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Ab initio investigation of the anomalous phonon softening in FeSi
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The anomalous softening of the acoustic phonon peak in FeSi has recently received considerable experimental
attention. In our work, we investigate the effect of thermal disorder on the lattice dynamics and the filling of the
narrow band gap of FeSi using density functional theory. We show, by comparing the phonon density of states from
temperature-independent and temperature-dependent force constants, that thermal structural disorder together
with thermal expansion explains the anomalously strong renormalization of the acoustic phonons. Furthermore,
we find an intricate interplay between thermal disorder and volume in gap closure.
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I. INTRODUCTION

FeSi has received considerable attention since the 1960s
[1]. This ongoing research effort is mainly driven by the
unusual physical properties and the various provided theories
to explain, e.g., the strongly temperature-dependent magnetic
susceptibility, the origin and closing of the narrow band gap,
and the anomalous phonon softening at elevated temperatures.
The magnetic susceptibility follows a Curie-Weiss law for
temperatures above 600 K, but goes to zero for 0 K [1]. At
low temperatures, FeSi has been found to exhibit a narrow
gap of εg = 0.06 eV [2,3]. With increasing temperature, the
gap becomes smaller and closes around 200–300 K, such
that FeSi becomes metallic above room temperature [2,4–8].
Furthermore, the Seebeck coefficient peaks at values between
500–1200 μV/K below 50 K, but is quickly suppressed at
higher temperatures [9–13]. These effects are outside what
can be expected from a simple temperature broadening of
the Kohn-Sham density functional theory [14] (KS-DFT)
electronic density of states (DOS). Furthermore, KS-DFT
overestimates the gap (εKS

g ≈ 0.12 eV [15–17]), which is
unusual. This would indicate that electron-electron correla-
tions [16] and enhanced spin fluctuations [18] beyond what
is included in the single-determinant description have to be
considered. Recently, these pictures were reconciled within
the dynamical mean-field theory [19,20]. However, thermal
disorder has also been used to account for the anomalous
temperature-dependent properties of FeSi [17,21,22].

Recently, the phonon properties have also received consid-
erable interest [22–26]. Delaire et al. [22,23] and Krannich
et al. [24] found an anomalous downshift of the acoustic
peak in the phonon DOS (pDOS) with increasing temperature,
which cannot be explained by thermal expansion alone.
Krannich et al. link the phonon softening to the unconventional
magnetic properties, but also show that the magnetism only
appears within KS-DFT after expanding the unit-cell volume
to around 100 Å3 [24]. Delaire et al. attribute the softening
to the metallization of FeSi above room temperature [22,23].
The explanation of thermal disorder filling the gap was recently
challenged by Parshin et al. [25]. While they agree on the fact
that thermal vibrations do have an influence on the electronic
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structure, they argue that this does not necessarily lead to a
filling of the band gap but can cause the opposite behavior, as,
e.g., in the A15 structure V3Si and V3Ge [27]. They found
that the critical conditions for the metal-to-semiconductor
transition lead to similar unit-cell volumes but largely different
mean-square displacements (MSD) of the atoms [25].

In this paper, we investigate the origin of the anomalous
phonon softening in FeSi using KS-DFT. Two methods
for including the effect of temperature on the pDOS are
investigated. First, the temperature is only included through
the Bose-Einstein (BE) distribution and the quasiharmonic
approximation (QHA) where the influence of thermal expan-
sion on the phonon frequencies is taken into account. We
furthermore investigate the effect of thermal disorder on the
interatomic force constants. This is conceptually different from
the usual practice of calculating force constants by sequential
displacement of one atom at a time from its equilibrium
position [28–31]. The basic idea is that the force constants
should reflect the effective potential felt by the atoms at a given
temperature. Different implementations of this idea are given
in the literature [32–36]. We review the present implementation
of the method below. The calculated frequency shifts are
compared to published experimental results of the MSD of
the atoms and the pDOS. It is shown that the observed phonon
softening can be explained from a dynamical point of view if
the combination of thermal expansion and disorder is taken
into account. Finally, we show that the filling of the gap is
not a pure volume effect, but that thermal disorder leads to a
renormalization of the electron density of states.

