+ (J ′)2

4J

)
A11

i A11
i+1 −

N/2∑
i=1

[
(h−hc)A11

2i−1+
(

h−hc+ (J ′)2

2J

)
A11

2i

]
+ (J ′)2

4J

N/2∑
i=1

(A01
2i−1A

10
2i+1+A01

2i+1A
10
2i−1)A11

2i . (G2)

Similarly to the arguments of the previous section, it can be shown that SD phase corresponding to
∏N

i=1 |0〉i is the ground state
until h < h̃(0 → 1/2), where

h̃(0 → 1/2) = J − (J ′)2

2J
. (G3)

Above h = h̃(0 → 1/2) the ground state should be sought in the subspace where all vertical dimers are in polarized state∏N/2
i=1 |1〉2i . Thus, the effective Hamiltonian for odd sites (horizontal dimers) can be presented as a hard-core Bose gas with an
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infinite on-site repulsion:

H odd
eff =

N/2∑
i=1

[(
J + J ′ + (J ′)2

2J
− h

)
b+

i bi + (J ′)2

4J
(b+

i bi+1 + b+
i+1bi)

]
. (G4)

Here we introduce creation and annihilation operators b+
i = A10

2i−1, bi = A01
2i−1 which commute on different sites and anticommute

on the same site. b+
i = A10

2i−1 turns the singlet state |0〉2i−1 with Sz
2i−1 = 0 to the triplet state |1〉2i−1 with Sz

2i−1 = 1. Thus, it
creates the magnon excitation, and ni = b+

i bi counts the number of magnons. The averaged magnetization of the horizontal
dimers can be found from the density of the magnon excitations: 〈mh〉 = (2/N )

∑N/2
i=1 〈ni〉. The model is exactly solved by

Jordan-Wigner transformation [37] and the averaged averaged magnetization of the horizontal dimers is given as follows:

〈mh〉 =
⎧⎨
⎩

0, if h < h̃1/2,
1
π

arccos
[
1 + 2 J

J ′ + 2
(

J
J ′

)2 − 2Jh
J ′2

]
, if h̃1/2 < h < h̃sat,

1, if h > h̃sat,

(G5)

h̃1/2 = J + J ′, h̃sat = J + J ′ + (J ′)2

J
. (G6)

As a result within the considered approximation the system is in the SB phase for h(0 → 1/2) < h < h̃1/2, in the spin-liquid
phase for h̃1/2 < h < h̃sat, and in the saturated phase for h > h̃sat. Comparing with the numerical results for the Heisenberg
model we see that the fractional plateau at 1/4 as well as a series of tiny plateaus between 1/2 and 1/4 is missing. The lower
critical field for the spin-liquid state coincides with the SB-SAT boundary of the Ising-Heisenberg model, whereas the critical
field h̃(0 → 1/2) is quite close to the SD-MFI boundary of the Ising-Heisenberg model.
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