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We consider the coupling of the magnetic Goldstone modes, or magnons, in both quantum ferromagnets and
antiferromagnets to the longitudinal order-parameter fluctuations and the resulting nonanalytic behavior of the
longitudinal susceptibility. In classical magnets it is well known that long-range correlations induced by the
magnons lead to a singular wave-number dependence of the form 1/k4−d in all dimensions 2 < d < 4, for
both ferromagnets and antiferromagnets. At zero temperature we find a profound difference between the two
cases. Consistent with naive power counting, the longitudinal susceptibility in a quantum antiferromagnet scales
as kd−3 for 1 < d < 3, whereas in a quantum ferromagnet the analogous result, kd−2, is absent due to a zero
scaling function. This absence of a nonanalyticity in the longitudinal susceptibility is due to the lack of magnon
number fluctuations in the ground state of a quantum ferromagnet; correlation functions that are sensitive to
other fluctuations do exhibit the behavior predicted by simple power counting. Also of interest is the dynamical
behavior as expressed in the longitudinal part of the dynamical structure factor, which is directly measurable via
neutron scattering. For both ferromagnets and antiferromagnets there is a logarithmic singularity at the magnon
frequency with a prefactor that vanishes as T → 0. In addition, in the antiferromagnetic case there is a nonzero
contribution at T = 0 that is missing for ferromagnets. Magnon damping due to quenched disorder restores the
expected scaling behavior of the longitudinal susceptibility in the ferromagnetic case; it scales as kd−2 if the order
parameter is not conserved (magnetic disorder), or as kd if it is (nonmagnetic disorder). Detailed predictions are
made for both two- and three-dimensional systems at both T = 0 and in the limit of low temperatures, and the
physics behind the various nonanalytic behaviors is discussed.

DOI: 10.1103/PhysRevB.94.144404

I. INTRODUCTION

The collective excitations known as magnons are a charac-
teristic feature of any magnetically ordered state in which a
continuous symmetry is spontaneously broken [1]. Common
examples are planar, or XY, and Heisenberg magnets, where
the spontaneously broken symmetry is O(2) and O(3),
respectively. The magnons are the resulting Goldstone modes,
which are soft or massless since a uniform rotation of the
order parameter does not require any energy. In a ferromagnet,
their frequency � scales as the wave number k squared in
the long-wavelength limit, � ∼ k2; in an antiferromagnet,
the frequency is a linear function of the wave number,
� ∼ k. The relevant correlation function is the transverse
order-parameter susceptibility, which diverges in the limit of
zero frequency and wave number. In a solid, the magnons are
gapped at asymptotically small frequencies, and the transverse
susceptibility stays finite, due to the underlying lattice that
breaks the O(n) symmetry; however, compared to other
relevant energy scales this is usually a small effect due to
the weakness of the spin-orbit interaction. For our purposes
we will ignore the spin-orbit interaction and treat the magnons
as gapless.

Magnons can be observed directly via neutron scatter-
ing [1,2]. However, via couplings of the transverse order-
parameter fluctuations to other modes, they also have profound
indirect effects on other observables. An example is the
longitudinal spin susceptibility χL in a classical Heisenberg
ferromagnet or antiferromagnet. It has been known for a long
time that the coupling of the longitudinal spin fluctuations to

the transverse ones (i.e., the Goldstone modes) leads to a χL

that diverges for k → 0 everywhere in the ordered phase for all
spatial dimensions 2 < d < 4 [3–5]. The leading contribution
takes the form of a convolution of two Goldstone modes

χL ∝
∫

d p
1

p2

1

( p − k)2
≈

∫
|k|

d p
1

p4
∝ 1

|k|4−d
. (1.1)

It can be represented diagrammatically as shown in Fig.1.
This result, which was originally derived for ferromagnets

in perturbation theory, was later shown by renormalization-
group (RG) methods to be asymptotically exact [6]. It reflects
the scale dimensions that characterize the stable RG fixed point
that describes the ordered phase. We stress again that Eq. (1.1)
holds for both classical ferromagnets and antiferromagnets.
However, in the latter the physical meaning of the longitudinal
order-parameter susceptibility χL is the correlation function of
the staggered magnetization, rather than the spin susceptibility.

Physically, the nonanalytic dependence of χL on the wave
number reflects long-range correlations in the system that are
due to the massless magnons: In real space, χL for large
distances r falls off as a power law, χL ∝ 1/r2d−4. This is
a particular manifestation of a more general phenomenon:
Soft or massless modes lead to long-range correlations that
are reflected in nonanalytic wave-number and frequency
dependences in the hydrodynamic limit, i.e., the limit of small
frequencies and wave numbers, in observables that couple
to the soft modes. If the soft modes exist in entire phases,
as opposed to, e.g., isolated critical points, then so does the
nonanalytic behavior, which usually takes the form of power
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FIG. 1. Diagrammatic representation of the coupling between
longitudinal and transverse spin fluctuations in the classical case:
A longitudinal (L) mode couples to two transverse (T) modes. The
resulting contribution to the longitudinal susceptibility χL has the
form given in Eq. (1.1).

laws; a phenomenon known as generic scale invariance [7].
In magnets, other soft modes may be present that also couple
to any given observable and compete with the magnons in
producing long-range correlations, or nonanalytic behavior.
For instance, in disordered metals at zero temperature (T = 0)
there are diffusive excitations known as “diffusons” and
“Cooperons” that lead to nonanalyticities in observables
known as weak-localization effects [8,9]. A specific example
is the nonanalytic frequency dependence of the electrical
conductivity. The competing effects of magnons on one
hand, and of diffusons and Cooperons on the other, on the
conductivity in disordered metallic ferromagnets have been
investigated in Ref. [10].

The weak-localization and other zero-temperature effects
raise an interesting question: What is the fate of the singular
behavior of the classical longitudinal spin susceptibility,
Eq. (1.1), in the limit T → 0? Simple considerations show that
the singularity must be weaker at T = 0. In quantum statistical
mechanics the statics and the dynamics are intrinsically
coupled. The expression for χL at T = 0 therefore must
include a frequency integration in addition to the wave-number
integration, and the integrand must be comprised of the
dynamic Goldstone modes. A simple guess, based on power
counting only, is that for quantum antiferromagnets at T = 0
[11]

χL ∼
∫

|k|
d p

∫
�

dω
1

( p2 + ω2)2
∼ |k|d−3 ∼ �d−3 (1.2a)

for 1 < d < 3, with a logarithmic singularity in d = 3. We
will show below that this expectation is indeed borne out by
an explicit calculation.

For quantum ferromagnets, the corresponding expression
obtained by replacing the denominator in Eq. (1.2a) by
(p2 + ω)2 is clearly not correct. This can be seen from spin-
wave theory, which expresses the spin operators by bosonic
operators via a Holstein-Primakoff transformation [12]. In a
ferromagnet, the longitudinal spin is given in terms of the
magnon-number operator, and χL thus is the magnon-number
correlation function. At T = 0 there are no magnons, and
the contribution corresponding to Eq. (1.2a) (which would
scale as kd−2) therefore has a zero prefactor. An equivalent
statement is that in the ground state of a quantum ferromagnet
the magnetization has its maximum value, and therefore the
ground-state energy has the same value as it does classically
and cannot be decreased by quantum fluctuations [13]. In a
quantum antiferromagnet, by contrast, this is not true: The

classical Neél state is not an eigenstate of the Hamiltonian,
and the ground-state energy is lowered below its classical
value by quantum fluctuations. The remaining question is
how the classical singularity, Eq. (1.1), vanishes as T → 0
in a ferromagnet. As we will see, the leading contribution for
k → 0 at a low fixed temperature is given by Eq. (1.1) with a
T prefactor,

χL ∝ T

∫
d p

1

p2

1

( p − k)2
∝ T

|k|4−d
. (1.2b)

The above considerations hold for undamped magnons. If
the magnons are damped, then in general a nonanalyticity
in the hydrodynamic limit is restored, with the exponent
depending on the nature of the damping [14]. For instance,
magnetic impurities, which lead to a damping coefficient
proportional to p2, introduce sufficiently strong fluctuations
to invalidate the arguments given below Eq. (1.2a) and lead
to a longitudinal susceptibility that does indeed scale as kd−2

at T = 0. Nonmagnetic quenched disorder, which leads to
a damping coefficient proportional to p4, leads to a weaker
singularily, χL ∼ kd .