II. METHOD

A. Thermalized displacements

In general, the force on an atom is determined by the
displacement of all the atoms in the supercell. From the Taylor
expansion of the interatomic potential, V , the force up to
second order is given by [37]

Fm
α1

= −
∑
nα2

φmn
α1α2

un
α2

, (1)

where φ are the second-order force constants, defined as

φmn
α1α2

= ∂2V

∂um
α1

∂un
α2

. (2)
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FIG. 1. 99% probability ellipsoid for Fe (red) and Si (black)
atoms in FeSi at 750 K. The unit cell was shifted by 1.3 × (1,1,1) Å
with respect to the crystallographic unit cell. Figure created with
ORTEP-III. [39]

The α’s indicate the direction, m and n are the atom indices,
u are the displacements of the atoms from their equilibrium
position, and F is the resulting forces. In a perfectly harmonic
potential, the force constants obtained from inverting Eq. (1)
are obviously independent of the displacements used.

The idea of using thermalized displacements is to generate
an effective force field corresponding to the average potential
felt at a given temperature. In the case of thermal disorder, all
elements of um

α are nonzero, so that all atoms in the supercell
are displaced from their equilibrium position. To obtain the
thermalized displacements, we start with the MSD matrix of
atom l, which is given as [38]〈

u2
l

〉 = 1

Nml

∑
jq

Ejq

ω2
jq

ejq(l)e†jq(l), (3)

where N is the number of q points, ml is the mass of atom l, and
ωjq and ejq are, respectively, the frequency and polarization
vector of mode j at point q in the Brillouin zone. The average
energy of mode jq,

Ejq = �ωjq
(
ηjq + 1

2

)
, (4)

is temperature dependent through the BE distribution ηjq.
The matrix 〈u2

l 〉 determines the probability distribution of the
atoms [38],

pl(u) =
√

det
(〈
u2

l

〉−1)
8π3

exp

(
−uT

〈
u2

l

〉−1
u

2

)
. (5)

Based on the probability distribution function (PDF), given
by Eq. (5), of a given atom, ellipsoids of equal probability
can be defined (Fig. 1). They depend on temperature directly
through the BE distribution and indirectly through the volume
dependence and displacement dependence of the frequencies.

Getting volume- and displacement-dependent force con-
stants is schematically illustrated in Fig. 2. First, the
volume-dependent force constants are calculated at volumes
within ±2% using finite displacements. From these volume-
dependent but nonthermalized force constants, we get the
temperature-volume curve by minimizing the free energy at

QHA

QHA

Expt

FIG. 2. Outline of the calculation procedure.

each temperature. For each volume, the 〈u2
l 〉’s, given by Eq. (3),

are then calculated using the temperature corresponding to that
given volume. To obtain a set of thermalized displacements, we
draw random samples from the probability distribution defined
by Eq. (5) and obtain new force constants with the algorithm
described below. The obtained force constants and resulting
phonon frequencies thus depend on the displacements, which
in turn depend on the phonon frequencies. This leads to a self-
consistent procedure (Fig. 2), which can be repeated until the
MSD no longer change. Alternatively, the temperature-volume
curve can be obtained from experiment, where the rest of the
procedure remains the same.

B. Force constants

In principle, the force constants can be determined by
obtaining forces for 3N sets of displacements and inverting
Eq. (1). However, these will not obey crystal symmetry and,
even for an overdetermined system, a very slow convergence
is observed. It is therefore necessary to introduce symmetry
explicitly in the optimization procedure. To do this, it is
computationally convenient to rewrite Eq. (1) in a vectorized
form [29,33,40],

Fm = −
∑

n

ũnφ
mn, (6)

where

φmn =

⎛
⎜⎜⎜⎜⎜⎝

φmn
xx

φmn
xy

φmn
xz
...

