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Magnon-drag thermopower and Nernst coefficient in Fe, Co, and Ni
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Magnon drag is shown to dominate the thermopower of elemental Fe from 2 to 80 K and of elemental Co
from 150 to 600 K; it is also shown to contribute to the thermopower of elemental Ni from 50 to 500 K. Two
theoretical models are presented for magnon-drag thermopower. One is a hydrodynamic theory based purely on
nonrelativistic, Galilean, spin-preserving electron-magnon scattering. The second is based on spin-motive forces,
where the thermopower results from the electric current pumped by the dynamic magnetization associated with
a magnon heat flux. In spite of their very different microscopic origins, the two give similar predictions for pure
metals at low temperature, allowing us to semiquantitatively explain the observed thermopower of elemental Fe
and Co without adjustable parameters. We also find that magnon drag may contribute to the thermopower of Ni.
A spin-mixing model is presented that describes the magnon-drag contribution to the anomalous Nernst effect
in Fe, again enabling a semiquantitative match to the experimental data without fitting parameters. Our paper
suggests that particle nonconserving processes may play an important role in other types of drag phenomena and
also gives a predicative theory for improving metals as thermoelectric materials.
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I. INTRODUCTION

Multicomponent fluids and gases are abundant in nature and
exist at all scales, ranging from the universe [1] (composed of
various types of matter and energy) to cold-atom systems [2]
(composed of different types of atoms). Often, the interac-
tions between the various components give rise to new and
interesting physics. Examples include the interplay between
superfluid and normal components of liquid helium that give
rise to second sound [3] and spin-Coulomb drag [4] that arises
due to the interaction between different spin species.

A recent example of a two-component system is magnons
that interact with electrons at an interface between a magnetic
insulator and a normal metal. This interaction underpins
various novel physical effects, such as the spin-Seebeck
effect [5], spin-Hall magnetoresistance [6], and the attenuation
of magnetization relaxation by electric current through the
normal metal. However, magnons also exist in magnetic
metals in which they interact with electrons not at interfaces
but throughout the bulk of the material. One measurable
consequence of this is the magnon-drag thermopower: the
contribution to the thermopower that results from the magnonic
heat flux dragging along the electronic charge carriers.

Blatt et al. [7] suggested that magnon drag might be
the dominant mechanism behind the high thermopower (α)
of elemental iron. Magnon drag was again suggested as
the mechanism underpinning the field dependence of the
thermopower of a permalloy thermopile [8], but no proof or
quantitative theory was offered in either work. Grannemann
and Berger [9] measure an 8% variation in the magnetic
field dependence of the Peltier coefficient of a Ni66Cu34 at
4 K, which they attribute to a magnon-drag contribution

that is gradually destroyed by the magnetic field. Lucassen
et al. [10] proposed a contribution to magnon drag where
the magnetization dynamics associated with a thermal flux
of magnons pump an electronic spin current due to so-called
spin-motive forces. Because of the spin polarization of the
charge carrier, this electronic spin current results in a charge
current or voltage.

Here, we present a paper on magnon drag that is supported
by a basic understanding of the underlying physics. Two the-
ories for the magnon-drag thermopower (αmd) are presented:
a classical hydrodynamic theory based on Galilean-invariant
magnon-electron interactions and a theory based on spin-orbit
coupling. We outline under what conditions these theories give
the same results. We apply them to the thermopower of Fe, Co,
and Ni without using any adjustable parameters. The theories
are then compared to experimental results for the thermopower
of these elemental transition metals.

We further present a semiquantitative model for the
magnon-drag anomalous Nernst effect (ANE) based on spin
mixing, and we apply that to the ANE coefficient of single-
crystal Fe for which we present the first temperature-dependent
data. Measurements of other components of the thermo-
magnetic tensor, namely, the longitudinal and transverse
magnetothermopower and the planar Nernst effect (PNE) of
single-crystal Fe, are also reported.

Magnon drag offers a pathway to increase the thermopower
and therefore the thermoelectric figure of merit of metals.
The models presented here offer the guiding principles for the
optimization of metallic thermoelectric alloys, which would
have major advantages over the thermoelectric semiconductors
used today. Indeed, metals are mechanically stronger than
semiconductors, can be formed in net shapes and welded
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such that thermoelectric elements can be structurally integrated
with heat exchangers, and can be heat and corrosion resistant.
Beyond its impact on research in thermoelectricity, the more
general relevance of our results is that the two contributions
to the drag theoretically considered here are very different
in nature. One relies on spin-conserving scattering and the
other requires spin-flip scattering and/or spin-orbit coupling.
Our work thus suggests that processes equivalent to the
latter in the context of other drag phenomena give important
contributions that have not yet been considered in detail,
such as tunneling events in a semiconductor Coulomb drag
setup [11] and electron-phonon spin-flip scattering induced by
spin-orbit coupling in electron-phonon drag [12].

