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Temperature dependence of the NMR relaxation rate 1/T1 for quantum spin chains
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We present results of numerical simulations performed on one-dimensional spin chains in order to extract
the so-called relaxation rate 1/T1 accessible through NMR experiments. Building on numerical tensor network
methods using the matrix product states formalism, we can follow the nontrivial crossover occurring in critical
chains between the high-temperature diffusive classical regime and the low-temperature response described by
the Tomonaga-Luttinger liquid (TLL) theory, for which analytical expressions are known. In order to compare
analytics and numerics, we focus on a generic spin-1/2 XXZ chain which is a paradigm of gapless TLL, as well as
a more realistic spin-1 anisotropic chain, modeling the DTN material, which can be either in a trivial gapped phase
or in a TLL regime induced by an external magnetic field. Thus, by monitoring the finite temperature crossover,
we provide quantitative limits on the range of validity of TLL theory, that will be useful when interpreting
experiments on quasi-one-dimensional materials.
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I. INTRODUCTION

One-dimensional (1D) quantum systems are known to be
very peculiar due to strong quantum fluctuations that prohibit
long-range order and can give rise to unusual phases of matter.
In this context, it is remarkable that quantum spin chains
fall generically into two classes regarding their low-energy
properties [1,2]: (i) critical behavior where gapless low-energy
excitations can be described in the framework of Tomonaga-
Luttinger liquid (TLL) theory; (ii) gapped behavior.

Nevertheless, condensed-matter experiments are mostly
done on quasi-1D materials; hence the role of small interchain
couplings (as compared to the dominant 1D energy scale J1D)
may become important at low-enough temperature (eventually
leading to magnetic ordering). Conversely, at high temperature
(T � J1D), quantum fluctuations vanish so that a classical
picture emerges. As a consequence, for realistic experimental
systems the validity of a universal 1D TLL regime is not
granted and should be checked in some unbiased way. In
particular, understanding the intermediate temperature regime
T ∼ J1D, highly relevant to understand several experimental
data, is a great theoretical challenge regarding dynamical
observables.

In this paper, we focus on nuclear magnetic resonance
(NMR) for quantum spin systems [3], and more specifically
on the 1/T1 spin-lattice relaxation rate. Indeed, this quantity
contains lots of information on the dynamical properties of
the system since it is directly related to dynamical spin-spin
correlations. Moreover, being a local quantity (a crucial
property of NMR technique), we will argue that reliable data
can be obtained even though we will simulate finite spin chains.

Being of fundamental interest, the low-T behavior of
the NMR relaxation rate has been investigated for sev-
eral 1D or quasi-1D quantum magnets. Spin-gapped com-
pounds, such as two-leg ladders SrCu2O3 [4], BiCu2PO6 [5],
Sr14−xCaxCu24O41 [6], weakly coupled Haldane chains
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Y2BaNiO5 [7], or dimerized spin chains AgVOAsO4 [8],
exhibit an activated relaxation at low-T . For gapless Heisen-
berg chain systems, the low-energy critical behavior has been
studied [9–12] for Sr2CuO3 which is an almost ideal realization
with a large J1D ∼ 2000 K and much smaller 3D couplings
so that Néel temperature is pushed down to TN � 5 K. For
such an SU(2) symmetric material, a careful comparison
of experimental and numerical NMR data has shown the
prominent role of logarithmic corrections [13].

Another route to TLL behavior is to apply an external
magnetic field on gapped materials such as spin-1 Haldane
gap compound [14] (CH3)4NNi(NO2)3 or dimerized spin-1/2
chains [15]. For such systems, a theoretical analysis of the
1/T1 behavior has been performed in Refs. [16,17].

A useful experimental review on NMR properties of
several spin chains can be found in Ref. [18]. Note also
that 1/T1 measurements have also been used to characterize
one-dimensional metallic phase in carbon nanotube [19] or
quasi-1D superconductor [20].

More recently, interesting quasi-1D spin-gapped materials
have also been investigated using NMR [21]: an anisotropic
spin-1 system NiCl2-4SC(NH2)2 (DTN) and a spin-ladder one
(C5H12N)2CuBr4 (BPCB). In both cases, 1/T1 measurements
could be interpreted either as coming from magnon (respec-
tively spinon) excitations in the gapped (respectively gapless)
1D phase, and the quantum critical regime was also argued to
be universal. Most importantly, the whole temperature range,
including 1D as well as 3D regimes, was discussed.

Experimentally, when decreasing temperature, the NMR
relaxation rate 1/T1 has been found to diverge in the TLL
regime, with power-law governed by a characteristic exponent.
Such an analysis is used in experiments to determine the
corresponding TLL exponent K [22,23]. For example, it was a
smoking-gun signature of attractive TLL in (C7H10N)2CuBr4

(DIMPY) compound [24,25]. However, given that we are
generically dealing with quasi-1D materials, critical fluctua-
tions and 3D ordering will limit the low-energy 1D regime,
and a genuine TLL critical behavior is observable only
within some finite window in temperature. This remains to be
analyzed more quantitatively, which is the main purpose of this
work.
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The rest of the paper is organized as follows. In Sec. II, we
present the theoretical models and provide useful definitions.
Section III describes the numerical technique based on finite
temperature matrix product states (MPS) approach. Results are
then discussed in Sec. IV. Finally, we present our conclusion
in Sec. V.