φmn
zz

⎞
⎟⎟⎟⎟⎟⎠. (7)

The displacements are rewritten as

ũn = 1 ⊗ (
un

x,u
n
y,u

n
z

)
, (8)

which results in a 3 × 9 dimensional matrix.
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Symmetry makes it possible to reduce the number of
independent force constants. From Eq. (2), it follows that the
force constant tensors are symmetric, i.e.,

φmn
α1α2

= φnm
α2α1

. (9)

Further, if a space-group operation S with the rotation matrix
R maps atoms n and m onto S(n) and S(m), then the force
constants can be expressed as

φS(m)S(n) = R̃φmn, (10)

where R̃ is the rotation operation rewritten as a 9 × 9 matrix
to match the vectorized form of the force constant matrix φ,
given by Eq. (7). Considering the constraints following from
Eqs. (9) and (10), it is possible to reduce the problem such that

F = C(ũ)ϕ, (11)

where F is the 3Nν-dimensional force vector, N is the number
of atoms, ν is the number of force fields, and C is a matrix
containing the linear combinations of displacements due to
symmetry [33]. C has the dimensions 3Nν × NIFC, where
NIFC is the number of independent force constants. ϕ is a
vector containing the independent force constants.

Translational and rotational invariance is included via the
acoustic

0 =
∑

n

φmn
α1α2

(12)

and rotational sum rules [37]

0 =
∑

n

φmn
α1α2

xmn
α3

− φmn
α1α3

xmn
α2

, (13)

where xmn
α = xm

α − xn
α . We implement these rules using the

vectorized notation given by Eqs. (7) and (8) by including
extra displacements. For the translational invariance, there
are displacements of all atoms along the three Cartesian
coordinates, such that

ũx,ti
n = 1 ⊗ (1 0 0), (14)

ũy,ti
n = 1 ⊗ (0 1 0), (15)

ũz,ti
n = 1 ⊗ (0 0 1). (16)

For rotational invariance, each mn pair defines the matrix

ũri
mn =

⎛
⎝0 −xmn

z xmn
y 0 0 0 0 0 0

0 0 0 xmn
z 0 −xmn

x 0 0 0
0 0 0 0 0 0 xmn

y −xmn
x 0

⎞
⎠.

(17)

The force constants can then be calculated by inverting the C

matrix,

F =

⎛
⎜⎝

C(ũ)

C(ũti)

C(ũri)

⎞
⎟⎠ϕ, (18)

where C(ũti) and C(ũri) are the symmetry-reduced rota-
tional and translational displacements. The F components
corresponding to the ũti and ũri displacements are zero.
Since the extra displacements for translational and rotational

invariance do not enforce the exact fulfillment of the invariance
conditions, it is possible to multiply a specific weight to
C(ũti/ri). This gives control over how well the conditions,
given by Eqs. (12) and (13), are to be satisfied at the cost
of reproducing the force fields. To obtain a converged result,
the system of linear equations is overdetermined and the
independent force constants are found using singular-value
decomposition of C.

III. COMPUTATIONAL DETAILS

We conducted DFT calculations using VASP [41]. As
exchange correlation functional, we used the generalized
gradient approximation Perdew-Burke-Ernzerhof (PBE) [42].
The calculations to get the force constants from finite dis-
placements as well as from thermal disorder were done in
a 2 × 2 × 2 orthogonal supercell containing 64 atoms with
a 5 × 5 × 5 Monkhorst-Pack k mesh with an energy cutoff
of 500 eV. The electron DOS was calculated in two steps.
First, the charge density in the supercell with thermal disorder
was calculated with a 5 × 5 × 5 Monkhorst-Pack k mesh.
Second, after achieving self-consistency, the charge density
was fixed and the DOS was calculated on a fine 11 × 11 ×
11k mesh with a cutoff energy of 270 eV. The sequential
displacements were generated by displacing the atoms by
0.01 Å one at a time from their equilibrium position. We used
25 thermalized sets of displacements generated according to
the thermal PDF, given by Eq. (5). The symmetry operators
used for the generation of the C matrix were taken from
spglib [43].

IV. RESULTS AND DISCUSSION

Figure 3 shows the phonon band structure and pDOS for the
DFT equilibrium volume with nonthermalized force constants
(black line). The phonon band structures 750 K QHA volume

FIG. 3. FeSi phonon band structure and density of states. Black:
PBE equilibrium volume and force constants from sequential dis-
placements. Green: VQHA(750 K) nonthermalized force constants
from sequential displacements. Red: VQHA(750 K) thermalized force
constants corresponding to 750 K. The density of states have been
normalized to the number of atoms in the unit cell.
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FIG. 4. MSD along the principal axes of the equal probability
ellipsoids. Full circles and crosses correspond to 〈u2

11〉. Open circles
and plus signs correspond to 〈u2

33〉. Circles show experimental values
taken from Ref. [44]. Green corresponds to iron and blue corresponds
to Si. Crosses and plus signs are calculated from thermalized
force constants obtained at four volumes using the experimental
temperatures (upper x axis) corresponding to these volumes.