II. THERMOPOWER

A. Hydrodynamic theory

In the hydrodynamic theory [9], the magnons and electrons
are modeled as two interpenetrating fluids, and Galilean
invariance is assumed such that the electrons and magnons are
described by a single parabolic band. Furthermore, umklapp
and magnon nonconserving processes are neglected. As a
result, the sign of the thermopower is solely determined by the
sign of the charge carriers’ effective charge e and thus their
effective mass. In what follows, for carriers with a positive
effective mass (conduction band electrons), e < 0, while e > 0
for charge carriers with negative effective mass (valence
band holes). The first fluid is the electrons with momentum
density �pe = nem�ve in terms of their number density ne,
mass m, and drift velocity �ve. The other fluid is composed
of magnons with momentum density �pm, mass M = �

2

2D
(D

is the magnetic exchange stiffness), and �pm = nmM �vm. The
phenomenological equations for the fluid are

d �ve

dt
= e

m

(
�E − αd

�∇T − �ve

τe

)
− �ve − �vm

τme

,

(1)
d �vm

dt
= − e

M
αm

�∇T − �vm

τm

− �vm − �ve

τem

,

where �E is the electric field and τe and τm are transport
mean-free times for the electrons and magnons, respectively.
The magnonic thermopower is αm = 2

3
Cm

nme
, where Cm is the

magnon specific heat capacity per unit volume. This is derived
by considering magnons as a free, ideal gas with a parabolic
dispersion relation, and taking the gradient of the relation
P = 2

3U between the pressure P and internal energy density
U (in units of energy per volume) in the presence of a
temperature gradient. The time scales τme and τem parametrize
the magnon-electron collision rate. Thus, according to the
conservation of linear momentum, nem

τme
= nmM

τem
.

Under steady-state conditions and for zero electric current
(ve = 0), the previous equations are solved to determine the
electric field required to counteract the thermal gradient. The
magnon-drag thermopower is

αmd = 2

3

Cm

nee

1

1 + τem

τm

. (2)

To this, one adds the electronic diffusion thermopower αd ,
given by [13]

αd = (πkB)2T

3eEF

. (3)

Here, EF is then the Fermi energy. The total electron
thermopower, including both the diffusive and magnon-drag
contributions, but neglecting electron-phonon drag, is then

α ≡ | �E|
| �∇T | = αmd + αd. (4)

In the presence of sufficiently strong disorder scattering,
we are allowed to assume at sufficiently low temperatures
an energy-independent disorder-dominated magnon mean-free
path l. Consequently, we expect that τm scales with temperature
as τ−1

m ∝ √
T because the density of states varies with energy

as
√

ε. At higher temperatures, but low enough to ignore
magnon-conserving magnon-phonon interactions, scattering
is likely to be dominated by magnon nonconserving processes
parameterized by the Gilbert damping parameter αGD [14]
so that τ−1

m ∝ αGDT . The crossover takes place at T ∗ ∼
Tc

s2/3 (αGDl)2. Using αGD ∼ 10−2, a ∼ 1 nm and scattering
length l ∼ 1 μm, we obtain T ∗ ∼ 10−2Tc with a range of T ∗ ∼
(10−1 to 10−3)Tc. The electron-magnon scattering frequency
is expected to scale with temperature as τ−1

em ∝ T 2. This results
from the combination of momentum and energy conservation
constraints for electron-magnon scattering, which give a factor
of

√
T and the reduced phase space for occupied magnon

states, which gives a factor of T 3/2. Thus, τ−1
em decreases

with temperature with a higher power of T than τ−1
m , and the

factor (1 + τem

τm
)−1 should vanish as the temperature approaches

zero. In the limit parameterized by Gilbert damping, the
attenuation of the magnon-drag thermopower is expected to
have a linear dependence on T . Conversely, in the regime
where τm is dominated by magnon-phonon scattering, τ−1

m

would vanish faster than τ−1
em due to the rapidly shrinking phase

space associated with the linearly dispersing phonons, and
the factor (1 + τem

τm
)−1 would approach unity. This corresponds

to the clean case where magnon-conserving magnon-phonon
scattering of momentum is faster than magnon nonconserving
processes parameterized by the Gilbert damping, and this is
likely to be the case for high-purity elemental metals.

