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In crystals, molecules thermally vibrate around the periodic lattice sites. Vibrational motions are well
understood in terms of phonons, which carry heat and control heat transport. The situation is notably different in
disordered solids, where vibrational excitations are not phonons and can be even localized. Recent numerical work
has established the concept of elastic heterogeneity: disordered solids show inhomogeneous local mechanical
response. Clearly, the heterogeneous nature of elastic properties strongly influences vibrational and thermal
properties, and it is expected to be the origin of anomalous features, including boson peak, vibrational localization,
and temperature dependence of thermal conductivity. These are all crucial long-standing problems in materials
physics, which we address in the present work. We have considered a toy model able to stabilize different states of
matter, by introducing an increasing amount of size disorder. The phase diagram generated by molecular dynamics
simulations encompasses the perfect crystalline state with a spatially homogeneous elastic moduli distribution,
multiple defective phases with increasing moduli heterogeneities, and eventually a series of amorphous states.
We have established clear correlations among the heterogeneous local mechanical response, vibrational states,
and thermal conductivity. We provide evidence that elastic heterogeneity controls both vibrational and thermal
properties, and is a key concept to understand the anomalous puzzling features of disordered solids.
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I. INTRODUCTION

In crystalline materials, molecules are located at the
periodic lattice sites, and their vibrational motions are well
understood in terms of quantized plane waves, the phonons
[1,2]. At low frequencies (ω), vibrations are described as
acoustic plane waves, whose vibrational density of states
(vDOS) conforms to the Debye model, gD(ω) ∝ ω2, which
agrees with experimental results for crystals [1,2]. In contrast,
disordered solids feature anomalous vibrational properties
as compared to those of the corresponding crystals. (Here,
disordered solids include not only topologically amorphous
materials as structural glasses [3], but also disordered crystals
[4,5], which show periodic lattice structures but in the presence
of disordered interparticle potentials, like colloidal crystals
with size disorder.) Among these anomalies, the origin of an
excess in the low-ω spectrum of the excitations, the boson peak
(BP) [6,7], is still an open issue. More precisely, g(ω) shows
an excess over the Debye prediction for the corresponding
crystal value, around a frequency ω = �BP ∼ 1 THz. At �BP,
vibrational excitations can even be localized [8,9], and in
general cannot be described as plane waves.

Interestingly, acousticlike excitations have been observed
in disordered solids by experimental techniques, including
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light [10], and (inelastic) x-rays [11] and neutrons [12]
scattering. Numerical methods like molecular dynamics (MD)
simulations [13] have also provided clear evidences in this
direction. In the case of crystals, acoustic excitations are exact
normal modes of the system, and an acoustic plane wave
excites one normal mode only. In contrast, an acousticlike
vibrational excitation in disordered solids is a superposition
of several different normal modes, with different vibrational
frequencies [14,15]. Such a mode attenuates rather rapidly [15]
compared to vibrations in crystals. It has been reported that
the Ioffe-Regel frequency �IR, which corresponds to an upper
bound for the frequency of propagation of true plane waves
[16], is located around the BP frequency, �IR ∼ �BP [17–19].
More interestingly, strong scattering and breakdown of the
Debye-continuum approximation have been observed around
the same frequency [20]. Connections between the BP and
anomalous acoustic excitations are not obvious, but the above
observations indicate that they must be strongly correlated.

Anomalies in vibrational properties obviously reflect on
thermal behavior [3], including heat capacity and thermal
conductivity at low temperature T . The low-T heat capacity
C(T ) can be directly obtained from the g(ω) in the harmonic
approximation [1,2] [see Eq. (27)]. From the Debye prediction
gD(ω), one obtains CD(T ) ∝ T 3, which captures well the
low-T heat capacity of crystals [1,2]. In contrast, disordered
solids show values higher than the Debye prediction, which
directly originates from the excess vibrational modes in the
BP frequency range [3,21,22].

Thermal conductivity κ is also very different in crystals and
disordered solids. In crystals, phonons carry heat and play the
most important role in thermal conduction [1,2]. Therefore,
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although it is in principle necessary to correctly take into
account phonon-phonon interactions at nonzero temperatures
(anharmonic effects), one can very precisely analyze thermal
conductivity in terms of the Boltzmann transport equation
for phonons [23–26]. In disordered solids, the nature of heat
carriers is still a matter of debate, but acousticlike modes are
naturally expected to play an important role. In this case, a
strong damping of acousticlike excitations with ω > �BP ∼
�IR leads to an important reduction of κ [3,21,27,28]. Remark-
ably, disordered solids generally show similar temperature
dependence of thermal conductivity, irrespective to the details
of their chemical structure. More precisely, κ increases as
κ ∼ T 2 at low-T , and exhibits a plateau around T ∼ 10 K
[3,21,27,28]. A theoretical calculation for κ of disordered
solids has been proposed, where heat currents are carried by
nonpropagating, delocalized, normal modes, called diffusons
[29]. This theory is able to reproduce the T dependence of
thermal conductivity in the glass phase [30].

Clarifying the above issues is tantamount with seeking
an answer to the question: what is the origin of vibrational
and thermal anomalies in disordered solids? This issue has
been targeted by several theoretical developments. These
include, among others, the soft-potential model [31], the
mode coupling theory [32], crossover from minima-dominated
to saddle-point-dominated phases [33], vibrational instability
of quasilocalized modes [34], transformation of van Hove
singularities [35,36], piling-up of acoustic states close to
the boundary of the pseudo-Brillouin zone [37,38], weak
connectivities of particles due to the vicinity of the jamming
transition point [39,40].

In addition, the concept of elastic heterogeneity has been
proposed [41]: disordered solids exhibit spatial heterogeneities
of elastic moduli. This is a specific feature, absent in ordered
crystals where the mechanical response to perturbations is
homogeneous at all length scales [42,43]. Recent simulation
works [44–47] have addressed a direct measure of local
elastic moduli and have well established this concept. (Note
that local measurements of elastic properties can be quite
easily implemented in numerical simulations [47], whereas
analogous experimental measurements are rather difficult
[42].) The study of Ref. [45] showed that local moduli spatially
fluctuate at mesoscopic length scales, ξeh ∼ 10 to 15σ , with
σ the typical atomic diameter. Also, Refs. [48,49] showed
that the spatial heterogeneities in elastic properties generate
nonaffine deformations, which add to the affine contributions
and are of comparable magnitude [50]. During the nonaffine
deformations, particles have been shown to undergo correlated
displacements, with a mesoscopic correlation length, ξna ∼ 20
to 30σ [50,51], which is of the same order of magnitude as
ξeh.

It is natural to expect that elastic heterogeneities must
contribute in turning phonons to more complex vibrational
excitations, therefore scattering acoustic plane-waves and
reducing thermal conductivity. Remarkably, it was reported
that the wavelength � of acoustic waves corresponding to
�BP is close to the mesoscopic length-scale ξna [51,52], i.e.,
� ∼ ξna ∼ ξeh. The breakdown of continuum elasticity [50,53]
and Debye approximation [54] for acoustic plane waves, and
the onset of the strong scattering regime [55] have been also
found to take place at similar length scales as ξeh and ξna.

Also, strong correlations between local moduli and vibra-
tional modes have been detected: localization of vibrational
excitations tends to appear in soft regions, characterized by
elastic constants significantly lower than the macroscopic
values [56,57]. A theoretical approach based on the concept
of spatially fluctuating elastic moduli [58–61] has been able
to reproduce both the BP feature and the T -dependence of
thermal conductivity. All this work therefore supports the
hypothesis that elastic heterogeneities control both vibrational
and thermal anomalies.

In recent works [62,63], we have addressed this point, by
systematically modulating the extent of the heterogeneous
elastic response. We have provided evidence of direct cor-
relations with vibrational states features and thermal con-
ductivity, determined by completely independent calculations
without any adjustable parameter. Our approach was based
on MD simulations of a toy model, which allowed us to
generate states of matter ranging from the perfect crystal
state to defective crystal phases, and eventually, amorphous
states, by introducing an increasing amount of disorder
in particles size. Next, we (i) characterized the changes
of elastic moduli heterogeneities in the different phases;
(ii) independently studied the consequent modifications of
vibrational excitations, both in terms of eigenvalues and eigen-
vectors of the Hessian matrix and spectroscopic parameters
extracted from dynamical structure factors; and (iii) monitored
the associated changes in the T dependence of thermal
conductivity.

Here, we present significantly more extended data sets,
explore in details the nature of vibrational excitations and their
correlation with different local elastic constants in various
regions of the spectrum, clarify the effect of anharmonic
couplings, and offer a general perspective on our work. The
paper is organized as follows. In Sec. II, we describe our
numerical model, and give details about the method used to
measure the local elastic constants. In Sec. III, we present
a discussion of our results on elastic heterogeneities. We
also attempt to correlate heterogeneities of local moduli to
those present in more familiar local structural quantities.
In Secs. IV and V, we present the results on vibrational
states (vDOS, participation ratios, lifetimes) and thermal
conductivity, respectively, and detail the correlations between
the elastic heterogeneities on one side, and vibrational states
and thermal conductivity, on the other. Finally, in Sec. VI, we
summarize our results and draw general conclusions on our
work.

II. NUMERICAL METHODS

A. Model and simulations details

1. Soft spheres

We have considered a soft-sphere model [64] in a (3D)
cubic box of linear size L, with periodic boundary conditions
in all directions. Particles i and j interact through a soft-sphere
potential,

vij = ε

(
σ ij

rij

)12

, (1)
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where σ ij = (σ i + σ j )/2, σ i , and σ j are the diameters of the
particles, and rij is the mutual distance. The potential vij is
cutoff and shifted to zero at rij

c = 2.5σ ij . Our reference state is
the one-component perfect face-centred-cubic (FCC) crystal,
where the particle diameter and mass are σ and m for all
particles. Throughout this study, we use σ , ε/kB (kB is the
Boltzmann constant), and τ = (mσ 2/ε)1/2 as units of length,
temperature, and time, respectively, i.e., we set σ = ε = τ =
1.

We have fixed the number density ρ̂ = N/V = N/L3 =
1.015 (N is number of particles, and V is the system
volume), and the length of the unit cell of the FCC crystal
is a = 1.58. Most of the simulations were performed with
N = 4000 particles, in boxes of linear size L = 10a = 15.8.
Larger systems, with L ranging from L = 12a (N = 6912)
to 30a (N = 108000), were also used for the calculations
of the vibrational states (see Sec. IV). The FCC crystal was
equilibrated at temperature T = 10−2 in the (NV T ) ensemble,
by using a Berendsen thermostat [65]. Although we set the
number density ρ̂ and the temperature T independently, the
thermodynamic state of the present system depends on a
single parameter, � = ρ̂/T 1/4, due to the scaling properties
of inverse-power-law potentials [64]. � = 3.21 in the present
case. For a one-component soft-sphere system, melting and
glass transition temperatures are Tm � 0.6 (�m � 1.15) and
Tg � 0.2 (�g � 1.5), respectively [64]. All simulations have
been performed by using the MD code LAMMPS [66,67].