(90.0 Å3) using force constants obtained from finite sequential
displacements (green line) are also shown. It is clear that a shift
of the acoustic peak occurs due to the volume expansion. The
shift is about 5.2%. This is more than what would be estimated
from volume change alone using a Grüneisen parameter of
γ = 1.6, as done earlier [23], but still substantially less than
the shift of 14% reported experimentally [23,24].

To investigate the role of thermal disorder, we then
calculated thermalized force constants at the volume of
90.0 Å3 using a temperature of 750 K to generate the MSD.
Thereby a further shift of 4.5% of the main acoustic peak
(red line in Fig. 3) compared to the results obtained with the
sequential displacements occurs. This brings the total shift of
9.7% into better agreement with experiment and underlines
that increasing thermal disorder with increasing temperature
affects the force constants substantially and plays a role in
explaining the phonon DOS at elevated temperatures.

The MSD used for determining the thermalized displace-
ments can be validated by comparison to those obtained from
the refinement of diffraction data. The MSD obtained for FeSi
from experimental data [44] are shown in Fig. 4. For Si, an
anisotropy is clearly seen, which is in accordance with the
point group of the atomic position. FeSi crystallizes in a cubic
B-20 structure (space group 198) with 8 atoms per unit cell
[45]. In FeSi, the atoms occupy the Wyckoff position a. This
leads to a MSD matrix with two independent coefficients [38],

〈
u2

l

〉 =
⎛
⎝A B B

B A B

B B A

⎞
⎠, (19)

where A and B are different for Fe and Si atoms. The MSD
matrix, given by Eq. (19), will give two distinct principle axes
of the equal probability ellipsoid (Fig. 1). We have calculated
the MSD from thermalized force constants at four volumes

FIG. 5. Experimental volume-temperature curve [44] (dots) and
calculated with QHA (solid line). The inset shows the MSD of Si
calculated using the QHA volume at the given temperature.

using the corresponding experimental temperature (upper x

axis in Fig. 4). The anisotropy and magnitude of both the Si
and Fe MSDs are very well recovered and agree quantitatively
with experiment, even at high temperatures. It is thus clear
that the MSDs are well described by volume-dependent force
constants. The importance of taking the volume dependence
of the force constants into account is underlined if we fix
the force constants to those obtained at a unit-cell volume of
89.6 Å3 and include temperature only in the BE distribution.
The obtained MSD, shown in the inset in Fig. 5 as solid
lines, significantly underestimates the experimental MSD at
high temperatures. Force constants were obtained for the four
volumes using both sequential and thermal displacements.
However, the difference was found to be very small. For
example, at 750 K, the MSDs from sequential force constants
and the corresponding thermalized force constants 〈u2

Si,11〉
differ less than 10−5 Å2. This underlines that the MSDs
are not sensitive to the displacements used, as opposed to
the frequencies (Fig. 3). We have therefore not taken further
iterations of the self-consistent procedure illustrated in Fig. 2.

An alternative to using the experimental temperature-
volume curve is to calculate it directly from the QHA (see
scheme in Fig. 2). The hereby obtained curve is shown in
Fig. 5. The calculation clearly underestimates the unit-cell
volume. The relaxed cell has a unit-cell volume of 88.1
Å3, which underestimates the low-temperature experimental
result of 89.6 Å3 by about 1.7% [44]. Including zero-point
vibrations increases the calculated volume to 88.6 Å3, which
is still approximately 1% lower than the experimental result.
The influence of the underestimated unit-cell volume on the
calculated MSDs is illustrated in Fig. 5 (inset). The calculated
MSDs (crosses at 1066 K) are underestimated due to the
underestimated unit-cell volume (calculated to 91.0 Å3 instead
of the experimental 93.7 Å3 at 1000 K). In a direct comparison
with experiment, the QHA for FeSi thus introduces a bias. For
a given volume, it leads to an overestimated temperature or,
for a given temperature, leads to an underestimated unit-cell
volume.
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FIG. 6. Weighted phonon DOS of FeSi. Black: Vexp(0 K) and non-
thermalized force constants. Green: Vexp(750 K) and nonthermalized
force constants. Blue/red: Vexp(750 K) and using thermalized force
constants evaluated at 750 and 1250 K. The calculated projected
phonon DOS is weighted with the coherent scattering lengths, 4.15
and 9.45 fm, and masses, 28.09 and 55.85 amu, for Si and Fe,
respectively [46]. A Gaussian smearing of σ = 0.4 was used. The
intensity was scaled to the 10 K low-temperature experimental
acoustic peak. The same scaling was then applied to all the calculated
phonon DOS. The experimental data are taken from Ref. [23].