B. Theory based on spin-motive forces

In addition to the hydrodynamic contribution, we ac-
knowledge a contribution to the magnon-drag thermopower
that ultimately stems from spin-orbit interactions [10]. This
contribution is parameterized by a dimensionless material
parameter β, typically of the order of 0.01–0.1. It arises from
the electric current pumped by the dynamic magnetization
associated with a magnon heat flux (via the aforementioned
spin-motive forces [15,16]). As was shown in Ref. [10], the
electric current density is given by

�je = σ

(
�E + βps

�

2e

�jQ,m

sD

)
, (5)

where σ = nee
2τe

m
is the electrical conductivity, τe is the

electronic transport relaxation time, ps the spin polarization of

144407-2



MAGNON-DRAG THERMOPOWER AND NERNST . . . PHYSICAL REVIEW B 94, 144407 (2016)

the electric current (typically of order 1), �jQ,m is the magnon
heat current, and D is the spin stiffness. Combining Eq. (5)
with Fourier’s law for magnons �jQ,m = −κm

�∇T and assuming
diffusive magnon transport and a boundary condition of an
electrically open circuit in the sample leads to

α′
md = βps

�

2e

κm

sD
. (6)

In the simplest microscopic models [17–19], the sign of this
thermopower also depends on the sign of the effective mass.
Based on Landau-Lifschitz-Gilbert phenomenology, Flebus
et al. [20] pointed out a Berry phase correction to the above
result that amounts to replacing β with β∗ = β − 3αGD in
Eq. (6). In our discussion and in Eq. (6), therefore, the effective
β entering the expressions for the magnon-drag thermopower
should be understood as β∗. We note in passing that this factor
can also affect the sign of the magnon-drag Seebeck coefficient
(depending on the ratio of β/αGD that can be estimated [21] to
be of the order of 1 to 10), irrespective of the effective mass
considerations.

To compare Eq. (2) and Eq. (6), we estimate κm and
Cm. Assuming that the magnon dispersion is quadratic (i.e.,
at sufficiently low magnon energies and T < Tc), Cm ∼
kBs( T

Tc
)3/2, where s ∼ a−3 (in units of �) is the saturation

spin density, T is the temperature, kB is the Boltzmann
constant, and Tc is the Curie temperature of the ferromagnet,
the hydrodynamic formula for magnon-drag thermopower
[Eq. (2)] can be rewritten:

αmd ≈ kB

e

s

ne

(
T

Tc

)3/2 1

1 + τem

τm

. (7)

To estimate the thermopower due to spin-motive forces in
Eq. (6), we take κm ∼ k2

BT ( T
Tc

)s2/3 l
�

at T < T ∗ and κm ∼
k2
BT

√
T
Tc

s1/3/αGD� at T > T ∗ due to magnon diffusion [22].

Using the latter expression and kBTc ∼ s2/3D, we obtain

α′
md ∼ βps

αGD

kB

e

(
T

Tc

)3/2

. (8)

The two magnon-drag contributions to thermopower stem
from different microscopic physics: the hydrodynamic con-
tribution is nonrelativistic, and the contribution due to spin-
motive forces is based on spin-orbit interactions that are
intrinsically relativistic and nonhydrodynamic, as they do not
conserve magnons. Remarkably, the contributions estimated
in Eqs. (7) and (8) yield comparable values if we set s

ne
∼ 1

and βps

αGD
∼ 1, which are certainly reasonable values for pure

elemental transition metals, and omit the last, scattering
time-dependent factor in Eq. (7). However, there are various
transport regimes in which the hydrodynamic contribution and
spin-motive force contribution to magnon-drag thermopowers
are clearly distinct.

C. Experimental thermopower data

We present experimental data for the thermopower α of
various samples of Fe, Co, and Ni in Fig. 1. Fe has an ordinary
Hall effect of polarity opposite to that of Co and Ni [23],

which reflects the polarity of the effective mass of the dominant
charge carriers and the sign of α.