II. MODELS AND DEFINITIONS

We give in this section the two models that will be studied
in this paper and a small discussion on their phase diagram.
Both models present a TLL gapless phase and a gapped phase,
induced by an external magnetic field. We will also provide
definition of the NMR relaxation rate 1/T1 and discuss its
expected behavior with temperature.

A. Theoretical models

1. Spin-1/2 XXZ chain

We first consider one of the simplest paradigmatic example
of TLL liquid, namely the spin-1/2 XXZ chain Hamiltonian:

HXXZ = J

L−1∑
j=1

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
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z
j+1
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j , (2.1)
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FIG. 1. (i) Upper panel: magnetization curve of the XXZ

Hamiltonian (2.1) as a function of the magnetic field for � ∈ (−1,1].
There is a gapless TLL phase below hc = J (� + 1)/gμB and a
gapped one above when the system is fully polarized. (ii) Lower
panel: magnetization curve of the 1D DTN Hamiltonian (2.2) as
a function of the magnetic field. Two gapped phases (large-D and
polarized) are respectively located below hc1 and above hc2. The
intermediate gapless phase can be described by a TLL theory.

where � ∈ (−1,1] denotes the Ising anisotropy, J the coupling
strength, and h is an applied magnetic field in the z direction
with g the gyromagnetic factor and μB the Bohr magneton
constant. The Hamiltonian is defined with open boundary con-
ditions (OBC), as will be used in our numerical simulations.

In the range � ∈ (−1,1] the XXZ model can be described
by a TLL as long as its spectrum remains gapless [2]. As a
function of magnetic field, the gapless regimes extend up to
a critical field gμBhc = J (� + 1), and the system becomes
gapped for h > hc. In the latter regime, the gap increases
linearly with the applied magnetic field, �g = gμB(h − hc);
see Fig. 1.

2. Quasi-1D spin-1 compound “DTN”

We also discuss a quasi-1D magnetic insulator compound
NiCl2-4SC(NH2)2, also called DTN, whose relevant 3D
structure consists of weakly coupled S = 1 chains in the two
other transverse (with respect to the chain axis) directions. Its
experimental interest comes from the appearance of a Bose-
Einstein condensation (BEC) phase when applying a magnetic
field at low temperature [26,27]. More recently, Br-doped
(disordered) DTN was suggested to be a good experimental
candidate for observing a Bose glass phase [28–30].

Although there is 3D magnetic order observed below
TN ∼ 1 K in DTN [26] due to weak interchain couplings along
the two transverse directions, J3d/J1d � 0.08, one expects
1D physics and a TLL regime at higher T . The effective
Hamiltonian to describe this situation reads

HDTN-1D = J

L−1∑
j=1

Sj · Sj+1 +
L∑

j=1

[
D

(
Sz

j

)2 − gμBhSz
j

]
,

(2.2)

where Sj = (Sx
j ,S

y

j ,Sz
j ) are spin-1 operators. In the current

literature [31], J = 2.2 K is the 1D antiferromagnetic coupling
and D = 8.9 K is the single-ion anisotropy. The magnetic field
h is given in Tesla with g = 2.31 [32].

The phase diagram of this 1D Hamiltonian (2.2) is sketched
in Fig. 1. In the absence of magnetic field, due to the large
on-site anisotropy D, the system is in the so-called large-D
phase [33]. This is a trivial phase, adiabatically connected
to the product state | → · · · →〉 where each state is in a
nonmagnetic Sz = 0 eigenstate. Clearly, this phase has a finite
spin gap, which corresponds to the first critical field hc1 needed
to magnetize the system. Its value is known to be, at first order
in J/D � 1 [34], hc1/gμB = D − 2J + O(J 2/D) � 3 T. At
finite magnetic field there is a gapless TLL regime for h ∈
[hc1,hc2], with hc2/gμB = D + 4J = 11.40 T. Above this
critical saturation field, the system becomes gapped again,
entering a fully polarized phase. As a side remark, we recall
that, in the true 3D material DTN, both critical fields are shifted
due to interchain couplings, so that hc1 = 2.10(5) T [35], and
hc2 = 12.32 T [36].

In the TLL phase and close to the upper critical field hc2,
the DTN Hamiltonian (2.2) can be mapped toward an effective
XXZ model of spins S = 1/2 (2.1). Using perturbation theory,
effective parameters [21,37] are given by J̃ = 2J and �̃ = 0.5.
This result can be refined using the contractor renormalization
(CORE) method [38,39] leading to the same value of J̃ but a
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slightly reduced �̃ = 0.36. Both mappings lead to a value of
the effective magnetic field h̃ = h − J − D.