2. Size disorder

Starting from the reference perfect crystal state, we in-
troduce disorder in particle size, as described in Ref. [68].
We randomly select N/2 particles which are assigned to
species 1 with size σ1, the remaining pertaining to species
2(σ2), therefore designing an initial equimolar binary mixture.
In an approximate one-component description, an effective
diameter can be defined as σ 3

eff = ∑
α,β=1,2 xαxβσ 3

αβ , where
σαβ = (σα + σβ)/2 and xα = xβ = 0.5 are the respective
molarities [64]. The coupling parameter � is therefore replaced
by �eff = (ρ̂/T 1/4)σ 3

eff. Next, σ1 is gradually reduced below
the initial value σ = 1, while σ2 is increased above 1, by
keeping constant both the effective diameter σeff ≡ 1 and the
coupling parameter �eff ≡ 3.21. The extent of the disorder is
therefore encoded in the disorder parameter, λ = σ1/σ2 � 1,
which directly provides the values of σ1 and σ2. We started
with the ideal crystal case, λ = 1, and gradually decreased λ

by a series of small steps, �λ = 10−4, encompassing the range
λ ∈ [0.7 : 1]. The system was re-equilibrated at T = 10−2

after each step before production runs. We note that the total
volume fraction φ varies only mildly (φ = 53 to 56%) during
the entire process [see Fig. 4(b)].

3. The amorphisation transition

As the disorder parameter λ is decreased, therefore intro-
ducing an increasing size disorder, the system undergoes a
structural transition into an amorphous state at λ = λ∗, as
first observed in Ref. [68]. Note that, although Ref. [68]
considered a 2D system, the result is very similar for our
3D case. We determined the transition point λ∗ � 0.81 by
monitoring both the mean-squared displacement 〈�r2〉 =
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FIG. 1. (a) Mean-squared displacement 〈�r2〉 and (b) Q6 vs the
disorder parameter λ, at T = 10−2. The system is initialized in the
perfect FCC-crystal state λ = 1, where 〈�r2〉 � 0 and Q6 � 0.57.
Next, λ is decreased from 1 to 0.7 in the fully developed amorphous
state, as discussed in the text. Data for two independent instances
of the size disorder are shown by open circles and triangles. Both
samples undergo the amorphization transition at λ = λ∗ � 0.81,
indicated by the vertical line. We also show in (b) by closed circles
data for Q6 obtained by following the reverse path, increasing λ from
0.7 to 1. In this case, Q6 shows no significant changes for λ = λ∗,
keeping the value pertaining to the amorphous state. This hysteresis
effect is discussed in the text.

(1/N)
∑N

j=1(〈rj 〉 − rj

0)2 and the bond order parameter Q6

[69,70]. Here, 〈. . . 〉 denotes the time average (ensemble
average), rj is the instantaneous position of particle j , and
rj

0 is the reference FCC lattice site.
In Fig. 1, we show the λ dependence of 〈�r2〉

and Q6, by open symbols. For the perfect crystal, λ =
1, we have 〈�r2〉 = 0 and Q6 � 0.57. As λ decreases,
both quantities show discontinuous jumps at the transi-
tion point, λ∗. We have additionally monitored the order
parameter 〈|ρG|〉 = 〈|(1/N)

∑N
j=1 exp(iG · rj )|〉, with G =

(2π/a,2π/a, − 2π/a), which also shows a discontinuity at
λ∗ [62]. The value of λ∗ does not depend on the initial
repartition of the two species on the lattice, as we demonstrate
in Fig. 1 where we show analogous results for two independent
instances of the disorder.

For λ∗ � λ � 1, particles are localized very close to
the initial lattice sites, notwithstanding the presence of size
disorder. The system is therefore in a chemically disordered
crystalline state [4,5], characterized by well-defined Bragg
peaks. In contrast, for 0.7 � λ < λ∗, the system cannot keep
the lattice structure any longer, and falls in an amorphous
arrested state, with complete loss of translational invariance.
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As discussed in Ref. [68], the transition is first-order-like.
Indeed, the first derivative of the free energy with respect to λ,
∂F/∂λ, exhibits a discontinuous change at λ∗ [68], which is a
behavior typical of a genuine first-order phase transition. The
parameter λ, however, is not a true thermodynamic variable,
and therefore the transition cannot be strictly considered as
such in a genuine thermodynamic sense (see Ref. [68] for
details).

4. Hysteresis

It is interesting to reversely increase λ, searching for
hysteresis effects. We show our result in Fig. 1(b) (filled
symbols). Interestingly, Q6 shows no significant changes in the
entire λ range. This means that, at the investigated low T , the
system is trapped in the amorphous state and cannot overcome
the energy barrier leading to the crystalline minimum, at least
on our simulation time scale. Indeed, we have also confirmed
that at T = 10−1, the system partially recovers the lattice
structure, at λ � 0.95, but still cannot return to the perfect
crystal state. This is at variance with Ref. [68], where a
reinitialization to the perfect lattice structure upon increasing
λ was observed. This difference can be explained by observing
that in the 2D case for small system with N = 108 [68], the
energy barrier separating the amorphous and crystalline states
can be expected to be much smaller than that of the present 3D
case with N = 4000. Our results are also consistent with those
of Refs. [71,72], where a larger 2D system with N = 1000 was
studied varying both T and λ, and polycrystalline domains
separated by amorphous boundaries were reported.

B. Measuring the local elastic moduli

Disordered solids, including glasses and complex crystals,
exhibit inhomogeneous and scale-dependent spatial distribu-
tions of local elastic moduli. These can be measured following
different methods [44–47]. In the present study, we employ
the equilibrium fluctuation formulas, which can be used to
calculate both global [73–77] and local [44,47,78] moduli. In
Ref. [47], we referred to this method as the fully local approach,
which we summarize below.

1. The local modulus tensor

The local elastic response at a coarse-graining length scale
w can be determined by partitioning the simulation box into
203 cubic domains, identified by the index m, of linear size
w = 2a = 3.16. A domain has a volume w3 = 8a3, which
is eight times that of the unit cell of the FCC crystal, and
includes about 30 particles. The local modulus tensor Cm

αβγ δ

(α,β,γ,δ = x,y,z) is defined as the derivative of the local
stress σm

αβ with respect to the local linear strain εm
γ δ , and can be

expressed as

Cm
αβγ δ = Cm

Bαβγ δ + Cm
Kαβγ δ + Cm

Cαβγ δ − Cm
Nαβγ δ

= Cm
Aαβγ δ − Cm

Nαβγ δ. (2)

Here, Cm
Bαβγ δ is the Born term, Cm

Kαβγ δ is the kinetic contri-
bution, Cm

Cαβγ δ is the pressure correction [79], and −Cm
Nαβγ δ

is the nonaffine term. (Note that the Born term Cm
Bαβγ δ is

the second derivative of the energy density with respect to
the Green-Lagrange strain tensor [76,78]. Therefore, if we

define the modulus by using the linear strain tensor, the stress
correction term Cm

Cαβγ δ is necessary as long as the stress tensor
has finite valued components [79].)

The quantity Cm
Aαβγ δ = Cm

Bαβγ δ + Cm
Kαβγ δ + Cm

Cαβγ δ corre-
sponds to the response of a system which deforms affinely at
all scales [77]. In contrast, −Cm

Nαβγ δ is a negative correction
which accounts for the nonaffinity of the deformation at small
scales. Crystalline systems exhibit small values of −Cm

Nαβγ δ ,
whereas this contribution becomes comparable in magnitude
to Cm

Aαβγ δ in disordered systems [50].
The terms in Eq. (2) are evaluated as

Cm
Bαβγ δ = 1

w3

〈∑
i<j

(
∂2vij

∂rij 2 − 1

rij

∂vij

∂rij

)
r

ij
α r

ij

β r
ij
γ r

ij

δ

rij 2

qij

rij

〉
,

Cm
Kαβγ δ = 2〈ρ̂m〉T (δαγ δβδ + δαδδβγ ),

Cm
Cαβγ δ = −1

2

[
2
〈
σm

αβ

〉
δγ δ − 〈

σm
αγ

〉
δβδ − 〈

σm
αδ

〉
δβγ

− 〈
σm

βγ

〉
δαδ − 〈

σm
βδ

〉
δαγ

]
,

Cm
Nαβγ δ = V

T

[〈
σm

αβσγ δ

〉 − 〈
σm

αβ

〉〈
σγ δ

〉]
. (3)

Here, Nm is the number of particles contained in the domain
m (dubbed m hereafter), ρ̂m = Nm/w3 is the local number
density in m, r

ij
α is the vector joining particles i and j , and

rij is their distance. The quantity qij represents the fraction
of the line segment r

ij
α which is located inside m. As a

consequence, if r
ij
α is located outside m, qij = 0, and qij /rij

determines the contribution of each pairwise interaction to the
Born term Cm

Bαβγ δ . Note that in principle one needs to add
an impulsive correction to Cm

Bαβγ δ due to the truncation of
the potential at the cutoff [80]. Also we have to be careful of
cutoff nonlinearities on the nonaffine term Cm

Nαβγ δ [81]. In the
present case, however, we have confirmed that those correction
and effect are always negligible.

Local, σm
αβ , and global, σαβ , stresses are calculated as

σm
αβ = −ρ̂mT δαβ + 1

w3

∑
i<j

∂vij

∂rij

r
ij
α r

ij

β

rij

qij

rij
,

σαβ = 1

V

∑
m

w3σm
αβ,

= −ρ̂T δαβ + 1

V

∑
i<j

∂vij

∂rij

r
ij
α r

ij

β

rij
. (4)

By using the system configurations generated by MD simu-
lation, we can therefore directly calculate all components of
Cm

αβγ δ in m from Eqs. (2)–(4).

2. Local bulk and shear moduli

We have considered the bulk modulus, Km, and the five
shear moduli Gm

l (l = 1,2, · · · ,5), defined as [47]

Km = (
Cm

xxxx + Cm
yyyy + Cm

zzzz + Cm
xxyy + Cm

yyxx

+Cm
xxzz + Cm

zzxx + Cm
yyzz + Cm

zzyy

)/
9,

Gm
1 = (

Cm
xxxx + Cm

yyyy − Cm
xxyy − Cm

yyxx

)/
4,
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(a) Bulk (b) Pure shear (c) Simple shear

FIG. 2. Schematic illustration of (a) bulk, (b) pure shear, and
(c) simple shear deformations. Bulk (Km), pure shear (Gm

p ), and
simple shear (Gm

s ) local moduli corresponding to these deformations
can be determined as discussed in the text.

Gm
2 = (

Cm
xxxx + Cm

yyyy + 4Cm
zzzz + Cm

xxyy + Cm
yyxx

− 2Cm
xxzz − 2Cm

zzxx − 2Cm
yyzz − 2Cm

zzyy

)/
12,

Gm
3 = Cm

xyxy,

Gm
4 = Cm

xzxz,

Gm
5 = Cm

yzyz. (5)

The moduli Gm
1 and Gm

2 correspond to pure shear deformations
(plane and triaxial strain deformations), while Gm

3 , Gm
4 , and

Gm
5 are related to simple shear deformations. We give a

schematic illustration of these deformations in Fig. 2. Note
that the moduli defined in Eq. (5) are not eigenvalues of the
modulus tensor, which is an alternative possibility [45,82]. In
that case, however, the corresponding deformations, which are
determined by the associated eigenvectors, are not fixed and
depend on m.