A more general question pertains to the spectrum of
the dynamical longitudinal susceptibility or, equivalently, the
longitudinal part of the dynamical structure factor, which is
directly measurable by neutron scattering, as is the transverse
part. For bulk ferromagnets at T > 0, the longitudinal structure
factor has a logarithmic singularity at the magnon resonance,
which gets regularized by a magnetic field [3]. We will show
that for an antiferromagnet there is a nonzero contribution even
at T = 0, which is caused by the same quantum fluctuations
that are responsible for Eq. (1.2a) to hold. The singularity
at the magnon resonance takes the form of a discontinuous
slope in bulk antiferromagnets and a square-root singularity in
two-dimensional systems.

The organization of the paper is as follows. In Sec. II we
consider magnets with undamped spin waves by considering
nonlinear sigma models (NLσMs) for both quantum ferro-
magnets and antiferromagnets. This provides a simple and
transparent way to understand why the classical nonanalyticity
disappears as T → 0 in the ferromagnetic case, while it is
just weakened, in agreement with the simple scaling argument
given above, in the antiferromagnetic case. In Sec. III we use
time-dependent Ginzburg-Landau theory to discuss the effects
of damped magnons in ferromagnets. In Sec. IV we conclude
with a summary and discussion of our results.

II. EFFECTS OF UNDAMPED MAGNONS

Nonlinear sigma models (NLσMs) provide a convenient de-
scription of the long-wavelength and low-frequency properties
of the ordered phase of systems with a spontaneously broken
symmetry. They are effective field theories that focus on the
Goldstone modes and integrate out all massive fluctuations
in the simplest approximation that respects the symmetry.
In particular, the classical O(3)-symmetric nonlinear sigma
model [15] provides a very easy way to demonstrate the
divergence of χL in a classical Heisenberg ferromagnet,
Eq. (1.1). It thus is natural to consider quantum NLσMs to
study the corresponding effect in quantum magnets. As we
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will see, the results are very different for the two types of
magnetic order.

A. Quantum ferromagnets

We consider a quantum ferromagnet with a fluctuating
magnetization M(x) = M0(x) m̂(x). Here and in what fol-
lows x = (x,τ ) comprises the real-space position x and the
imaginary-time variable τ . M0 is the magnitude of the order
parameter, and

m̂(x) = (π1(x),π2(x),σ (x)) (2.1a)

with

m̂2(x) = π2
1 (x) + π2

2 (x) + σ 2(x) ≡ 1 (2.1b)

is a unit vector. In a NLσM description of a quantum
ferromagnet fluctuations of M0 are neglected, M0(x) ≡ M0,
and the partition function can be written [16,17]

Z =
∫

D[m̂] δ(m̂2(x) − 1) e− ∫
dx LFM[m̂]. (2.2a)

Here
∫

dx = ∫ 1/T

0 dτ
∫
V

dx, with T the temperature and V

the system volume, and

LFM[m̂] = −ρs

2
m̂(x) · ∇2m̂(x) − M0 μH · m̂(x)

+ iM0

1 + σ (x)
(π1(x)∂τπ2(x) − π2(x)∂τπ1(x)).

(2.2b)

Here ρs is the spin-stiffness coefficient, which is propor-
tional to M2

0 , H is an external magnetic field, and μ is the
gyromagnetic ratio. The first two terms on the right-hand side
of Eq. (2.2b) are the same as in a classical O(3) NLσM [15].
The third term is the Wess-Zumino or Berry-phase term that
describes the quantum dynamics [18]. Physically, it describes
the Bloch spin precession. The form given in Eq. (2.2b)
assumes that the ferromagnet order is along the z direction.

We now expand the action in powers of the fields π1 and π2.
The Gaussian action that governs the transverse fluctuations
then reads

A(2)[π1,π2] = M0

2

∑
k

2∑
i,j=1

πi(k) �ij (k) πj (−k), (2.3a)

where �ij denotes the matrix elements of a 2 × 2 matrix

�(k) =
(

D k2 + μH −�n

�n D k2 + μH

)
(2.3b)

where D = ρs/M0. Here we have performed a Fourier trans-
form from x = (x,τ ) to k = (k,i�n), with k a wave vector
and �n = 2πT n (n integer) a bosonic Matsubara frequency,
and we have taken the external field to point in the z direction,
H = (0,0,H ). The inverse of � yields the Gaussian transverse
susceptibility matrix, i.e., the correlation function

M2
0 〈πi(k) πj (−k)〉 = χ

ij

T (k), (2.4a)

where

χT(k) = M0

(Dk2 + μH )2 + �2
n

(
Dk2 + μH �n

−�n Dk2 + μH

)
.

(2.4b)

The non-Hermitian nature of the matrix �, with the
frequency coupling the magnetization components Mx and
My , reflects the structure of the Bloch spin-precession term
in Eq. (2.2b). It shows the quadratic dispersion relation of
the ferromagnetic magnons, i�n = ±Dk2. The spin-wave
stiffness coefficient D (not to be confused with a diffusion
coefficient) is linear in M0 (since ρs ∝ M2

0 ). It is illustrative to
diagonalize the Gaussian transverse action. The eigenvalues
of �(k) are λ±(k) with

λ±(k) = λ∓(−k) = Dk2 + μH ∓ i�n, (2.5a)

and the left and right eigenvectors are

(u,v)L = (1, ∓ i),
(2.5b)

(u,v)R = (1, ± i).

The Gaussian action can thus be written in terms of fields
ψL = (ψL,+,ψL,−) and ψR = (ψR,+,ψR,−),

A(2)[ψL,ψR] = M0

2

∑
k

∑
σ=±

ψL,σ (k) λσ (k) ψR,σ (−k). (2.6)

In terms of the ψL and ψR we have

π1 = 1√
2

(ψL,+ − iψL,−) = 1√
2

(ψR,+ + iψR,−),

(2.7)

π2 = 1√
2

(−iψL,+ + ψL,−) = 1√
2

(iψR,+ + ψR,−).

Note that the four fields ψL,σ , ψR,σ are not independent;
Eqs. (2.7) yield two constraints,

ψL,+ = iψR,− , ψL,− = iψR,+, (2.8)

which restore the original number of degrees of freedom. From
Eq. (2.6) we obtain the Goldstone mode [19]

g±(k) = 〈ψL,±(k)ψR,±(−k)〉 = 1/M0 λ±(k), (2.9a)

which is massless in the absence of the symmetry-breaking
field H . From Eq. (2.8) we obtain two additional nonzero
correlation functions,

〈ψL+(k) ψL,−(−k)〉 = i/M0 λ+(k),
(2.9b)

〈ψR+(k) ψR,−(−k)〉 = −i/M0 λ+(−k).