B. Relaxation rate 1/T1

The nuclear spin-lattice relaxation rate T −1
1 measured by

NMR [40] is basically testing the local and dynamical spin
correlation function Saa

nn (ω0) with a = x,y,z, and ω0 being the
NMR frequency at a given site n,

1

T1
= γ 2

2

{
A2

⊥
[
Sxx

nn (ω0) + Syy
nn (ω0)

] + A2
‖S

zz
nn(ω0)

}
= 1

T ⊥
1

+ 1

T
‖

1

. (2.3)

Here, A⊥ is the transverse hyperfine coupling constant, A‖ the
longitudinal one, γ the gyromagnetic ratio, and

Sab
nn(ω) = Re

{
2
∫ ∞

0
dt eiωt

[〈Sa
n (t)Sb

n(0)〉 − 〈Sa
n (t)〉〈Sb

n(0)〉]},

(2.4)

with Sa = Sb†, Sa(t) = eiHt Sae−iHt , and 〈〉 is the thermal
average defined later in (3.4). For convenience, the x and y spin
components can be expressed using the raising and lowering
operators,

Sxx
nn (ω) + Syy

nn (ω) = 1
2 [S+−

nn (ω) + S−+
nn (ω)]. (2.5)

It is theoretically justified to take the limit ω0 → 0 since
the NMR frequency is of a few tens or hundreds of MHz,
corresponding to temperatures of the order of mK, thus
being the smallest energy scale in the problem. Indeed, such
temperatures are neither reached in experiments of interest
nor in our numerical simulations, in particular for our purpose
of probing the finite temperature TLL regime in quasi-1D
systems. As a side remark, the two correlations S+−

nn (ω0) and
S−+

nn (ω0) become equivalent in this limit ω0 → 0.
The weight of the transverse and longitudinal contributions

in the relaxation rate 1/T1 is experimentally governed by the
hyperfine coupling tensors A⊥ and A‖. To favor one over
the other, a specific nucleus can be targeted for the NMR
experiment. In the case of DTN, proton 1H (nuclear spin
I = 1/2) probes both components while nitrogen 14N (I = 1)
probes dominantly the transverse one [36].

Hyperfine coupling tensors put aside or set equal to one the
low temperature behavior of the transverse and longitudinal
components of 1/T1 depends on microscopic parameters of the
model. At low temperature, the transverse component is larger
than the longitudinal one and it is thus justified to consider
1/T1 � 1/T ⊥

1 . In the following we will fix γ 2A2
⊥,‖ = 1, and

compute the relaxation rates

1

T ⊥
1

=
∫ ∞

0
dt Re

[〈S±
n (t)S∓

n (0)〉] (2.6)

and

1

T
‖

1

=
∫ ∞

0
dt Re

[〈Sz
n(t)Sz

n(0)〉 − 〈Sz
n(t)〉〈Sz

n(0)〉]. (2.7)

Note that the single operator averages are time independent,
〈Sz

n(t)〉 = 〈Sz
n(0)〉.

C. Tomonaga-Luttinger liquid description in the gapless phase

The 1D gapless phase, experimentally accessible by tuning
a control parameter such as the external magnetic field, can be
effectively described by the TLL Hamiltonian [2],

HTLL = 1

2π

∫
dr

{
uK[∂rθ (r)]2 + u

K
[∂rφ(r)]2

}
, (2.8)

where u is the velocity of excitations and K is the dimen-
sionless TLL parameter. They both fully characterize the low-
energy properties of the system and are thus model dependent.
θ (r) and φ(r) are bosonic fields obeying the commutation
relation [φ(x),θ (y)] = iπδ(x − y).

For the XXZ model (2.1), the TLL parameters K and u are
known from Bethe ansatz equations [41]. At zero magnetic
field, analytical expressions are known as a function of the
Ising anisotropy �:

K = π

2 arccos (−�)
and

u

J
= π

√
1 − �2

2 arccos �
. (2.9)

For generic nonintegrable models, the TLL parameters can be
obtained numerically using DMRG by fitting static correlation
functions [42,43] which has been successfully done in the past
years for various quasi-1D compounds [17,44].

In the TLL framework, the dynamical correlation Sab
nn(ω)

defined in (2.4) can be computed analytically as a function of
the temperature in the “low energy limit,” which we will try
to define more precisely in this paper. Let us recall that the
dynamical spin susceptibility is defined as

χab
ij (t) = −i�(t)

〈[
Sa

i (t),Sb
j (0)

]〉
, (2.10)

where �(t) is the Heaviside function. Since a typical relevant
case in experiments is the local quantity i = j = n, we only
consider this case in the following. In frequency space, the
susceptibility can be related to the dynamical spin correlation
function by [45]

Sab
nn(ω) = 2

e−βω − 1
Im

[
χab

nn (ω)
]
. (2.11)

In the low energy limit βω � 1 an analytical expression for
Eq. (2.11) can be obtained, leading to [17,46,47]

1

T ⊥
1

= 2Ax cos
(

π
4K

)
u

(
2πT

u

) 1
2K

−1

B

(
1

4K
,1 − 1

2K

)
(2.12)

and

1

T
‖

1

= Az cos (πK)

2u

(
2πT

u

)2K−1

×B(K,1 − 2K) + KT

4πu2
, (2.13)

with B(x,y) the Euler beta function and Ax,z prefactors of
the static correlation functions. Thus, generically 1/T ⊥

1 (T )
diverges at zero temperature as a K-dependent power law,
and dominates over 1/T

‖
1 . Note that for finite magnetic field
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(equivalent to the non-half-filled case), additional subleading
corrections are expected [48].

D. Gapped regime behavior

In contrast to a TLL gapless phase where 1/T1 has
power-law behavior at low temperature, we also consider
the gapped regime where fluctuations are exponentially sup-
pressed [16,49–53], such that for T < �g

1

T
⊥,‖

1

∝ exp(−α⊥,‖�g/T ), (2.14)

where �g is the energy gap of the system, and α⊥,‖ an O(1)
prefactor which depends on the relaxation processes, and also
on the temperature range [52]. Below, in Sec. IV B 2, we show
numerical results for the high-field gapped regime of the XXZ

chain where our data are perfectly described by α⊥,‖ = 1.
At higher temperature above the gap, one may also expect a
nontrivial crossover to TLL regime [54].

