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We study a system-bath description in the strong-coupling regime where it is not possible to derive a master
equation for the reduced density matrix by a direct expansion in the system-bath coupling. A particular example
is a bath with significant spectral weight at low frequencies. Through a unitary transformation, it can be possible
to find a more suitable small expansion parameter. Within such an approach, we construct a formally exact
expansion of the master equation on the Keldysh contour. We consider a system diagonally coupled to a bosonic
bath and expansion in terms of a nondiagonal hopping term. The lowest-order expansion is equivalent to the
so-called P (E) theory or noninteracting blip approximation. The analysis of the higher-order contributions shows
that there are two different classes of higher-order diagrams. We study how the convergence of this expansion
depends on the form of the spectral function with significant weight at zero frequency.
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I. INTRODUCTION

System-bath approaches are commonly used in many fields
of physics [1]. Particularly important is their use in quantum
optics and quantum transport [2]. Generally, in a system-bath
approach, one defines a “system” which contains a small
number of degrees of freedom and a “bath” which contains
a large number of degrees of freedom. The system and the
bath are mostly coupled linearly, although different forms of
coupling are also possible.

A common approach to solve this problem is to expand
the time evolution of the full density matrix in the coupling
between the system and the bath and trace out the bath
degrees of freedom. This results in an effective equation
of motion for the (reduced) density matrix of the system.
The well-known examples are the Bloch-Redfield [3] and
Lindblad [4] master equations. Both of these models require
a weak coupling between the system and the bath. To be
more precise, they require a bath correlator with a decay
rate which is large compared to the effective system-bath
coupling. However, if the system-bath coupling is strong,
other approaches can be more useful. For two-level systems, a
well-known approach is the polaron transformation [5–7], i.e.,
transformation into the bath-dressed system states. This was
first introduced to study polaronic hopping of electrons with
wave functions confined to single atomic sites [8]. Using the
polaron transformation, the bath contribution is completely
diagonalized. It is then necessary to expand in the terms of
the original system Hamiltonian that do not commute with
the system-bath coupling operator, dressed now by the bath
operators. This approach is also known as the noninteracting
blip approximation [9–11] (NIBA) and can be extended to the
weakly interacting blip approximation [12,13].

It is not always straightforward to define the coupling
strength between the system and the bath. In many cases, it
is helpful to consider the spectral function of the bath modes
to understand which method might work best. If the spectral
function is very smooth, a direct expansion in the system-bath
coupling is usually warranted. However, if the spectral function
has sharp peaks, more care is necessary. A simple example is
the spectral function S(ω) = γ λ2/[λ2 + (ω − ω0)2] (we use
the notation � = 1). If an energy splitting of the system is

close to the peak at ω = ω0, it is possible to consider the
height of the peak (γ ) as the strength of the coupling, whereas
the width of the peak (λ) gives us a good indication of the
decay time of the bath correlator. Then, for γ /λ � 1, we are
in the strong-coupling limit, and for γ /λ � 1, we are in the
weak-coupling limit.

In this paper, we investigate a situation with a bath
spectral density which has a substantial spectral weight at
low frequencies. If the effect of temperature is considered,
we will have a spectral function peaked at zero frequency
which is exactly in the strong-coupling limit, i.e., its peak is
higher than it is wide. As we will discuss later, this spectral
function can be a result of coupling a quantum system to a large
ohmic resistor [14], in which case we have an ohmic spectral
density with small cutoff frequency. We will also discuss how
our noise spectrum can be considered as a subcomponent of
1/f noise [15]. Furthermore, the spectral density relevant
for our work has been measured, e.g., in flux qubits which
are used in the D-Wave Systems devices [16,17]. In larger
coupled systems containing these qubits, a description based
on polaronic hopping has also already been studied [18].

This paper represents a continuation of our work on lasing in
systems under strong noise [19,20] and incoherent Cooper-pair
tunneling in Josephson-junction arrays [21]. In both cases, we
used the lowest-order results of our expansion theory, and
here we present the higher-order expansion which is used to
analyze the convergence conditions. The same physics also
governs inelastic Cooper-pair tunneling across voltage-biased
Josephson junctions in the Coulomb blockade regime [14]. In
this system, higher-order diagrams similar to what we consider
in this paper have been formulated earlier by us and also
explicitly evaluated beyond the leading order [22,23].