Now we consider the normalized longitudinal susceptibility
χL(x − y)/M2

0 = 〈δσ (x)δσ (y)〉 with δσ (x) = σ (x) − 〈σ (x)〉.
Using the nonlinear constraint, Eq. (2.1b), we expand

〈δσ (x)δσ (y)〉 = 1
4

〈(
π2

1 (x) + π2
2 (x)

)(
π2

1 (y) + π2
2 (y)

)〉
− 1

4

〈
π2

1 (x) + π2
2 (x)

〉2 + . . . (2.10a)
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FIG. 2. Diagrammatic representation of the coupling between
longitudinal and transverse spin fluctuations in the quantum case.
Note that the two transverse propagators carry the same internal
frequency. This leads to the null result discussed in the text.

In terms of ψL and ψR this can be written

〈δσ (x)δσ (y)〉 = 1

4

∑
σ,σ ′

[〈ψL,σ (x) ψR,σ (x) ψL,σ ′(y) ψR,σ ′ (y)〉

− 〈ψL,σ (x) ψR,σ (x)〉〈ψL,σ ′(y) ψR,σ ′ (y)〉].
(2.10b)

Using Wick’s theorem and Eq. (2.9) yields the one-loop
contribution χ

(1)
L to the longitudinal susceptibility,

χ
(1)
L (k) = M2

0
T

2V

∑
p

∑
σ

gσ (p) gσ (p − k)

= T

2V

∑
p

∑
σ

1

λσ (p)λσ (p − k)
. (2.11)

This is represented diagrammatically in Fig. 2.

1. Absence of a Goldstone-mode-induced singularity in χL

at T = 0

At T = 0, where the frequency summation in Eq. (2.11)
turns into an integral, it is obvious that this contribution
vanishes [20], in violation of the naive expectation expressed
by the ferromagnetic analog of Eq. (1.2a). This null result
is readily traced back to the structure of the Bloch spin
precession term in the action, which leads to the eigenvalues
λσ (k) being odd functions of the frequency. Since the action
couples only ψL,+ with ψR,+, and ψL,− with ψR,−, this results
in a final frequency integral where both poles lie on the same
side of the real axis. Alternatively, one can easily see this
in an operator formalism, see the discussion after Eq. (1.2a)
in the Introduction. Adding a frequency dependence to the
classical expression therefore has a much stronger effect than
increasing the effective dimensionality by two, as the naive
power-counting argument suggests, and at T = 0 it completely
suppresses the effect. It is obvious from this discussion that the
absence of a nonanalyticity in the quantum case is a generic
property of ferromagnets at T = 0 and not an artifact of either
the NLσM or the one-loop approximation. We also note that
the null result is specific to the two-point correlation of σ (x),
see the following section.

2. A singular correlation function at T = 0

It is illustrative to discuss a correlation function other than
χL. Consider, for instance,

�(x − y) = 1

4

〈(
π2

1 (x) − π2
2 (x)

)(
π2

1 (y) − π2
2 (y)

)〉
= 1

4

∑
σ,σ ′

σσ ′〈ψL,σ (x) ψL,σ (x) ψR,σ ′ (y) ψR,σ ′ (y)〉.

(2.12)

Note that this is a physical, if hard to measure, correlation
function: It describes the response to a “field” � that renders
the exchange coupling J in a Heisenberg model anisotropic
in the x-y plane: Jx = J + �, Jy = J − �. After a Fourier
transform we obtain, instead of Eq. (2.11),

�(k) = T

2V

∑
p

∑
σ

1

λσ (p)λσ (k − p)
. (2.13)

At T = 0, the frequency integral is now over a function that
has poles on either side of the real axis, and the correlation
function behaves as simple power counting would suggest,
viz.

�(k,i�n = 0) ∝ const. + |k|d−2,
(2.14)

�(k = 0,i�n) ∝ const. + |�n|(d−2)/2,

with a logarithmic singularity in d = 2. This is in complete
analogy to Eq. (1.2a). This illustrates that the absence of
a singular contribution to χL, and the related fact that the
maximally spin-polarized state is an exact eigenstate of the
Heisenberg ferromagnet, is not due to the absence of quantum
fluctuations in the ground state, as is sometimes stated in the
literature. Rather, it is due to the fact that χL can be formulated
as a correlation function of the magnon number. Quantum
fluctuations do exist in the ground state of a ferromagnet, and
they affect correlation functions, such as �, that can not be
formulated entirely in terms of fluctuations of the magnon
number. The same holds for the longitudinal susceptibility in
an antiferromagnet, see Sec. II B below. We will come back to
this point in Sec. IV B 2.

3. Singularities at T > 0

To find the behavior at nonzero temperature we perform the
Matsubara frequency sum in Eq. (2.11). This yields

χ
(1)
L (k,H ) = −1

V

∑
p,σ

n(ω p + μH ) − n(ω p−k + μH )

ω p − ω p−k + σ i�n

,

(2.15)

where n(x) = 1/(ex/T − 1) is the Bose distribution function
(we use units such that � = kB = 1), and ω p = D p2 is the
ferromagnetic magnon frequency. We are interested in infrared
singularities that arise from the small-momentum behavior of
the integrand in Eq. (2.15). Accordingly, to obtain the leading
singular behavior as k → 0 for fixed T , we can expand the
Bose function, n(x) ≈ T/x [21]. At zero external frequency,
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k = (k,i0), and zero external field we have

χ
(1)
L (k,H = 0) ≈

(
M0

ρs

)2 2T

V

∑
p

1

p2( p − k)2
, (2.16)

where we have used D = ρs/M0. Note that this leading
contribution is necessarily linear in T , and that the wave-
number integral is a convolution of two classical Goldstone
modes, see Eq. (1.1). In d = 3 we find explicitly

χ
(1)
L (k,H = 0) = T

4D3/2√ωk
[1 + O(

√
ωk/T )] (d = 3);

(2.17)

in generic dimensions 2 < d < 4 the singularity is propor-
tional to T/|k|4−d with a d-dependent prefactor. For d � 2
the singular integral has a zero prefactor since M0 = 0. This
result is valid for μH � ωk � T . The range of validity of
Eq. (2.16) thus shrinks with decreasing temperature. In the
asymptotic low-temperature limit in a vanishingly small field,
i.e., for μH � T � ωk, we find

χ
(1)
L (k,H = 0) = cL

π2

T 3/2

D3/2ωk
[1 + O(T/ωk)] (d = 3),

(2.18)

where cL = √
π/2 ζ (3/2) ≈ 2.395, with ζ the Riemann zeta

function. For T < ωk the T/
√

ωk singularity thus crosses over
to T 3/2/ωk, and for T → 0 the prefactor of the singularity
vanishes in agreement with Sec. II A 1.

For ωk � μH � T an analogous consideration yields

χ
(1)
L (k → 0,H ) = T

4πD3/2(μH )1/2
[1 + O(

√
H/T )],

(2.19)

and for T � ωk,μH the leading behavior is

χ
(1)
L (k,H ) = 1

2π3/2

T 3/2

D3/2ωk
e−μH/T . (2.20)

Both of these results are for d = 3. Finally, for ωk � T �
μH the result is proportional to T 1/2e−μH/T with no singular
dependence on ωk.

