
PHYSICAL REVIEW B 94, 144209 (2016)
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We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band
of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-
relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework.
The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more
elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results
are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are
able to account for the measured spin-relaxation times of materials with very different physical parameters. From
a general point of view, our theory opens a new perspective for describing the hopping dynamics in random
quantum networks.
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I. INTRODUCTION

The low-temperature spin-relaxation time (τs) of n-doped
semiconductors presents a maximum for doping densities near
that of the metal-insulator transition (MIT) [1–8]. This experi-
mental observation is particularly intriguing as it encompasses
both, the rich physics of spin-orbit coupling in semiconductors
and a paradigmatic quantum phase transition. On the one hand,
the spin dynamics in different semiconductor-based systems
is relevant from the fundamental point of view, as well as for
potential applications of spintronics and quantum information
technologies [9,10]. On the other hand, despite a substantial
research effort, the MIT remains one of the most challenging
open problems in condensed matter physics [11–13].

While the mechanisms behind spin relaxation were
promptly identified for the regime of high temperatures or for
doping densities far away from the critical one [4,14,15], the
understanding of the low-temperature spin-relaxation close to
the MIT required a sustained theoretical effort [16–20]. On the
metallic side of the transition (for impurity densities ni slightly
larger than the critical one nc) the Dresselhaus spin-orbit
coupling was identified as the source of the spin relaxation
in the case of zinc-blende semiconductors. In particular, it was
proposed that when the electron conduction is in the impurity
band (nc <ni <nh), the spin-relaxation rate is given by [20,21]

1

τs
= 0.36

γ 2

a6V0�
N1/2

i . (1)

γ is the material-dependent Dresselhaus coupling con-
stant [9,22–24], while the other parameters in Eq. (1) depend
on the nature of the impurity states: the effective Bohr radius
(a), the binding energy (V0/2), and the dimensionless impurity
density (Ni = nia

3). The hybridization density nh marks the
impurity concentration beyond which there is a considerable
overlap between the impurity and conduction bands.

The form (1) of the relaxation rate is quite general.
In the above-specified density interval, it applies to any
zinc-blende semiconductor, with the possible exception of

narrow-gap materials. Indeed, it has been shown to give
good account, within the experimental uncertainties and the
limited knowledge of some material parameters, of the spin
relaxation measured in GaAs and CdTe, despite the very
different material constants of these two semiconductors. For
instance, the Mott criterion for the MIT setting the critical
dimensionless impurity density Nc = nca

3 � 0.017, leads to
nc = 2 × 1016 cm−3 (9 × 1016 cm−3) for GaAs (CdTe), and
there are two orders of magnitude difference between the
corresponding values of τs for these two cases [3–8].

Equation (1) has been analytically derived and it is in good
agreement with numerical simulations [20]. Both theoretical
approaches (analytic and numerical) are based on a generaliza-
tion of the well-known Matsubara-Toyozawa (MT) model [25],
describing the diffusion of noninteracting electrons through
randomly distributed impurity sites, so as to include spin-
flipping hopping terms [19,26]. In the numerical approach, the
spin-relaxation time is extracted from the evolution of initial
states with a well-defined spin projection. The weakness of
the spin-orbit coupling and the finite system sizes that can be
handled require the use of delicate extrapolations and a finite-
size scaling analysis. In the analytic formulation, the spin-
relaxation rate is obtained from the diffusive accumulation of
spin rotation angles as the electron jumps between impurity
centers. Such a phenomenological approach needs to be put
on a firm basis as a well-controlled approximation that can be
extended in a systematic way in order to accurately describe
various parameter regimes.

The present work addresses the above-mentioned task and
develops a systematic self-consistent diagrammatic pertur-
bation approach to obtain the long-time charge and spin
dynamics in a disordered network of impurity sites. The
phenomenological result of Eq. (1) is qualitatively recovered
using a simple self-consistent approximation in a locator
expansion of the self-energy, which can be analytically solved.
In a second approximation, we include diagrams describing
loops of arbitrary length, which can be shown to give the
dominant contributions in the limit of high impurity densities.
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The resulting charge diffusion coincides with that of the
MT diagrammatic expansion [25], and the spin-relaxation
rate improves the previous estimation, correcting its density
dependence.

Further refinements of the self-consistent approach can be
implemented in a systematic way by considering repeated
scattering with given impurities (i.e., cross diagrams). In
particular, we consider repeated scattering from pairs of
impurities, which has been shown to be dominant for low-
concentration densities [27]. We show that these processes lead
to small corrections for the range of impurity densities we are
interested in (nc <ni <nh), thus confirming the applicability
of the high-density limit in this regime.

Our approach relies on two drastic simplifications: working
with a zero-temperature formalism and ignoring electron-
electron interaction. Detailed temperature-dependent mea-
surements of the spin-relaxation time [7] yielded a saturation
of τs below 10 K, indicating that inelastic scattering can be
ignored at low temperatures and phonon mediated processes
are not needed in the theoretical description. In the case of
the n-doped semiconductors, the MIT appears at a doping
density nc where the Fermi level is in the impurity band
[28–32]. Electron-electron interactions are crucial in order to
account for the observed features of the MIT [11–13] and
induce significant correlation effects in the insulating regime.
When ni > nc the band generated by the doubly-occupied
levels merges with the conduction band, making it a good
approximation to neglect short-range correlation effects in the
impurity band [33]. Therefore, for metallic densities away
from the critical region, where we restrict our analysis to, a
single-particle description is appropriate.

Our main interest is in the extension of the self-consistent
approach in order to include spin-orbit effects in the MT model
of the impurity band, leading to the zero-temperature density-
dependent spin-relaxation time. Additionally, the treatment
of the high and low impurity concentrations within the same
self-consistent framework constitutes a useful development
for the much studied spinless MT model [25,27,31,32,34–38]
and other cases where a resonant excitation is able to jump
between the sites of a disordered network. In general, our
approach can be applied to any random network model with
hopping matrix elements depending on the distances between
randomly placed sites. The problem of the excitation transport
in ultra cold Rydberg gases is an example of such a disordered
network, which has recently received considerable attention
experimentally [39] and theoretically [40]. Another example
is provided by molecular light-harvesting complexes [41,42]
(at least for times shorter than the decoherence times induced
by coupling to environmental degrees of freedom), where the
impact of quantum coherence on excitation transport is under
current debate [43].

The paper is organized as follows. In Sec. II, we generalize
the MT model by including the spin-orbit coupling through a
matrix of hopping amplitudes. The transformation symmetries
of this matrix, thoroughly exploited throughout our work, are
established. In Sec. III, we lay the basis for the calculation
of the quantum evolution of the orbital and spin degrees of
freedom, introducing the main definitions used in this paper.
Section IV presents the locator expansion in its matrix form
and establishes the general properties fulfilled by the Green

function and the self-energy. The self-consistent theory is
developed in Sec. V, using the Bethe-Salpeter equation and
the Ward identity in order to extract the long-time orbital
and spin dynamics. Sections VI, VII, and VIII tackle three
levels of approximation of increasing complexity within the
self-consistent scheme. Results for the density of states, the
spatial diffusion coefficient, and the spin-relaxation rate are
obtained and discussed. We provide conclusions in Sec. IX,
and we relegate to the appendices the derivation of the charge
and spin dynamics from the intensity propagator, the technical
aspects of the self-consistent approximation in our random
impurity model with spin-orbit interaction, as well as the
calculation of some auxiliary quantities.

II. SPIN-ORBIT COUPLING IN THE IMPURITY BAND

A. Hamiltonian and hopping amplitude matrix

The envelope-function approximation for electrons in the
conduction-band of zinc blende semiconductors incorporates
the crystal lattice-scale physics into the effective one-body
Hamiltonian [23,44]:

H = H0 + HD + Hextr , (2a)

H0 = p2

2 m∗ + V (r) , (2b)

HD = γ
[
σxkx

(
k2
y − k2

z

)+ cyclic permutations
]
, (2c)

Hextr = λ σ · ∇V × k . (2d)

The spin-independent part H0 is determined by the effective
mass (m∗) and the electrostatic potential V (r) including
all potentials aside from that of the crystal lattice. We
note p the momentum operator, k = p/�, and σ the vector
of Pauli matrices. The Dresselhaus (intrinsic) term HD is
enabled by the bulk inversion asymmetry. Typically [24],

γ = 27 eV Å
3

(44 eV Å
3
) is used for GaAs (CdTe). However,

the precise value of this coupling constant is a matter of current
debate [9,22,23,45–50]. The extrinsic term Hextr has the same
form as the spin-orbit interaction in vacuum, but the effective
coupling constant λ is usually orders of magnitude larger than

the vacuum one (λ0 = 3.7 × 10−6 Å
2
). Nevertheless, as argued

below, this term turns out to be irrelevant in comparison to the
extrinsic term HD for the problem of spin relaxation.