III. NUMERICAL METHODS

To get the relaxation rate one needs to obtain in the
first place the dynamical correlation 〈Sa

n (t)Sb
n(0)〉. We used

the TEBD (time evolution block decimation) algorithm [55]
with both real/imaginary time through the MPS formalism
adapted for 1D systems [56]. A general one-dimensional
system containing L sites with OBC can be represented by
the following MPS:

|�〉 =
∑
{si }

As1
a1

As2
a1a2

· · · AsL

aL−1
|s1〉|s2〉 · · · |sL〉, (3.1)

where the local index si is the physical index representing an
element of the local Hilbert space at site i. Its dimension is
d and is equal to 2 (↑ and ↓) for spin-1/2 or 3 (↑, ↓ and
→) for spin-1. We note ai the bond index whose dimension
is directly related to the “number of states” m to describe the
system, meaning that m is a control parameter in the numerical
simulations.

The first step is to perform an imaginary time evolution on
the system to reach the desired temperature. Once the state
is at hand, the second step consists of evolving it through
a real time evolution. At each time step, the correlation is
measured. When all the data in time-space have been obtained,
a numerical Fourier transform can be performed to get the data
in frequency-space.

A. Time evolution with MPS

We will be general and consider the case with a Hamiltonian
H consisting of nearest-neighbor interactions only—it is the
case for the XXZ (2.1) or DTN Hamiltonian (2.2) introduced
before. Now, we need to evolve our MPS up to a time t . The
operation can be discretized using smaller time steps τ such
that t = Nτ , leading to e−itH = ∏N

e−iτH. If the time step τ

is small enough, a first (or higher) order Trotter decomposition
can be performed,

e−itH �
N∏

e−iτHeven

N∏
e−iτHodd + O(τ 2), (3.2)

where Heven and Hodd respectively correspond to the even and
odd bond Hamiltonians only acting on two nearest-neighbor
spins. The decomposition is possible because even–odd–bond
Hamiltonians commute with each others. But it is not exact and
leads to an error in τ due to the fact that [Heven,Hodd] �= 0. The
advantage is that the bond Hamiltonians can easily be diagonal-
ized and exponentiated since they are only d2 × d2 matrices.

And so, applying successive evolution gates on the MPS
as well as singular value decompositions to restore the MPS
original tensor-site dependent form (3.1) will eventually lead
to a time-t evolved state.

B. Finite temperature with MPS

It was useful to introduce time-evolution concepts also to
discuss finite temperature with MPS [57]. The main idea is
to represent the density matrix ρβ of the physical (mixed)
state in an artificially enlarged Hilbert space as a pure state
|�β〉—which is what we can deal with in the MPS formalism.
The auxiliary space can simply be constructed as a copy of the
original one.

Assuming that we know the purification of the density
matrix ρβ=0 as a wave function |�β=0〉 it can be shown that an
imaginary time evolution has to be performed over the infinite
temperature state in order to get the finite temperature state,

|�β〉 = e−βH/2|�β=0〉, (3.3)

with the Hamiltonian only acting on the physical sites. This
imaginary time evolution can be performed using the TEBD
algorithm described before in Sec. III A. Expectation values
can then be measured at inverse temperature,

〈O〉β = Tr[O e−βH]

Tr[e−βH]
= 〈�β |O|�β〉

〈�β |�β〉 . (3.4)

For this procedure to work, the initial state |�β=0〉 has to be a
product state of Bell states between each physical site and its
associated auxiliary site,

|�β=0〉 = 1√
N

L∏
n=1

∑
{s}

∣∣pn
s a

n
s

〉
, (3.5)

with |p〉 corresponding to physical sites, |a〉 to auxiliary ones,
and N a normalization constant. The summation is over the
d possible local states s. Such a state is simple enough to be
built exactly in the MPS formalism.

C. Numerical limitations

The main limitations are about the temperature and the final
time one can reach using the methods described above. The
reason in both cases is directly related to a rapid growth in the
entanglement entropy while evolving the state. This implies
keeping larger and larger number of states m in the MPS if one
wants to be accurate, strongly limiting numerical simulations
in practice.

On the one hand, it becomes increasingly difficult to
reach low temperatures. Indeed, one expects a volume-law
entanglement entropy (i.e., linear with the system size L) due
to the auxiliary sites which are used to purify the thermal
state. As a consequence, the number of kept states m needed
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to describe accurately the system will grow exponentially as
the temperature T decreases.

On the other hand, the maximal (real) time that can be
reached is of the order of few tens of J−1 typically, for
similar reasons as discussed above, namely the linear growth of
entanglement entropy with time [58]. Thus fixing a maximum
number of kept states m limits simulations to a finite time
tmax. Note that this limitation applies at all temperatures, even
T = 0.

Despite these severe limitations, recent progress in the
field has allowed some improvements. For instance, we
will make use of the auxiliary degrees of freedom which
are used to purify the thermal state by time-evolving them
with −H, which is mathematically exactly the same but has
been shown to improve substantially the time range [59].
By construction, this trick only applies to finite-temperature
simulations though. Last, although its use did not prove to be
systematically reliable in our case, we would like to mention
the possibility to use the so-called linear prediction technique,
coming from data analysis [60] which aims at predicting
“longer time” behavior from the knowledge of dynamical
correlations at “intermediate time.”