4. The dynamical structure factor

Also of interest is the longitudinal part of the dynamical
structure factor SL(k,ω) = (2/(1 − e−ω/T ))χ ′′

L(k,ω), with χ ′′
L

the spectrum of the susceptibility χL. From Eq. (2.15) we find
for the one-loop contribution [3]

S
(1)
L (k,ω) = 1

1 − e−ω/T

T

4πD3/2√ωk

× ln

(
1 − e−(ω+ωk)2/4T ωk−μH/T

1 − e−(ω−ωk)2/4T ωk−μH/T

)
. (2.21)

The leading behavior for small k, ω, and H for fixed T is

S
(1)
L (k,ω) ≈ T 2

4πD3/2ω
√

ωk

× ln

(
(ω + ωk)2/4T ωk + μH/T

(ω − ωk)2/4T ωk + μH/T

)
. (2.22)

As in the case of Eq. (2.16), this is also what one obtains in the
classical limit, � → 0 (see also Ref. [21], and note that μ/� is
independent of �).

The structure factor is shown in Fig. 3 for several values
of T/ωk. Notable features are as follows: (1) There is a loga-
rithmic singularity at ω = ±ωk. This leads to a broad feature,
even for undamped magnons, whose width is independent of

FIG. 3. The one-loop contribution to the longitudinal part of the dynamical structure factor for a ferromagnet, Eq. (2.21), normalized by√
ωk/4πD3/2, for H = 0 as a function of the frequency ω for various values of the temperature T . ω and T are measured in units of ωk. On

the scale shown, the result for T/ωk = 10 is almost indistinguishable from the classical result, Eq. (2.22).
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FIG. 4. The one-loop contribution to the longitudinal part of the dynamical structure factor for a ferromagnet, Eq. (2.21), normalized as in
Fig. 3, for T/ωk = 0.5 as a function of the frequency ω for various values of the magnetic field H . ω and H are measured in units of ωk and
ωk/μ, respectively. Notice how even a very weak magnetic field broadens the resonance feature.

the normalized temperature. (2) There is a marked decrease in
the overall value of SL with decreasing temperature, and (3)
SL becomes strongly asymmetric at low temperature due to the
detailed-balance factor. A nonzero magnetic field removes the
logarithmic singularity, and even a rather small magnetic field
substantially broadens the resonance feature, see Fig. 4. We
will further discuss the dynamical structure factor in Sec. IV.

We also note that the minus first frequency moment of χ ′′
L

yields the static susceptibility: χL(k) = ∫ ∞
−∞ dω χ ′′

L(k,ω)/πω.
Performing the frequency integral we recover the results given
in Eqs. (2.17)–(2.20).

B. Quantum antiferromagnets

We now consider quantum antiferromagnets, whose spin
dynamics are very different from their ferromagnetic coun-
terparts. The NLσM for an antiferromagnet can be written
[16,17]

Z =
∫

D[n̂] δ(n̂2(x) − 1) e− ∫
dx LAFM[n̂] (2.23a)

with an action density

LAFM[n̂] = ρs

2

[
− n̂(x) · ∇2n̂(x)

+ 1

c2
(∂τ n̂(x) − iμH × n̂(x))2

]
. (2.23b)

Here n̂(x) is the normalized staggered magnetization. It
obeys

n̂2(x) ≡ 1 (2.24a)

and we parametrize it as

n̂(x) = (π1(x),π2(x),σ (x)) (2.24b)

in analogy to the ferromagnetic case. The physical staggered
magnetization is N(x) = N0 n̂(x) with an amplitude N0. ρs

is the spin stiffness, c is the spin-wave velocity, and H is
a homogeneous external magnetic field. Notice that in the
absence of an external field the dynamics are given by a
(∂τ n̂)2 term, in contrast to the linear dependence on ∂τ in the
ferromagnetic case, Eq. (2.2b) [22]. Putting the external field
equal to zero, and proceeding as in the ferromagnetic case, we
obtain a transverse Gaussian fluctuation action that is diagonal
in the π1-π2 basis:

A(2)[π1,π2] = ρs

2c2

∑
k

2∑
i=1

πi(k) μ(k) πi(−k), (2.25a)

with an eigenvalue

μ(k) = ω2
k − (i�n)2. (2.25b)

Here ωk = c|k| is the antiferromagnetic magnon frequency.
The one-loop contribution to the longitudinal susceptibility
χL(x − y) = N2

0 〈δσ (x) δσ (y)〉 now has the form

χ
(1)
L (k) =

(
N0 c2

ρs

)2
T

V

∑
p

1

μ(p)μ(p − k)
. (2.26)

Notice that this is the longitudinal order-parameter suscepti-
bility, which describes the response to a staggered magnetic
field, rather than to a homogeneous one.
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1. The Goldstone-mode-induced singularity at T = 0

The one-loop contribution to the longitudinal susceptibility
given by Eq. (2.26) is still represented by the diagram shown
in Fig. 2, but now the frequency integration at T = 0 involves
poles on either side of the real axis. The frequency integral
thus does not vanish, and we obtain

χ
(1)
L (k,i�n = 0) =

(
N0 c2

ρs

)2 1

2V

∑
p

1

ω p+k/2 ω p−k/2

× 1

ω p+k/2 + ω p−k/2
, (2.27a)

χ
(1)
L (k = 0,i�n) =

(
N0 c2

ρs

)2 1

V

∑
p

1

ω p

1

4ω2
p + �2

n

.

(2.27b)

This yields the result expected from naive power counting,
Eq. (1.2a):

χ
(1)
L (k,i�n = 0) ∝ |k|d−3,

(2.28)
χ

(1)
L (k = 0,i�n) ∝ |�n|d−3

for 1 < d < 3. In time space the latter result corresponds
to a 1/td−2 long-time tail, see Appendix B 1. The above
derivation makes it clear that the striking difference between
the behavior of this correlation function for ferromagnets and
antiferromagnets, respectively, is a direct consequence of the
different spin dynamics in the two cases.

In d = 3 the divergence is logarithmic. Calculating the
prefactor we obtain, keeping only the leading terms,

χ
(1)
L (k,i0) = N2

0 c

8π2ρ2
s

log(ω0/ωk), (2.29a)

χ
(1)
L (k = 0,i�n) = N2

0 c

8π2ρ2
s

log(ω0/|�n|), (2.29b)

χ
(1)
L (k = 0,i�n → � + i0) = N2

0 c

8π2ρ2
s

×
[

log(ω0/|�|) + i
π

2
sgn �

]
,

(2.29c)

where ω0 is an ultraviolet cutoff wave frequency. In d = 2 the
explicit result is

χ
(1)
L (k,i0) = N2

0 c2

8ρ2
s

1

ωk
. (2.30a)

χ
(1)
L (k = 0,i�n) = N2

0 c2

8ρ2
s

1

|�n| , (2.30b)

χ
(1)
L (k = 0,i�n → ω + i0) = N2

0 c2

8ρ2
s

[
i

ω
+ πδ(ω)

]
.

(2.30c)

Note that in time space Eq. (2.30b) implies a correlation
function that does not decay for long times, but rather is
constant, see Appendix B 3. We will get back to this in Sec. IV.

2. Singularities at T > 0

We now demonstrate that at a nonzero temperature we
obtain the same result as in the ferromagnetic case. Performing
the frequency summation in Eq. (2.26) we obtain

χ
(1)
L (k) =

(
N0 c2

ρs

)2 −1

2V

∑
p,σ

1

ω p

n(ω p) − n(−ω p)

(ω p + σ i�n)2 − ω2
p+k

.

(2.31)

The leading infrared behavior again comes from the small-
momentum behavior of the integrand, so we approximate
n(x) ≈ T/x. The resulting expression at zero external fre-
quency can be rewritten to yield

χ
(1)
L (k,i0) ≈

(
N0

ρs

)2
T

V

∑
p

1

p2( p − k)2
. (2.32)

As in the ferromagnetic case, Eq. (2.16), this indeed reproduces
Eq. (1.1). In d = 3 we have explicitly

χ
(1)
L (k,i0) = N2

0 c

8ρ2
s

T

ωk
[1 + O((ωk/T ) log(ω0/ωk))](d = 3),

(2.33)

which is valid for ωk � T � ω0.
Upon taking the T → 0 limit in Eq. (2.31), when n(ω p) −

n(−ω p) → 1, we correctly recover the integrals given in
Eqs. (2.27). In particular, Eq. (2.33) crosses over to Eq. (2.29a),
which is valid for T � ωk.