This paper is organized as follows. In Sec. II, we start by
introducing our model in an abstract way and, in Sec. III, we
discuss specific physical realizations where this expansion is
applicable and has partially already been used. In Sec. IV, we
introduce our expansion theory to all orders on the Keldysh
contour. In Sec. V, we study the convergence conditions in
the specific case of strong low-frequency noise, which can of
course also be used to estimate the validity of the lowest-order
expansion. We consider both the low- and high-temperature
regimes. The conclusions and discussion are given in Sec. VI.
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II. THE MODEL

We consider a system coupled diagonally to a bosonic bath
in the presence of a nondiagonal hopping term, described by
the total Hamiltonian

H0 = HD + (T̂ + T̂ †) + D̂
∑

i

ci(b̂
†
i + b̂i) +

∑
i

ωi b̂
†
i b̂i . (1)

The system Hamiltonian consists of HD , a Hamiltonian which
commutes with the coupling operator D̂, and a (hopping)
part which does not commute with D̂, given by T̂ + T̂ †. The
system is coupled linearly to the bath of bosonic modes with
frequencies ωi , described by the corresponding annihilation
(and creation) operators b̂

(†)
i . Here, the commutator between

the operators T̂ and D̂ satisfies the property

[T̂ ,D̂] = cT̂ , (2)

where c is a constant. In Sec. III, we introduce several systems
whose Hamiltonians satisfy the above-mentioned properties.

Provided by Eq. (2), it is now convenient to do the unitary
(polaron) transformation,

UD = exp

[
−D̂

∑
i

ci

ωi

(b̂†i − b̂i)

]
, (3)

and bring the resulting total Hamiltonian into the standard
form of a system-bath approach,

H = U
†
DH0UD = HS + HC + HB, (4)

with

HS = HD − D̂2
∑

i

c2
i

ωi

, (5)

HC = T̂ e−φ̂ + T̂ †eφ̂, φ = c
∑ ci

ωi

(b̂†i − b̂i), (6)

HB =
∑

i

ωi b̂
†
i b̂i . (7)

The system Hamiltonian HS consists of HD (introduced above)
and a renormalization coming from the bath. Coupling to the
bath is described by HC and the bath Hamiltonian HB remains
unchanged. It will now be our goal to derive a master equation
by expanding the equation of motion for the reduced density
matrix in orders of HC. For example, when applied to the
spin-boson model or to a Josephson junction coupled to an
electromagnetic environment, this corresponds to an expansion
of the system dynamics in powers of the tunneling coupling,
as discussed below.

III. PHYSICAL REALIZATIONS

In this section, we introduce specific physical realizations
where our expansion is applicable. The specific form of
diagrammatic expansion, the leading-order master equation,
and its convergence analysis are then given in Secs. IV and V.

Generally, prior to the unitary transformation, the system
Hamiltonian and the coupling Hamiltonian can be described

by diagonal contributions,

HD =
∑

n

εn|n〉〈n|, (8)

and similarly for the coupling to the bath,

D̂ =
∑

n

dn|n〉〈n|. (9)

In the following, we will consider an off-diagonal part with
(hopping) coupling between the nearest system levels,

T̂ =
∑

n

τn|n〉〈n + 1|. (10)

For our theory to be applicable, that is, for Eq. (2) to be
valid, the matrix elements dn need to have the property
dn+1 − dn = c. We point out that the approach can also be
extended to more complicated operators T̂ . Let us now discuss
some important models from the literature which can be
mapped to the Hamiltonian of Eq. (1).

A. Spin-boson model

One of the most well-studied problems in system-bath
physics is the spin-boson model [24,25]. It describes many
interesting systems and phenomena, such as electron-transfer
reactions [26], biomolecules [27], cavity QED [28,29], and
general dissipative quantum systems [30,31]. The Hamiltonian
is given by

H = 1

2
εσ̂z − 1

2
	σ̂x + σ̂z

∑
i

ci(b̂
†
i + b̂i) +

∑
i

ωi b̂
†
i b̂i . (11)

Here, σ̂i are the Pauli matrices acting on a two-level system.
This can be mapped onto the Hamiltonian of Eq. (1), with
identification

HD = 1
2εσ̂z, T̂ = − 1

2	σ̂+, D = σ̂z. (12)

We introduced the spin raising and lowering operators σ̂+ +
σ̂− = σ̂x . For the spin-boson model, an expansion in terms
of T̂ in lowest order is known as the noninteracting blip
approximation [9]. Higher-order expansions have also been
formulated [12,13].

B. Jaynes-Cummings model

The Jaynes-Cummings model describes an interaction be-
tween a single electromagnetic mode and a two-level system.
If the two-level system is coupled to a bosonic bath (e.g., to
describe decoherence), the total Hamiltonian is given by

H = 1

2
εσ̂z + g(σ̂+â + σ̂−â†) + ωâ†â

+ σ̂z

∑
i

ci(b̂
†
i + b̂i) +

∑
i

ωi b̂
†
i b̂i . (13)

This model has been studied by us in the context of
inversionless lasing [19] and coupling of quantum dots to a
transmission-line resonator [20,32]. We have here

HD = 1
2εσ̂z + ωâ†â, T̂ = gâσ̂+, D̂ = σ̂z. (14)
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When expanding in T̂ , one has to note that the expansion
parameter grows with the photon number. Therefore, it is
clear that a lowest-order approximation is only valid for small
photon numbers (small g

√
n compared to ω, where n is the

resonator photon number).