For n-doped semiconductors,

V (r) =
∑
m

Vm(r) , (3)

where

Vm(r) = − e2

ε|r − Rm| (4)

is the hydrogenic potential of an impurity placed at Rm, and ε

is the dielectric constant of the semiconductor. A possible
refinement of our single-particle approach, not pursued in
this work, is to trade the potential (4) by a Thomas-Fermi
effective potential that includes the effect of screening by the
free electrons [51].

The energy of the electronic ground state of an isolated
impurity (ε00) is V0/2 below the bottom of the conduction band
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(V0 = e2/εa). The corresponding electronic wave function
for the isolated impurity m reads φm(r) = φ(|r − Rm|), with
φ(r) = (1/

√
πa3) exp (−r/a).

The potential (4) induces transitions between impurity
centers m = 1, . . . ,N widening their energy levels into an
impurity band [25,31,32,34–37,51,52]. Combined magneto-
transport and far-infrared spectroscopy allow to probe the
impurity band and demonstrate that in the vicinity of the MIT
the electrons are confined to such a band [30]. Henceforth, we
therefore restrict our efforts to describing the charge and spin
dynamics of electrons in the impurity band.

The electronic ground states of the isolated impurity sites
m provide a restricted basis {|mσ 〉} to describe the electron
jumping between impurity centers (σ = ± corresponds to a
spin projection of ±�/2 in the z direction). The Hamiltonian
in this restricted space can be expressed as

H = H00 +Hc , (5a)

H00 =
∑
m

∑
σ

|mσ 〉 ε00 〈mσ | , (5b)

Hc =
∑
m′ 	=m

∑
σ ′σ

|m′σ ′〉Vσ ′,σ (Rm′m)〈mσ | . (5c)

Choosing the ground-state energy of the isolated impurity ε00

as a unique site-energy amounts to neglecting the possible
modifications of the electronic states of a given donor by
the effect of nearby impurities. Moreover, setting ε00 as the
energy origin, we can ignore the first termH00. The coupling
matrix elements (hopping amplitudes) can be obtained from
the original (i.e., unrestricted) Hamiltonian H of Eq. (2) as

Vσ ′,σ (Rm′m) = 〈m′σ ′|H |mσ 〉 . (6)

Due to the crystal translational symmetry, these matrix ele-
ments only depend on the relative position Rm′m = Rm′ − Rm

between the two substituting impurities at sites m′ 	= m.
The spin-independent hopping amplitudes are

V0(Rm′m) = 〈m′σ |H0|mσ 〉 � 〈m′σ |Vm′ |mσ 〉 . (7)

We have done the standard approximation of neglecting
the three-center integrals 〈m′σ |Vp|mσ 〉 with p 	= m,m′. The
exponential decay of φ(r) makes these terms much smaller
than the two-center integral 〈m′σ |Vm′ |mσ 〉, resulting in

V0(r) = −V0

(
1 + r

a

)
e−r/a . (8)

We note r = (x,y,z) and r = |r|. The matrix elements (8)
define the Matsubara-Toyozawa model [25]. In this model,
{|mσ 〉} is treated as an orthogonal basis, i.e., the overlap
between the wave functions φm(r) and φm′(r) corresponding
to different impurity sites (m′ 	= m) is ignored. In principle,
this issue can be dealt with by writing a generalized eigenvalue
problem, which includes the matrix of orbital overlaps [32,53].
In following such a procedure, it has been shown that the effect
of the overlaps is small in the regime that we are interested
in (i.e., for moderate doping densities and energies close to
the center of the impurity band) [33,54]. The main difference
with respect to the case where the overlaps are ignored
consists of the appearance of high-energy states extending
well above the bottom of the conduction band. Models going

beyond the Hamiltonian (5) are needed to properly describe
these high-energy states and/or the hybridization between the
tails of the impurity and conduction bands [34,51,55] occurring
at high impurity concentrations (beyond nh).

The spin-dependent hopping amplitudes have two contri-
butions coming, respectively, from HD and Hextr. For the latter,
it has been shown that the nonvanishing terms arise from
three-center integrals [19], resulting in an extremely small
contribution to the spin-mixing matrix element. Therefore, we
only keep the Dresselhaus contribution

Vσ ′,σ
D (Rm′m) = 〈m′σ ′|HD|mσ 〉 . (9)

Noting σ̄ = −σ , the spin-flipping hopping amplitudes and the
spin-dependent contribution to the spin-conserving hopping
amplitudes, respectively, write [20]

Vσ̄ ,σ
D (r) = i Cx(r) − σ Cy(r) , (10a)

Vσ,σ
D (r) = i σ Cz(r) , (10b)

where

Cx(r) = − γ

3a5r
x (y2 − z2) e−r/a , (11a)

Cy(r) = − γ

3a5r
y (z2 − x2) e−r/a , (11b)

Cz(r) = − γ

3a5r
z (x2 − y2) e−r/a . (11c)

The hopping amplitudes (6) can then be expressed through
a 2 × 2 matrix in the spin subspace as

V(r) =
(
V0(r) + iCz(r) i Cx(r) + Cy(r)
i Cx(r) − Cy(r) V0(r) − iCz(r)

)
. (12)

Since |Cz(r)| 
 |V0(r)| the spin-dependent hopping am-
plitude Vσ,σ

D (r) is generally omitted for the calculation of
the spin-relaxation rate [20]. Nevertheless, this contribution
is needed in order to keep the symmetries of the problem and
to obtain the correct expression of the spin decoherence rate.

The Fourier transform ofV(r) is defined by

Ṽ(k) =
∫

dreik·rV(r)

=
(
Ṽ0(k) + iC̃z(k) iC̃x(k) + C̃y(k)

iC̃x(k) − C̃y(k) Ṽ0(k) − iC̃z(k)

)
. (13)

According to (8) and (11),

Ṽ0(k) = − 32a3πV0

[1 + (ka)2]3
, (14a)

C̃x(k) = 64πiγ a3

[1 + (ka)2]4
kx

(
k2
y − k2

z

)
, (14b)

where k = (kx,ky,kz) and k = |k|. The corresponding expres-
sions for C̃y(k) and C̃z(k) are obtained from that of Eq. (14b)
for C̃x(k) by cyclic permutation of the spatial indices.

B. Symmetries of the hopping amplitude matrix

The underlying symmetries of the zinc-blende crystal
structure induce the transformation properties of the matrix
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V(r). For instance, the c2 rotations around the Cartesian axes
imply that

V(x,y,z) = D(1/2)
x (π )V(x,−y,−z) D(1/2)†

x (π )

= D(1/2)
y (π )V(−x,y,−z) D(1/2)†

y (π )

= D(1/2)
z (π )V(−x,−y,z) D(1/2)†

z (π ) , (15)

where D
(1/2)
μ (π ) = −iσμ is the spin-rotation matrix of an

angle of π along the axis μ = (x,y,z). In addition, the
symmetry with respect to cyclic permutations of the axis labels
({x,y,z} → {y,z,x}, and {σx,σy,σz} → {σy,σz,σx}) leads to

V(x,y,z) = P V(y,z,x) P † , (16)

where

P = 1√
2

(
1 −i

1 i

)
. (17)

It will be later useful to establish the transformation
properties of the matrices V(r) and Ṽ(k) under spatial
inversion. The transformation r → −r is not a symmetry of
the zinc-blende structure. While the spin, being an angular
moment, is invariant under spatial inversion, the orbital part
is changed according to V0(−r) = V0(r) and Cμ(−r) =
−Cμ(r). Similarly, Ṽ0(−k) = Ṽ0(k) and C̃μ(−k) = −C̃μ(k).
Therefore, bothV(r) and Ṽ(k), fulfill the following property
(that we refer to as “para-odd”): under the operation of spatial
inversion, the two diagonal matrix elements are interchanged
and the two off-diagonal matrix elements change their sign. It
is easy to show that if a 2 × 2 matrix is para-odd, any integer
power of it inherits this property. Moreover, the product of a
para-odd matrix times the one obtained upon space inversion
results in a diagonal matrix proportional to the 2 × 2 identity
matrix I2. For instance,

V(−r)V(r) = c(r) I2 , (18a)

Ṽ(−k)Ṽ(k) = d(k) I2, (18b)

where c(r) = V2
0(r) + C2

x(r) + C2
y(r) + C2

z(r) and d(k) =
Ṽ2

0(k) + C̃2
x(k) + C̃2

y(k) + C̃2
z(k) are scalar quantities. Fur-

thermore, we notice that

V†(r) = V(−r) , (19a)

Ṽ†
(k) = Ṽ(k) . (19b)

Since, due to Eqs. (18a, 19a), c−1/2(r)V(r) is a unitary
matrix, V(r) belongs to the class of generalized unitary
matrices, whereas Ṽ(k) is a Hermitian matrix.