The thermopower of Fe has been measured by numerous
authors [7,24] over the temperature range included here, but we
repeated the measurements because they are extended to the
thermomagnetic tensor in the next section. All measurements
on Fe were completed on a 7.13 × 5.05 × 1.07 mm 99.994%
pure single crystal of [100] Fe from Princeton Scientific (red
points in Fig. 1). We also took thermopower data on a dense
sintered sample of polycrystalline Fe [blue points in Fig. 1(a)],
which gave essentially the same results [see insert in Fig. 1(a)].
The polycrystalline sample was prepared from 99.998% Fe
powder in a Spark Plasma Sintering system under a uniaxial
50 MPa pressure, using a 3 min ramp to 750 ◦C, a 2 min hold
at 750 ◦C, then an uncontrolled cooling to room temperature;
the sample was at least 94% dense. Two similarly sized 99.9%
pure polycrystalline ingots of Co from Alfa Aesar were used
for bulk Co measurements, giving consistent results [red points
in Fig. 1(b)]. A 50% porous bulk polycrystalline sample of Co
was prepared from 1 g of powder, which was obtained from
Alfa Aesar and rated as −22 mesh particle size with 99.998%
purity. The powder was placed in a 10 mm diameter graphite
die and compacted via spark plasma sintering at 250 ◦C for
30 min under 50 MPa of uniaxial pressure. The resulting pellet
was mechanically stable but brittle enough to be cut easily with
a handheld wire cutter. Based on the cylindrical pellet’s size
(2.97 mm thick corresponding to a volume of 0.23 cm3) and
the amount of Co used (1 g corresponding to a volume of
0.11 cm3), we estimate the sample to be ∼50% dense. The
thermopower of the porous Co sample is reported as blue
points in Fig. 1(b). The thermopower data on a Ni ingot [red
points in Fig. 1(c)] are taken from the literature [25]. We also
prepared a 50% porous sample from Ni powder following the
protocol used for Co, and the thermopower data on this sample
are given as blue points in Fig. 1(c).

The Thermal Transport Option (TTO) on a 70 and 90
kOe Quantum Design Physical Property Measurement System
(PPMS) with customized controls programmed in LabVIEW
was used for material characterization between 1.8 and 400 K.
For measurement of the thermopower, a copper heat sink
was attached to one end of the sample using silver epoxy.
A gold-plated copper plate was attached to the opposite end
of the sample using silver epoxy, and a thin lead of the same
material was left protruding from the plate for later attachment
of the resistive heater assembly. Gold-plated copper leads of
width 0.65 mm were attached to the sample using silver epoxy
along the sample edge between the heater and heat sink spaced
approximately 4 mm apart. The heat sink was clamped to the
TTO puck, and gold-plated copper assemblies purchased from
Quantum Design containing calibrated Cernox thermometers
and voltage measurement wires were clamped to the leads.
A resistive heater assembly was clamped to the lead on the
heater side. Thermopower and resistivity data between 400
and 1000 K were taken on the Co ingot using a Linseis
LSR-3. A sample with a cross section of 2.70 × 4.21 mm
was placed in the chamber, and two type S thermocouples
were attached to the sample approximately 3.75 mm apart
from one another. The chamber was purged with helium gas.
Temperature-dependent steady-state measurements of thermal
conductivity and resistivity of the single-crystal and sintered
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FIG. 1. Temperature dependence of the thermopower of Fe (a),
Co (b), and Ni (c). The insets represent data on a linear scale; the main
frames on a logarithmic scale (negative for Co and Ni since they have

samples of Fe, the ingot and porous sample of Co, and the
porous sample of Ni are reported in Fig. 2.

The thermopower of Fe is in good agreement with previous
work [7,24]. The thermopower of the Co ingot agrees with
previous measurements above 150 K [26], but at lower
temperatures, it shows a sign reversal near 100 K and a
pronounced maximum between 11 and 14 K (we are unaware
of previously existing data below 90 K). The porous Co sample
does not show either of these features, and this sample displays
a negative thermopower that follows closely to a T 3/2 law up
to 400 K. We attribute the positive peak around 12 K in the Co
ingot to phonon drag since it is present in the ingot but not in the
porous sample. The umklapp-limited phonon mean-free path
in elemental Co is expected to be longer than the grains in the
porous sample around 12 K. Therefore, boundary scattering
will limit the phonon mean-free path in the porous sample
and suppress phonon drag. The thermopower of the Ni ingot
[25] also has an additional feature around ∼20 K that is not
present in our porous sample and is attributed to phonon drag
by analogy with the case of Co. Therefore, if magnon drag
lies at the origin of the thermopower of Co or Ni, Eq. (4)
is to be tested against the results on the porous samples. No
similar additional structure is observed in the thermopower of
Fe, which is quite robust vis-à-vis disorder, as was already
reported by Blatt et al. [7].