C. Superconducting devices in the charge regime

Another system of great interest where the above discussion
is valid is superconducting devices in the charge regime. As an
example, the Hamiltonian of a superconducting charge qubit
connected (capacitively) to a transmission line can be written
in the form

H = ECN̂2 − EJ cos θ̂ + N̂
∑

i

ci(b̂
†
i + b̂i) +

∑
i

ωi b̂
†
i b̂i .

(15)

Here, N̂ is the excess Cooper-pair number on the island with
Cooper-pair charging energy EC, and EJ is the Josephson
coupling describing Cooper-pair tunneling between the island
and the lead. The superconducting phase and the charge
operator are conjugate variables and satisfy [N̂,eiθ̂ ] = eiθ̂ ,
which means that we can identify

HD = ECN̂2, T̂ = −EJe
iθ̂ /2, D̂ = N̂ . (16)

For this case, the lowest-order expansion is equivalent to
the P (E) theory [14]. In this system, expansion schemes to
higher-orders in EJ have also been considered by us and
others [22,23,33,34]. Naturally, many other noise sources,
such as subgap quasiparticles [35,36], can have an effect on
superconducting systems. In the limit of large EJ, the noise
characteristics of this model can also change substantially [37]
and, for highly structured environments, open system methods
have been discussed [38].

D. Multipartite systems

The model presented here can also easily be extended to
include coupling of many system operators to independent
baths. Here each of the system operators has to have a
similar relation with the system Hamiltonian as in Eq. (2).
In particular, this model can be used to study incoherent
Cooper-pair tunneling in Josephson-junction arrays [21,39]
and it could also be useful when considering hopping between
many coupled two-level systems with low coherence [40,41].

IV. EXPANSION ON THE KELDYSH CONTOUR

The total Hamiltonian H is divided into three parts: the
quantum system HS, the bath HB, and the coupling between
the quantum system and the bath HC; see Eqs. (4)–(7). Our aim
now is to derive an equation of motion for the reduced density
matrix for the quantum system, where we trace out the degrees
of freedom of the bath. The expansion of the time evolution
on Keldysh contour is discussed extensively in the literature;
see, for example, Ref. [42]. Below, we will give a short review
of the relevant steps. Differences to usual approaches appear
when we introduce the contraction method of exponentialized
bosonic operators (Sec. IV B).

A. Time evolution of the reduced density matrix

We start with the equation of motion for the average value
of the projection operator P̂ss ′ , where |s〉 are the eigenstates of
HS. We have then

P̂ss ′ = |s ′〉〈s|, HS|s〉 = Es |s〉. (17)

In this notation, we can define the elements of the reduced
density matrix as

Pss ′ (t) = 〈P̂ss ′ (t)〉. (18)

The time evolution is then given by

Pss ′ (t) = Tr[ρ̂(t0)Û †
I (t,t0)P̂ss ′,I(t)ÛI(t,t0)]. (19)

This approach is equivalent to the Nakajima-Zwanziger pro-
jection formula [1]. Here we use the definition of an operator
Ô in the interaction picture,

ÔI(t) = ei(HS+HB)(t−t0)Ôe−i(HS+HB)(t−t0). (20)

The time-evolution operator in the interaction picture is given
by

UI(t,t0) = T e
−i

∫ t

t0
HC,I(t ′)dt ′

, (21)

where T is the time-ordering operator (t > t0).
We assume now that at time t0, the density matrix separates

into the density matrix of the bath ρ̂B(t0) and system ρ̂S(t0),
and we write it in the form

ρ̂(t0) = ρ̂B(t0)ρ̂S(t0) = ρ̂B

∑
s̄ s̄ ′

Ps̄s̄ ′ (t0)|s̄〉〈s̄ ′|. (22)

Combining Eqs. (19) and (22) allows us to write

Pss ′ (t) =
∑
s̄ s̄ ′

Ps̄s̄ ′ (t0)�s̄s̄ ′→ss ′ (t0,t), (23)

with the time evolution of the superoperator �(t0,t). Expand-
ing the time-evolution operators as in Eq. (21) gives us

�s̄s̄ ′→ss ′ (t0,t)

= 〈s̄ ′|TrBρB(t0)
∞∑

m=0

(−i)m
∫ t

t0

dt ′1

∫ t ′1

t0

dt ′2 · · ·

· · ·
∫ t ′m−1

t0

dt ′mTK [HC,I(t
′
1)HC,I(t

′
2) . . . HC,I(t

′
m)P̂ss ′,I(t)]|s̄〉.