III. PROBABILITY OF QUANTUM DIFFUSION

The central quantity—the intensity propagator 
—which
we will use in this paper to characterize charge and spin
diffusion is defined as follows:


σ ′
1σ

′
2,σ1σ2 (ε,ω,r) =

∑
m′

g
σ ′

1,σ1(+)
m′,m (ε1)g

σ2,σ
′
2(−)

m,m′ (ε2)δ(r − Rm′m),

(20)
in terms of the retarded (advanced) one-particle Green function

g
σ ′,σ (±)
m′,m (ε) = 〈m′σ ′

∣∣∣∣ 1

z± −H
∣∣∣∣mσ 〉 . (21)

We note ε1,2 = ε ± �ω/2,z± = ε ± iη, and η an infinitesimal
positive quantity. The product of two (one-particle) Green
functions appearing in the definition (20) warrants the de-
nomination of two-particle Green function for the intensity
propagator 
 (also called particle-hole Green function and
particle-hole vertex function [56–58]). The overline in Eq. (20)
stands for the average over the impurity configurations,
assuming the position of the N impurities to be random
variables uniformly distributed on the volume �. Due to the
translational invariance obtained after impurity average, the
propagator 
 is independent of the choice of the initial site m

in Eq. (20).
From the intensity propagator 
, our physical quantities of

interest can be extracted as follows; we consider as initial state
a wave packet

|ψε,m,σ 〉 = A
∑

ν

〈χν | mσ 〉 exp

[
− (εν − ε)2

4σ 2
ε

]
|χν〉 , (22)

describing an electron with energy ε and spin σ at site m,
where {|χν〉} is a complete basis of H with corresponding
eigenenergies εν,σε is the energy width of the wave packet,
and A is a normalization constant. We are then interested in
the impurity-averaged probability

P σ ′σ (ε,t,r) =
∑
m′

〈m′σ ′|�t |m′σ ′〉δ(r − Rm′m) (23)

to find, at a later time t > 0, the electron with spin σ ′
and at distance r from the initial site, where the density
operator �t = Ut �0U† denotes the state that results from the
evolution Ut = exp [−iHt/�] of the initial density operator
�0 = |ψε,m,σ 〉〈ψε,m,σ | at time t = 0.

The probability distribution governing the spatial (charge)
diffusion is then given by

P σ (ε,t,r) =
∑

σ ′=±σ

P σ ′,σ (ε,t,r) , (24)

which, in general, depends on the direction of the initial spin
σ . This dependence, however, vanishes in the limit of large
distances r (and large times t), where the spatial dynamics
is described by an isotropic and spin-independent diffusion
equation (as shown in Sec. V F below).

The spin probability is obtained from

P σ ′,σ (ε,t) =
∫

dr P σ ′,σ (ε,t,r) . (25)

At large times t , the spin probability approaches its equilibrium
value 1/2 (exponentially in t), and the corresponding exponent
defines the spin relaxation rate (see Sec. V D).

As shown in Appendix A, the probability P σ ′σ (ε,t,r)
is proportional to the Fourier transform of the intensity
propagator 
:

P σ ′σ (ε,t,r) = ni

ρ(ε)

�

2π

∫ +∞

−∞
dω e−iωt 
σ ′σ ′,σσ (ε,ω,r) ,

(26)
where ρ(ε) denotes the impurity-averaged density of states.
The latter, in turn, is obtained as the imaginary part

ρ(ε) = −ni

π
Im{Gσ,σ (+)(ε)} (27)
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of the local average Green function

Gσ ′,σ (±)(ε) = 〈mσ ′
∣∣∣∣ 1

z± −H
∣∣∣∣mσ 〉 . (28)

Due to spin symmetry, Gσ,σ does not depend on σ , and this is
why we have not attached a spin label to the density of states.

From Eq. (26), it might seem that only diagonal elements of

, i.e., σ1 = σ2 and σ ′

1 = σ ′
2 in Eq. (20), are relevant. However,

in order to set up a self-consistent equation for 
 [see Eq. (35)
below], it is necessary to consider intermediate spin states
which are not eigenstates of σz. Furthermore, the definition of

 with four different indices makes it possible to generalize
Eq. (25) to arbitrary initial- and final-spin states:

Rσ ′
1σ

′
2,σ1σ2 (ε,t) = �ni

2πρ(ε)

∫
dr
∫ +∞

−∞
dω

× e−iωt 
σ ′
1σ

′
2,σ1σ2 (ε,ω,r) , (29)

yielding the (σ ′
1σ

′
2) matrix element of �t , the impurity-averaged

density operator (reduced to the spin subspace) that results
from the evolution on an initial spin state characterized by
(σ1σ2). In the next chapter, we set the basis for the self-
consistent calculation of G and 
 needed to determine the
charge and spin diffusion.

IV. LOCATOR EXPANSION

A perturbative approach for G, and then for 
, can be
addressed from the locator expansion

1

z −H = 1

z
+ 1

z
H

1

z
+ 1

z
H

1

z
H

1

z
+ . . . , (30)

having the same form as in the spinless case [25], but now
with matrices having twice the dimension of the spinless ones.
The uncoupled local Green functions are obviously scalar:
G

σ ′,σ (±)
00 (ε) = G

(±)
00 (ε) δσ ′,σ , with G

(±)
00 (ε) = 1/z±.

Since the operatorHmediates transitions between different
impurity sites [see Eq. (5c)] each term of the series (30) can be
represented as the sum over paths connecting the initial site to
the final site through an arbitrary sequence of intermediate sites
with a given number of jumps, each of them associated with
a hopping amplitude V. Various diagrammatic prescriptions
have been devised in the spinless case to graphically repre-
sent different terms of the locator expansion [25,34]. When
averaging over the impurity positions, it is important to keep
track of those sites that are visited more than once within a
given path, and different conventions have been proposed to
take into account this crucial subtlety.

A simple way of systematizing the correspondence between
the terms of the perturbation expansion and diagrams is to
represent G(±)

00 (ε) by a circle,Vσ ′σ (Rm′m) by a solid horizontal
line, and a dotted line to connect identical sites (i.e., sites,
which are visited more than once by a given path). As an
example, the term

Gσ ′,σ (±)(ε)=
∑

m′′ 	=m

∑
σ ′′

1

z±
〈mσ ′|V|m′′σ ′′〉 1

z±
〈m′′σ ′′|V|mσ 〉 1

z±

(31)

(a)

(b)

FIG. 1. (a) Example of an irreducible diagram of second order
in the hopping amplitude contributing to the average local Green
function G(±)(ε). The solid lines represent the hopping amplitude
matrix V, the circles stand for G

(±)
00 (ε) = 1/z±, and the dotted lines

indicate identical sites. (b) Self-energy �(±)(ε) corresponding to the
irreducible diagram for G(±)(ε) shown in (a).

corresponding to the second-order contribution to the average
local retarded (advanced) Green function Gσ ′,σ (±)(ε) can be
represented by the diagram shown in Fig. 1(a), with the dotted
line indicating that the initial and final impurity sites are the
same.

The diagram of Fig. 1(a) has the property of being
“irreducible”, since it cannot be decomposed into simpler
(lower-order) ones by “cutting” it at an intermediate Green
function G

(±)
00 (ε). Any diagram contributing to the local

average Green function can be factorized into its irreducible
components by applying the “cutting” recipe. Examples of
“reducible” diagrams are presented in Appendix B 1.

The sum of all irreducible diagrams defines the self-energy
�(±)(ε), which is related to the average Green function through
the Dyson equation:

G(±)(ε) = 1

z±
+ 1

z±
�(±)(ε) G(±)(ε) , (32)

which can be rewritten as

G(±)(ε) = 1

z± − �(±)(ε)
. (33)

Thus, each level of approximation chosen for �(±)(ε) gen-
erates the corresponding approximation for G(±)(ε), where
arbitrary high orders in the hopping amplitude are included.
Reciprocally, each irreducible diagram in the expansion of
G(±)(ε) generates the corresponding contribution to �(±)(ε)
by simply removing the two extreme (identical) circles. For
instance, diagram Fig. 1(b) is obtained from Fig. 1(a) through
the previous recipe. Thus, performing the impurity average in
Eq. (31), we obtain the corresponding self-energy contribution

�(±)(ε) = ni

z±

∫
drV(−r)V(r) = ni

z±

∫
dk

(2π )3
V2(k) .