D. Comparison between theory and experiment

The data on the thermopower of Fe, Co, and Ni are
compared to Eqs. (2)–(4) in the limit where we assume that
electron-magnon scattering dominates all magnon scattering
(αmd dashed line and α full line in Fig. 1), allowing us to
ignore the scattering time-dependent prefactor (τem < τm). The
following numerical values are used: Cm is derived [27] from
the magnon dispersion relation for Fe [28], Co [29], and Ni
[30]. Below energies of about 4 meV, the magnon dispersions
are approximately quadratic (D ≈ 2.7 × 10−22 eV-m2 for Fe,
4.3 × 10−22 eV-m2 for Co, and 5.9 × 10−22 eV-m2 for Ni),
which leads to Eq. (7). At higher energies (the case for Fe), we
calculate Cm from the polynomial fit to the dispersion [28]. The
total charge carrier concentrations are [31] 1.7 × 1023 cm−3 for
Fe, 8.9 × 1022 cm−3 for Co, and 9.2 × 1022 cm−3 for Ni. We
assume that only the s and p electrons contribute to transport
[13] and derive their concentration from the density of states
at the Fermi energy [32]: ne ≈ nsp = 2.36 × 1021 cm−3 (Fe),

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a negative thermopower). The thermopower is given on two Fe (a)
samples, a 95% dense sintered polycrystal (red triangles) and a single
crystal (black circles) with the heat flux oriented along the 〈100〉 axis.
The thermopower is given on two Co (b) and two Ni (c) samples,
polycrystalline ingots (red triangles) and 50% porous samples (blue
squares) prepared to eliminate the effects of phonon drag. The data
for the Ni ingot are taken from the literature [25]. The dashed black
lines give the magnon-drag thermopower calculated from Eq. (2)
with τm/(1 + τem) = 1, as explained in the text; the full black lines
are the sum of the magnon-drag and diffusion thermopower, Eq. (4).
The agreement for Fe is excellent and is within about 40% for Co.
The thermopower of Ni is about two times smaller than the calculation
suggests.
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FIG. 2. Temperature dependence of electrical resistivity ρ (a) and
thermal conductivity κ (b) of the samples whose thermopower is
reported in Fig. 1. The data on Fe are shown as full circles (black for
the single crystal and red for the 95% dense polycrystals). The data
for Co are given as open squares, for Ni as closed triangles, red for
the polycrystalline ingots, and blue for the porous samples.

8.1 × 1021 cm−3 (Co), and 3 × 1021 cm−3 (Ni). The sign of the
thermopower is derived from the slope of the s- and p-bands’
density of states at EF : α is positive for Fe and negative for Co
and Ni. Equation (3) then gives the dashed line representing
αmd in Fig. 1. The diffusion thermopower in Eq. (3) can be
estimated roughly using the Fermi energy (EF = 0.48 eV for
Fe, 0.76 eV for Co, 1.9 eV for Ni) for s- and p-electron bands
[32]. The band structure involves several pockets of electrons

with dominantly s-p and d-character so that these simplified
band structure parameters are affected by uncertainties of
about a factor of 2. No adjustable parameter is used to fit the
lines in Fig. 1. We submit that the similarities in magnitude and
temperature dependence of α observed at T < 80 K for Fe and
T < 400 K for the porous sample of Co are evidence that both
models are reasonable. Above those temperatures, the data
points fall under the calculated line. This could be due to the
increased effect of the factor (1 + τem

τm
)−1, to the contribution

of the additional term β∗ = β − 3αGD discussed above, or
to a breakdown of the approximation for the magnon-heat
conductivity that was used to estimate the contribution due to
spin-motive forces. In addition, the data on the Co ingot show
a discontinuity at the face-centered cubic/hexagonal phase
transition near 700 K, as reported previously [26]. The data
on the porous Ni sample do not agree as well with this simple
model: the calculated values are about two times larger than
the experimental data on the porous sample.

III. THERMOMAGNETIC EFFECTS

A. Spin-mixing theory for the ANE

A priori, neither model for αmd presented above accounts for
the generation of a skew force. Electric fields perpendicular to
the direction of an applied temperature gradient in the presence
of an applied magnetic field in the third perpendicular direction
can arise from two other mechanisms. First, in ferromagnetic
metals that also have strong spin-orbit interactions and a
measureable spin-Hall coefficient, one expects a bulk spin-
Seebeck-effect-like contribution to the Nernst coefficient [33].
We are not aware of measurements of the spin-Hall angle of Fe.
An interpolation of the spin-Hall angle measurements in 3d el-
ements [34] as a function of their atomic number suggests that
Fe has a small spin-Hall angle; therefore, we neglect this con-
tribution. The second possible mechanism for a magnon-drag
contribution to the Nernst coefficient arises from spin mixing,
which was suggested for the resistivity [13] and thermopower
[35]. This model, inspired by a similar model for the phonon-
drag contribution to the Nernst effect [36], is presented here.