(24)

Here, TK represents the time sorting along the Keldysh
contour, which we will explain below.

The Keldysh contour has two branches. The upper branch
represents the time evolution from t0 to t , and the lower branch
represents time evolution in the opposite direction. In our case,
the time t is determined by the projection operator P̂ss ′,I(t). All
operators to the right of P̂ss ′,I(t) will be on the upper branch of
the Keldysh contour, and all operators to the left will be on the
lower branch. Each lower-branch operator will be associated
with an extra factor −1.

In the coupling Hamiltonian HC, we have the operators
T̂ e−φ̂(t) and T̂ †eφ̂(t); see Eq. (6). We separate these two terms
in our description of the expansion on the Keldysh contour.
The operators T̂ e−φ̂(t) are represented by filled circles, while
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T̂ †eφ̂(t) are represented by empty circles. On the Keldysh
contour, the time evolution of the superoperator is then given
by the following:

Π(t0, t)=
∞

m=0

im

tm tm−2 t2

tm−1 t3 t1

. . . ×
t

t0
s

s
(25)

Here, for each order m, a summation over all geometrically
different diagrams is made.

To define a self-energy, we will now establish contraction
rules for correlators of the form

TrB[ρ̂B(t0)TKeφ̂1e−φ̂2eφ̂3 · · · eφ̂m ]

= 〈TKeφ̂1e−φ̂2eφ̂3 · · · eφ̂m〉B

= 〈eφ̂me−φ̂m−2 · · · e−φ̂2eφ̂1eφ̂3 · · · e−φ̂m−1〉B, (26)

where the time ordering of the lowest line corresponds to the
diagram in Eq. (25). We have used the notation φ̂(ti) ≡ φ̂i . It
is the next step, which is different from usual master equation
derivations. This is because the Wick’s theorem does not apply
to operators of the type exp[φ̂i] and we cannot rewrite this
m-time correlator in products of two-time correlators in the
usual way.

B. Contraction rules

The Feynman disentangling method allows us to derive a
helpful simplification for ensemble averages of products of op-
erators exp(φ̂n), where φ̂n is an arbitrary linear combination of
bosonic annihilation and creation operators. The disentangling
has the form〈
en1φ̂1en2φ̂2 · · · enmφ̂m

〉 = e
1
2 〈(∑m

i=1 ni φ̂i)2〉e
1
2

∑m
i<j [ni φ̂i ,nj φ̂j ]. (27)

Here, the factors ni take values ±1. This result can also be
derived by applying the Wick’s theorem to Taylor expansions
of the exponentialized operators, similarly as in Ref. [14].
Using Eq. (27), it is straightforward to show that averaging
products over the reservoir is only nonzero if there is the same
number of operators with opposite signs of the exponents.
Therefore, we only have to consider diagrams with an equal
amount of filled and empty circles. For such combinations, we
can write〈

TK�ne
φ̂ne−φ̂n′ 〉 = e

1
2 〈[

∑
n(φ̂n−φ̂n′ )]2〉e− 1

2

∑
n<n′ TK [φ̂n,φ̂n′ ]

× e
1
2

∑
n<m TK [φ̂n,φ̂m]e

1
2

∑
n′<m′ TK [φ̂n′ ,φ̂m′ ].

(28)

Here we use the notation where the number i (i ′) corresponds
to a positive (negative) signed phase operator.

In the next step, we group all eφ̂n to the e−φ̂n′ closest to
each other on the real-time axis. The difference from the
usual diagrammatic formulations is that each circle is paired
only once. This is done practically by grouping the time-wise
earliest empty circle to the time-wise earliest filled circle, and
so on. This is the only possible way to connect the diagrams
that allows for a consistent definition of a self-energy. For
example, the lowest-order contribution to the self-energy will

contain exactly two vertices: one empty and one filled. This
contribution has to be repeated n times for a diagrammatic
part which contains n self-energies. Therefore, we have to
connect the corresponding circles in diagrams with 2n vertices
to reproduce the n lowest-order contractions. We will discuss
this further below for a specific example.