(34)
From (18a), it follows that �(±)(ε) is proportional to the
identity matrix. Such a property is not restricted to the
particular approximation of Eq. (34), but it is a general
symmetry requirement of the local average Green function
and the self-energy. While, in principle, Eqs. (32, 33) should
be read as matrix equations for the 2 × 2 matrices G(±)(ε) and
�(±)(ε), the symmetries (15) make that both matrices commute
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with the three Pauli matrices σx,σy , and σz. Therefore they
must be scalar quantities (proportional to the identity matrix),
i.e., Gσ ′,σ (±)(ε) = G(±)(ε) δσ ′,σ . Herewith, our notation will
not distinguish between the scalar quantity G(±)(ε) and
the corresponding 2×2 matrix, obtained from G(±)(ε) by
multiplication with I2. Likewise for �(±)(ε).

V. SELF-CONSISTENT APPROACH

A. Irreducible components of the one and two-particle
Green functions

A self-consistent approach for the one and two-particle
Green functions (and their irreducible components) allows us
to consider a restricted set of diagrams while respecting impor-
tant constraints, like particle conservation. A self-consistent
approximation to the local averaged Green function G(±)(ε)
can be obtained if Eq. (33) is combined with an estimation of
the local self-energy �(±)(ε) based on keeping a few simple
diagrams, like the ones above discussed, but where the dots are
now interpreted not as G

(±)
00 (ε), but as G(±)(ε). For instance,

the diagram of Fig. 1(b) for �(±)(ε) is extremely simple, but
in its self-consistent form it effectively contains an infinite
hierarchy of paths starting and ending at the same site [as it
contains an intermediate G(±)(ε)].

The previously introduced notion of irreducible diagram
directly carries into the self-consistent approach by simply
applying the “cutting” criterion to the intermediate average
local Green functions G(±)(ε). In addition, within the self-
consistent approach, additional requirements appear in order
to avoid the double-counting of certain contributions; any
self-consistent diagram kept for representing �(±)(ε) must
have the property that it does not separate into unconnected
parts whenever it is cut at two intermediate Green functions
associated to the same impurity. This property—which we call
“two-point irreducible” —allows us to build diagrams for the
irreducible component U of the intensity propagator 
. In
Appendix B 1, we present examples of self-energy diagrams
that do not satisfy the two-point irreducible requirement
and we discuss the notion of irreducibility for the diagrams
contributing to the intensity propagator.

The intensity propagator can be expressed as in Fig. 2
through the iteration of its irreducible component U and Green
functions. The latter must be understood as the self-consistent
ones G(±)(ε) and concern the same impurity when related
by a vertical dotted line. The connection between one and
two-particle Green functions, and between their irreducible
components, is an important aspect of the self-consistent

Φ = + + + . . .U UU

= + Φ U

FIG. 2. Diagrammatic expression of the expansion of the inten-
sity propagator 
 in terms of its irreducible component U and the
local average Green functions G(±) (first line), together with the
resulting Bethe-Salpeter equation (35) (second line).

approach. The recipe developed in Appendix B 2 establishes
that the diagrams contributing to U are constructed from those
of �(±)(ε) by removing a single Green function (circle) from
the latter, and then “folding” all parts left from the removed
Green function into the lower line.

B. Bethe-Salpeter equation

The iteration represented in the first line of Fig. 2 can
be written as a Bethe-Salpeter equation for the intensity
propagator (second line in Fig. 2):


σ ′
1σ

′
2,σ1σ2 (ε,ω,r) = G(+)(ε1) G(−)(ε2)

[
δσ ′

1,σ1δσ ′
2σ2δ(r)

+
∑
σ ′′

1 σ ′′
2

∫
dr′′ 
σ ′

1σ
′
2,σ

′′
1 σ ′′

2 (ε,ω,r′′)

×Uσ ′′
1 σ ′′

2 ,σ1σ2 (ε,ω,r − r′′)
]
. (35)

This simple form of the Bethe-Salpeter equation is valid for
the case of local initial and final states (i.e., states, which are
localized on a single site) and a local self-energy. A more
general form of the Bethe-Salpeter equation, which would be
able to describe effects of spatial coherences (i.e., initial or final
states which are not localized on a single site), would involve

’s and U ’s, which depend on three position arguments instead
of one. In this more general framework, it is also possible to
consider nonlocal self-energies and Green functions, which,
however, we do not develop in the present paper.

Switching to Fourier space, and using a 4 × 4-matrix form,
the Bethe-Salpeter equation becomes


̃(ε,ω,q) = G(+)(ε1) G(−)(ε2)[1 + 
̃(ε,ω,q) Ũ (ε,ω,q)] ,

(36)
and its formal solution can be written as


̃(ε,ω,q) = 1

[G(+)(ε1) G(−)(ε2)]−1 − Ũ (ε,ω,q)
. (37)

Solving the Bethe-Salpeter equation requires some kind of
approximation for Ũ . On the one hand, in the case of the spin
probability, given by Eq. (25), the spatial integration implies
that only the q=0 values are relevant, and therefore we should
determine 
̃(ε,ω,q=0). On the other hand, the probability
distribution governing the spatial diffusion, given by Eq. (24),
requires the knowledge of the small q values of 
̃(ε,ω,q).

C. Spin dynamics

Restricting ourselves to the case of q=0, the self-consistent
approach provides the connection between the irreducible
components of the one and two-particle Green functions
through the Ward identity:

�σ3,σ4(+)(ε1) − �σ3,σ4(−)(ε2)

=
∑
σ1σ2

[Gσ1,σ2(+)(ε1) − Gσ1,σ2(−)(ε2)]

× Ũ σ1σ2,σ3σ4 (ε,ω,0) . (38)

This identity (proven in Appendix B 3) ensures, as shown
below, the conservation of probability. Furthermore, for q = 0,
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the 4 × 4 matrices U and Ũ must remain invariant under the
simultaneous rotation of an angle of π around each of the three
Cartesian axes, as well as under permutation of the axes labels.
Therefore

Ũ (ε,ω,0) = (
D(1/2)

μ (π ) ⊗ D(1/2)
μ (π )

)
Ũ (ε,ω,0)

× (D(1/2)
μ (π ) ⊗ D(1/2)

μ (π )
)†

= (P ⊗ P ∗) Ũ (ε,ω,0)(P ⊗ P ∗)†, (39)

with μ = (x,y,z) and symbol ‘⊗′ denoting the tensor product
of 2 × 2 matrices, i.e. (A ⊗ B)σ1σ2,σ3σ4 = Aσ1σ3Bσ2σ4 . The
symmetries (15) and (16) of the hopping amplitude matrix
V, from which the diagrammatic expansion for Ũ is con-
structed, determine the above-stated transformation properties
of the latter. Solving the linear system of equations (39)
for the matrix elements of Ũ (ε,ω,0), we obtain the general
form

Ũ (ε,ω,0) =

⎛
⎜⎜⎝

ũ1(ε,ω) 0 0 ũ2(ε,ω)
0 ũ1(ε,ω) − ũ2(ε,ω) 0 0
0 0 ũ1(ε,ω) − ũ2(ε,ω) 0

ũ2(ε,ω) 0 0 ũ1(ε,ω)

⎞
⎟⎟⎠ . (40)

Here, the matrix elements of Ũ are taken in the basis defined by
the four basis vectors (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)
corresponding, respectively, to (σ1σ2) = (++), (+−), (−+),
and (−−).

Inserting the form (40) of the matrix Ũ into Eq. (38), and
taking into account that � and G are both scalar quantities, we
see that the symmetric form of Ũ is consistent with the Ward
identity, provided that

ũ1(ε,ω) + ũ2(ε,ω) = �(+)(ε1) − �(−)(ε2)

G(+)(ε1) − G(−)(ε2)
. (41)

From Eq. (40), we see that Ũ separates into well-defined
blocks, and according to Eq. (37), 
̃ inherits this property.
One of these blocks, spanned by the basis vectors (1,0,0,0)
and (0,0,0,1), represents the subspace of diagonal reduced
(spin) density operators �(d) = α|+〉〈+| + β|−〉〈−|, with real
α and β verifying α + β = 1. Therefore, if the initial spin
density operator is diagonal, then also the final one has this
property. We remark that the two only pure states of this
subspace correspond to (α,β) = (1,0) or (0,1), and they are
able to evolve into mixed states because the quantum evolution
after impurity average is no longer unitary. This 2 × 2 block
describes the spin lifetimes. The other two blocks of Ũ ,
corresponding to the one-dimensional subspaces defined by
the basis vectors (0,1,0,0) and (0,0,1,0), describe the evolution
of spin coherences.