The results discussed above underline two points. First
of all, the position of the phonon peaks is sensitive to the
displacements used to obtain the force constants. Second, there
is a certain bias in the QHA temperature-volume curve which
prevents the theory from being fully quantitative.

To further analyze the dependence of the phonon peaks
on the displacements used, we have calculated the weighted
phonon DOS of FeSi for comparison with experiment (Fig. 6).
The effect of volume expansion on the phonon DOS without
temperature effects is comparable to the shift that occurs in the
QHA (Fig. 3). Expanding the volume from Vexpt(0 K) (black
line) to Vexpt(750 K) (green line) leads to a downward shift of
the main peak of about 5.7% (Fig. 6). Calculating the pDOS
from the 750 K thermalized displacements results in a further
shift of 2.5%, such that the total shift is 8.2%. Increasing
the temperature used to generate the thermal displacements
to 1250 K but keeping the volume fixed yields a significant
total shift of the acoustic peak of 14.5% (red line, Fig. 6). It
should be noted that the relative position of the calculated 0 K
peak is slightly shifted to higher frequencies, which explains
why the high-temperature peak does not exactly match the
experimental peak position even though there is a 14% shift.

It is thus possible to obtain a very good agreement between
the experimental and calculated shift of the main peak,
although with an MSD evaluated at a higher temperature. This
falls in line with an overbinding of the functional indicated
by the underestimated lattice constant. Overbinding within
the PBE functional, which otherwise tends to overestimate
unit-cell volume, is unusual [47,48]. It can be related to self-
interaction error, which will tend to make the d orbitals more
bandlike. The overbinding could be corrected using a self-
interaction corrected or “+U”-like scheme [49]. This would,

(a)

(b)

FIG. 7. Electron density of states for FeSi at (a) 0.94 × V0 and (b)
V0. For each temperature, the DOS of two sets of thermal disordered
structures were calculated and averaged. The label corresponds to the
temperature used to generate the thermalized displacements.

however, further open the already overestimated band gap.
In this context, it is interesting that PBE also underestimates
the lattice constant of FeAl [48], which is another compound
that has been discussed in the context of electron-electron
correlations [50]. As such, our results provide further evidence
that for a quantitative theory for FeSi, it is necessary to include
electron-electron correlations beyond the single-determinant
KS-DFT description. Furthermore, they underline that thermal
disorder plays an important role in the high-temperature
properties.

Finally, we will discuss the role of the gap filling and
metallization in the anomalous temperature dependence of the
acoustic peak. We calculated the electron DOS of FeSi for two
different volumes (Fig. 7). The curves labeled 0 K are obtained
with the atoms at their equilibrium positions. The curves
labeled 400 and 700 K were calculated by displacing the atoms
according to the PDF, given by Eq. (5), and averaging the DOS
obtained for two different thermally disordered supercells. The
results in Fig. 7 show that regardless of the volume, ordered
FeSi exhibits a band gap of about 120 meV. Thermal disorder
closes the band gap, where the critical temperature for smaller
volumes is higher than for higher volumes. For the small
volume, the critical temperature is between 400 and 700 K,
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whereas for the large volume, the gap closes between 0 and
400 K. Our results agree with the measurements of Parshin
et al. [25], who found that the MSD at the critical conditions
for pressure and temperature can be significantly different.