Interactions beyond the pairings are included by pair
connectors, introduced below. To write the resulting correlators
in a compact form, we introduce the notation

f (TK [t1,t2,t3, . . .]) = f (t1,t2,t3, . . .) . (29)

The expression TK [t1,t2,t3, . . .] implies that the arguments of
the function f should be time sorted along the Keldysh contour.
For the particular example in Eq. (29), we assumed t1 > t2 >

t3, . . . along the Keldysh contour.
We then separate contributions from the time-wise nearby

pairs (introduced above) from other terms, which will describe
interaction between these pairs. This allows us to bring the
correlator into the form〈

TK�ne
φ̂ne−φ̂n′ 〉

= �n

〈
TKeφ̂ne−φ̂n′ 〉�n<m{F (TK [tn,tn′ ,tm,tm′]) + 1}

= �nP (TK [tn,tn′ ])

+�nP (TK [tn,tn′ ])〉F (TK [t2,t2′ ,t1,t1′ ]) + · · · . (30)

The two-time correlator P (t1,t2) has the form

P (t1,t2) = 〈
eφ̂(t1)e−φ̂(t2)

〉 = eC(t1−t2). (31)

Here, the pair correlator C(t) is related to the bath structure as

C(t) = c2

π

∫ ∞

0
dω

J (ω)

ω2

×
[

coth

(
ω

2kBT

)
(cos ωt − 1) − i sin ωt

]
, (32)

where we have taken the continuum limit by defin-
ing π

∑
i c

2
i f (ωi)/ω2

i ≡ ∫
dωJ (ω)f (ω)/ω2, for an arbitrary

function f (ω). The Fourier transform of Eq. (31) is known
from the P (E) theory [14],

P (E) = 1

2π

∫ ∞

−∞
dteC(t)+iEt . (33)

It satisfies
∫ ∞
−∞ P (E)dE = 1 and describes the probability

to exchange energy E with the bosonic environment in an
incoherent transition between two system states connected by
T̂ or T̂ †. As discussed in more detailed in Sec. V, the function
J (ω) is related to the real part of the environmental impedance
Z(ω) as J (ω) = 2πωRe[Z(ω)]/RQ, where RQ = h/e2 is the
resistance quantum.

The interaction between the pairs is described by the
function

F (TK [tn,tn′ ,tm,tm′]) = e〈TK (φ̂n−φ̂n′ )(φ̂m−φ̂m′ )〉 − 1, (34)

where the first term on the right-hand side collects all the
terms describing interaction between two pairs. Notice the
addition and subtraction of 1 when inserted into the full
correlator in Eq. (30): the contribution beyond 1 (function
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F ) describes deviations from Gaussian contractions. This
definition is sound, since at finite temperatures and in the
long-time limit, the function F decays exponentially to zero
with increasing time separation between the two pairs. We call
the function F (TK [tn,tn′ ,tm,tm′]) the connector.

We are now ready to go forward in using our diagrammatic
formulation of the problem. As an example, we show a
contraction of an element of the time evolution, with four
vertices:

= + (35)

Here the dashed line describes a connector between the pair
correlators (wiggled lines). We see how a diagram with
four vertices is contracted in a way which reproduces the
lowest-order diagrams twice, which is necessary to allow for
a consistent definition of the self-energy. Our contraction rule
is the only possible rule which allows for such a consistent
definition.

As another example, we show a contraction of an element
of the time evolution with six vertices:

= +

+ +

+ +. . .

(36)

Again, the first contraction on the right-hand side reproduces
the lowest-order diagram three times and the second contrac-
tion reproduces a combination of the first two diagrams in the
previous diagram, and so on.

C. Self-energy

Since all of the diagrams are separable or inseparable [42],
we can now define the self-energy consisting of all inseparable
diagrams (diagrams that cannot be cut into two by a vertical
line without crossing a wiggled or a dashed line). In the
diagrammatic form, it can be written as

Σ = +. . .+ + . . .

+ +. . .+ . . .
(37)

Using the self-energy, we can write the time evolution �(t0,t)
as follows:

Π(t0, t)= + Σ + Σ Σ

+ Σ Σ Σ + . . .

= + Σ Π

(38)

Using the above Dyson equation, we get the equation of motion
for the reduced density matrix,

∂t P̂ (t) = i[P̂ (t),HS] +
∫ t

t0

�(t ′,t)P̂ (t ′)dt ′, (39)

which is, in principle, exact. Obviously, the key difficulty here
is the calculation of the self-energy, �(t ′,t).

D. Leading-order master equation

We will now derive the leading-order approximation for the
equation of motion of the density matrix. The self-energy in
the leading order is a sum of all eight second-order diagrams,
which have the following form:

Σ = + + +

+ + + +
(40)

By evaluating each contribution explicitly, we can write
down the master equation. As an example, we evaluate the
contribution from the first diagram,

�s̄s̄ ′→ss ′ (t ′,t) = 〈s̄ ′|T̂ |s ′〉〈s|T̂ †|s̄〉P (t ′,t)ei(Es′ −Es̄ )(t−t ′).