3. The dynamical structure factor

Calculating the spectrum of the susceptibility from
Eq. (2.31) we obtain the one-loop contribution to the lon-
gitudinal part of the dynamical structure factor. In d = 3 we
find

S
(1)
L (k,ω) = N2

0 c

4πρ2
s

T /ωk

1 − e−ω/T
ln

(
sinh(|ωk + ω|/4T )

sinh(|ωk − ω|/4T )

)
.

(2.34)

It is illustrative to rewrite this as

S
(1)
L (k,ω) = N2

0 c

16πρ2
s

1

1 − e−ω/T

[∣∣∣∣1 + ω

ωk

∣∣∣∣ −
∣∣∣∣1 − ω

ωk

∣∣∣∣
+ 4T

ωk
ln

(
1 − e−|ωk+ω|/2T

1 − e−|ωk−ω|/2T

)]
. (2.35)

This separates S
(1)
L into a contribution that survives the T → 0

limit, and another one that is qualitatively very similar to the
corresponding result in the ferromagnetic case, see Eq. (2.21).
The former represents the quantum fluctuations that are
responsible for the singular behavior of δχ

(1)
L (k) at T = 0, and

the latter again has a logarithmic singularity at the magnon
resonance frequency ω = ωk. Note that the zero-temperature
contribution does not fall off as ω → ∞ but is constant. This
statement is equivalent to the logarithmic divergence in the
static susceptibility: Calculating the minus first frequency
moment of the spectrum χ ′′

L(k,ω) = (1 − e−ω/T )SL(k,ω)/2
in the limit T → 0, we recover Eq. (2.29a). The difference
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FIG. 5. The one-loop contribution to the longitudinal part of the dynamical structure factor for an antiferromagnet (left panel) and a
ferromagnet (right panel), normalized by N2

0 c/4πρ2
s and as in Figs. 4 and 3, respectively, for T/ωk = 0.05 as functions of the frequency ω

measured in units of ωk. The inset in the left panel separately shows the T = 0 contribution to the antiferromagnetic structure factor (blue
curve) and the contribution that vanishes as T → 0 (red curve). The structure factor shown in the main panel is the sum of these two, see
Eq. (2.36).

between the antiferromagnetic and ferromagnetic cases be-
comes pronounced for temperatures T � ωk; Fig. 5 shows
the respective results for T/ωk = 0.05.

In the classical limit we have

S
(1)
L (k,ω) = N2

0 c

4πρ2
s

T 2

ω ωk
ln

(
ωk + ω

ωk − ω

)2

, (2.36)

which is analogous to Eq. (2.22). In d = 2 at T = 0 the result
is

S
(1)
L (k,ω) = N2

0 c2

4ρ2
s

�
(
ω2 − ω2

k

) �(ω)√
ω2 − ω2

k

, (2.37)

and calculating the minus first frequency moment recovers
Eq. (2.30a). For T > 0 there is no long-range order in d = 2.

4. Quantum antiferromagnets in an external magnetic field

So far we have considered the case of a vanishing external
magnetic field. We now briefly discuss the effects of keeping
the field H in the action density, Eq. (2.23b). The (H × n̂)2

term in the action implies that in the ground state the order-
parameter vector n is perpendicular to H . Let H point in the
x direction, H = (H,0,0), and we parametrize n as before in
Eq. (2.24b). Then we find a Gaussian action

A(2)[π1,π2] = ρs

2c2

∑
k

2∑
i=1

πi(k) μi(k) πi(−k), (2.38a)

where

μ1(k) = μ(k) + (μH )2 , μ2(k) = μ(k), (2.38b)

with μ(k) from Eq. (2.27b). Of the two Goldstone modes, one
is thus unchanged, whereas the other one acquires a mass.
Equation (2.26) thus gets generalized to

χ
(1)
L (k) =

(
N0 c2

ρs

)2
T

2V

∑
p

∑
i

1

μi(p)μi(p − k)
, (2.39)

and there is a singularity for k → 0 even for H �= 0. At T = 0
in d = 3 we find, to leading logarithmic accuracy,

χ
(1)
L (k,i0) = N2

0 c

16π2ρ2
s

⎡
⎣log

(
ω0

ωk

)
+ log

⎛
⎝ ω0√

ω2
k + (2μH )2

⎞
⎠
⎤
⎦.

(2.40)
The corresponding result in d = 2 is

χ
(1)
L (k,i0) = N2

0 c2

16ρ2
s

1

ωk

[
1 + 2

π2
g

(
ωk/

√
ω2

k + (2μH )2

)]
,

(2.41a)

where

g(x) =
∫ 1

−1
dη

ln(1 + xη)

η
√

1 − η2
=

{
π2/2 for x = 1
πx for x → 0

. (2.41b)

For μH � ωk we recover Eq. (2.30a); for μH � ωk we
have χ

(1)
L (k,i0) ∝ 1/H . Corresponding results are obtained

for χ
(1)
L as a function of the frequency.

III. EFFECTS OF DAMPED FERROMAGNETIC MAGNONS

So far we have ignored the effects of damping on the
magnons. In this section we will consider the effects of
magnon damping on the longitudinal susceptibility and the
longitudinal dynamical structure factor in ferromagnets. We
restrict ourselves to the ferromagnetic case, where magnon
damping has a qualitative effect.

A. Time-dependent Ginzburg-Landau theory

We need to determine the effects of damping on the
ferromagnetic Goldstone mode, Eq. (2.9a). To this end we
use the standard time-dependent Ginzburg-Landau theory for
a ferromagnet [23–25]

∂t M(x,t) = M(x,t) × δS

δM(x)

∣∣∣∣
M(x,t)

−
∫

d y �(x − y)
δS

δM( y)

∣∣∣∣
M( y,t)

. (3.1a)
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Here �(x) is the damping operator, which we will specify
below, and S is a suitable action for the static magnetization
M(x). Very general considerations yield, to linear order in M,

δS/δM(x) = −(
ρs/M

2
0

)∇2 M(x) − μH . (3.1b)

Here we use the same notation as in Sec. II for the prefactor
of the gradient-squared term.

We now use Eq. (3.1) to calculate the linear response of
the transverse magnetization components to the external field
H , i.e., the transverse magnetic susceptibility χT . The result is
Eq. (2.4b) with the substitution �n → �n + �k k2 sgn (�n),
where �k is the Fourier transform of �(x). The one-loop
contribution to the longitudinal susceptibility is still given by
Eq. (2.11), but with λ± replaced by

λ±(k,i�n) = Dk2 + μH ∓ i�n ∓ i�k k2 sgn (�n). (3.2)

The sgn (�n) in the damping term follows from causality
requirements. In the absence of damping, �k ≡ 0, we recover
the expressions given in Sec. II A.

We expand the damping coefficient in the long-wavelength
limit as

�k→0 = γ0 + γ2 k2 (3.3)

and distinguish between two physically distinct cases [25]:
(1) A nonconserved order parameter, in which case γ0 > 0,
and (2) a conserved order parameter, in which case γ0 = 0.
The former case is realized, e.g., by magnetic impurities
[26,27]; the latter, by, e.g., damping by electron-magnon
and/or magnon-magnon interactions at T > 0 [28] or by
nonmagnetic quenched disorder at any temperature, including
T = 0 [27,29,30].