3. Distributions of the local moduli

From the data calculated via Eq. (5), we have built the prob-
ability distribution functions, P (Cm), by repetitively sampling
the 203 values of Cm = Km, Gm

1 , Gm
2 , . . . , Gm

5 . We have
confirmed that P (Cm) are Gaussian distributions [44–47] in
all cases. Although Gm

1 
= Gm
2 and Gm

3 
= Gm
4 
= Gm

5 in each m,
we found P (Gm

1 ) = P (Gm
2 ) and P (Gm

3 ) = P (Gm
4 ) = P (Gm

5 ).
Thus, in the following, we identify with Gm

p the pure shear
moduli Gm

1 and Gm
2 , and with Gm

s the simple shear moduli
Gm

3 , Gm
4 , and Gm

5 . (Note that P (Gm
p ) and P (Gm

s ) are different
in cubic crystals, whereas they coincide in isotropic glasses.)

For better clarifying a few points of our discussion, we
also separately calculated from Eq. (2) the affine (Cm

A =
Km

A , Gm
pA, Gm

sA) and nonaffine (Cm
N = Km

N , Gm
pN, Gm

sN ) com-
ponents of the moduli, together with the resulting P (Cm

A ) and
P (Cm

N ). Finally, we note that although relatively small systems
(N = 4000, L = 10a) were used for these calculations, we
verified that system size effects are negligible (see also Fig. 8
in Ref. [47]).

III. ELASTIC HETEROGENEITIES

A. Disorder dependence

We have first investigated to which extent the elastic
heterogeneities can be controlled by the size disorder, λ.
From the distribution functions P (Cm), we extracted the
average values C = K,Gp,Gs , and standard deviations δC =

δK,δGp,δGs , as

C =
∫

CmP (Cm)dCm,

δC =
√∫

(Cm − C)2P (Cm)dCm.

(6)

C coincides with the macroscopic modulus, while δC mea-
sures the extent of the modulus heterogeneity [47], i.e., larger
values of δC correspond to larger heterogeneities. We also
calculated CA(N) and δCA(N) for the affine and nonaffine
components separately, from the distributions P (Cm

A(N)).

1. The macroscopic moduli

In Figs. 3(a)–3(c), we show by open symbols the λ-
dependence of K , Gp, and Gs , respectively, decreasing λ

(increasing the disorder) from λ = 1 (perfect crystal) to 0.7
(amorphous state). The bulk modulus K assumes the highest
value, the pure-shear modulus Gp the lowest. In the lattice
structures Gp < Gs , due to the affine terms GpA < GsA,
whereas Gp � Gs in the isotropic amorphous states with
λ � 0.78. In the following, we will therefore refer to Gm

p and
Gm

s as the low and the high shear moduli, respectively.
Also, we note that the present soft-sphere model, which ex-

hibits in the supercooled liquid state a strongly non-Arrhenius
behavior of the structural relaxation time [83,84] and shear
viscosity [85], is classified as a fragile glass [86]. According
to Ref. [87], fragile glasses show relatively high Poisson ratios,
ν = (3K − 2G)/2(3K + G), compared to strong glasses. For
our system, we obtain a high value, ν � 0.43 for λ � 0.78,
which is consistent with the findings of Ref. [87]. Also, fragile
glasses are characterized by high atomic packing density and
incompressibility [88]. Indeed, in the amorphous state, our
system shows a high value of the bulk modulus compared to
the shear modulus, K � 40 � G = Gp = Gs � 7.

2. The elastic instability

In general, in systems with inverse-power-law interactions
the nonaffine component of the bulk modulus is KN = 0, and
therefore K = KA, as well demonstrated in Fig. 3(a). The
situation is totally different for the shear moduli, Gp and Gs ,
that we show in Figs. 3(b) and 3(c). For λ = 1 (perfect crystal),
the nonaffine components are negligible, GpN � GsN � 0.
However, as size disorder is introduced by decreasing λ, the
nonaffine components, GpN and GsN , progressively increase.
At the transition point λ∗, GpN eventually reaches the affine
component GpA, and the total Gp vanishes. This observation
indicates that the transition at λ∗ can be described as an elastic
instability controlled by the low modulus Gp. This instability
drives the structural transition, leading to steep changes of the
affine terms of the shear moduli, GpA and GsA, while the bulk
modulus KA stays almost unchanged. For λ < λ∗, the system
rapidly becomes isotropic, as manifested by the convergence
Gp � Gs . A similar instability of the shear modulus was also
observed in BCC → FCC transitions of alkali metals [89].

3. Spatial heterogeneities of local moduli

The λ dependence of the standard deviations, δC = δK,

δGp,δGs , is shown in Figs. 3(d), 3(e), and 3(f) (open symbols).
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FIG. 3. λ dependence of the macroscopic (average) values of (a) bulk K , (b) pure shear Gp , and (c) simple shear Gs moduli, together with
the corresponding standard deviations, (d) δK , (e) δGp , and (f) δGs . Circles, squares, and triangles indicate the values of the total modulus
Cm, the affine term Cm

A , and the nonaffine term Cm
N , respectively. The vertical lines indicate the transition point λ∗, where Gp vanishes and

δGp � 5. We show with filled circles the data obtained by increasing λ from 0.7 to 1 (only total values are shown). In this case, the local moduli
distributions are insensitive to the size disorder λ and show no significant variations in both average values and standard deviations.

For λ = 1 (perfect crystal), δC � 0 implies P (Cm) ≈ δ(Cm −
C) (δ(x) is the Kronecker’s delta function), i.e., the modulus is
spatially homogeneous. In contrast, in the amorphous states,
δK � 1.5 and δGp � δGs � 2, implying the existence of
heterogeneities in the moduli distributions. As λ decreases
from λ = 1, the heterogeneities, δK , δGp, and δGs , undergo
significant changes. First, as λ decreases from 1 to 0.9, δK and
δGs increase monotonically, mainly due to the affine terms,
δKA and δGsA. On the other hand, the variation of δGp is less
pronounced, as it is already dominated by the heterogeneity
in the nonaffine term, δGpN . Next, as λ approaches the
transition point λ∗, the value of δGp increases dramatically,
driven by the nonaffine term δGpN . At the transition λ∗,
the distribution of Gm

p becomes extremely heterogeneous,
with a vanishing average value Gp � 0, and a large standard
deviation δGp � 5. Eventually, in the isotropic amorphous
states below the transition λ∗, δGp and δGs rapidly converge
to similar values δGp � δGs � 2.

In Fig. 3, we also show (filled circles) our results in
the case where we reversely increase λ from 0.7 to 1 [see
Fig. 1(b)]. In this case, the system keeps its initial amorphous
state, and the distributions of local elastic moduli undergo
no significant changes in average values, C = K,Gp,Gs , and
standard deviations, δC = δK,δGp,δGs . This result indicates
that controlling the moduli distributions by varying size
disorder is rather difficult in the amorphous states.

B. Correlation of structural quantities
and elastic heterogeneities

Disordered solids exhibit spatial heterogeneities not only in
local elastic moduli, but also in other local quantities, such as
local density, stress, or structural order. It is therefore interest-

ing to try to elucidate correlations among these observables,
in order to highlight the possible structural origin of elastic
heterogeneities. Indeed, we may intuitively expect that values
of local elastic moduli higher than the macroscopic average
could be associated with denser, more close-packed regions,
lower moduli to softer regions. Similarly, we could expect
to observe distinct values of local elastic moduli for locally
ordered structures and locally more disordered regions.

The values of the local pressure pm and the pure σm
p and

simple σm
s shear stresses for each m were calculated from the

stress tensor σm
αβ of Eq. (4), as [47]

pm = (
σm

xx + σm
yy + σm

zz

)
/3,

σm
p = (

σm
xx − σm

yy

)
/2,

(
σm

xx + σm
yy − 2σm

zz

)
/4,

σm
s = σm

xy, σm
xz, σm

yz. (7)

The mass density ρm, volume fraction φm, and orientational
Qm

6 and centrosymmetry CSm order parameters were obtained
from

ρm = 1

w3

∑
i∈m

1 = Nm

w3
= ρ̂m,

φm = 1

w3

∑
i∈m

π

6
(σ i)3,

Qm
6 = 1

Nm

∑
i∈m

qi
6,

CSm = 1

Nm

∑
i∈m

csi . (8)

Here, qi
6 and csi are the values pertaining to particle i (see for

details, Refs. [69,70] for qi
6, and Ref. [90] for csi). The FCC
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FIG. 4. λ dependence of the macroscopic (average) values of (a) pressure p, pure shear stress σp , simple shear stress σs ; (b) mass density
ρ, volume fraction φ; and (c) bond-order Q6 and centrosymmetry CS order parameters. We also plot the corresponding standard deviations in
(d) δp, δσp , δσs , (e) δρ, δφ, and (f) δQ6, δCS. The vertical lines indicate the transition point λ∗. Note that the density is kept constant ρ = 1.015
at all values of λ, while the volume fraction mildly varies in the range of φ = 53% to 56%.

crystal is characterized by qi
6 � 0.57 and csi � 0, whereas

lower values of qi
6 and higher values of csi are expected for

amorphous phases. Similarly to local moduli considered in
the previous section, we calculated the average (macroscopic)
value and the standard deviation for all local quantities defined
above.

1. The local structure

Our results as a function of λ are shown in Fig. 4. At
λ = 1, all standard deviations assume vanishing values, i.e.,
the local quantities are homogeneously distributed in space.
Since for inverse-power-law potentials pm ∼ Km, the pressure
pm shows the same heterogeneity as the bulk modulus Km, i.e.,
δp/p � δK/K . The heterogeneities of the shear stresses, δσp

and δσs , show a λ dependence similar to that of δp, with an
average σp � σs � 0.

In our simulations the macroscopic number density ρ̂

and mass density ρ = ρ̂ are kept constant, and the volume
fraction φ mildly varies in the range of φ = 53 to 56%.
Locally, however, ρm and φm fluctuate, even in the disordered
crystalline states. Indeed, in these cases, the particles are still
tethered to the crystal lattice nodes, as manifested by very small
values of 〈�r2〉 in Fig. 1(a), but they slightly deviate from the
exact lattice sites positions, leading to nonzero values for δρ

and δφ.
Also, for λ > 0.86, the local order parameters, Qm

6 and
CSm, show values corresponding to those of the fcc crystalline
structures, Q6 � 0.57 and CS � 0, together with δQ6 � 0 and
δCS � 0. In contrast, as λ approaches λ∗ from above, Qm

6 and
CSm start to fluctuate, with the respective variances strongly
increasing around λ∗. Eventually, just below the amorphization
transition, these fluctuations keep significantly enhanced val-
ues, indicating the coexistence of lattice- and amorphous-like
local environments [71,72]. In the fully developed amorphous
states, λ � 0.78, δQ6 and δCS converge to finite values.