IV. RESULTS

We provide in this section our numerical results [61] about
the relaxation rate 1/T1 using models and techniques presented
in the previous sections II and III. First of all we will focus
on the XX model (equivalent to free fermions) for which
we can compute exactly the dynamical correlations for all
temperatures and that will serve as a benchmark for our
simulations. Next, we will turn to the interacting XXZ case
for S = 1/2, and then to a S = 1 chain model relevant to the
DTN material.

A. Case study: X X point (� = 0)

The XXZ Hamiltonian (2.1) at � = 0, known as XX

model, can be mapped onto a model of free spinless fermions

using a Jordan-Wigner transformation. We restrict ourselves
to h = 0. It can be diagonalized in Fourier space with εk =
J cos k and k = nπ

L+1 with n = 1,2, . . . ,L considering open
boundary conditions,

HXX = J

2

L−1∑
j=1

(c†j cj+1 + H.c.) =
∑

k

εkc
†
kck. (4.1)

Unlike the bosonization expressions (2.12) and (2.13) which
are only valid in the low-energy limit, the results presented
in this section will be valid for all regimes. We present the
details of the calculations in the Appendix A for the analytical
exact expressions of the dynamical correlations for the XX

model using precisely the same conditions as in our numerical
simulations (i.e., a finite chain length with open boundary
conditions).

We show the “bare” results in Fig. 2 that will be used to
obtain the relaxation rate thereafter. Ideally, one is interested
in the thermodynamic limit (i.e., L → ∞) but we see that, at
finite temperature (hence finite correlation length), working on
finite length chains with only a moderate number of sites L

allows one to get reliable data. Indeed, the MPS estimates agree
perfectly with the exact expressions (see the Appendix A).

First of all, we consider the local dynamical correlation of
the site in the middle of the chain reducing de facto boundary
effects. Then, as finite size effects are known to be caused by
the reflection of the propagating excitations at TLL velocity u

on the boundary of the system, one can estimate a time below
which the dynamical correlations can be considered as free of
finite size effects (basically, ut ∼ L).

We first discuss the transverse correlations; see Fig. 2. For
all temperatures, they decay rather quickly to zero, so that we
can safely truncate data to a maximum time tmax (which is
anyway a natural cutoff provided by the inverse of the NMR
frequency ω0) and get reliable values of 1/T ⊥

1 by integrating
over time. Moreover, we have also checked that finite size
effects are extremely small since we are computing a local
correlation.
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FIG. 2. We compare numerical results (circles) used to determine the 1/T1 with analytical results (straight lines) for the XX model. For
the transverse (⊥) case, exact results are computed on a chain of size L = 64 (OBC). As for the longitudinal (‖) case, the chain size is
L = 1000 (OBC). Numerics on their side are performed on a chain of L = 64 (OBC) sites. The left panel shows the real value of the dynamical
correlations. For readability, we only display numerical results for the lowest temperature for the longitudinal correlations. Indeed, this is a
priori the hardest to compute and thus the most subject to errors. The right panel shows the real part of the Fourier transform of the real
time data. Although we only show data up to t = 40J −1 the Fourier transform of the exact zz correlations was performed using data up to
t = 1000J −1.
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The same cannot be said for the longitudinal correlations.
They continue to oscillate even for high temperatures and long
times, and their amplitude gets (very) slowly smaller with
time. This implies severe limitations to get data in the thermo-
dynamic limit. For instance, exact computations using (A2)
were done on L = 1000 and still displayed oscillations of
amplitude around 10−4 at t = 1000J−1. This makes the value
of 1/T

‖
1 very difficult to estimate. This well-known behavior

is related to spin diffusion-like behavior [62,63] which cause a
logarithmic divergence at small frequency ω. However, we
have to remember that the NMR frequency ω0 eventually
provides a natural cutoff.

For completeness we display the real part of the Fourier
transform on the right panels of Fig. 2 for which the 1/T1

value as defined in Sec. II B corresponds to the ω = 0 value.

B. Spin-1/2 X X Z chain at � �= 0

1. Gapless regime

Building on the perfect agreement observed previously
between MPS estimates and the exact analytical solution of
the XX model, we are now confident to extend our study
of the more generic XXZ case −1 < � � 1, described by a
TLL, and compute the relaxation rates. Results are plotted in
Fig. 3 for various values of the anisotropy. The simulations
were performed on systems of size L = 64 with a cutoff of
ε = 10−10 in the singular values. We kept a maximal number
of D = 500 states. A fourth order Trotter decomposition was
used with a Trotter step of τ = 0.1.