In the Markov approximation, one neglects memory effects
in the system time evolution, which means that in Eq. (39)
the density matrix P̂ (t ′) is replaced by the free evolution
eiHS(t−t ′)P̂ (t)e−iHS(t−t ′). This is a convenient but not necessary
approximation to be done here. The Markov approximation is
equivalent to the analysis of the crossing diagrams [43]. If the
function P (t1,t2) decays fast, such as in the high-temperature
limit considered in Sec. V A, the Markov approximation is
well justified. This allows for a straightforward integration of
the equations over the time t ′, giving generalized transition
rates of the form

�(E) ≡
∫ t

−∞
dt ′P (t ′,t)e−iE(t−t ′)

=
∫ t

−∞
dt ′eC(t ′−t)eiE(t ′−t) = πP (E) + iR(E). (41)

Here, the first term on the right-hand side is purely real
and corresponds to the P (E) function defined in Eq. (33).
This describes incoherent transitions with energy exchange
with the environment. The second term is purely imaginary
and corresponds to energy renormalization effects. These are
usually neglected or included in the system Hamiltonian. They
can result in important observable effects [44]. This term can
be written in the form

R(E) = −P
∫ ∞

−∞
dω

P (E + ω)

ω
, (42)

where P indicates that the integration is made as a principal
value around ω = 0.

In total, after summing over all eight diagrams, one obtains
the well-known Bloch-Redfield equations of motion [1,3],

Ṗss ′ (t) = −i(Es − Es ′ )Pss ′ (t) +
∑
s̄ s̄ ′

�s̄s̄ ′ss(t), (43)
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where the performed unitary transformation affects the form
of the generalized transition rates,

�s̄s̄ ′ss(t) = �s̄ ′s ′ [T †
ss̄Ts̄ ′s ′ + Tss̄T

†
s̄ ′s ′ ]Ps̄s̄ ′ (t)

+�∗
s̄s[T

†
s̄sTs̄ ′s ′ + Ts̄sT

†
s̄ ′s ′ ]Ps̄s̄ ′ (t)

−
∑

v

�∗
s̄v[T †

svTvs̄ + TsvT
†
vs̄]Ps̄s̄ ′ (t)δs̄ ′s ′

−
∑

v

�s̄ ′v[T †
s̄ ′vTvs ′ + Ts̄ ′vT

†
vs ′ ]Ps̄s̄ ′ (t)δs̄s ,

with Tij ≡ 〈i|T̂ |j 〉 and �ij ≡ �(Ei) − �(Ej ).
The leading-order master equation under the polaron

transformation is a useful and straightforward tool for many
systems. Our previous studies include lasing under strong noise
[19,20] and incoherent Cooper-pair tunneling in Josephson-
junction arrays [21]. The diagrammatic formulation of higher
orders derived in the preceding sections then allows us to study
convergence criteria, performed in Sec. V.

V. STRONG LOW-FREQUENCY NOISE
AND CONDITIONS FOR CONVERGENCE

In the preceding section, we presented a diagrammatic
expansion of the time evolution of the density matrix and
derived the master equation in the leading order. Here, we
want to discuss the conditions for the leading-order expansion
to be valid. For this, we first want to introduce a specific model
for the spectral function.

We consider a case which is often discussed within P (E)
theory [14], where the spectral function can be related to an
impedance Z(ω) via

J (ω) = 2πω
Re[Z(ω)]

RQ
, (44)

where RQ = h/e2 is the resistance quantum. If our system
has a dipole moment and is capacitively coupled to an ohmic
environment, the impedance can take the form

Re[Z(ω)] = R

1 + (ωRC)2
. (45)

Here, R characterizes the dissipation of the environment and
the capacitance C defines a cutoff frequency ωR = 1/RC. The
spectral density in this case can also be written as

J (ω) = 2εCω
ωR

ω2 + ω2
R

, (46)

with the charging energy εC = e2/2C.

A. Cutoff frequencies smaller than temperature

If we consider the occupation of the modes by finite
temperature kBT , for small cutoff frequencies, ωR � kBT ,
we get a spectral function,

S(ω) = J (ω) coth(ω/2kBT ) ≈ 4εCkBT ωR

ω2 + ω2
R

. (47)

This spectral function has a maximum at ω = 0 and therefore
the noise we are considering is low-frequency noise. The
spectral function is characterized by height εCkBT /ωR and

width ωR . This can be an important regime, even at milli-
Kelvin temperatures [16,21,22], since cutoff frequencies can
be even smaller.