2. Correlations

In order to quantify the degree of correlation between the
local moduli Cm and the above local structural observables
Xm, we have calculated the correlation parameters,

�CmXm =
∣∣∣∣
〈(

Cm − C

δC

)(
Xm − X

δX

)〉
m

∣∣∣∣, (9)

where 〈. . . 〉m is the average over all cubic domains m. If
the variables Cm and Xm are perfectly correlated, we expect
�CmXm = 1, while �CmXm = 0 for the perfectly uncorrelated
case.1The λ dependence of the �CmXm is shown in Fig. 5,
for the total moduli, Cm = Km,Gm

p ,Gm
s [(a), (b), (c)], and the

affine contributions alone, Cm
A = Km

A ,Gm
pA,Gm

sA [(d), (e), (f)].
Since Km � Km

A ∼ pm in this case, trivially �Kmpm �
�Km

A pm � 1, as shown in Figs. 5(a) and 5(d). φm can also
be considered a good predictor for the bulk modulus at all λ’s,
whereas the correlation with the density ρm tends to decrease in
the amorphous states, λ � 0.78. In contrast, the shear moduli,
Gm

p and Gm
s , only show small correlations with local quantities,

as shown in Figs. 5(b) and 5(c). The affine terms, Gm
pA and Gm

sA,
are relatively correlated with pm and φm [Figs. 5(e) and 5(f)],

1If Cm and Xm are perfectly correlated, the probability distri-
bution function of Cm and Xm can be written as P (Cm,Xm) =
P (Cm)δ(Cm ± Xm), implying

�CmXm

=
∣∣∣∣
∫ (

Cm − C

δC

)(
Xm − X

δX

)
P (Cm,Xm)dCmdXm

∣∣∣∣,
=

∫ (
Cm − C

δC

)2

P (Cm)dCm = 1.

In contrast, if Cm and Xm have a vanishing correlation, P (Cm,Xm) =
P (Cm)P (Xm), and therefore �CmXm = 0.
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FIG. 5. λ dependence of the correlation parameters �CmXm between local moduli (Cm total modulus, Cm
A affine term only), (a) Km, (b) Gm

p ,
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s , (d) Km
A , (e) Gm

pA, (f) Gm
sA, and local quantities, Xm = pm, ρm, φm, σm

p , σm
s , Qm

6 , CSm. The vertical lines indicate the transition point λ∗.
A detailed discussion of these data is included in the main text.

as it is the bulk modulus Km
A � Km. Those correlations are

therefore lost due to the effect of the nonaffine terms, Gm
pN and

Gm
sN .
Two additional observations are in order. First, correlations

with the order parameters Qm
6 and CSm, are enhanced around

λ∗. This effect can be explained by recalling that ordered
and amorphous structures, which show respectively lower
(higher) and higher (lower) values of shear modulus Gm

p

(Gm
s ), coexist locally. In the amorphous states (λ � 0.78), in

contrast, very small correlations only are found with Qm
6 and

CSm. Second, it is worth to note that the two affine terms,
Gm

pA and Gm
sA, should feature very similar correlations in

the isotropic amorphous structures. We have found, however,
that they show different values of �Cm

A Xm , even in the deeply
amorphous state λ = 0.7. This result seems to indicate that
some anisotropies still survive, as a memory of the initial
perfect crystal structure. Although the distribution of the two
affine shear moduli are very similar, P (Gm

pA) � P (Gm
sA) for

λ � 0.78, weak anisotropies can therefore still be detected
from correlations with local quantities, even in cases where
the moduli distributions are indistinguishable.

3. Issues

To summarize, pm and φm show clear correlations with
the bulk modulus Km, i.e., we indeed measured higher values
of bulk modulus in denser and closely packed regions. Slight
deviations of the particles positions from the perfect lattice
sites induce the heterogeneities of δp and δφ, which are the
origin of the heterogeneity δK developing for 0.9 � λ � 1.
The origin of the high shear modulus heterogeneity δGs can
also be partially associated with the fluctuations of pm and
φm in the disordered crystalline states. This is not the case,
however, for the amorphous states. Also, we have not found any
clear correlation for the shear moduli, Gm

p and Gm
s , probably

due to some subtle effect caused by the important nonaffine

components. The local structural origin of the shear moduli
heterogeneities is therefore still an open issue [44,91], as it is
the origin of the diverging behavior of δGp as λ approaches
λ∗.

IV. VIBRATIONAL EXCITATIONS

A. Density of states and participation ratios

In this section, we characterize the system vibrational states
in terms of the vibrational density of states, and participation
ratios and lifetimes of the vibrational modes. In particular,
we quantify the modifications due to the modulation of the
local mechanical response above and below the amorphization
transition. We also investigate the behavior of soundlike
excitations. We show that variations with λ of the vibrational
observables closely mirror the changes in the elastic hetero-
geneities, allowing one to establish clear correlations with
different moduli for different regions of the spectrum.

1. Normal-modes analysis

For each value of λ, we performed a standard normal modes
analysis, diagonalizing the Hessian matrix calculated at the
local minima of the potential energy landscape (the inherent
structures) [1,2,15]. We have obtained the eigenvalues ω2

k and
the corresponding eigenvectors ej

k , where j = 1, . . . ,N and
k = 1, . . . ,3(N − 1) are the atomic and eigenmode indexes,
respectively. From the histogram of the ωk , we have calculated
the vDOS as

g(ω) = 1

3(N − 1)

3(N−1)∑
k=1

δ(ω − ωk). (10)
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FIG. 6. Vibrational densities of states, g(ω), at the indicated
values of λ. These data are discussed in depth in the main text.
The vertical line indicates ω = 5 for reference. The inset shows the
details of the low-ω (ω < 5) region on double-logarithmic scale. We
show with lines g(ω) ∝ ω2 for the case of the perfect crystal at λ = 1,
and g(ω) ∝ ω3/2 at the amorphization transition point λ � λ∗.

From the eigenvectors ej

k , we have calculated the participation
ratios

Pk = 1

N

⎡
⎣ N∑

j=1

(
ej

k · ej

k

)2

⎤
⎦

−1

, (11)

which quantify the extent of localization of the vibrational
mode k [8,9]. As a reference, Pk = 2/3 for an ideal standing
plane wave, and Pk � 1/N for an ideal localized mode
involving one particle only. For these calculations, we have
generated additional systems with L ranging from L = 10a

(N = 4000) to 30a (N = 108000), in order to adequately
sample the lower frequency region of the spectrum [62].
We show the λ dependence of g(ω) in Fig. 6 and the data
for the participation ratios Pk in Fig. 7. In Fig. 7 we also plot
the averaged values 〈Pk〉 (solid lines) calculated by smoothing
the data in bins of width �ω = 0.015.

2. Density of states

In the g(ω) of the perfect crystal (λ = 1), we can identify
the longitudinal branch, centered around ω = 14.5, and the
transverse branch for ω ∈ [7 : 9.5], as expected. In addition, at
low frequencies g(ω) ∝ ω2 (inset of Fig. 6), which is consistent
with the prediction of the Debye model. As λ decreases, the
above well identified phonon branches continuously loose their
identity. In particular, as λ decreases from 1 to 0.9, the high-ω
longitudinal branch is progressively suppressed, and a certain
fraction of vibrational modes pertaining to the same branch
become even localized, with low values of Pk , as shown in
Fig. 7(d) for λ = 0.9. This behavior of g(ω) and Pk have
been shown to correlate with the mechanical heterogeneities
associated with the bulk δK and the high shear δGs moduli
[62]. These quantities therefore certainly play an important
role in modifying the high-ω modes, which transform from
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FIG. 7. Participation ratios, Pk , versus the eigenfrequencies ωk at
the indicated values of λ. The solid lines represent the averaged values
〈Pk〉 calculated by smoothing the data in bins of width �ω = 0.015.
A detailed discussion of these data is given in the main text.

true (delocalized) phonons to more complex excitations, even
localized.

Next, as λ approaches λ∗, where the low shear modulus Gm
p

fluctuates significantly around the average value Gp � 0, the
low-frequency modes are increasingly populated, as indicated
by the enhancement at low ω of the reduced vDOS, g̃(ω) =
g(ω)/ω2, shown in Fig. 8(a). Interestingly, the largest value of
g̃(ω) is reached at the lowest accessible frequency, possibly at
ω → 0 as λ → λ∗. Exactly at λ∗, we observe g(ω) ∼ ω3/2

(see inset of Fig. 6), a strongly non-Debye-like behavior.
Eventually, below the transition point λ∗, the reduced vDOS
features the expected BP, with �BP � 1, already observed in
glasses (see, among many others, Refs. [18,20]). In addition, as
λ approaches λ∗, vibrational localization occurs in the low-ω
region, as can be seen in Figs. 7(f) and 7(g) for λ = 0.82
and 0.81(λ∗). These results are clearly correlated with the
behavior of the low modulus δGp, which therefore seems to
be the relevant observable, responsible for the modification of
the low-ω part of the spectrum [62].

3. A closer look at the Debye model

To better quantify the excess of vibrational modes over the
Debye model, we consider ĝ(ω) = g(ω)/gD(ω) [Fig. 8(b)],
where the vDOS is scaled to the Debye-model prediction,
gD(ω) = ω2(3/ω3

D) [1,2,18,20]. The Debye frequency ωD and,
therefore, the Debye level 3/ω3

D can be calculated directly from
the macroscopic moduli K , Gp, and Gs . For mechanically
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FIG. 8. (a) Reduced density of state g̃(ω) = g(ω)/ω2 at the
indicated values of λ. (b) ĝ(ω) = g(ω)/gD(ω) plotted vs ω/ωD , where
gD(ω) is the Debye-model prediction, and ωD the Debye frequency.
For λ � 0.78, we observe the boson peak, at the frequency �BP ∼ 1,
typical of many studies on Lennard-Jones type of glasses [18,20].

isotropic cases with G = Gp = Gs , like in glasses, ωD =
[18ρ̂π2/(1/c3

L + 2/c3
T )]1/3, where cL = √

(K + 4G/3)/ρ and
cT = √

G/ρ are the longitudinal and transverse sound veloci-
ties, respectively. For the anisotropic case with Gp 
= Gs , like
in cubic crystals, more complicated calculations are necessary
for ωD . In this case, we need to solve the Christoffel elastic
equations [92,93]. In Fig. 9, we show the λ dependence of ωD

(left axis) and 3/ω3
D (right axis). As λ approaches λ∗ from
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FIG. 9. The Debye frequency ωD (left axis) and the Debye level
3/ω3

D (right axis), plotted as functions of λ. The vertical line indicates
the transition point λ∗, where ωD and 3/ω3

D assume minimum and
maximum values, respectively.

above, ωD decreases (and, consequently, 3/ω3
D is enhanced),

following the decrease of the low shear modulus Gp. Below
λ∗, fast converge is observed toward the values in the fully
developed amorphous state, ωD � 11 and 3/ω3

D � 0.002.
The calculated values for ĝ(ω) are shown in Fig. 8(b) versus

ω/ωD . For λ � 0.86, ĝ(ω) ≡ 1 at low frequencies, i.e., the
Debye prediction holds, whereas an excess appears in ĝ(ω)
for λ < 0.86. Previous studies have demonstrated that the
ĝ(ω) plotted as a function of the rescaled frequency (ω/�BP)
collapse onto a single master curve upon increasing pressure
[18,94] or temperature [95]. In such situations, in fact, the
variations of the BP can be described by a modification of
the macroscopic moduli, corresponding to a global elastic
transformation. In contrast, in the present case, the peak value
of ĝ(ω) (the boson peak intensity) as well as the overall
shape vary with λ, thus preventing any data collapse. This
observation is similar to the results of Ref. [96], where
the peak value of ĝ(ω) actually increases under increasing
pressure. As already mentioned in Refs. [18,94,96], this
implies that modifications of macroscopic moduli only (global
transformations) are not sufficient to fully account for the
presence of the BP, and confirms that spatial distributions of
local moduli (local transformations) must be considered.