D. Spin-relaxation rate

Restricting ourselves to the two-dimensional subspace of
diagonal spin density operators, the eigenvalues of Ũ (ε,ω,0)
are

ũ±(ε,ω) = ũ1(ε,ω) ± ũ2(ε,ω) (42)

corresponding, respectively, to the normalized eigenvectors
v± = (1/

√
2)(1,0,0, ± 1). Since 
̃ has the same eigenvectors

as Ũ , for q = 0 the eigenvalues corresponding to the restricted
subspace are

φ̃±(ε,ω) = 1

[G(+)(ε1) G(−)(ε2)]−1 − ũ±(ε,ω)
. (43)

Using the relation

G(+)(ε1) G(−)(ε2)

= G(+)(ε1) − G(−)(ε2)

(ε2 − iη) − �(−)(ε2) − (ε1 + iη) + �(+)(ε1)
, (44)

together with Eqs. (41) and (27), we have

φ̃+(ε,ω) = G(−)(ε2) − G(+)(ε1)

ε1 − ε2 + 2iη
= 2πρ(ε)

�ni

i

ω + 2iη
, (45)

where the second equation holds for small ω. Transforming to
the time domain, we write

φ̃+(ε,t) = �

2π

∫ ∞

−∞
dω e−iωt φ̃+(ε,ω) = ρ(ε)

ni
. (46)

As shown below, this equation expresses the probability
conservation. The spin-relaxation dynamics is determined by
the second eigenvalue

φ̃−(ε,ω) = G(−)(ε2) − G(+)(ε1)

ε1 − ε2 + 2iη + 2[G(−)(ε2) − G(+)(ε1)] ũ2(ε,ω)
,

(47)

which in the limit of small ω and weak spin-orbit coupling
takes the form

φ̃−(ε,ω) = 2πρ(ε)

�ni

(
1

−iω + 4πρ(ε)ũ2(ε,0)/ni

)
. (48)

Transforming to the time domain, we have

φ̃−(ε,t) = ρ(ε)

ni
exp

[
− t

τs(ε)

]
, (49)

where the spin-relaxation rate is given by

1

τs(ε)
= 4πρ(ε)

�ni
ũ2(ε,0). (50)

For instance, an initial spin σ =+ corresponds to the basis
vector (1,0,0,0) = (1/

√
2)(v++v−). Therefore, according to

Eqs. (26) and (25), in the limit of large t the spin probabilities
write

P ±,+(ε,t) = 1

2

{
1 ± exp

[
− t

τs(ε)

]}
, (51)
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where the eigenvalue “+” ensures the conservation of the total
probability.

E. Spin coherences

As evident from the remaining elements in the central part
of the 4 × 4-matrix Ũ [see Eq. (40)], the time evolution of
the spin coherences is described by the same eigenvalue ũ− =
ũ1 − ũ2. It then follows that the coherences are damped with
the same rate 1/τs as the diagonal elements, as expected for a
crystal with cubic symmetry. Therefore, according to Eqs. (29)
and (51), the time evolution of the impurity-averaged density
operator (reduced to the spin subspace), at long times t and
fixed energy ε is

�t =
(

1
2 + (�++

t=0 − 1
2

)
e−t/τs(ε) �+−

t=0e
−t/τs(ε)

�−+
t=0e

−t/τs(ε) 1
2 + (�−−

t=0 − 1
2

)
e−t/τs(ε)

)
,

(52)

where �
σ1σ2
t=0 are the matrix elements of the initial spin density

operator.

F. Spatial diffusion coefficient

As discussed in Sec. V B, studying the spatial diffusion
requires the small-q expansion of the matrix equation (37).
For this purpose, we expand Ũ (ε,ω,q) up to second order
in q:

Ũ (ε,ω,q) � Ũ (ε,ω,0) +
∑

μ

qμûμ(ε,ω)

+
∑
μμ′

qμqμ′ ûμμ′(ε,ω), (53)

where ûμ(ε,ω) = ∂qμ
Ũ (ε,ω,q)|q=0 and ûμμ′(ε,ω) =

1
2∂qμ

∂qμ′ Ũ (ε,ω,q)|q=0. Here, μ and μ′ stand for the
three spatial directions (x,y,z). The symmetries discussed
in Sec. II B above imply relations for the ûμ(ε,ω)’s and
ûμμ′(ε,ω)’s similar to those of Eq. (39), which, however,
involve additional minus signs whenever the corresponding
symmetry, see Eqs. (15), involves an inversion of the spatial
coordinate μ or μ′ with respect to which a derivative is taken,
e.g.,

ûx(ε,ω) = −(D(1/2)
y (π ) ⊗ D(1/2)

y (π )
)
ûx(ε,ω)

× (D(1/2)
y (π ) ⊗ D(1/2)

y (π )
)†

, (54)

since a c2 rotation around the y axis inverts the sign of x.
Moreover, the cyclic permutation symmetry [see Eq. (16)]
now implies relations between different spatial components,
e.g.,

ûxy(ε,ω) = (P ⊗ P ∗) ûyz(ε,ω) (P ⊗ P ∗)† . (55)

Solving the linear sets of equations resulting from these
symmetry relations for the matrix elements of the ûμ(ε,ω)’s
and ûμμ′(ε,ω)’s, we see that the first-order terms and the
nondiagonal components of the second-order terms vanish,
i.e., ûμ(ε,ω) = 0 for μ = x,y,z and ûμμ′ (ε,ω) = 0 for μ 	= μ′.
Concerning the diagonal components of the second-order
terms, it follows that the vector v+ is an eigenvector of

ûμμ(ε,ω) with the same eigenvalue for μ = x, y, and z,
respectively. Due to Eq. (37), v+ remains also eigenvector
of the intensity propagator 
 for small q. The corresponding
eigenvalue φ+ yields the partial trace over the spin degree of
freedom, since, according to Eqs. (24) and (26):

φ̃+(ε,ω,q) = 2πρ(ε)

�ni

∫
dω eiωt

∫
dr eiq·r P σ (ε,r,t) , (56)

provided that v+ is an eigenvector of 
̃(ε,ω,q). For small ω

and q, this eigenvalue is given by

φ̃+(ε,ω,q) = 2πρ(ε)

�ni

(
1

−iω + q2D(ε)

)
, (57)

which has the form of a diffusion pole with diffusion constant

D(ε) = −πρ(ε)

�ni
∂2
qμ

(Ũ++,++(ε,0,q) + Ũ++,−−(ε,0,q))|q=0.

(58)
Due to the cubic symmetry of the zinc-blende structure, the
diffusion constant is independent of the spatial direction μ and
of the direction of the initial spin σ .

It is instructive to reformulate Eq. (58) in position space as

D(ε) =
∫

drr2p(ε,r)

6τ (ε)
, (59)

with

p(ε,r) = |G(+)(ε)|2(U++,++(ε,0,r) + U++,−−(ε,0,r)) ,

(60)
and

τ (ε) = − �

2Im{�(+)(ε)} . (61)

The Ward identity (38) guarantees the normalization of p(ε,r),
i.e.,

∫
drp(ε,r) = 1. If, in addition, p(ε,r) � 0 for all r, the

quantity p(ε,r) can be interpreted as a classical probability
distribution. In this case, the diffusion constant (59) is that
of a classical random walk characterized by a step-length
distribution p(ε,r) and a hopping time τ (ε). More precisely,
p(ε,r′ − r) defines the probability density for a single step of
the random walk from r to r′, whereas τ (ε) specifies the time
between two successive steps. Equation (59) then reproduces
the standard three-dimensional expression 〈R2〉 = 6D(ε)t for
the mean squared displacement 〈R2〉 = N〈r2〉 after a number
of hops N = t/τ (ε), where 〈r2〉 = ∫ drr2p(ε,r) is the mean
squared displacement of a single step.

VI. SIMPLEST SELF-CONSISTENT APPROXIMATION

The general theory outlined in the previous chapter allows
us to calculate the spin relaxation rate and the spatial diffusion
constant from the self-energy � and the irreducible component
U of the intensity propagator. In order to determine � and U ,
we first need to select certain diagrams. To start with, we will
consider a particularly simple choice of diagrams in order to
illustrate our theory.

A. Self-energy and density of states

The simplest self-consistent approximation (SSCA) for
�(±)(ε) is that of Fig. 1(b), where the local averaged Green
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function G(±)(ε) is understood as being the self-consistent one.
In this section, we will show that this simple approximation
reproduces the analytical result (1) for the spin relaxation
rate.