First, in the gapless regime we do observe an excellent
quantitative agreement between numerical estimates and the
TLL prediction Eq. (2.12) at low-enough temperature. This

0.04 0.1 1 10

T/J

0.2

1

10

1
/
T

⊥ 1

TLL Theory
Numeric
TLL Theory
Numeric

∞

FIG. 3. Transverse relaxation rate 1/T ⊥
1 vs reduced temperature

T/J for the spin-1/2 XXZ chain at various � and h = 0 obtained
numerically using MPS techniques (circles, from top to bottom:
� = −0.8, −0.6, −0.5, −0.4, −0.2, 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1).
Numerics are compared to TLL theory Eq. (2.12) at low temperature
(thick lines) for |�| < 1, and with Eq. (4.2) for the SU(2) Heisenberg
point � = 1. The thin lines between the circles are guides to the
eyes.

asymptotic regime with a power-law behavior ∼T
1

2K
−1 occurs

only below T/J ∼ 0.1–0.2 (depending on the anisotropy �).
Here we stress that there are no free parameters in the analytic
expressions. Indeed, the TLL parameters are computed using
the exact expressions Eq. (2.9) for u and K , and Ax is
obtained following Refs. [64,65]. The isotropic limit � = 1 is
a special point where logarithmic corrections appear in several
quantities [66–68], leading to a very slow divergence of the
(isotropic) NMR relaxation rate [12,69]

1

T1
� 1√

2π3

√
ln

�

T
+ 1

2
ln

(
ln

�

T

)
, (4.2)

where � � 24.27J . MPS estimates compare well with this
parameter-free expression, as visible in Fig. 3.

Interestingly, we notice the nonmonotonic behavior of
1/T ⊥

1 with temperature only when � � 0 (which corresponds
to repulsive or vanishing interactions in the fermionic lan-
guage).

As a last comment, we have observed that for infinite
temperature (β = 0), the value of 1/T ⊥

1 does not depend on the
sign of �, which is expected since the many-body spectrum of
H� is an odd function of �. Its value is minimum for � = 0
with 1/T ⊥

1 = √
π/(2J ) [70] and increases with |�|. At the

isotropic point |�| = 1 we expect the relaxation rate to diverge
due to the diffusion-like behavior [62,63] of the dynamical
correlation function. Our results at infinite-T go beyond
Baker-Campbell-Hausdorff expansion developed up to O(t2)
in Ref. [71] to compute 〈S±

j (t)S∓
j (0)〉 at short times, which

would suggest 1/T ⊥
1 ∼ J−1(1 + �2)−

1
2 . This prediction is in

contrast to what we found, namely the transverse relaxation
rate increasing with |�|. Indeed, while such an expansion
finds the correct Gaussian behavior for � = 0 (free fermions),
higher-order terms have to be taken into account for |�| > 0
where the transverse dynamical correlation function at longer
times gets larger when increasing |�|.

2. Gapped XXZ chain

We then set the anisotropy value to � = 0.5 and apply a
magnetic field to move into the gapped phase. Transverse and
longitudinal relaxation rates 1/T

⊥,‖
1 are plotted in Fig. 4 where

we observe an excellent agreement with an exponentially
activated behavior ∼exp(−β�g), where �g is the spin gap. We
notice that as the gap gets smaller, the lower the temperature
has to be to observe the exponential law.

C. DTN

We now move to the DTN compound in its 1D limit
described by Eq. (2.2). We compute the relaxation rates for
various values of the magnetic field h, mainly close to hc2

which is relevant for NMR experiments [21]. It is a more
challenging system to simulate than the XXZ model as it
is made of spins S = 1 (enlarged local Hilbert space). The
simulations were performed on open chains of size L = 64
with a cutoff of ε = 10−10 in the singular values. We kept a
maximal number of D = 150 states. A fourth order Trotter
decomposition was used with a Trotter step of τ = 0.02.
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g = 1.0

Δ
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1.5
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h/gµB = 2.5 J

h/gµB = 3.0 J

1/T1
1/T⊥

1

1/T1
1/T⊥

1

FIG. 4. Transverse and longitudinal relaxation rates 1/T
⊥,‖

1

plotted against reduced inverse temperature βJ for the spin-1/2 XXZ

chain in its gapped phase for the anisotropy � = 0.5. The critical
magnetic field is hc = 3J/2gμB and the value of the gap �g =
gμB (h − hc). Numerical results are obtained using MPS techniques
(circles and diamonds) and the exponentially decaying behavior
is verified with the straight lines set with the expected gap value
1/T

⊥,‖
1 = c⊥,‖e−β�g and c⊥,‖ a nonuniversal free parameter.

Numerical results, shown in Fig. 5, compare extremely
well with TLL prediction at low temperature. Interestingly, the
TLL power-law behavior starts at slightly higher temperature,
as compared to the XXZ model, T � 0.5 K (T/J ∼ 0.2),
especially as we approach the middle of the TLL phase, away
from the critical field hc2. We point out that there are again no
adjustable coefficients, the TLL parameters being computed
independently using standard DMRG [72]. The tiny difference
that appears at low temperature between numerical data and
TLL is due to the limited number of states m kept when
performing calculations. Though this does not dispute the TLL
prediction, it reveals the challenge in such time-dependent
simulations. The inset in Fig. 5 shows the transverse relaxation
rate at T = 0.4 K for various values of the magnetic field
covering the whole range from hc1 to hc2. Once more, there
is a very good agreement between numerics and TLL theory
except when one gets close to the critical fields. Indeed, as we
clearly see in the lower panel of Fig. 5 for h = 11.0 T, the
power law is not met yet for the lowest temperature we could
reach T = 0.2 K.

The nonmonotonic behavior of 1/T ⊥
1 observed in the XXZ

model is absent for the DTN and may seem odd at first place
since it can be mapped effectively onto a S = 1/2 XXZ

chain with � = 0.5 or 0.36 and could thus be compared with
Fig. 3. However, this nonmonotonic variation is observed at
high temperature, while this mapping is only justified in the
low-energy limit as discussed in Sec. II A 2.