4. More on the boson peak

A recent study [97] has reported that the polarization nature
of the BP depends on the value of the Poisson ratio, ν, the
negative ratio of transverse to longitudinal strain (see above).
In particular, in fragile glasses characterized by relatively
high values ν > 0.25, the BP has mostly a transverse origin
[18,20,98], while in strong glasses, where ν < 0.2, it is of
both longitudinal and transverse natures [17,54,99]. In this
latter case, the bulk modulus features values relatively close
to those of the shear modulus, and therefore both are found to
affect the low-ω modes, consequently determining the nature
of the BP. In our fragile system, for λ < λ∗, bulk and shear
moduli are well separated (K � 40 � G = Gp = Gs � 7 at
λ � 0.78), and the shear modulus only can be related to the
low-ω excitations in the BP region, consistently with Ref. [97].

Based on the results of Fig. 8(b), we can address this point
more precisely. At λ = 0.815 and 0.81 (λ∗), where Gp � Gs

and δGp (� 3.5 to 5) is quite large, the peak values of ĝ(ω) are
close to those at λ � 0.78 with Gp � Gs and δGp � δGs � 2
(note that δGp + δGs � 4). This observation indicates that,
for λ > λ∗, where the two shear moduli are separated, only
the low shear modulus heterogeneity δGp contributes to the
excess low-ω excitations. In contrast, both (degenerate) moduli
heterogeneities, δGp and δGs , equally contribute below λ∗.
We thus conclude that the lowest moduli heterogeneities are
related to the BP in the entire λ range, which can be general
for disordered materials.

B. Lifetimes of the vibrational excitations

We now focus on the lifetimes of the normal modes, which
are finite even in the perfect crystal phase λ = 1, due to
the anharmonic couplings. These finite temperature effects
combine, for λ < 1, with modifications due to additional
nonlinearities, coming from the introduction of defects. We
also clarify how these modifications impact the dynamical
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evolution of the soundlike excitations propagating in the
system.

1. The lifetimes of normal modes

We can quantify the finite lifetimes of the normal modes as
the relaxation time of the autocorrelation function CEk

(t) of
the associated vibrational energy [23,24]:

CEk
(t) = 〈δEk(t)δEk(0)〉〈

δE2
k (0)

〉 , (12)

where δEk(t) = Ek(t) − 〈Ek(t)〉, and Ek(t) is the energy of
the vibrational mode k,

Ek(t) = EP
k (t) + EK

k (t)

= ω2
k

2
S
†
k(t)Sk(t) + 1

2
Ṡ
†
k(t)Ṡk(t), (13)

with † denoting complex conjugation, and

Sk(t) =
N∑

j=1

ej

k · (
rj (t) − rj

I

)
,

Ṡk(t) =
N∑

j=1

ej

k · vj (t). (14)

Here, ej

k is the eigenvector corresponding to the eigenfre-
quency ωk rj (t) and vj (t) are the instantaneous position and
velocity of particle j at time t , and rj

I is the position of particle
j in the corresponding inherent structure. For the perfect
crystal (λ = 1), the positions of atoms in the inherent structure
coincide with the lattice sites, rj

I ≡ rj

0. In Eq. (13), EP
k (t) and

EK
k (t) correspond to potential and kinetic energy of the mode k,

respectively. Note that 〈Ek(t)〉 = 2〈EP
k (t)〉 = 2〈EK

k (t)〉 = T ,
for the equipartition of energy [1,2].

In Fig. 10, we show the temporal evolution of the energy
correlation function, CEk

(t), for Ek(t), EP
k (t), and EK

k (t), at the
indicated values of λ. Both potential and kinetic energies show
a damped oscillating behavior of frequency 2ωk , whereas the
total energy exhibits a simple exponential decay [23,24]. The
lifetime τk of mode k can be extracted as (twice) the relaxation
time [23,24,100],

τk = 2
∫ ∞

0
dt CEk

(t), (15)

or, equivalently,

CEk
(t = τk/2) = 1

e
. (16)

2. Lifetimes of acoustic-like excitations

Additional information comes from the lifetimes of
acoustic-like modes [23,24], that we have studied in detail
in the three propagation directions (100), (110), and (111)
[63]. These are defined in analogy with Eqs. (13) and (14) for
normal modes, where we replace ej

k by [23,24]

ej

Xq = N−1/2 exp(−iq · rj

I )pX. (17)

Here, the k index is replaced by Xq, where X = L, T (T1,T2),
for longitudinal and transverse modes, respectively, q is the
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FIG. 10. Autocorrelation function of the mode energy fluctu-
ations, CEk

(t), for (a) λ = 1, with ωk = 4.93 and τk = 34.6 and
(b) λ = 0.7, with ωk = 3.27 and τk = 32.4. Correlation functions
for total δEk(t), potential δEP

k (t), and kinetic δEK
k (t) energies are

shown. Total energy [CEk
(t)] shows an exponential decay with a

relaxation time τk/2, where τk is the lifetime of mode k. Potential
[CEP

k
(t)] and kinetic [CEK

k
(t)] energies exhibit a dumped oscillating

decay of frequency 2ωk , where ωk is the mode frequency.

wave vector, and pX is the corresponding polarization vector
[1,2]. The considered q and pX are schematically illustrated
in Fig. 11. The lifetimes can be therefore calculated from the
autocorrelation function of the energy δEXq(t), from relations
analogous to Eqs. (15) and (16). Note that, since the acoustic
waves are not genuine normal modes in the disordered states,
the energy equipartition does not hold and 〈EXq(t)〉 
= T .

3. Normal modes versus acoustic-like excitations

In the left panel of Fig. 12, we show our data sets for
τk (normal modes) and τXq (acoustic-like excitations) as a
function of the corresponding frequencies, ωk and ωXq. For
the perfect crystal at λ = 1 [Fig. 12(a)], acoustic plane waves
and exact normal modes coincide, implying τXq � τk . Note
that, as expected, data are scattered, as wave propagations are

FIG. 11. Schematic illustration of the considered acoustic plane
waves in the three directions (100), (110), and (111). The wave vector
q, and the longitudinal and transverse (X = L,T ) polarization vectors
pX are also shown [1,2].
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FIG. 12. (Left) Lifetimes of the normal modes τk , and of the acousticlike waves τXq, plotted as functions of ωk and ωXq, respectively, at
the indicated values of λ. Here we consider the longitudinal (L) and transverse (T ) acoustic waves propagating in the (100), (110), and (111)
directions (see Fig. 11). Specifications of the different data sets are shown in the key. The vertical lines indicate ω = 5 for reference. In the
perfect crystalline state λ = 1, τk � τXq, while in defective and disordered states, lifetimes of acoustic-like modes strongly deviate from those
pertaining to normal modes. For λ � 0.86, the τXq at high frequencies are of the order of the minimum time scale set by the Einstein period
τE . This is the typical time scale of the thermal motion of particles, and was estimated as τE ∼ O(10−1) for the present soft-sphere system
[101,102]. (Right) The averaged lifetimes of the normal vibrational modes 〈τk〉 (j), and of acoustic plane waves 〈τXq〉 (k), versus the frequency
ωk and ωXq, respectively, at the indicated values of λ. These data are the same as those shown in the left panels, averaged in bins of width
�ω = 1, and over all considered propagation directions and polarizations. A comprehensive discussion of these data is included in the main
text.

different in the three directions considered, contrary to the
isotropic disordered case at λ = 0.7 [Fig. 12(i)].

As λ decreases from 1 to 0.7, the lifetimes of the acoustic
waves decrease overall of about two orders of magnitudes at
any frequency, whereas normal modes show a much smaller
reduction. This effect is made even more clear in the right panel
of Fig. 12, where the same data are averaged in bins of width
�ω = 1, irrespective to their longitudinal or transverse nature.
Note that, for λ � 0.86, at the higher frequencies the τXq are
of the order of the Einstein period, τE ∼ O(10−1), which is
the minimum typical time-scale of thermal vibrations for the
present soft-core system [101,102].

Additional insight on how mild variations with frequency
of τk can induce very important modifications in τXq comes
from Fig. 13. Here, we plot parametrically, for each normal
mode k, the lifetimes τk versus the corresponding participation
ratios Pk . Interestingly, although at each λ modes with larger
Pk tend to show higher values of τk (as one could expect),
the overall correlation is weak and normal modes with very
similar τk show widely varying values of Pk . This observation
seems to indicate that moduli heterogeneities impact the spatial
structure of the normal modes [56,57,62] rather than simply
reducing their lifetimes. Since acoustic plane waves are super-
positions of different normal modes [14,15], we conclude that
these modifications are the main reason for the important fre-
quency attenuation of the acousticlike excitations [Fig. 12(k)].

4. Lifetimes at high and low frequencies

The data of Fig. 12(k) suggest an additional observation.
As λ decreases from 1 to 0.9, the reduction of the lifetimes of

the acoustic waves at fixed frequency is important at high
frequencies, ωXq > 5, but relatively mild for ωXq < 5. In
contrast, as λ approaches λ∗, the effect is reversed and the low-
frequency modes (ωXq < 5) show a larger variation. These
results seem again to indicate that the high and low moduli
heterogeneities control high- and low-frequency vibrational
states, respectively. Also, we emphasize that the high moduli
heterogeneities, δK and δGs , impact a large fraction of
normal modes in the broad frequency range ω > 5. Indeed, the
integral

∫
ω>5 g(ω) dω � 0.95 at λ = 1, and � 0.9 at λ � 0.8,

indicating that 90% to 95% of the total number of normal
modes is included in this frequency range. In contrast, the low
modulus heterogeneity δGp, only influences a small fraction
of the spectrum with ω < 5, including only 5% to 10% of the
total number of normal modes. (Note that the �BP is comprised
in this region.)