The diagram of Fig. 1(b), representing the processes where
the electron hops from site m to another site m′′ 	= m, and then
back to m, translates into

�(±)(ε) =
∑
m′′σ ′′

〈mσ |V|m′′σ ′′〉 G(±)(ε) 〈m′′σ ′′|V|mσ 〉 ,

(62)
which is related with Eq. (31) by the rule enunciated in Sec. IV
for linking the self-energy and the Green function at each level
of approximation. The central G

(±)
00 (ε) of Eq. (31) is replaced

by the self-consistent one G(±)(ε), which is diagonal in spin
indices, and therefore the self-consistent version of Eq. (34)
writes

�(±)(ε) = ni G(±)(ε)
∫

drV(−r)V(r) = α G(±)(ε) , (63)

where, according to (8), (11), and (18a),

α = ni

∫
dr c(r) = πni

(
7a3V 2

0 + 2

7a3
γ 2

)
. (64)

Using Eqs. (33) and (63), we have

�(±)(ε) = α

z± − �(±)(ε)
. (65)

The solution of this self-consistent equation for the retarded
self-energy �(+)(ε) with negative imaginary part reads

�(+)(ε) = 1
2 (z+ − i

√
4α − z2+) . (66)

The resulting density of states stemming from Eqs. (27)
and (66) is

ρ(ε) =
{

ni

√
4α−ε2

2πα
if ε2 < 4α ,

0 if ε2 � 4α ,
(67)

and has the shape of a semicircle with radius 2
√

α [dotted lines
in Fig. 3(a)]. Notice that the density of states is normalized
such that

∫∞
−∞ dερ(ε) = ni, corresponding to one electronic

state per impurity site and spin species.

B. Irreducible component of the intensity propagator

The recipe for constructing the irreducible component U

of the intensity propagator from the corresponding diagram
representing � (see Appendix B) yields the diagram of Fig. 4,
which can be expressed as

Uσ ′
1σ

′
2,σ1σ2 (ε,ω,r) = niVσ ′

1σ1 (r)(Vσ ′
2σ2 (r))∗ . (68)

0

0.02

0.04

0.06

0

0.1

0.2

-4 -3 -2 -1 0 1 2
0

4

8

ρ a3V0

(a)

(b)

(c)

D /(a2V0)

τ−1
s a6V0/γ2

00

ε/V0

FIG. 3. (a) Density of electronic states ρ, (b) spin-relaxation
rate τ−1

s , and (c) diffusion coefficient D in the impurity band as
a function of energy for the three approaches developed in this
work: the simplest self-consistent approximation (SSCA, dotted),
the loop-corrected self-consistent approximation (LCSCA, dashed),
and the repeated-scattering-corrected self-consistent approximation
(RSCSCA, solid). Results are presented for two dimensionless
impurity densities Ni = 0.293 (black) and 0.333 (red). Energies are
measured using the isolated impurity level as origin and are expressed
in units of V0 (twice the ionization energy). The other physical
constants used to define the scales of the figure are the effective
Bohr radius a and the Dresselhaus coupling constant γ 
 a3V0. The
vertical lines mark the position of the Fermi energy corresponding to
the two considered impurity densities for the RSCSCA, and are very
close to those of the LCSCA. The Fermi energy for the SSCA is that
of the isolated impurity level ε00 = 0.

That is, U (ε,ω,r) = niV(r) ⊗V∗(r) and the matrix U in
Fourier space can be written as

Ũ (ε,ω,q) = ni

∫
dk

(2π )3
Ṽ(k+) ⊗ Ṽ∗

(k−) , (69)

where k± = k ± q/2.

U( , ω, r) =

FIG. 4. Irreducible component of the intensity propagator within
the SSCA, obtained by applying the “cut and fold” procedure to the
self-consistent self-energy of Fig. 1(b). The solid horizontal upper
(lower) line stands for the hopping amplitude matrix V(r) [V∗(r)],
the dotted vertical lines indicate identical sites.
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C. Spin relaxation rate

The spin dynamics is described by the case of q = 0, where
the integral of Eq. (69) can be readily done. The resulting
Ũ (ε,ω,0) respects the form given in Eq. (40), with

ũ1(ε,ω) = ni

∫
dk

(2π )3

[
Ṽ2

0(k) + ∣∣C̃z

∣∣2(k)
]

= 7πa3niV
2

0 + 2πni

21a3
γ 2, (70a)

ũ2(ε,ω) = ni

∫
dk

(2π )3
[|C̃x |2(k) + |C̃y |2(k)]

= 4πni

21a3
γ 2. (70b)

Inserting Eq. (70b) into the general expression (50), we obtain
the energy-dependent spin relaxation rate τ−1

s (ε) [dotted lines
in Fig. 3(b)], which follow a semicircle law due to the
proportionality with the density of states. For uncompensated
semiconductors, the impurity band is half-filled (the Fermi
energy is εF = ε00 = 0), and assuming γ 
 a3V0 we have

1

τs(0)
= 16

21

√
π

7

γ 2

a6V0�
N1/2

i � 0.51
γ 2

a6V0�
N1/2

i . (71)

We see that the spin-relaxation rate is proportional to the
square root of the impurity density. Physically, it is obvious
that the spin relaxation rate increases with increasingNi, since
more impurities lead to more possibilities for the electron
to hop to neighboring sites and thereby (due to spin-orbit
coupling) change its spin. As mentioned in the introduction
[see Eq. (1)] the (Ni)1/2-law can be explained by a phenomeno-
logical approach based on the concept of spin diffusion [20].
The difference between the prefactors of Eqs. (1) and (71) is
not surprising, since in the phenomenological approach some
of the numerical constants are arbitrary. The Ni dependence
of the SSCA spin-relaxation time τs(0) is presented in Fig. 5
(dotted line), together with the numerical results of Ref. [20]
(red dots) and those of the approaches to be developed in the
sequel.

D. Spatial diffusion

The spatial diffusion coefficient is obtained from Eq. (59)
with step-length distribution

p(ε,r) = ni

α

(
V2

0(r) + C2
x(r) + C2

y(r) + C2
z(r)
)

(72)

and time

τ (ε) = �ni

2απρ(ε)
. (73)

Since p(ε,r) � 0 for all r, the spatial diffusion dynamics
described by the SSCA can be interpreted as a classical random
walk. Note, however, that p(ε,r) differs from the step-length
distribution exp(−r/�ε)/(4πr2�ε) of a random walk with mean
free path �ε, as described by the classical Boltzmann equation.
This is not surprising, since the Boltzmann equation applies
to continuous systems whereas we are dealing with a discrete
network of impurities. Using the expressions (14) for Ṽ0(k)

and C̃μ(k), the diffusion constant results as

D(ε) =
(

27a5

2
V 2

0 + 4

3a
γ 2

)
π2ρ(ε) . (74)

In the simple scheme of the SSCA, the diffusion constant and
the density of states can be analytically calculated, and we
therefore obtain the spin-dependent correction to the spatial
diffusion. Since γ 
 V0a

3, such a correction is very small.
The diffusion coefficient [dotted lines in Fig. 3(c)], being
proportional to the density of states, follows the semicircle
law of the latter.

VII. LOOP-CORRECTED SELF-CONSISTENT
APPROXIMATION

A. Self-energy and density of states

As shown in the previous section, the diagram of Fig. 1(b)
for the self-energy provides analytical results for the density
of states, the spin-relaxation time and the diffusion constant,
which can be used to estimate the relevant orders of mag-
nitude. These estimates, however, are not expected to yield
quantitatively precise results, neither for low nor for large
impurity densities. In this chapter, we will present another
approximation, which becomes exact in the limit of very large
impurity densities. For large impurity densities, processes
in which the electron visits more than one impurity before
hopping back to the starting one, have to be considered. At the
same time, the large number of impurities allows us to neglect
repeated scatterings from the same impurity. The one-loop
approximation of Fig. 1(b) is then extended to the sum of
loops of arbitrary length, as presented in Fig. 6(a). As before,
the dots represent the local averaged self-consistent Green
functions and the dotted line connecting the extreme points
identify the initial and final sites.

0.10.013 0.02 0.04 0.06 0.08

10

20

8

6

4

3
0.03

τ s
(ε

F
)

γ
2
/
(

a
6
V

0
)

Ni

FIG. 5. Spin-relaxation time at the Fermi energy τs(εF), for
a half-filled impurity band, as a function of the dimensionless
impurity density Ni = nia

3 for the three approaches developed in
this work: the SSCA [Eq. (71), dotted], the LCSCA (dashed), and
the RSCSCA (solid). The red dots are the numerical results of
Ref. [20]. The theory only applies to the interval 0.017 < Ni < 0.07
(i.e., between the critical density Nc � 0.017 of the Mott transition
and the hybridization density Nh � 0.07); the lowest-density results
are presented to show the importance of the repeated-scattering
correction in this regime.
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Σ = + + . . .

= + + + . . .

(a)

(b)

=

FIG. 6. (a) Self-energy obtained by considering loops of arbitrary
length representing processes where the electron visits different
impurities before hopping back to the starting site (LCSCA).
(b) Diagrammatic expression of the renormalized hopping amplitude
(thick horizontal line) as an expansion of infinite order in the bare
hopping amplitude (thin horizontal lines).