We notice that at equilibrium volume and thermal disorder
corresponding to 700 K, the band gap is closed (see Fig. 7).
However, as opposed to the 750 K QHA volume, we find
no significant shift of the acoustic peak when using the 750 K
thermalized force constants. If the metallization of FeSi, which
is driven by structural disorder, would cause the shifting of the
low-frequency peaks, then we should see it at both the equi-
librium volume and 750 K. Thus, the origin of the anomalous
downshift is not so much the metallization of the material,
but rather the increasing importance of anharmonicity in the
potential energy landscape with increasing volume. The filling
of the band gap is thus caused by structural disorder. However,
the filling of the gap itself does not influence the anomalous
softening of the phonons.

V. CONCLUSION

We have found that volume expansion contributes a
significant part to the phonon softening in FeSi. However,
the anomalously large softening of the acoustic peak can only
be explained by the combination of volume expansion and the

effect of thermal disorder on the interatomic bonding. The PBE
is found to overbind and underestimate the unit-cell volume.

Our results indicate that both electron-electron correlation
beyond the single-determinant KS description as well as
thermal disorder play important roles for the high-temperature
properties of FeSi. As such, our results fall in line with the
conclusions by Tomczak et al. and Kunes et al. [19,20], who
showed how FeSi is moderately correlated but has an electronic
structure where these moderate correlations are essential for a
correct description.

We calculated the mean-square displacements of Si and
Fe atoms in FeSi from temperature-dependent force constants
at experimental volumes and achieved very good agreement
with reported results. A pure volume effect of closing the gap
can be excluded from the theoretical point of view, since the
band gap was not found to change with volume. However,
thermal disorder leads to a closing of the gap and the critical
temperatures differ for the three considered volumes. While
thermal disorder plays a crucial role in explaining the filling of
the gap and the anomalous phonon softening, the metallization
of FeSi does not lead to a considerable phonon softening at
equilibrium volume.
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Grüner, Z. Fisk and P. Canfield, Europhys. Lett. 28, 341 (1994).

[4] A. Chainani, T. Yokoya, T. Morimoto, T. Takahashi, S. Yoshii,
and M. Kasaya, Phys. Rev. B 50, 8915 (1994).

[5] T. Saitoh, A. Sekiyama, T. Mizokawa, A. Fujimori, K. Ito, H.
Nakamura, and M. Shiga, Solid State Commun. 95, 307 (1995).

[6] S. Paschen, E. Felder, M. A. Chernikov, L. Degiorgi, H. Schwer,
H. R. Ott, D. P. Young, J. L. Sarrao, and Z. Fisk, Phys. Rev. B
56, 12916 (1997).

[7] K. Breuer, S. Messerli, D. Purdie, M. Garnier, M. Hengsberger,
Y. Baer, and M. Mihalik, Phys. Rev. B 56, R7061(R) (1997).

[8] K. Ishizaka, T. Kiss, T. Shimojima, T. Yokoya, T. Togashi, S.
Watanabe, C. Q. Zhang, C. T. Chen, Y. Onose, Y. Tokura, and
S. Shin, Phys. Rev. B 72, 233202 (2005).

[9] R. Wolfe, J. Wernick, and S. Haszko, Phys. Lett. 19, 449
(1965).

[10] B. C. Sales, E. C. Jones, B. C. Chakoumakos, J. A. Fernandez-
Barca, H. E. Harmon, and J. W. Sharp, Phys. Rev. B 50, 8207
(1994).

[11] B. Buschinger, C. Geibel, F. Steglich, D. Mandrus, D. Young, J.
Sarrao, and Z. Fisk, Physica B: Condens. Matter 230–232, 784
(1997).

[12] N. E. Sluchanko, V. V. Glushkov, S. V. Demishev, M. V. Kondrin,
K. M. Petukhov, N. A. Samarin, V. V. Moshchalkov, and A. A.
Menoskyv, Europhys. Lett. 51, 557 (2000).

[13] B. C. Sales, O. Delaire, M. A. McGuire, and A. F. May, Phys.
Rev. B 83, 125209 (2011).

[14] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[15] L. F. Mattheiss and D. R. Hamann, Phys. Rev. B 47, 13114

(1993).
[16] C. Fu and S. Doniach, Phys. Rev. B 51, 17439 (1995).
[17] T. Jarlborg, Phys. Rev. B 59, 15002 (1999).
[18] Y. Takahashi, J. Phys.: Condens. Matter 9, 2593 (1997).
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