5. Lifetimes are controlled by the heterogeneities

In Ref. [63], we analyzed in details the attenuation rates
�Xq ∼ τ−1

Xq restricted to the (lowest) transverse branch of
the low-frequency acoustic excitations (ωXq < 5), extracted
from the line broadening of the transverse dynamical structure
factors. We also clarified their relation with the lowest
shear modulus heterogeneities. Intriguingly, we found an
exponential behavior, �Xq ∼ exp(δG/gτ l ), with gτ l � 0.5,
δG = δGp for λ � λ∗, and δG = δGp + δGs for λ < λ∗. We
now additionally investigate this point, based on the present
new data sets.

Assuming that 〈τXq〉 [Fig. 12(k)] represents the typical
lifetime of the acoustic-like excitation of frequency ω, we have
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FIG. 13. Parametric plot of the lifetimes τk and the participation
ratios Pk for normal modes at the indicated values of λ. The solid
lines represent the averaged values 〈τk〉 calculated by smoothing the
data in bins of width �Pk = 0.02. Although modes with larger Pk

indeed tend to show larger τk , the overall correlations are quite weak.

determined at each λ three (frequency-independent) lifetimes,
τac, τh

ac, and τ l
ac, averaged over the entire spectrum and,

separately, in the high- (ω > 5) and low- (ω < 5) frequency
regions. These averages obviously involve the number of sound
waves comprised in those spectrum regions. If we assume that
this number does not change with λ, it is directly provided
by the vDOS of the perfect crystal at λ = 1 [gλ=1(ω)], where
the acousticlike excitations are the normal modes. We can,
therefore, write

τac =
∫

〈τXq〉gλ=1(ω) dω,

τh(l)
ac =

∫
ω>(<)5〈τXq〉gλ=1(ω) dω∫

ω>(<)5 gλ=1(ω) dω
. (18)

In Fig. 14(a), we plot τac as a function of the extent of the
elastic heterogeneities, δK + δGp + δGs , together with an
exponential fit of the form (solid line),

τac ∼ exp

(
−δK + δGp + δGs

gτ

)
. (19)

This is similar to what we considered for the low-frequency
transverse acoustic waves attenuations in Ref. [63] where,
however, only the shear contribution was included in the
argument of the exponential. Also note that the adjusted value
gτ � 0.4 must be compared to gτ l � 0.5 found in Ref. [63].
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FIG. 14. (a) The lifetimes τac, τh
ac, τ l

ac of the acoustic waves,
averaged over the entire, high- (ω > 5) and low- (ω < 5) frequency
ranges, respectively, as detailed in the text. In the main panel,
the data of τac and τh

ac are plotted as functions of the extent
of the elastic heterogeneities, δK + δGp + δGs , for λ � λ∗ (open
symbols) and λ < λ∗ (closed symbols). The line is an exponential
fit τac � τh

ac ∼ exp[−(δK + δGp + δGs)/gτ ], with gτ � 0.4. In the
inset, we plot τ l

ac as a function of δG = δGp for λ � λ∗ (open
symbols) and δG = δGp + δGs for λ < λ∗ (closed symbols). The
solid line is a fit of the form τ l

ac ∼ exp[−δG/gτl ] with gτl � 0.5.
(b) The thermal conductivity κ shown as a function of the extent
of the elastic heterogeneity, together with an exponential fit κ ∼
exp[−(δK + δGp + δGs)/gκ ], with gκ � gτ � 0.4. Note that in the
highly disordered states with large values of δK + δGp + δGs , both
τac and κ reach the minimum allowed values, where the lifetime τac ∼
O(10−1) is the Einstein period [101,102], and the mean-free-path of
the acoustic waves is of the order of the particles diameter.

Since 95% of the acoustic modes are included in the high-ω
region, it also results τh

ac � τac [see Fig. 14(a)]. In contrast,
τ l

ac is not controlled by the total elastic heterogeneities,
δK + δGp + δGs , but rather by the lowest one δG only (δG =
δGp for λ � λ∗ and δG = δGp + δGs for λ < λ∗). Indeed, in
the inset of Fig. 14(a), we show τ l

ac versus δG, together with
a fit of the form τ l

ac ∼ exp(−δG/gτ l ) with gτ l � 0.5, which is
fully consistent with our previous observation [63].

In summary, based on the above results we propose the
following scenario. By decreasing λ, as the extent of the elastic
heterogeneities grows, τac (� τh

ac) decreases monotonically
and eventually reaches the minimum possible value, corre-
sponding to the Einstein period, τac ∼ O(10−1) [101,102].
Although the low shear modulus δGp obviously exerts some
influence, δK and δGs turn out to be the main cause for
changes in the lifetime of the acoustic excitations, influencing
a predominant fraction of the vibrational modes with ω > 5. In
contrast, low-frequency acoustic excitations with ω < 5, result
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to be only influenced by the lowest modulus heterogeneities
(δGp or δGp + δGs for the crystal and amorphous case,
respectively) [63]. The above results therefore provide us
with a direct correlation between acousticlike excitations and
elastic heterogeneity [63] in the entire frequency range of the
vibrational excitations.

V. THERMAL CONDUCTIVITY

A. Disorder dependence

In this section, we explore the impact of the above studied
elastic heterogeneities and vibrational excitations on the
thermal conductivity, κ . κ can be calculated by nonequilibrium
simulation methods, where one applies to the system a temper-
ature gradient or a heat current, and measures the induced heat
current [103] or temperature gradient [104,105], respectively.
These methods, however, have been demonstrated to be prone
to important system size effects, especially in the case of
crystals where heat carriers (phonons) have long mean free
paths [106].

1. The Green-Kubo thermal conductivity

Being aware of these limitations, in the present study we
employed the equilibrium method, based on the Green-Kubo
(GK) formula,

κ = 1

3V T 2

∫ ∞

0
〈J(t) · J(0)〉dt, (20)

where J(t) is the heat current vector. This formulation has
been shown to provide accurate determinations of κ in the
cases of both crystals [107,108] and amorphous solids [109].
Also, a recent study [110] reported detailed results based
on the Einstein relation, which is equivalent to the GK
method, while the studies of Refs. [23,24,26] confirmed that
it produces values for κ in crystals which are consistent
with those determined from the Boltzmann equation. In
addition, Ref. [108] presented evidences that κ is correctly
calculated by using relatively small systems without important
system size effects, even for crystals. In the present study,
we have compared the values obtained from N = 4000 and
32 000 (larger system size), and confirmed that both values
coincide well with each other. From this observation, we
concluded that N = 4000 is large enough to exclude the
system size effects on our GK calculations of κ . (See also
the discussion about system size effects for the GK method in
Ref. [24].)

2. Modulating κ by controlling λ

In Fig. 15(a), we show (open circles) the λ dependence of
κ , at T = 10−2. As λ decreases from 1 to 0.7 (open circles), κ

is reduced by almost two orders of magnitude, similarly to the
important reduction of the lifetimes of the acoustic-like plane
waves in Fig. 12. Indeed, the behavior of κ is fully consistent
with that of the lifetime τac of the acoustic waves shown in
Fig. 14(a) [compare Figs. 14(a) and 14(b)]. The acousticlike
plane waves, rather than the normal modes, therefore play the
essential role in heat conduction, for all phases.

The above evidence has two implications. First, κ reaches
the minimum allowed value already at λ � 0.86, where the

FIG. 15. (a) λ dependence of the thermal conductivity at T =
10−2 (open circles). We also show (filled circles) the data for the
case where λ is increased from 0.7 to 1 which show no significant
variations with λ. (The system keeps the amorphous state in this
case, see Fig. 1.) (b) T dependencies at the indicated values of λ. The
vertical lines indicate the transition point λ∗ in (a), and the temperature
T = 10−2 in (b). For the perfect crystal (λ = 1), κ decreases with T

as κ ∼ T −1, due to the anharmonic effects. As λ decreases, the value
of κ decreases and saturates to a λ-independent value for λ � 0.86.
Note that κ also becomes very mildly dependent on T in the same
λ range. We also show the values of the simple model of Eq. (21)
by squares in (a) and lines in (b), which capture the overall variation
of the simulation results, as detailed in the text. We recall that the
melting temperature is Tm � 0.6, the glass transition temperature is
Tg � 0.2, and observe that in the liquid state, Eq. (21) is certainly
not valid. Indeed, for T > Tm our simulation data for κ converge to
a value independent of λ [24], which cannot be accounted for by the
model.

lifetime τac of the acoustic wave is of the order of the Einstein
period and the mean-free-path is of the order of the particle
diameter, as noted before. Second, due to τac � τh

ac [Fig. 14(a)],
we can conclude that the large number of high-frequency
modes (ωXq > 5) determine κ , while those in the narrow
low-frequency range (ωXq < 5) have a more limited effect.
Also, in Fig. 15(a), we show (closed circles) additional data
for the case where λ is reversely increased from 0.7 to 1 (see
Fig. 1). In this case, there are no significant changes by the
size disorder λ observed in κ . This is clearly correlated to the
analogous behavior of the elastic heterogeneities, as shown by
the closed circles in Fig. 3.
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3. Kinetic theory for κ

We can better characterize the thermal behavior of the
system by expressing κ in terms of the simple kinetic theory
expression [1,2]:

κ = 1
3 ρ̂Cv� = 1

3 ρ̂Cv2τ. (21)

Here, C is the specific heat per particle, and v, �, and τ = �/v

are the average sound speed, mean free path, and lifetime of
the heat carriers (acoustic waves), respectively. Note that for
our classical system the specific heat is constant, C = 3, and
the disorder (i.e., the elastic heterogeneities) influences mainly
� and τ . We can reasonably assume for τ the values of τac of
Fig. 14(a) and, for simplicity, we also consider a constant sound
speed determined as v = (3κ/ρ̂Cτac)1/2 � 2.67 at λ = 1. We
note that this value is comparable to the Debye speed of sound,
vD = ωD/kD (kD = (6π2ρ̂)1/3 is the Debye wave-number, ωD

are the Debye frequencies of Fig. 9), that assumes values in
the range of vD � 2 to 3.5, depending on λ.

In Fig. 15(a), we compare the simulation data with the
model of Eq. (21) (open squares), and conclude that the
two data sets are in good agreement. The slight deviations
for λ < 0.82 very likely derive from the over-simplification
of imposing a λ-independent value of v. The simplified
models seem to capture, however, the essential features of
the simulation data.

4. κ is controlled by the heterogeneity

This agreement indirectly supports the conclusion that elas-
tic heterogeneities significantly modify both the lifetimes of
sound waves and the thermal conductivity. More specifically,
the high modulus heterogeneities, δK and δGs , influence the
large fraction of acoustic waves (ωXq > 5), causing the steep
decrease of κ for λ > λ∗, while for λ � λ∗ the low shear
modulus heterogeneity δGp also comes into play, affecting,
however, only the narrow low-frequency regime (ωXq < 5),
inducing a very small additional variation of κ . This conclusion
is evident from the representation of our data shown in
Fig. 14(b), where we plot κ versus the extent of the elastic
heterogeneities, δK + δGp + δGs . This curve seems to follow
an exponential relation, κ ∼ exp[−(δK + δGp + δGs)/gκ ],
similar to Eq. (19) for τac, with an identical value of the
parameter gκ � gτ � 0.4.