The loop-corrected self-consistent approximation (LC-
SCA) of �(ε) that we develop in this section for the interac-
tion (5c) has been used, in the spinless case, by Matsubara and
Toyozawa [25], in order to obtain the density of states in the
impurity band, as well as the conductivity within the diffusion
approximation. The MT scheme, ignoring cross diagrams, is
referred to as a single-site approximation [31].

The diagrams of Fig. 6(a) are, in the spinless case,
equivalent to those introduced in Ref. [25]. Moreover, they
readily allow the matrix generalization to treat spin-dependent
interactions and they are appropriate to use the self-consistent
rules for building the irreducible components of the intensity
propagator.

Switching into Fourier space and applying the convolution
theorem, the self-energy represented in Fig. 6(a) can be
expressed as a geometrical series

�(±)(ε) =
∫

dk
(2π )3

Ṽ(k)
∞∑

n=1

[ni G(±)(ε) Ṽ(k)]n . (75)

Using Eq. (33), we obtain the self-consistent condition for the
self-energy:

�(±)(ε) = ni

∫
dk

(2π )3

Ṽ2
(k)

z± − �(±)(ε) − niṼ(k)
. (76)

In contrast to the case of the simplest approximation, the
equation for � cannot be analytically solved. In order to
simplify our numerical calculations, we will in the following
concentrate on the experimentally relevant regime γ 
 a3V0

(e.g., γ � 0.002a3V0 for GaAs). In this case, we can neglect
the influence of the spin-orbit interaction on the density of
states, therefore in Eq. (76) the 2 × 2 matrix Ṽ(k) can be
replaced by the scalar quantity Ṽ0(k). This equation needs to
be solved in order to determine �(+)(ε) for a given ε. The
numerical solution of the self-consistent equation can be done
by iteration. Starting with �(+)(ε) = −i (which verifies the re-
quirement of having a negative imaginary part), successive it-
erations rapidly converge to a �(+)(ε) with negative imaginary
part. This self-consistent solution for �(+)(ε) yields, through
Eqs. (27) and (33), the density of states presented by dashed
lines in Fig. 3(a). This spin-independent ρ(ε) is the same as the
one obtained by Matsubara and Toyozawa [25] by analytically
performing the integral of Eq. (76) and numerically solving
the resulting algebraic equation for �(+)(ε).

The sharp cutoff of the LCSCA ρ(ε) present in Fig. 3(a)
is an artifact of the approximation, not vouched by cumulant
approach calculations [31] and quantum numerical simulations
on the MT model [26,32,38]. This is not a serious drawback,
since for uncompensated or weakly compensated semiconduc-
tors the measurable properties, like the spin-relaxation time,
only concern the energies close to that of the half-filled band.
The above-mentioned hypothesis of a weak effect of the spin-
orbit interaction on ρ(ε) is validated by quantum numerical
calculations using different spin-orbit mechanisms and cou-
pling strengths considerably larger than the realistic ones [26].

B. Renormalized hopping amplitude matrices

Equation (75) can also be written as

�(±)(ε) = niG
(±)(ε)

∫
dk

(2π )3
Ṽ(k) F̃ (±)

(ε,k)

= niG
(±)(ε)

∫
drV(−r) F (±)(ε,r) , (77)

where the renormalized hopping amplitudes F (±)(ε,r) and

their Fourier transforms F̃ (±)
(ε,k) are defined by

F (±)(ε,r) =
∫

dk
(2π )3

e−ik·r F̃ (±)
(ε,k) , (78a)

F̃ (±)
(ε,k) = Ṽ(k)

I2 − ni G(±)(ε) Ṽ(k)
, (78b)

respectively. Figure 6(b) shows the diagrammatic expansion
leading to the effective hopping F (±)(ε,r) (represented by the
thick line). The self-energy in the LCSCA displayed in the
first line of Fig. 6(a) takes the more compact form given in the
second line when using the renormalized hopping amplitude.

The para-odd character of Ṽ(k) is inherited by each term
[niG

(±)(ε)Ṽ(k)]
n

in the expansion leading to Eq. (78b), and

thus also by F̃ (±)
(ε,k) and F (±)(ε,r). Similarly to Eq. (18a),

we have that F (±)(ε, − r) F (±)(ε,r) is proportional to I2.
In analogy with (78), we define

F̃(±)
0 (ε,k) = Ṽ0(k)

1 − niG(±)(ε) Ṽ0(k)
, (79)

and F(±)
0 (ε,r) as its inverse Fourier transform. These

spin-independent renormalized hopping amplitudes
have already been considered in the study of the
spatial diffusion within the spinless MT model and its

refinements [34]. Since F̃(±)
0 (ε,−k) = F̃(±)

0 (ε,k), we also have

that F̃(±)
0 (ε,−r) = F̃(±)

0 (ε,r). The explicit form of F(±)
0 (ε,r) is

given in Appendix B.

C. Irreducible component of the intensity propagator

Upon application of the recipe for constructing the corre-
sponding irreducible component U of the intensity propagator,
the self-energy of Fig. 6(a) yields a large proliferation of
diagrams. Each n-loop term in the expansion gives rise to n

contributions to U . The renormalized hopping amplitude (78)
is quite useful, as it allows to treat in a systematic way the
proliferation of terms. Indeed, the sum of all of them can be
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=U( , ω, r)

FIG. 7. Irreducible component of the intensity propagator within
the LCSCA expressed as a renormalized insertion. The thick solid
horizontal upper (lower) line stands for the renormalized hopping
amplitude matrix F (+)(ε1,r) [F (−)(ε2,r)], the dotted vertical lines
indicate identical sites, ε1,2 = ε ± �ω/2.

compactly expressed through the diagram of Fig. 7, which
has the same structure as that of Fig. 4, but where the hopping

amplitudesV have been replaced by the renormalized hopping
amplitudes F. The resulting matrix Ũ (ε,ω,q) has a similar
expression as that of Eq. (69),

Ũ (ε,ω,q) = ni

∫
dk

(2π )3
F̃ (+)

(ε1,k+) ⊗ F̃ (−)
(ε2,k−) , (80)

and allows to determine the charge and spin dynamics within
the LCSCA.

D. Spin-relaxation rate

For q = 0, the matrix Ũ (ε,ω,0) has the general form of
Eq. (40). Using the symmetries of Ṽ(k), we can write

ũ2(ε,0) = ni

∫
dk

(2π )3

|C̃x(k)|2 + |C̃y(k)|2
|(1 − niG(+)(ε)Ṽ0(k))2 − ni[G(+)(ε)]2[|C̃x(k)|2 + |C̃y(k)|2 + |C̃z(k)|2]|2 . (81)

The ε-dependent spin-relaxation rate follows from inserting
this expression into Eq. (50). Neglecting the term |C̃x(k)|2 +
|C̃y(k)|2 + |C̃z(k)|2 in the denominator (due to the condition
γ 
 V0a

3), and expressing k in spherical coordinates, the
angular integrals can be performed, yielding

ũ2(ε,0) = 214a6γ 2

105
ni

∫
dk

(2π )3

k8

[1 + (ka)2]8

× 1

|1 − niG(+)(ε)Ṽ0(k)|4 . (82)

Using the self-consistent G(+)(ε) obtained from the solution
of Eq. (76), and numerically calculating the remaining one-
dimensional integral over k, results in the spin-relaxation
rate τ−1

s (ε) presented in Fig. 3(b) for two values of the
impurity density (dashed lines). The Ni-dependence of the
spin-relaxation time τs(εF), for electrons at the Fermi energy in
a half-filled impurity band, is shown in Fig. 5 (dashed line). The
spin-relaxation time predicted by the LCSCA is smaller than
the analytical result of the SSCA (dotted lines), see Eq. (71), by
more than a factor 2, and decreases slightly faster than (Ni)−1/2

with increasing impurity density. We notice that the LCSCA
provides a better description of the numerical results of
Ref. [20] (red dots), as compared with the SSCA (dotted line).
In contrast with our wave packet (22), the numerical determina-
tion of the spin-relaxation time used extended initial states (i.e.,
eigenstates of the spinless problem). Although this difference
is not expected to strongly modify the spin-relaxation time
in the metallic regime [19], it may explain, together with the
uncertainty due to numerical finite-size effects, the remaining
deviation between theory and numerics in Fig. 5.

E. Spatial diffusion

Neglecting the effect of the spin-orbit coupling for the
spatial diffusion, in accordance with the same approximation
(γ 
 a3V0) used above for the numerical evaluation of
the density of states, we see that only the matrix element
U++,++(ε,0,r) contributes in the general expression (60) of
the step-length distribution. We thus obtain

p(ε,r) = ni|G(+)(ε)F (+)
0 (ε,r)|2 , (83)

where F̃ (±)
0 (ε,k) has been defined in (79). We recover, again,

a classical random walk, since p(ε,r) � 0 for all r. The
step-length distribution results from a superposition of three
exponentials with different decay constants, see Eq. (C5).
Such a behavior also differs from that of the step-length
distribution predicted by the Boltzmann equation, which
contains only a single exponential decay characterized by the
scattering mean free path.