Consider two independent spin-up and spin-down con-
duction electron channels with densities (n↑ and n↓) at EF ,
partial conductivities (σ↑ and σ↓), mobilities (μ↑ and μ↓), Hall
coefficients (RH↑ and RH↓), thermopowers (α↑ and α↓), and
Nernst coefficients (N↑ and N↓). The total Nernst coefficient is
then derived by writing the Onsager relation for each channel,
adding the fluxes, and solving the proper boundary relations for
the transport coefficients, as is done for multicarrier transport
in semiconductors [37]:

N = (N↑σ↑ + N↓σ↓)(σ↑ + σ↓) + (N↑RH↓ + N↓RH↑)σ 2
↑σ 2

↓(RH↑ + RH↓)B2 + σ↑σ↓(α↑ − α↓)(σ↑RH↑ − σ↓RH↓)

(σ↑ + σ↓)2 + σ 2
↑σ 2

↓(RH↑ + RH↓)2B2
(9)

with B is the magnetic induction. The terms in B2 are neglected
because the mobility is low. In principle, α also needs to

be considered in light of the two-channel model, but N is
more sensitive to this model than α, because it is sensitive
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to the difference (α↑ − α↓), while α is the conductivity-
weighted average between α↑ and α↓. Considering each
channel separately first, a net Lorentz force arises only if
electrons have a velocity distribution that does not average
out when integrated over the thermal energy spread of several
kBT centered around EF , as happens when there is an energy
dependence to the scattering mechanism. Each channel then
develops a partial Nernst coefficient, N↑ and N↓. These result
in a Mott-type relation for the Nernst coefficient, relating it
in the same way to the Hall coefficient as α is related to
σ . The thermopower of liquid Fe [38] is a function almost
exclusively of the energy dependence of the scattering (mostly
s-d scattering) and shows experimentally that this contribution
is small. Therefore, we assume that N↑ ≈ N↓ ≈ 0 in Eq. (9).
Since α↑ �= α↓ and μ↓ �= μ↓, the term in (α↑ − α↓) in Eq. (9)
becomes dominant:

N = σ↑σ↓(α↑ − α↓)(μ↑ − μ↓)

(σ↑ + σ↓)2 . (10)

We assume further that α↑ and α↓ are αmd↑ and αmd↓
[Eq. (2)] and that n↑ ≈ nsp↑ and n↓ ≈ nsp↓. These are
proportional to the density of states at the Fermi level, i.e.,
nsp↑↓ ∝ Dsp↑↓, which are known [32]. The partial conductiv-
ities for each channel, up or down (↑↓), are σ↑↓ = nsp↑↓eμ↑↓
with mobilities μ↑↓ = μsp↑↓ = e

τsp↑↓
msp↑↓

given as a function
of scattering frequencies and effective masses. The partial
thermopowers are α↑↓ ≈ αmd↑↓ = 2

3
Cm

nsp↑↓e
, and Eq. (10) can

be expressed in terms of the ratios rn ≡ nsp↓
nsp↑

,rμ ≡ μsp↓
μsp↑

. Thus,
we can further reduce Eq. (10) to the following:

N = 2

3

Cm

ρnspe2

(
1 − r−1

n

)
(1 − rμ)rnrμ

(1 + rnrμ)3 , (11)

where nsp = nsp↑ + nsp↓ and the carrier mobility is derived
from the sample’s resistivity ρ.

To estimate the mobility ratios, we take the effective masses
as proportional to the density of states at the Fermi level to
the ⅔ power, msp↑↓ ∝ D2/3

sp↑↓. Assuming that s-d scattering
dominates, we further assume that this mechanism is spin
selective, i.e., that the scattering frequency of electrons in
the spin-up channel is proportional to the density of states
of spin-up d-electron bands: τ−1

sp↑↓ ∝ D−1
d↑↓ so that μsp↑↓ ∝

Dd↑↓D−2/3
sp↑↓ . With the band parameters of Ref. [32], Eq. (11)

becomes

N ≈ 0.05
Cm

ρnspe2
≈ 0.07

αmd

ρ
. (12)

In the low-temperature limit, ρ ∝ T 0, αmd ∝ Cm ∝ T 3/2

and Eq. (12) predicts that at low temperature N ∝ T 3/2.
Equation (12) is compared to experimental data in the
following section.

B. Experimental Nernst thermopower and ANE coefficient of Fe

The components of the thermomagnetic transport tensor in
a magnetic field are denoted αABC , where A designates the
direction of the applied heat flux and temperature gradient,
B designates the direction of the measured electric field,
and C designates the direction of the applied magnetic field,

i.e., αABC ≡ EB

∇TA
|HC

. The third index is generally omitted for
the thermopower at zero field, but since we are describing
bcc-Fe, polycrystalline Co, and polycrystalline Ni, where the
thermopower is isotropic, we omitted all subscripts in the first
section and denoted the thermopower at zero field as simply
α. The magnetothermopower in a longitudinal magnetic field
is then αxxx and in a transverse field αxxz. The Nernst
thermopower is αxyz; the planar Nernst thermopower is αxyx .