B. Temperature dependence

We now analyze the interplay of disorder and temperature
in determining the thermal properties of the model. Our
temperature data at the indicated values of λ are shown in
Fig. 15(b) by symbols. We first observe that data at all values
of λ are superimposed for T > Tm, due to the fact that in the
liquid state size heterogeneity plays very little role in transport
properties. Next, in the crystal reference state λ = 1, we
expect a vanishing effect ascribed to disorder and a nontrivial
behavior entirely associated with the effect of anharmonicities.
This is indeed well demonstrated by the data, where at
low temperatures κ ∼ T −1, as expected. As λ decreases,
in contrast, the effect of the locally heterogeneous elastic
response becomes increasingly important, and generates a
more complex reduction of κ at all temperatures, which does

not follow the simple anharmonic prediction. Eventually, κ

undergoes very mild variations with T for λ � 0.86, indicating
that disorder dominates over anharmonic couplings, reducing
κ to a T and λ independent minimum value in the amorphous
states.

1. Separating disorder and anharmonicities

The above peculiar T and λ dependencies can be described
in terms of an obvious generalization of Eq. (21), with constant
C = 3 and v = 2.67, but τ = τ (T ,λ). We now assume that the
attenuation rate (the inverse of the lifetime) can be decomposed
into two terms, as

1

τ (T ,λ)
= 1

τanh(T )
+ 1

τdis(λ)
. (22)

Here, 1/τanh(T ) encodes the purely anharmonic attenuation,
whereas 1/τdis(λ) describes that originating from the presence
of the elastic heterogeneities. We can evaluate the anharmonic
attenuation by using the value of κ for the pure crystal (λ = 1),

1

τanh(T )
= ρ̂Cv2

3κ(T ,λ = 1)
∼ T . (23)

The corresponding data are shown in Fig. 16(a), with 1/τanh(T )
increasing with T at low-T and saturating to a constant value
around the melting temperature Tm � 0.6. As a consequence,
we can extract the disorder-related term from

1

τdis(λ)
= ρ̂Cv2

3κ(T ,λ)
− 1

τanh(T )

= ρ̂Cv2

3

[
1

κ(T ,λ)
− 1

κ(T ,λ = 1)

]
. (24)

2. The effect of disorder

If the additive decomposition of Eq. (22) is valid, the
right-hand side of Eq. (24) should be independent of T .
This is confirmed by the data of Fig. 16(b), where we plot
1/τdis(λ) at the indicated values of T . These data superimpose
at all temperatures, thus corroborating our hypothesis. In
the same figure, we also plot (closed circles) an alternative
determination of 1/τdis, based on the calculated values of τac

[Fig. 14(a)]:

1

τdis(λ)
= 1

τac(T = 10−2,λ)
− 1

τac(T = 10−2,λ = 1)
, (25)

where the right hand side is calculated for T = 10−2. The two
sets of data [Eqs. (24) and (25)] are in very good agreement
for λ > λ∗, while they show some discrepancies below λ∗.
This can, again, be ascribed to the oversimplified hypothesis
of a constant value for v. The overall similarities are however
striking, confirming the strict correlation existing between the
behavior of the acousticlike modes and heat transport.

3. Modelling simulation data

In Fig. 15(b), we now compare the simulation data with a
model (lines) based on Eqs. (21) and (22), where the values of
τanh(T ) and τdis(λ) are given by Eqs. (23) and (25), respectively.
The model is overall capable to capture the main features of
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FIG. 16. (a) T dependence of the anharmonic term, 1/τanh

[Eq. (23)] at λ = 1, and (b) λ dependence of the disorder term, 1/τdis

[Eq. (24)] at the indicated values of T . The vertical line indicates
the melting temperature Tm � 0.6 at λ = 1 in (a), and the transition
point λ∗ in (b). In (b) we also plot (closed black circles) the values
extracted from the lifetimes τac shown in Fig. 14(a) by using Eq. (25).
We can see that 1/τdis does not depend on temperature for T � 10−1,
and there is a good agreement with the values extracted from τac. This
observation supports the validity of the additive decomposition of the
attenuation of Eq. (22).

both the T - and λ dependencies of κ . We have shown that
1/τanh(T ) increases with T , while 1/τdis(λ) is enhanced as λ

decreases. The competition between these two terms finally
controls the overall behavior of κ . Here we recall the melting
temperature, Tm � 0.6, and the glass transition temperature,
Tg � 0.2. In the liquid state, Eq. (21) is certainly not valid.
Indeed, for T > Tm our simulation data for κ converge to a
value independent of λ [24], which cannot be accounted for
by the model.

C. Quantum corrections

We now discuss the modifications to our calculations of
thermal conductivity when we consider effective quantum
corrections. Indeed, in classical systems including those stud-
ied here, vibrational modes of any energy are populated with
the same statistical weight, conforming to a flat probability
distribution. This is, however, in contrast with the principles
of quantum mechanics, where a vibrational mode of frequency
ω is excited according to the Bose-Einstein distribution [1,2],

f (ω,T ) = 1

exp(β�ω) − 1
. (26)

Here, β = 1/kBT , and � = h/2π with h the Plank constant.
The peculiar form of Eq. (26) has the important implication
that the lower frequency modes are more excited than those
pertaining to the upper part of the spectrum, modifying both
the specific heat and thermal conductivity in the low-T regime.
As a consequence, the (per particle) specific heat C, which
based on the equipartition theorem is a T -independent constant
C = 3 [kB] for classical systems, depends on T in the quantum
formulation.

1. Quantum-like specific heat from classical data

By using the vibrational density of states of Fig. 6, we can
approximately embed the effect of quantum correction in our
calculations, and determine the quantum-like value of C(T ) as
[1,2]

CQM(T ) = 3
∫

�ω
∂f (ω,T )

∂T
g(ω)dω

= 3kB

∫
(β�ω)2 exp(β�ω)

(exp(β�ω) − 1)2
g(ω)dω. (27)

The Debye model gD(ω) = (3/ω3
D)ω2 ∼ ω2 implies a spe-

cific heat CD(T ) = (12π4kB/5)(T/TD)3 ∼ T 3, with TD =
�ωD/kB the Debye temperature. We can underline the
variation of CQM(T ) compared to the Debye prediction by
plotting CQM(T )/T 3 against T in Fig. 17(a). Here we have
used physical Argon units, σ = 3.405 Å, ε/kB = 125.2 K,
and τ = 2.11 ps. From these data we clearly see that the
excess values in g(ω)/ω2 [Fig. 8(a)] are directly mirrored
on the nonmonotonic T dependence of CQM(T )/T 3, one of
the main features of glasses [3,21,22]. In the crystal state,
λ = 1, the Debye prediction holds and CQM(T )/T 3 is therefore
T -independent. In contrast, as λ tends to λ∗, we observe
the appearance of clear maxima of increasing intensity at
decreasing values of T . For λ < λ∗, an opposite behavior is
observed, with a rapid convergence to the final stable value in
the amorphous states.

2. Quantum-like κ

This nontrivial temperature dependence of the specific heat
CQM(T ) must be followed by significant modifications in the T

dependence of the thermal conductivity. By keeping in Eq. (21)
the classical values for v and τ , but replacing C by CQM(T ),
we can map the classical values κ(TMD) to the quantum-like
values κQM(T ) as [24,107,109]

κQM(T ) =
[
CQM(T )

C

]
κ(TMD). (28)

Here, TMD is the classical heat bath temperature, determined
from the particles kinetic energy in the MD simulation,
which we can map onto an appropriate quantumlike value,
by equating the total vibrational energy of the classical and
quantum systems, as

kBTMD =
∫

�ω

[
1

2
+ f (ω,T )

]
g(ω)dω. (29)
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FIG. 17. Temperature dependence of (a) CQM/T 3 and (b) κQM

at the indicated values of λ. The specific heat CQM [Eq. (27)] is
calculated from the g(ω) data of Fig. 6. The thermal conductivity κQM

is obtained by applying Eq. (28) to the MD data of Fig. 15(b). For
those calculations, we have used physical Argon units, σ = 3.405 Å,
ε/kB = 125.2 K, and τ = 2.11 ps. In the figures, the temperature,
specific heat, and thermal conductivity are measured in units of K, kB ,
and Wm−1K−1, respectively. For λ � 0.86, κQM increases as κreal ∝
T γ with γ = 1.8 � 2, and a plateau value is observed around T ∼
20 K. The excess peak in CQM/T 3, however, is found in the lower
temperature region T � 1 K. A discussion of this point is included
in the text.

Here, the first term of the right-hand side is the zero-point
energy which we excluded from our calculations, following
previous works [24,62,107,109]. (See Ref. [24] for further
details on this point.)

3. Reproducing the experimental κ(T )

We show the temperature dependence of κQM(T ) in
Fig. 17(b). For λ = 1, the computed values are similar to those
determined experimentally for solid Argon [111], confirming
the validity of our approach. Note, however, that the T −1

dependence shown by our data does not crossover to the
predicted T 3 behavior at very low temperatures. This regime is
indeed expected in perfect crystals [21,27,28,111], where the
mean free path of heat carriers cannot grow indefinitely and
must eventually be limited by the finite-size of the material
sample [112]. This discrepancy can be rationalized by noticing
that, using periodic boundary conditions, we consider a system

which is virtually of infinite extent in all directions. In these
conditions, as T decreases the mean free path can increase
indefinitely, determining the observed nonbounded behavior
of κQM(T ).

Interestingly, however, introducing a very limited amount
of disorder (λ = 0.98) is sufficient to trigger an inversion
of the monotonicity at T � 10 K, with the appearance
of a well-defined maximum. Eventually, for λ � 0.86, we
approximately recover the T -dependence typical of glasses,
κ ∼ T γ , with γ = 1.8 � 2, followed by a plateau value
appearing around T � 20 K. It is worth to emphasize that this
glasslike behavior is already acquired above the amorphization
transition, in the defective crystalline states. This observation is
consistent with the experimental work of Refs. [27,28], which
reported a glasslike T dependence of thermal conductivity
for disordered crystals of mixed alkali halides and cyanides
[(KBr)1−x(KCN)x , (NaCl)1−x(NaCN)x] and fluorite structure
crystals [Zr1−xYxO2−x/2, Ba1−xLaxF2+x], concluding that
disorder can produce a glasslike thermal conductivity even
in positionally ordered crystals. We remark, however, that
in the former case, beside size or mass disorder, librations
of CN molecules are also expected to strongly couple to
acoustic excitations, contributing to strong scattering and
reduction of thermal conductivity [113]. Similarly, vacancies
or interstitials can play a role similar to that as disorder in
fluorite structure crystals. Different mechanisms can, there-
fore, contribute to achieve glasslike κ similar as that observed
here.