B. Nonconserved order parameter

We now perform the integral in Eq. (2.11) with λ± given by
Eq. (3.2). For a nonconserved order parameter, � p = γ0, and
again keeping only the leading terms, we find for d = 3

χ
(1)
L (k → 0,i0) = const. − 1

32π

γ0/
√

D

γ 2
0 + D2

√
ωk,

(3.4a)

χ
(1)
L (k = 0,i�n) = − γ0

π3D5/2
f (γ0/D) |�n|1/2,

(3.4b)

χ
(1)
L (k = 0,i�n → ω + i0) = const. − γ0√

2π3D5/2
f (γ0/D)

× [1 − i sgn (ω)] |ω|1/2.

(3.4c)

The function f can be expressed in terms of elementary
functions; however, both the derivation and the result are
lengthy, see Appendix A. Here we give only the power-series
expansion for small damping, which reads

f (x → 0) =
√

2π

5
+ 3π

7
√

2
x + O(x2). (3.4d)

In d = 2 there is a logarithmic singularity,

χ
(1)
L (k → 0,i0) = 1

2π2

γ0

γ 2
0 + D2

ln(ω0/ωk),

(3.5a)

χ
(1)
L (k = 0,i�n) = 1

2π2

γ0

D2 + γ 2
0

ln(ω0/|�n|),

(3.5b)

χ
(1)
L (k = 0,i�n → ω + i0) = 1

2π2

γ0

D2 + γ 2
0

[
ln(ω0/|ω|)

+ i
π

2
sgn ω

]
. (3.5c)

In generic dimensions the nonanalytic contribution is
proportional to |k|d−2 and �

(d−2)/2
n , respectively. In time

space the latter corresponds to a 1/td/2 long-time tail, see
Appendix B 1.

C. Conserved order parameter

For a conserved order parameter, � p = γ2 p2, the calcula-
tions are analogous but more involved and we give the results
only to linear order in γ2. For d = 3 we find

χ
(1)
L (k → 0,i0) = const. + O(k2)

+γ2
[
1 + O

(
γ 2

2

)]
64πD7/2

ω
3/2
k , (3.6a)

χ
(1)
L (k = 0,i�n) = const. −

√
2 γ2

[
1 + O

(
γ 2

2

)]
7π2D7/2

|�n|3/2,

(3.6b)

χ
(1)
L (k = 0,i�n → ω + i0) = const.

+γ2
[
1 + O

(
γ 2

2

)]
7π2D7/2

[1 + i sgn (ω)] |ω|3/2.

(3.6c)

In d = 2 the leading singularity is

χ
(1)
L (k → 0,i0) = const. − γ2

[
1 + O

(
γ 2

2

)]
48π2D3

×ωk ln(ω0/ωk), (3.7a)

χ
(1)
L (k = 0,i�n) = const. − γ2

[
1 + O

(
γ 2

2

)]
6πD3

|�n|.
(3.7b)

χ
(1)
L (k = 0,i�n → ω + i0) = const. + iγ2

[
1 + O

(
γ 2

2

)]
12πD3

ω.

(3.7c)

In generic dimensions the nonanalytic contribution is
proportional to |k|d and �

d/2
n , respectively. In time space this

corresponds to a 1/t (d+2)/2 long-time tail, see Appendix B 1.
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IV. DISCUSSION

In this final section we give a summary of our results and
conclude with a discussion of various physical points that
underly them.

A. Summary

In summary, we have investigated the coupling of magnons
in quantum ferromagnets and antiferromagnets to other cor-
relation functions, in particular the longitudinal susceptibility
and the longitudinal part of the dynamical structure factor.
In the case of ferromagnets with undamped magnons the
longitudinal susceptibility vanishes at T = 0. In d = 3, and
in the absence of an external magnetic field, an interpolating
expression that correctly describes the leading behavior for
both T > ωk and T < ωk is

χ
(1)
L (k,H = 0) = T

4D3/2√ωk

1

1 + (π2/cL)
√

ωk/T
, (4.1)

where ωk = Dk2 is the ferromagnetic magnon frequency and
cL is the constant given after Eq. (2.18). For T > ωk one has the
classical 1/|k| singularity, Eq. (2.17), whereas for T < ωk χL

vanishes as T 3/2, Eq. (2.18). For a quantum antiferromagnet,
the corresponding interpolating expression is

χ
(1)
L (k,i0) = N2

0 c

8ρ2
s

T

ωk

[
1 + (ωk/π

2T ) log(ω0/ωk)
]
, (4.2)

see Eqs. (2.29a) and (2.33). Here ωk = c|k| is the antiferro-
magnetic magnon frequency. This reflects the expected scaling
behavior, viz., 1/|k| for high temperature, and ln |k| for low
temperature. Similarly, the longitudinal dynamical structure
factor for a ferromagnet vanishes at T = 0, see Eq. (2.22)
and Fig. 3, whereas in the antiferromagnetic case there is a
nonvanishing contribution even at T = 0, see Eq. (2.35) and
Fig. 5. Quenched disorder introduces additional fluctuations,
leads to magnon damping, and qualitatively changes the
ferromagnetic results. Magnetic impurities, which lead to
a nonconserved magnetization, results in the longitudinal
susceptibility scaling as |k|d−2, where the zero exponent
in d = 2 signifies a logarithmic divergency, see Sec. III B.
Nonmagnetic disorder leads to a weaker scaling behavior, |k|d ,
see Sec. III C. For T > 0 the longitudinal dynamical structure
factor has a logarithmic singularity at the magnon frequency
in both ferromagnets and antiferromagnets.

B. Discussion

We conclude with a discussion of various physical points
raised by our results.

1. Predictions for experiments

(a) Longitudinal susceptibility and dynamical structure
factor: The classical singularity of χL in the ferromagnetic
case as a function of an external magnetic field, Eq. (2.19),
has been observed by Kötzler et al. [31] The theoretical
prediction is that in the limit of low temperatures, T � μH , χL

becomes exponentially small, see Eq. (2.20) and the paragraph
following it.

A remarkable feature in the longitudinal dynamical
structure factor is the logarithmic singularity at the magnon
resonance frequency, see Eqs. (2.21) and (2.34), and Fig. 3.
In a clean system at low temperature the magnon damping is
very weak, and the magnon peaks in the transverse dynamical
susceptibility are very narrow. The longitudinal susceptibility
or structure factor, by contrast, shows an intrinsically broad
feature at the magnon frequency. Even a rather small magnetic
field substantially broadens and suppresses this feature, see
Fig. 4.

(b) Other correlation functions: We stress again that the
behavior of the longitudinal susceptibility is not generic, but
rather restricted to a class of correlation functions that can be
expressed entirely in terms of magnon number fluctuations.
Other correlation functions do show the expected ω(d−2)/2

frequency scaling, see the example in Sec. II A 3.
An example of a correlation function that belongs to the

same class as the longitudinal susceptibility is the electrical
conductivity in a metallic quantum ferromagnet; they both
share the same scaling behavior. This implies that undamped
magnons do not lead to an ω(d−2)/2 frequency dependence of
the conductivity at T = 0, or a ln ω singularity in d = 2. The
latter conclusion was reached correctly in Ref. [10], but a sign
error incorrectly led to the prediction of an ω(d−2)/2 nonana-
lyticity in d > 2. A corrected analysis of the conductivity in
itinerant ferromagnets will be given elsewhere [32].