One can also try to compare the relaxation rates of Fig. 5
with the NMR data for the DTN compound given in Ref. [21].
What draws our attention is the nonmonotonic regime of 1/T ⊥

1
observed at high temperature experimentally, which, as we
have just discussed, is not theoretically predicted for a single
DTN chain. Yet it cannot be attributed to 3D effects as J3D =

0.1 1 10
0.01

0.1

1

1
/
T

⊥ 1

h = 9.0
h = 9.5
h = 10.0
h = 10.5
h = 11.0

TLL Theory
Numeric
TLL Theory
Numeric

∞

0.1 0.5 1

T [K]

0.3

0.5

1

1
/
T

⊥ 1
Zoom at low T

0.0 0.2 0.4 0.6 0.8 1.0

m

0.4

0.6

0.8

1.0

1/
T

T = 0.4 K

4.0 6.0 8.0 10.0 11.0
h [T]

FIG. 5. Transverse relaxation rate 1/T ⊥
1 plotted vs temperature

T for the spin-1 DTN chain obtained numerically using MPS
techniques (circles). The low temperature behavior is compared to
TLL prediction (straight lines). The magnetic field h is given in T. The
inset compares TLL prediction and numerical results for T = 0.4 K
and covers the whole TLL phase from hc1 to hc2. The lower panel is
a zoom on the low temperature asymptotic power-law regime.

0.18 K is very small compared to the temperature T . We then
observed that experiments are performed by proton (1H ) NMR
which probes both 1/T ⊥

1 and 1/T
‖

1 .
We therefore interpret this effect as due to the parallel

contribution of the relaxation rate. We show in Fig. 6 both
the transverse and longitudinal 1/T

⊥,‖
1 as a function of

temperature. We cannot precisely estimate the value of 1/T
‖

1
due to its dependence on ω0 (and therefore on our maximum
time in numerical simulations) so that we give a lower bound.
Its high temperature contribution to the total relaxation rate
clearly dominates over the transverse part and explains well
the experimental nonmonotonic regime at high T .

Perhaps more importantly, as displayed in Fig. 6, the 3D
BEC ordering observed in DTN [26,36] for mz � 0.85 at
TN � 0.59 K occurs above the asymptotic regime where the
genuine TLL power-law behavior is expected. It is therefore
impossible to directly extract TLL exponents in DTN, because
of interchain effects that eventually lead to an ordering of the
coupled TLLs. Ideally we would expect for quasi-1D systems
the TLL description of the NMR relaxation to be valid in the
following temperature regime: J1D � T � J3D.

Concerning the difficulty to obtain reliable data at high
temperature for the longitudinal 1/T

‖
1 , it is well known that
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exp.

∞

FIG. 6. Longitudinal 1/T
‖

1 and transverse 1/T ⊥
1 relaxation rates

for the DTN spin-1 chain at h = 11.0 T, corresponding to mz � 0.85.
As 1/T

‖
1 cannot be estimated for sure, we only provide a lower

bound. The nonmonotonic behavior observed experimentally at high
T in Ref. [21] apparently comes from the large contribution of 1/T

‖
1

at high temperature. Experimental data for DTN [21] at the same
magnetization are shown for comparison, after a proper rescaling in
order to match the low-T regime. The 3D BEC transition temperature
TN (mz � 0.85) � 0.59 K [36] is also shown.

this is due to spin diffusion-like behavior [62,63]. Therefore,
measurements should in principle depend explicitly on the
NMR frequency ω0.

V. CONCLUSION

Performing time-dependent numerical simulations at finite
temperature on 1D systems to compute the NMR relaxation
rate 1/T1, we have discussed the temperature range validity
of analytical predictions for two models (i) the paradigmatic
example for Tomonaga-Lutinger liquids: the spin-1/2 XXZ

chain for various Ising anisotropies, and (ii) a more realistic
S = 1 Hamiltonian, relevant for experiments on the DTN
compound as a function of an external magnetic field.

Both models present in some regime a gapless phase
that can be described by TLL “low-energy” theory, with
a relaxation rate dominated by its transverse component
1/T ⊥

1 ∼ T
1

2K
−1 algebraically diverging at low temperature,

where K is the dimensionless TLL exponent. We observed that
the expected power-law behavior occurs only below T/J1D ∼
0.1–0.2, thus defining the low-energy limit of validity of TLL
theory an order of magnitude below the energy scale J1D of
the system. It is important to be able to define this limit as
TLL predictions are often used experimentally on quasi-1D
compounds to extract the value of K . As a consequence,
we believe that it remains experimentally challenging [15],
and often impossible, to explore a genuine critical 1D regime
in quasi-1D compounds when J1D is small and 3D ordering
prevents a wide TLL regime. For instance, we have shown
that for DTN, the BEC ordering temperature is larger than the
crossover temperature towards TLL behavior.