1. Contraction function

We now further study the spectral density of Eq. (46) in
the limit ωR � kBT . The corresponding contraction function
P (t1,t2) [see Eqs. (31) and (32)] has the form

P (t1,t2) = exp

{
−2c2εCkBT (1 − e−ωR |δt | − ωR|δt |)

ω2
R

− i
2c2εC(1 − e−ωR |δt |)

ωR

Sign(δt)

}
. (48)

Here we have defined δt = t1 − t2. The real part behaves
quadratically at short times and linearly at long times. A
characteristic time for the cross over is 1/ωR = RC. The result
for the imaginary part does not depend on temperature and is
general.

We will now use the coupling c = 1; for other values, all
the results can be obtained by the change εC → c2εC . In the
strong-coupling limit, ωR � √

εCkBT , we can use the short-
time approximation and the relevant behavior simplifies to [45]

P (t1,t2) ≈ exp{−εC[kBT (t1 − t2)2 + i(t1 − t2)]}. (49)

This also implies that we consider a spectral function which is
sharply peaked at small frequencies.

We note that when using only quadratic approximation for
correlation functions, the corresponding coupling between the
pairs (F function) does not go to zero with increasing the
distance between pairs. However, it does go to zero when the
linear behavior of Eq. (48) dominates (t > RC). This is also
seen in the convergence results derived below.

It should also be noted that there is a direct relation between
the spectral function (47) and 1/f noise [15]. It is known that
1/f noise can be described by many superimposed Lorentzian
spectra, with a probability distribution for the width ωR which
is given by 1/ωR ,

S1/f (ω) =
∫ ∞

0
dωR

1

ωR

S(ω) = 2πεCkBT

ω
. (50)

As we will see later, the expansion we discuss here can
accommodate low-frequency noise of the type described by
Eq. (47) for rather small cutoff frequencies ωR , but not for
ωR → 0.

2. Analysis of higher-order diagrams

We assume strong coupling to the environment and there-
fore we assume large

√
kBT εC compared to ωR . In this

case, P (t1,t2) decays quickly and allows for the Markov
approximation in the leading-order master equation. However,
in contrast to the expansion studied in, e.g., Ref. [43], we
have different classes of higher-order diagrams which decay
in different ways.
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We analyze higher-order diagrams to understand the con-
vergence conditions of our expansion. At first we will consider
a standard diagram with two crossed contractions,

t1t

t2 t

= m4
t

t

dt1

t1

t

dt2P (t, t2)P (t , t1) (51)

Here, the term P (t,t2) corresponds to the upper pair and
P (t ′,t1) corresponds to the lower one. We assume that the
relevant system energy splittings are small. If a system energy
splitting is large, we get additional oscillating functions which
improve convergence; therefore we are considering the worst-
case scenario. The prefactor is given by the assumption that
there is a characteristic energy scale m which corresponds to
the relevant matrix element m ∝ 〈n|T̂ |n′〉, where |n〉 and |n′〉
are eigenstates of the system.

In a rough approximation, where we also neglect the
oscillating part in the contraction of Eq. (49) and assume that
t − t ′ is relatively large, we find

≈ − π

2
m4e−

1
2 CkBT (t−t )2

( CkBT )3/2(t − t ) (52)

If we now compare the size of the lowest-order diagram with
these results, we see that we need

m2

√
εCkBT

� m4

(εCkBT )3/2
. (53)

This gives us the rule for convergence,

m√
εCkBT

� 1. (54)

Basically, we see that the higher-order diagram of the form
(52) can be neglected if the contraction P (t1,t2) has a decay
rate which is much larger than the coupling constant m. This is
a well-known rule which applies for many expansion theories.

In the limit we are considering, at first sight it seems as
if the cutoff frequency of the spectral function plays no role
in the convergence. However, this is essential for different
sets of diagrams, which have no crossing contractions but are
inseparable because of a connector. These terms have the form

t2 t

t t1

=m4
t

t

dt1

t1

t

dt2P (t, t1)P (t2, t )F (t2, t, t1, t )

(55)

Diagrams of this form have also been shown to be relevant
for the calculation of the statistics of photon emission in
voltage-biased Josephson junctions [22,23]. Here, the function
P (t,t1) describes the time-wise later pair and the function
P (t2,t ′) describes the earlier one, whereas F (t2,t,t1,t ′) de-
scribes the interaction between the two. We know that the
functions P (t1,t) and P (t ′,t2) decay very fast. Therefore,
we expand the connector F around t1 = t and t2 = t ′ using
the Taylor expansion. This is again a valid approximation for
relatively large t − t ′. The lowest-order nonzero element of

this expansion is given by

∂F

∂t1∂t2

∣∣∣∣
t1=t,t2=t ′

= − 1

π

∫ ∞

0
dωJ (ω) coth

(
ω

2kBT

)

× [cos ω(t − t ′) − i sin ω(t − t ′)]. (56)

In this approximation, we can write the diagram (55) in the
form

= −m4 ∂2F

∂t1∂t2 t1=t,t2=t

×
t

t

dt1

t1

t

dt2P (t, t1)( t − t1)P (t2, t )(t2 − t ).