2. Comments on the results for ferromagnets

(a) Fluctuations and entanglement entropy: Let us come
back to the issue of fluctuations in the ground state of a
ferromagnet, see the remarks at the end of Sec. II A 3. A
global measurement of fluctuations in a system is given by the
entanglement entropy, defined as the von Neumann entropy of
a subsystem of linear size L. At zero temperature the entropy
vanishes in the thermodynamic limit, and for L → ∞ it grows
more slowly than the volume Ld . In systems that do not contain
a Fermi surface the leading contribution is in general given by
an “area-law” term that grows as Ld−1 [33]; this term is due to
short-range entanglement and has a nonuniversal prefactor.
The leading universal contribution, which is a measure of
long-range fluctuations, in systems with Goldstone modes
grows as ln L. This is true for both quantum ferromagnets
[34,35] and antiferromagnets [36–38] for d = 2,3, although
the area-law term is missing in the former [35]. This is another
indication that fluctuations exist in the ferromagnetic ground
state, although they may or may not be probed by a specific
correlation function.

In metallic magnets, and more generally in systems with a
Fermi surface, there is an area-law term with a multiplicative
logarithm that is due to long-range fluctuations in the fermionic
degrees of freedom. This is one of many indications of funda-
mental differences between metallic and insulating magnets.
We briefly discuss some of these next.

(b) Spin models vs itinerant magnets: There are important
differences between the fluctuations in quantum ferromagnets
vs antiferromagnets, the qualitatively similar universal parts of
the entanglement entropies discussed above notwithstanding.
For instance, a spin model for a Heisenberg ferromagnet,
with Hamiltonian H = J

∑
<ij> σ i · σ j with J < 0, has no
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quantum phase transition as a function of J , since the ground
state is fully spin-polarized for any J < 0. In this sense
the quantum fluctuations in a ferromagnet, while present,
are weaker than those in a quantum antiferromagnet. This
argument must survive nonmagnetic quenched disorder, which
makes J a random function of spatial position, as long as
the distribution of J is restricted to negative values, since
the spins will still be locally maximally polarized. Since the
physical reason for the absence of a nonanalyticity in χL is the
same as that for the absence of a quantum phase transition,
it follows that nonmagnetic disorder with a such restricted
distribution cannot lead to magnon damping; the damping
coefficient γ2 in Sec. III C must vanish at T = 0. These
considerations raise interesting questions about the strength
of quantum fluctuations, as well as ways to measure them, see,
e.g., Refs. [36,39].

These aspects change qualitatively in a metallic ferromag-
net, and in particular in an itinerant one: The coupling of the
magnetic degrees of freedom to the fermionic ones leads to
a large increase in fluctuations. As a result, the entanglement
entropy has an area-law term multiplied by a logarithm, as is
typical for systems with a Fermi surface, and as a function of
the exchange coupling there is a quantum phase transition, as
first described by Stoner [40]. It is also likely that the presence
of nonmagnetic disorder leads to magnon damping irrespec-
tive of the shape of the disorder distribution. For a recent
review of metallic ferromagnets, see Ref. [41]. An explicit
discussion of χL and related correlation functions in a model
of itinerant ferromagnets will be given elsewhere [32].

(c) Effects of quenched disorder: We now discuss the fact
that quenched disorder, and the resulting damping of the
magnons, leads to a nonanalyticity in χL, and demonstrate that
the result is consistent with scaling and renormalization-group
considerations and is indeed asymptotically exact as far as the
exponent of the nonanalyticity is concerned.

First of all, we recall that the absence of a nonanalyticity
for systems with undamped magnons is due to the absence
of fluctuations that couple to the longitudinal magnetiza-
tion fluctuations. Disorder introduces additional fluctuations,
which makes it plausible that it will lead to a nonanalyticity.
Furthermore, magnetic disorder, which couples directly to the
order parameter, will have a stronger effect than nonmagnetic
disorder, and thus result in a stronger singularity. The results
in Secs. III B and III C thus are physically plausible.

In order to deduce the explicit results from general
arguments, we consider the Gaussian action written in the
form of Eq. (2.3) or (2.6), and add damping according to the
prescription given above Eq. (3.2). In a schematic notation that
shows only what is necessary for power counting, the Gaussian
action then takes the form

A(2) =
∫

dx π (x)
[
D∂2

x + ∂τ + H + γn ∂n+2
x

]
π (x). (4.3)

Here n = 0 and n = 2 correspond to the cases of a noncon-
served and conserved order parameter, respectively. Additional
terms in the action fall into two classes: (1) Gaussian with
additional gradients, with the leading terms of the form

δA(2) =
∫

dx ∂4
x π2(x), (4.4a)

or equivalent in terms of scale dimensions, and (2) of higher
order in π , with the leading terms of the form

δA(4) =
∫

dx ∂2
x π4(x) (4.4b)

or equivalent.
We now sketch a renormalization-group analysis of this

action. In doing so, we follow a scheme pioneered by Ma [24],
see also Refs. [42] and [6] for applications of this scheme in
different contexts. We assign scale dimensions [L] = −1 and
[τ ] = −2 to lengths and imaginary times, respectively. Then
there is a stable Gaussian fixed point where π has a scale
dimension [π (x)] = d/2. In Fourier space this corresponds
to [π (k)] = −1. We thus have 〈π (k)π (−k)〉 ∼ 1/k2 ∼ 1/�n.
This scaling behavior describes the magnons, see Eq. (2.4),
and the Gaussian fixed point describes the ordered phase
where the symmetry is broken. The field H is relevant with
respect to this fixed point with a scale dimension [H ] = 2.
For a nonconserved order parameter the damping coefficient
γ0 is dimensionless, [γ0] = 0, and the damping term is part of
the fixed-point Hamiltonian. The free-energy density f , the
magnetization m, and the scaling part δχL of the longitudinal
susceptibility χL = ∂m/∂H then have scale dimensions [f ] =
d − 2, [m] = d, and [δχL] = d − 2, respectively. For the latter
this implies a homogeneity law

δχL(k,i�n) = b2−d Fχ (kb,i�nb
2,γ0), (4.5)

with b an arbitrary length rescaling factor and Fχ a scaling
function. The latter has the property Fχ (x,y,γ0 → 0) = 0(γ0),
as we have discussed in the main part of this paper. We thus
obtain the scaling behavior

δχL(k,i�n) ∼ γ0|k|d−2 ∼ γ0|�n|(d−2)/2, (4.6)

in agreement with Sec. III B. The leading correction terms to
the fixed-point action are irrelevant by power counting, with
scale dimensions −2 for the operator in Eq. (4.4a) and −d

for the one in Eq. (4.4b), respectively. These arguments show
that the one-loop results obtained in Sec. III B are exact as
far as the exponents are concerned; higher terms in the loop
expansion will change the prefactor of the nonanalyticity, but
not the power.

In the case of a conserved order parameter the damping
term is not part of the fixed-point action; it is an irrelevant
operator with a scale dimension [γ2] = −2 which is the same
as the least irrelevant operators represented by, e.g., Eq. (4.4a).
The homogeneity equation for δχL now reads

δχL(k,i�n) = b2−d Fχ (kb,i�nb
2,γ2b

−2), (4.7a)

where we do not show the other irrelevant operators. Even
though γ2 is irrelevant, the scaling function still vanishes for
γ2 = 0, and we obtain, to linear order in γ2,

δχL(k,i�n) = b−d γ2 F̃χ (kb,i�nb
2), (4.7b)

with F̃ another scaling function. This yields

δχL(k,i�n) ∼ γ2|k|d ∼ γ2|�n|d/2, (4.8)

in agreement with Sec. III C. Again, this is the exact leading
scaling behavior.
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(d) Magnon damping: An interesting aspect of ferromag-
netic magnons is that these excitations cannot be overdamped,
irrespective of the magnitude of the damping coefficient.
Consider Eq. (2.4b) with �n → �n + �k k2 sgn (�n). The
poles of χT(k,z) with z the complex frequency, always have
a real part given by ±ωk, independent of �k. This is in
contrast to a damped harmonic oscillator, where the resonance
frequency has no real part if the damping coefficient is larger
than a threshold value, and also to sound waves in fluids [2],
antiferromagnetic magnons, see Eq. (2.25) with a damping
coefficient added, and helimagnons in helical magnets [43],
all of which have the same structure as a damped harmonic
oscillator.