4. Boson peak and glass-like κ(T )

An observation is in order at this point. Although the
values of κQM(T ) are consistent with earlier experimen-
tal results [21,27,28,111], one should note that the above
method to include effective quantum corrections does not
allow to precisely implement the Bose-Einstein distribu-
tion, as discussed in Ref. [114]. The considered quantum
correction is in fact global, in the sense that it is based
on the simple expression of Eq. (21), where a single ef-
fective excitation represents the average effect of all heat
carriers. In order to properly deal with the Bose-Einstein
distribution, it is necessary to consider the mode-by-mode
expression,

κ = 1

3V

∑
k

Ckv
2
k τk = 1

3V

∑
k

�ωk

∂f (ωk,T )

∂T
v2

k τk, (30)

where Ck , ωk , vk , and τk refer to the single mode k [114]. In
this expression, the Bose-Einstein distribution is explicitly in-
cluded into the specific heat Ck , which makes the contribution
of lower frequency modes to κ higher. This point is not taken
into account in our calculations, with the following important
consequence.

In Fig. 17(b), we show that κQM becomes λ-independent
for λ � 0.86, similarly to the classical κ shown in Fig. 15(b).
This implies that both formulations are controlled by the
high-frequency modes (ω > 5) only, without any important
contributions arising from the low-frequency excitations (ω <

5), including those pertaining to the BP. Indeed, Figs. 17(a) and
17(b) indicate that the BP temperature, where CQM/T 3 has a
maximum, and the temperature where the plateau manifests in
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κQM, do not coincide. One should therefore conclude that these
two features are not related one to the other. This conclusion,
however, partially originates from the classical nature of the
system, and might be modified by a correct calculation of
κQM based on Eq. (30). In this case, one should observe
non-negligible overall variation of κQM in the states close to
the transition λ∗, influenced by the low-frequency vibrational
excitations.

5. More on quantum corrections

One crucial problem in applying the mode-based correction
of Eq. (30) to disorder solids is, however, that the heat
carriers (acousticlike modes) are inconsistent with the actual
normal modes of vibration. To overcome this difficulty, Allen
and Feldman (AF) [29,30] have proposed the alternative
formulation

κ(T ) = 1

V

∑
k

CkDk = 1

V

∑
k

�ωk

∂f (ωk,T )

∂T
Dk. (31)

Here the actual normal modes k carry heat with a diffusivity
Dk , formulated on the basis of a GK formalism. This method
has been successfully applied to the calculation of κ in
jammed solids [115,116]. More recently, motivated by the
AF work, a method has been developed in Ref. [117] for
a direct calculation of the modal contributions to thermal
conductivity, by combining the GK formula and normal mode
analysis. Finally, an alternative possibility has been proposed
recently, based on quasiquantum MD simulations employing
quantum thermal baths [118–120]. In Refs. [118,119], a good
reproduction of the temperature dependence of the specific
heat CQM(T ) has been demonstrated, without any corrections.
Unfortunately, a proper calculation of thermal conductivity is
still problematic and poses severe issues [120].

VI. CONCLUSIONS AND REMARKS

We have investigated the interplay among local hetero-
geneous mechanical response, vibrational excitations, and
heat transport, for a numerical model able to interpolate
continuously from the perfect crystal, through increasingly
defective crystalline systems, to plainly amorphous phases.
By substantially improving the data sets investigated in our
previous works [62,63], we have provided a general discussion
in a unique framework, unifying in a single picture large part of
the possible solid states of matter. In particular, by generating
extremely extended ensembles of system configurations, we
have (i) determined the extent of the elastic constants hetero-
geneities (bulk and shear moduli), and investigated possible
correlations with more immediate structural features, (ii)
characterized in details the elementary vibrational excitations
in terms of eigenvalues and eigenvectors of the Hessian matrix
together with the associated lifetimes, (iii) investigated the
more involved acousticlike excitations, as those detected in
inelastic x-ray scattering experiments, for instance, and (iv)
determined temperature and disorder dependence of thermal
conductivity, with an in-depth discussion of the limitations im-
posed by plainly classical calculations. Take-home messages
of our work include the following:

(1) Spatial fluctuations in local elastic moduli modify
the overall structure of the vibrational modes, transforming
plane waves into more complex vibrational excitations, rather
than simply reducing their lifetimes. A substantial fraction
of normal modes is also transformed in localized excitations.
The above important modifications lead to a large reduction
of the lifetimes of the acousticlike excitations, which are
superpositions of several different normal modes with different
frequencies.

(2) The heterogeneity of the higher-valued moduli impact
the high-frequency vibrational modes, whereas the low-ω
excitations are primarily modified by the heterogeneity asso-
ciated to the lower-valued moduli. More precisely, the low-ω
vibrational excess, identifying the boson peak in the glassy
phases, is determined by the pure shear modulus δGp for
λ � λ∗, and by the two degenerate shear moduli, δGp � δGs ,
for λ < λ∗.

(3) The acoustic plane waves play an essential role in heat
conduction even in disordered solids, the thermal conductivity
being related to their lifetime, κ ∼ τ . The temperature, T ,
and disorder, λ, dependences of κ are well described by a
simple model based on Eqs. (21) and (22). This successfully
reproduces the interplay between anharmonic couplings and
the effect of disorder due to the presence of the elastic
heterogeneities.

(4) The thermal conductivity κ is determined by the high-ω
modes (ω > 5), which cover most part (90% to 95%) of
the vibrational spectrum and are mainly controlled by the
high moduli heterogeneities, δK and δGs . κ is, in contrast,
almost insensitive to the remaining small fraction (5% to
10%) of low-ω modes (ω < 5) and, therefore, to the low
modulus heterogeneity δGp. As an important consequence,
we conclude that in the glass the thermal conductivity and the
BP follow distinct mechanisms and are not correlated features.
This result is exact for the classical systems investigated
here, where all the vibrational modes are equally excited. For
more realistic cases, however, we must take into account the
Bose-Einstein statistics correctly, and more involved quantum
calculations are required.

A. Theories based on elastic heterogeneity

We now discuss a few implications of this work. Our results
support the validity of the heterogeneous elasticity theory
[58–61], where elastic heterogeneities control both the BP
and the glass thermal conductivity. A recent simulation study
[121,122] has tested these theoretical predictions by studying
Lennard Jones glasses at different temperatures. It could be
interesting to apply the theory in the case of the present system,
where elastic heterogeneities can be tuned extensively. Also,
in Fig. 14, we have shown an exponential relation, connecting
the extent of the elastic heterogeneities both to the lifetimes of
the acoustic-like excitations and to the thermal conductivity. In
our previous work [63], we also discovered a similar relation
for the low-frequency transverse acoustic-like modes in the
BP range. These findings deserve a more precise explanation,
and should trigger additional theoretical development in the
future.
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B. The microscopic origin of heterogeneity

In this work, we have also scrutinized possible correlations
between local elastic moduli and local structural quantities
(including stress, density, or nature of the local order), to clarify
the microscopic origin of the elastic heterogeneity. We have
found that the bulk modulus heterogeneity (δK) is related to
the spatial fluctuations of volume fraction (δφ) and pressure
(δp). This implies that denser and more diluted system show
lower and higher compressibility, respectively. On the other
hand, we have not been able to highlight any effective predictor
for the shear moduli heterogeneities (δGp, δGs). Indeed, we
found some degree of correlation of the affine components
with δφ and δp. These correlations, however, are erased by
the development of the nonaffine components. Identifying
local quantities which are precursors of the local shear moduli
heterogeneities is still an open issue [44,91].

C. Relevance for ultrastable glasses

The experimental work of Ref. [123] has demonstrated that
glasses prepared by vapour deposition show extreme stability,
which corresponds to equilibrium states of ordinary glasses
after an aging process on time scales of thousands of years.
For this reason, these materials are dubbed as ultrastable
glasses [123,124]. In Ref. [124], a numerical simulation
study of ultrastable glasses was reported, showing that the
BP is reduced compared to the ordinary glasses. Differences
in the local structure were also detected in the two cases.
Additional work is needed to quantify in details the local
elastic response in ultrastable glasses, and highlight possible
differences compared to the ordinary case.

D. Relevance for jammed systems

The BP [125,126], acousticlike excitations (Ioffe-Regel
limit) [127], glasslike T dependence of κ [115,116], and elastic
heterogeneities [128] have been also studied in a-thermal
jammed systems. As the packing fraction φ tends to the transi-
tion point φc, a BP progressively develops with the frequency
�BP vanishing [125,126] (as also observed in experiments
[129]), and the transverse Ioffe-Regel frequency decreases
towards zero [127]. Those results imply the existence of a
diverging length scale [126,127], accompanying both features.
Interestingly, Refs. [115,116] have reported some degree of
correlation between the BP and the T dependence of κ . Also,
a recent work [128] reported that the spatial fluctuations of
shear modulus diverge with vanishing global shear modulus
as φ goes to φc, which can be related to the growing BP and
vanishing transverse Ioffe-Regel frequency.

In addition, in Refs. [39,40,130,131] a theoretical picture
has been developed where the BP and glasslike thermal con-
ductivity originate from the weak connectivities of particles
(isostatic feature), due to the vicinity of the jamming transition
point. We believe that a connection must exist between
the elastic heterogeneities investigated here and those weak
connectivities. Addressing directly this issue is an important
open direction for future work.

E. Unified understanding of ordered and disordered solids

We have focused on a toy model able to generate states
of matter ranging from the perfect crystal, through defective
crystal phases, to fully developed amorphous structures, by
tuning a well designed form of particles size disorder. This
choice partly follows an increasingly used methodological at-
titude, where data from disordered systems are systematically
compared to those coming from the corresponding well-known
crystalline counterparts. This approach has been employed, for
instance, in the case of athermal jammed system in a previous
work [132], where the effect of structural modifications on
the distribution of contact forces was systematically studied.
Other recent works [133–136] have followed this direction,
providing a deeper understanding of important properties of
materials in their crystalline and amorphous forms. Finally, in
Ref. [38], the vDOS and the specific heat of various glassy and
crystalline polymorphs of SiO2 were systematically compared.
We believe that trying to connect completely ordered to
disordered structures, highlighting the important variations
continuously, is a fruitful line of action.

F. Lower-than-amorphous limit of thermal conductivity

As a final remark, modern technologies, such as thermal
management in electronic devices or thermoelectric energy
conversion, employ materials with very low thermal conduc-
tivity [137–139]. We have demonstrated that size disorder
can indeed reduce κ towards the glass value [62]. Similar
conclusions have been drawn in experimental works [27,28],
where the disorder was controlled by tuning the chemical
composition of the material. In these cases, κ is found to reach
a minimum value in well-developed amorphous states, where
the lifetimes of the heat carriers are of the order of the time
scale of thermal vibrations and their mean-free-paths approach
the particles sizes.

It has been shown, however, that one can reduce the thermal
conductivity even below the amorphous limit, by an appropri-
ate design at the nanoscale of ordered systems [139,140]. This
possibility is a crucial opportunity [141], which would allow to
devise (meta-)materials which are excellent thermal insulators
while preserving good electronic properties, as needed in
many applications [137–139]. Remarkably, recent experiments
[142–144] have measured ultralow values of κ , suggested to
be smaller than the amorphous limit. These results have been
confirmed by recent simulation works [145,146] demonstrat-
ing ultralow κ in wisely designed superlattice nanostructures.
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