(57)

Integration over the times gives us

lim
t−t ′→∞

∫ t

t ′
dt1

∫ t1

t ′
dt2P (t1,t)(t1 − t)P (t ′,t2)(t2 − t ′)

= 1

ε2
C(kBT )2

. (58)

Using the approximation for our spectral density in Eq. (46)
as specified in Eq. (47), we can analytically estimate the
contribution from the connector,

∂2F

∂t1∂t2

∣∣∣∣
t1=t,t2=t ′

= 2εCkBT e−ωR (t−t ′). (59)

This analysis implies that for relatively large times t − t ′,
the connector decays as the memory (RC) time of the
environment. From this, we find the order of magnitude
of the contribution of the diagram (55), which becomes
m4/εCkBT ωR . If we compare this to the contribution of the
lowest-order diagram, we find the convergence rule

m2

ωR

√
εCkBT

� 1. (60)

From Eq. (60), we see that a noise source with a rather small
cutoff frequency can in fact be treated, as long as the overall
noise magnitude is sufficiently large. We also see that in
the limit ωR → 0, the expansion does not converge. This is
natural since in this limit the memory time of the environment
approaches infinity. In summary, we see that the bath cutoff
frequency also plays an essential role in convergence of the
expansion.

B. Convergence for temperatures smaller than cutoff frequency

With a similar analysis, we can also study the convergence
in the case of strong coupling of the environment and small
cutoff frequencies, but temperatures even smaller than the cut-
off frequency, ωR > kBT . The width of the spectral function is
characterized now by kBT , meaning that the strong-coupling
limit corresponds to εC � ωR , which is equivalent to R � RQ.
In this case, the result for the contraction function P (t1,t2) can
be derived from the formally exact solution given in Ref. [33].
We find a solution for the real part in the short- and long-time
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limits,

Re[P (t1,t2)] =
⎧⎨
⎩

exp
{− εC

πωR
[γ − cosh(ωRt)chi(ωRt) + sinh(ωRt)shi(ωRt)]

}
, kBT t � 1

exp
[

εCkBT

ωR
t −

εC (H− ωR
2kB T π

+H ωR
2kB T π

−π cot(ωR/2kBT ))

2πωR

]
, kBT t � 1,

(61)

where Hn is the harmonic number and chi(x) and shi(x) are the
cosh and sinh integrals, respectively. For T = 0, the short-time
limit is, in fact, the correct result at all times. In this case, our
expansion will diverge and other methods [46,47] need to be
used. However, for any finite temperature, the long-time limit
holds. For the considered limit ωR > kBT , Eq. (59) stays the
same and all diagrams decay in the same way. The convergence
analysis gives in this case only one condition,

mωR

εCkBT
� 1. (62)

We then obtain that even at very small temperatures, conver-
gence can be achieved in the strong-coupling limit, εC � ωR .

VI. CONCLUSIONS

We discussed a master-equation expansion where first
the coupling to the bath is diagonalized explicitly and then
expanded in the system operators dressed by the bath operators.
The motivation here is to study expansion schemes that can
be used in the case of strong coupling to the environment.
We formally introduced contraction rules which allow for the
division of all resulting terms in the expansion into two-time
correlators of type P (t1,t2) and four-time correlators, described
by the connector F (t1,t2,t3,t4). The introduced rules allowed
for a consistent definition of the self-energy. We showed that

the contribution of the connector is important since it contains
the effects of the slowly decaying correlations. We then
derived explicit limits when the leading-order master-equation
approach is valid, i.e., when the contribution from the two
types of diagrams in higher orders stays small. The results
clarify the limits of our previous works on lasing in systems
under strong noise [19,20], incoherent Cooper-pair tunneling
in Josephson-junction arrays [21], as well as inelastic Cooper-
pair tunneling across voltage-biased Josephson junctions in
the Coulomb blockade regime [22,23].

As we discussed in Sec. V A 1, the connection of the used
noise spectral function to 1/f noise is interesting. Given a
noise spectral function of Eq. (47), we can describe the high-
frequency tail of 1/f noise,

S1/f,high =
∫ ∞

ωR,min

dωR

1

ωR

S(ω)

= 2εCkBT [π − 2 arctan(ωR,min/ω)]

ω
, (63)

where the low-frequency limit for the cutoff frequency ωR

is determined by the condition m2/
√

εCkBT ωR,min � 1. Such
connection can then be used to theoretically account for a large
part of low-frequency noise, in limits where traditional direct
system-bath coupling expansions do not work.
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