3. Comments on correlation functions that do not decay

We finally discuss the physical meaning of the constant
long-time behavior implied by Eq. (2.30b), see Eq. (B17).
Let Tmax be the maximum time scale, which can be, e.g., the
total duration of the experiment, or L divided by the relevant
characteristic velocity. χL then depends on two times, t1 and

t2. As long as t1, t2, and |t1 − t2| all are small compared to
Tmax, χL will not decay if |t1 − t2| increases. In position space,
by contrast, χL does decay, but only as a power: The 1/|k|
divergence in the 2-d quantum antiferromagnet, which is the
same as the one in a 3-d classical magnet, Eq. (1.1), implies
that in real space the correlation function decays as 1/r .
For a general discussion of power-law decays of correlation
functions, see, e.g., Ref. [7].

These results are examples of an effect that can be even
stronger: In classical nonequilibrium fluids, and in Fermi
liquids even in equilibrium, there are correlation functions that
increase with increasing length or time scales in a well-defined
sense, see Refs. [44–46].
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APPENDIX A: FREQUENCY DEPENDENCE OF χL DUE TO DAMPED FERROMAGNETIC MAGNONS

Here we sketch the derivation of Eq. (3.4b) and give the full expression for the function f . Performing the frequency sum in
Eq. (2.15) at T = 0, with λ± given by Eq. (3.2), we find

χL(k = 0,i�n) = 2

πV

∑
p

� p p2
∫ ∞

ω2
p

dx
1

x + (� p p2)2

1

x + (� p p2 + �n)2

= 2

πV

∑
p

� p p2 1

�2
n + 2�n� p p2

ln

(
1 + �2

n + 2�n� p p2

ω2
p + (� p p2)2

)

= 2

π

∫ 1

0
dα

1

V

∑
p

� p p2

α�2
n + 2α�n� p p2 + ω2

p + (� p p2)2
, (A1)

where in the last line we have expressed the logarithm in terms of an auxiliary integral. This procedure is also useful for deriving
the prefactors of the nonanalytic wave-number dependence at �n = 0 that are given in Eqs. (3.4a) and (3.6a).

We now consider the case of a nonconserved order parameter, � p = γ0. Splitting off the constant contribution at �n = 0 in
d = 3, and scaling out the frequency, we obtain Eq. (3.4b) with the function f given by

f (x) = 1

(1 + x2)2

∫ 1

0
dα α

∫ ∞

0
dy

1 + 2xy2

y4 + 2y2αx/(1 + x2) + α/(1 + x2)
. (A2)

The integration over y can now be easily performed, and the final integral over α can be expressed in terms of algebraic and
inverse hyperbolic functions. We find

f (x) = π

6
√

2

1

x5/2(1 + x2)3/2

{
[3 + 7x2 − 2x

√
1 + x2]

√
x2 + x

√
1 + x2 − 3(1 + x2)3/2 sinh−1(

√
x/(1 + x2)1/4)

}
. (A3)

An expansion for x → 0 yields Eq. (3.4d). In d = 2 the logarithmic singularity is the leading term, and from Eq. (A1) one readily
obtains Eq. (3.5b). For a conserved order parameter, � p = γ2 p2, the integrals are more involved, but to linear order in γ2 one
easily obtains Eqs. (3.6b) and (3.7b) from Eq. (A1).

APPENDIX B: CAUSAL FUNCTIONS AND
LONG-TIME TAILS

Here we list, without proofs, some properties of the class of
causal functions that the longitudinal susceptibility belongs to.
For general properties of causal functions see, e.g., Ref. [2].
For derivations of the long-time tails see, e.g., Ref. [47].

1. Noninteger powers

Consider a causal function χ of complex frequency z that
behaves, for z → 0, as

χ (z) = 1

cos(απ/2)
[zα + (−z)α], (B1)
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with α real and not integer. Here and in what follows we
consider even functions of z, since the magnetic susceptibility
has that property. We also give the asymptotic small-frequency,
or long-time, behavior only; for z → ∞ χ , or any causal
function, must vanish. On the imaginary axis χ then takes
the values

χ (i�n) = |�n|α, (B2)

and the spectrum χ ′′ and the reactive part χ ′, respectively, of
χ read

χ ′′(ω) = − sin(πα/2) |ω|α sgn ω, (B3a)

χ ′(ω) = cos(πα/2) |ω|α. (B3b)

The real-time behavior of χ is given by the Fourier
transform of χ ′′(ω),

χ (t) =
∫ ∞

−∞

dω

π
e−iωt χ ′′(ω). (B4)

In the long-time limit the Hardy-Littlewood tauberian theorem
yields a long-time tail:

χ (t → ∞) = i
�(α + 1)

π
sin(απ )

1

|t |α+1
. (B5)

The ferromagnet with damped magnons in d = 3 is an
example of this behavior, with α = 1/2 and α = 3/2 for a
nonconserved and a conserved order parameter, respectively,
see Secs. III B and III C. It is also realized by both ferromagnets
and antiferromagnets in generic dimensions.

2. Even powers

Now consider

χ (z) = (−)m

2
z2m[ln z + ln(−z)], (B6)

with m integer. On the imaginary axis this yields

χ (i�n) = |�n|2m ln |�n|. (B7)

The spectrum and the reactive part are

χ ′′(ω) = (−)m+1π

2
ω2m sgn ω, (B8a)

χ ′(ω) = (−)m ω2m ln |ω|, (B8b)

and the long-time behavior is

χ (t → ∞) = i
(2m)!

|t |2m+1
. (B9)

Examples of this behavior are the antiferromagnet in d = 3,
Sec. II B 1, and the ferromagnet in d = 2 with a nonconserved
order parameter, Sec. III B.

3. Odd powers

Finally, consider

χ (z) = (−)m+1

π
z2m+1 [ln z − ln(−z)], (B10)

with m integer, which leads to

χ (i�n) = |�n|2m+1, (B11)

and

χ ′′(ω) = (−)m+1 ω2m+1. (B12)

We now need to distinguish between m � 0 and m < 0. For
m � 0 the spectrum is analytic, the reactive part vanishes,

χ ′(ω) = 0, (B13)

and there is no long-time tail in the real-time domain. However,
there is a long-time tail in the limit of large imaginary time
τ → ∞. χ (τ ) is given by

χ (τ ) = T
∑
i�n

e−i�nτ χ (i�n). (B14)

At T = 0 the sum turns into an integral and we find

χ (τ → ∞) = 1

π
(−)m+1(2m + 1)!

1

τ 2(m+1)
. (B15)

An example for this behavior is the ferromagnet with damped
magnons in d = 2 with a conserved order parameter, see
Sec. III C.

For m < 0 the spectrum is singular at ω = 0 and there is a
long-time tail even in the real-time domain. We consider only
m = −1, in which case

χ ′(ω) = δ(ω), (B16)

and the long-real-time behavior is a constant,

χ (t) = −i. (B17)

An example is the antiferromagnet in d = 2, see Sec. II B 1.
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