We have also studied the transverse relaxation rates of
these two models in other regimes than TLL theory. First, we

considered high temperatures, with a peculiar nonmonotonic
behavior in the S = 1/2 XXZ model in the repulsive regime at
high T , which does not exist for the 1D S = 1 model of DTN.
However, such a nonmonotonic dependence with temperature
at high T is experimentally observed in DTN. We showed
that this effect comes from the parallel contribution of the
relaxation rate 1/T

‖
1 dominating at high temperature over the

transverse part. Finally, we verified that in gapped phases the
relaxation rates are exponentially suppressed ∼exp(−�g/T )
and can indeed lead to accurate determinations of the spin
gap, at least in a regime of temperature T � �g since other
relaxation mechanisms can change the activated behavior at
higher temperature.

We want to emphasize again the role of 3D ordering at finite
temperature, preventing the observation of a 1D TLL regime.
As discussed for the particular case of DTN, one needs a
hierarchy of energy scale J1D � T � J3D to be able to directly
extract the TLL exponent K from the divergence of T −1

1
with T .

Concerning future advances for quasi-1D systems, we can
envision trying to simulate imaginary-time dynamics using
quantum Monte Carlo techniques, provided that the model
has no minus-sign problem. While it will be necessary to
perform a numerical analytic continuation (using for instance
maximum entropy techniques), we have some hope that this
could lead to reliable results to quantitatively capture the
influence of interchain effects. For 1D chains, it has been
rather successful [10]. As a matter of fact, our extensive 1D
results could serve as useful benchmarks for that too.

While we have considered various chains, we are far from
being exhaustive. Indeed, there are some TLL models for
which elementary excitations may not be simple spin flips, for
instance multipolar nematic phase for which 1/T1 behavior
will be different [73,74]. In a similar line of thought, we
could imagine simulating more complicated models includ-
ing charge and spin degrees of freedom to describe NMR
relaxation in metallic or superconducting wires.

Note added. While completing this work, a related numer-
ical study by Coira et al. has appeared [75]. Our results are
perfectly compatible with each other when comparison can be
made, such as the transverse 1/T1 data for a single spin-1/2
XXZ chain with � � 0.
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APPENDIX A: DYNAMICAL CORRELATIONS
FOR THE X X MODEL

For completeness, we remind the reader the exact
expressions for time-displaced spin correlations in the exactly
solvable XX model.
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1. Longitudinal correlations

The longitudinal correlations 〈Sz
i (t)Sz

j (0)〉 for the XX

model are basically density correlations when performing the
Jordan-Wigner transformation. Since we are interested in the
temperature dependence of the correlations, what we need to
compute is actually

〈Sz
i (t)Sz

j (0)〉 = 1

Z Tr
[
eiHt Sz

i e
−iHt Sz

j e
−βH]

, (A1)

with Z = Tr e−βH the partition function. Calculations lead
to [76] 〈

Sz
i (t)Sz

j (0)
〉 = 1

4I1I2, (A2)

with I1,

I1 = 2

L + 1

∑
k

sin ki sin kj

[
1 + tanh

βεk

2

]
e−iεk t , (A3)

and I2,

I2 = 2

L + 1

∑
k

sin ki sin kj

[
1 − tanh

βεk

2

]
e+iεk t . (A4)

Also, the single operator averages are

〈
Sz

i (t)
〉 = 〈

Sz
i (0)

〉 = 1 − 4

L + 1

∑
k

sin2 ki

e−βεk + 1
. (A5)

2. Transverse correlations

The transverse correlations 〈S±
i (t)S∓

j (0)〉 have a more
complicated structure in the fermion representation due to the
string of operators in the exponential [77]. We introduce the
following identity eiπc

†
l cl = (−1)c

†
l cl = AlBl with Al = c

†
l + cl

and Bl = c
†
l − cl , leading to

2〈S±
i (t)S∓

j (0)〉 =
〈[

i−1∏
l=1

Al(t)Bl(t)

]
Ai(t)

×
[

j−1∏
l=1

Al(0)Bl(0)

]
Aj (0)

〉
. (A6)

Now thanks to Wick’s theorem this product of many fermion
operators can be rewritten as elementary expectation values of
two operators through the Pfaffian of some skew-symmetric
matrix. Its elements above the diagonal (which is purely made
of zeros) are

〈A1(t)B1(t)〉 〈A1(t)A2(t)〉 . . . 〈A1(t)Aj (0)〉
〈B1(t)A2(t)〉 . . . 〈B1(t)Aj (0)〉

. . . . . .

〈Bj−1(0)Aj (0)〉.

(A7)
At finite temperature,

〈Ai(t)Bj (0)〉 = 1

Z Tr
[
eiHtAie

−iHtBj e
−βH]

. (A8)

The two-body expectation values can be computed going in
Fourier space,

〈Ai(t)Aj (0)〉 = 2

L + 1

∑
k

sin kj sin ki

×
[

cos εkt − i sin εkt tanh
βεk

2

]
(A9)

and

〈Ai(t)Bj (0)〉 = 2

L + 1

∑
k

sin kj sin ki

×
[
− sin εkt − i cos εkt tanh

βεk

2

]
. (A10)

And equivalently 〈Bi(t)Bj (0)〉 = −〈Ai(t)Aj (0)〉 as well as
〈Bi(t)Aj (0)〉 = −〈Ai(t)Bj (0)〉.
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Kollath, T. Giamarchi, and A. Zheludev, Phys. Rev. Lett. 108,
167201 (2012).

[45] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cambridge
University Press, Cambridge, UK, 2011).

[46] P. Bouillot, C. Kollath, A. M. Läuchli, M. Zvonarev, B.
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