To the best of our knowledge, prior to the data presented
here, only values for the Nernst coefficient near room tem-
perature are reported in the literature, but no systematic data
as a function of field and temperature have been published
yet. Historical references are by Zahn [39], Hall and Campbell
[40], Butler and Pugh [41], and Smith [42]. The single-crystal
Fe sample is aligned such that x is the [100] axis, y along
[010], and z along [001]. The measurements were carried out
in the TTO system described above using the static heater and
sink method [43]. A third gold-plated copper lead was added
to the sample (also attached using silver epoxy), mounted
as stated previously, directly opposite of the lead closest
to the heat sink. The voltage wire from the heater side of
the Cernox assembly was removed and soldered to the new
lead. The sample was rotated such that the magnetic field
was applied in the appropriate direction. Data were taken at
discrete temperatures ranging from 1.8 to 400 K, with magnetic
fields sweeping in both directions between −90 and 90 kOe at
multiple magnetic field ramp rates.

The Nernst thermopower αxyz(Ha,z) of the two Fe is shown
as a function of magnetic field in Fig. 3 in two field ranges.
When plotted from −90 to +90 kOe, the ANE is clearly
in evidence from −20 to 20 kOe and the ordinary Nernst
effect (ONE) outside this range. The bottom frame zooms
in on the ANE field range, where hysteresis is observed
from −5 to 5 kOe: this is attributed to the motion of the
direction of magnetization in domains inside the sample and
will be discussed later in the context of the PNE. The Nernst
coefficient N ≡ ∂αxy (Ha,z)

∂Ha,z
derived in the ANE regime for the Fe

single crystal [Fig. 3(b)] is shown as a function of temperature
in Fig. 4. The temperature dependence of the ANE slope N

follows the T 3/2 law discussed above, suggesting a magnonic
origin.

A semiquantitative comparison of the data in Fig. 4 with
Eq. (12), using the experimental values for α (Fig. 1) and ρ

(Fig. 2), gives the solid curve in Fig. 4. This procedure again
uses no adjustable parameters. The agreement with the data is
reasonable up to about 200 K, a higher temperature than for
the thermopower, which is expected since the experimental
values of thermopower are used in Eq. (12) to obtain the solid
curve. Above this temperature, the experimental data continue
to increase with temperature while Eq. (12) saturates. The fit
can be improved by adding a negative constant contribution to
N of −50 nV K−1 T−1.

C. Longitudinal and transverse magnetothermopower

To the best of our knowledge, besides the zero-field
thermopower of Fe [7,24], only experimental results on αxxx

and αxxz of Fe at 0.2 T are reported in the literature [44].
Measurements of both the temperature dependence of the lon-
gitudinal (αxxx) and transverse (αxxz) magnetothermopower

144407-6



MAGNON-DRAG THERMOPOWER AND NERNST . . . PHYSICAL REVIEW B 94, 144407 (2016)

FIG. 3. Dependence of the Nernst thermopower αxyz on an
applied external magnetic field Ha,z. Frames (a) and (b) give magnetic
field dependencies at the temperatures indicated over two different
field ranges; frame (a) for the polycrystalline Fe, frame (b) for single
crystal Fe, with x ‖ 〈100〉 axis. The ANE extends from about −20 to
20 kOe, the ONE outside this range. Hysteresis is visible in the inner
loop in frame (b) and is likely due to domain realignments. The inset
shows the geometry of the measurements.

were completed here on the single crystal. The values for
αxxx(|Ha,x | � 70 kOe) do not deviate measurably from α: no
longitudinal magnetothermopower effect is resolved above the
error bar of the present measurements, which is limited by the
noise floor of 50 nV to about 0.2% on relative measurements.
In-field data of Blatt et al. [44] are internally inconsistent,
since Fig. 3 in Ref. [44] shows no magnetic field dependence
to αxxx , consistent with our observations, but Figs. 1 and 2 in
Ref. [44] show a difference between αxxx(Ha,x = 2 kOe) and
axxx(Ha,x = 0 kOe) = α, which is not reproduced here.

The transverse magnetothermopower αxxz(Ha,z) is reported
as relative values for the change of αxxz(Ha,z) vis-à-vis
αxxz(Ha,z = 0 kOe) in Fig. 5 as a function of Ha,z at various
temperatures. The relative effect is a small increase in
thermopower, which is not resolved below 100 K. In principle,
an applied magnetic field opens an energy gap gμBH in

FIG. 4. Temperature dependence of the anomalous Nernst co-
efficient Nxyz ≡ ∂αxyz/∂Ha,z, which is the slope of the Nernst
thermopower in the ANE regime. The full line represents the model
calculation of Eq. (12).

the magnon spectrum of ferromagnets (here, μB is the Bohr
magneton and g is the Landé factor, which is about 2 for
Fe). In practice, this gap is too small at 70 kOe to have
a resolvable effect on Cm and αmd above ∼10 K, given the
accuracy of our measurements. Below 10 K, the thermopower
is still dominated by electronic diffusion, and the magnitude of
the magnon-drag contribution to the thermopower is too small
to resolve its magnetic field dependence. Therefore, the most
likely cause for the magnetothermopower effect in αxxz is not
related to changes in magnon density, but perhaps due to the
spin-mixing effects, which were not taken into account during
the calculations of the net thermopower.

FIG. 5. Magnetic field dependence of the transverse magnetother-
mopower αxxz, normalized to the zero field thermopower. The inset
shows the geometry of the measurements with x ‖ 〈100〉 axis.
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FIG. 6. The magnetic field dependence of the planar Nernst
thermopower αxyx at selected temperatures. The inset shows the
geometry of the measurements, with x ‖ 〈100〉 axis.

D. Planar Nernst effect

For the measurements in the αxyx and αxyy PNE geometries,
the single crystal sample was mounted for the TTO system
in the same manner as the Nernst geometry but rotated to apply
the magnetic field in the appropriate directions. Data were
taken at discrete temperatures ranging from 1.8 to 400 K, with
magnetic fields sweeping in both directions between −70 kOe
and 70 kOe at multiple magnetic field ramp rates.

A nonzero planar Nernst thermopower αxyx , exceeding the
noise level of 50 nV, is shown in Fig. 6 as a function of magnetic
field. The signal is an even function of magnetic field and
saturates around the field value where the magnetization of
the sample saturates. The difference between the zero field

FIG. 7. The temperature dependence of the planar Nernst ther-
mopower αxyx in the field range, where it is saturated (Ha,x > 5 kOe).
Error bars represent a 97% confidence interval for the standard error.

value (set to be zero) and the saturation value is plotted as a
function of temperature in Fig. 7. This value increases rapidly
with decreasing temperature below 50 K, but it is nonzero and
nearly constant between 50 and 300 K. No signal is detected
for αxyy , except for noise transients at what amounts to the
coercive field of the sample in that geometry such that for
all practical purpose, αxyy ≈ 0 in our measurements. This is
consistent with the observations of Pu et al. [45]. The PNE
is associated with the switching of the magnetization of the
sample [45]. The magnetic field range over which a signal
change is observed in αxyx does correspond to the field range
over which hysteresis is observed in αxyz [Fig. 3(b)] and is only
a fraction of the extent of the ANE field range; a posteriori, this
justifies attributing that feature in the ANE to the switching of
a domain in the sample.

IV. CONCLUSION

In conclusion, this paper describes both hydrodynamic and
relativistic contributions to the magnon-drag thermopower and
a spin-mixing model for the magnon-drag Nernst coefficient at
magnetic fields above the saturation magnetization. We have
shown that the thermopower theories can, depending on which
scattering processes limit the electronic and magnon transport,
coincide at low temperatures. The theories explain the exper-
imental thermopower of Fe and Co, which have two different
polarities, semiquantitatively without adjustable parameters.
The results are less conclusive about the thermopower of Ni.
The theories presented also have predictive power, potentially
enabling the design of metallic thermoelectric alloys that might
become competitive with semiconductor thermoelectrics. For
example, Eq. (2) shows that alloys with a lower concentration
of s and p electrons than those of elemental Fe, Co, and Ni
are expected to have a higher αmd and therefore figure of merit
(ZT = α2σ

κ
T ). Note that such optimization does not require

changing the overall concentration of electrons in a metal,
which would be a daunting task, but involves the redistribution
of free electrons between bands of s-p-orbital band character
and bands of d-orbital character. The contribution due to
spin-motive forces may be increased by increasing the ratio
of β to the Gilbert damping, as has been achieved, for
example, by alloying permalloy with vanadium [46]. A
further possibility is tuning the ratio β/αGD in composite
materials by introducing second phases with the presence of
interfaces that affect the Gilbert damping and β parameter
differently [47].
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