The diffusion coefficient emerging from Eqs. (59), (61),
and (83) is presented as a function of the energy within the im-
purity band in Fig. 3(c) (dashed lines). These results reproduce
those of Ref. [25] when using the diffusion approximation
for the conductivity σ = e2ρ(εF) D(εF). Note that, unlike
the density of states or the spin relaxation rate, the diffusion
coefficient assumes large values at negative energies, and does
not exhibit a maximum close to ε � 0. Such a behavior is due to
the fact that the second moment of the step length distribution
[see Eq. (59)] increases approximately linearly with decreasing
energy, while the hopping time τ (ε) is approximately constant
as a function of the energy—except close to the band edges,
where it diverges.

VIII. REPEATED-SCATTERING-CORRECTED
SELF-CONSISTENT APPROXIMATION

A. Self-energy and density of states

As discussed in Sec. VII A, the Matsubara-Toyozawa
approximation for the density of states [25] (equivalent
to the splinless version of the LCSCA) gives a relatively
good account of the numerically obtained ρ(ε), up to some
deviations in the high-energy part of the impurity band. While
it can be argued that these deviations are not significant when
considering physically measurable quantities, the search for
a more accurate description of the density of states for the
spinless version of the model defined by Eqs. (5a)–(5c) beyond
that of Ref. [25] is an interesting task [31,32,34–38].

In this section, we take the self-consistent approximation
to a more complete description by including cross diagrams
that describe the repeated scattering from selected impurities.
Our repeated-scattering-corrected self-consistent approxima-
tion (RSCSCA) is mostly relevant for low impurity densities.
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FIG. 8. Diagrams for the self-energy including repeated scattering.

When compared with the LCSCA, it provides a substantial
change of the density of states in the high-energy part of the
impurity band. Except for very small impurity densities, it
has very little effect on the diffusion coefficient or the spin
relaxation rate, thus sustaining the LCSCA results for these
two physical quantities.

The simplest way to take into account the repeated
scattering from a given set of impurities is to select just a pair.
Such processes are dominant in the limit of very low impurity
densities [27]. Therefore the self-energy of Fig. 6(a) can be
generalized to that of Fig. 8, where the hopping amplitudes
are the renormalized ones [Fig. 6(b) and Eq. (78)].

The expansion for �(±)(ε) in Fig. 8 starts with the
contribution (77) of the LCSCA, and the following terms
represent, for each position r of the intermediate impurity,
a geometric series with ratio

A(±)(ε,r) = [G(±)(ε)]2 F (±)(ε,−r) F (±)(ε,r) , (84)

describing the hopping (with the renormalized hopping ampli-
tude) from one impurity to another one located at distance r
and back again. As shown in VII B, F (±)(ε, − r) F (±)(ε,r) is
proportional to the unit matrix, and therefore A(±)(ε,r) is also a
scalar quantity. Summing the geometric series, the self-energy
represented in Fig. 8 can be expressed as

�(±)(ε) = ni G(±)(ε)
∫

dr
(
V(−r) F (±)(ε,r)

+ [G(±)(ε)]2[F (±)(ε,−r) F (±)(ε,r)]2

1 − A(±)(ε,r)

)
. (85)

The first term of the integrand,V(−r,z) F (±)(ε,r), leads to
a diagonal contribution upon integration, as can be shown by
switching to Fourier space. The second term of the integrand
is diagonal, since F (±)(ε,−r) F (±)(ε,r) and A(±)(ε,r) are
diagonal matrices. Therefore the approximation (85) for
�(±)(ε) yields a scalar quantity, in agreement with the general
symmetry principles discussed in Sec. IV.

Like in the previous section, we solve the self-consistent
equation (85) for �(+)(ε) by neglecting the influence of
the spin-orbit interaction. Within such an approximation we
replace V(r) by V0(r) and F (+)(ε,r) by F (+)

0 (ε,r) [the
latter defined through Eq. (79) and with an explicit form

given by Eq. (C5) of Appendix C]. Solving Eq. (85) by a
numerical root solver (or by iteration, which, however, does
not converge in all cases), we find that a unique solution for
�(+)(ε) with negative imaginary part exists ifNi � 0.013. The
resulting density of states, represented by the solid lines in
Fig. 3(a), turns out to be correctly normalized, i.e.,

∫
dερ(ε) =

ni. For Ni < 0.013, we find multiple solutions for �(+)(ε)
with correspondingly unnormalized densities of states. We
therefore cannot apply the RSCSCA for Ni < 0.013. This is,
however, not a serious drawback, since those values lie below
the critical densityNc = 0.017 mentioned in the introduction,
where the noninteracting model adopted in this paper becomes
invalid. Furthermore, we note that the low-density limit
of the noninteracting model can be addressed by Elyutin’s
approach [27], which is very similar to our RSCSCA, but using
the bare hopping amplitude instead of the renormalized one.

Turning back to the density of states shown in Fig. 3(a),
we see that differences with respect to the LCSCA ρ(ε)
are noticeable in the high-energy part of the impurity band.
The RSCSCA ρ(ε) results in a smoother maximum and
does not exhibit a sharp high-energy cutoff. These features
approach the analytical results to the quantum numerical
calculations [26,32], except for energies ε > V0. The extension
of the impurity band beyond V0 is an unphysical result, as it can
be proven that for the spinless version of the model (5a)–(5c),
all eigenvalues are bounded by V0. Nevertheless, as discussed
before, the high-energy end of the impurity band is, on the
one hand, dependent on the adopted model and, on the other
hand, unimportant for the physical quantities measured in the
uncompensated or weakly compensated cases.

B. Irreducible component of the intensity propagator

When applying to the RSCSCA self-energy of Fig. 8
the recipe for the irreducible component U of the intensity
propagator, we have three kinds of contributions. Firstly, those
coming from the first term yield the insertion U of Fig. 7
[diagram (a) in Fig. 9]. Secondly, there are those obtained
by removing one of the Green functions corresponding to the
repeatedly visited sites. In particular, the second term in the
expansion for �(±)(ε) yields the diagrams (b)–(d) of Fig. 9. The
dots after diagram (d) stand for the additional contributions
obtained by applying the previous procedure to the subsequent
terms of the expansion for �(±)(ε). We note that the final site
is identical to the initial site in diagram (c), but not in (b) and
(d). Finally, we have to consider the contributions obtained
by removing one of the Green functions appearing inside the
renormalized hopping amplitudes (thick lines). Those arising

=

+ +++ + . . .

+ + + + . . .

(a) (b) (c) (d)

(e) (f) (g) (h)

U0

FIG. 9. Diagrams for the irreducible component U of the intensity operator including repeated scattering.
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from the second term in the expansion of the self-energy are
the diagrams (e)–(h), while the dots after diagram (h) stand for
contributions generated by the following terms. In this third
kind of diagrams, the final site (at the left-hand side of the
diagrams) is not identical to one of the two repeatedly visited
sites.

Diagrams like those of Figs. 9(b) and 9(d) [Fig. 9(c)], where
the removed Green function does not (does) correspond to the
initial site, can be written as

U
(n,j )
b−d (ε,ω,r) = ni[A

(+)(ε1,r)](j−1)/2[A(−)(ε2,r)](n−j )/2

×F (+)(ε1,r) ⊗ F (−)(ε2,r) , (86a)

U (n,j )
c (ε,ω,r) = ni δ(r)

1

G(+)(ε1) G(−)(ε2)
[A(+)(ε1,r)]j/2

× [A(−)(ε2,r)](n+1−j )/2 , (86b)

respectively. The odd index n � 3 stands for the number of
internal Green functions in the �-diagram (i.e., n + 1 is the
order of the diagram), while the odd (even) index j labels the
impurity where the cut is applied (with an ordering going from
right to left), verifying j � n (j � n − 1). For instance, for
the diagram of Figs. 9(b) and 9(d) (n,j ) = (3,1) and (3,3),
respectively, while for Fig. 9(c), (n,j ) = (3,2). The special
case of the diagram of Fig. 9(a), already treated in Sec. VII C,
is accounted for by Eq. (86a) when taking (n,j ) = (1,1).

Diagrams where the removed Green function is within a
renormalized hopping amplitude, can be generically written
as

U
(n,j )
e−g (ε,ω,r) = n2

i G
(−)(ε2)

∫
dr′[A(+)(ε1,r′)](j−1)/2

× [A(−)(ε2,r′)](n−j )/2F (+)(ε1,r)

⊗F (−)(ε2,r − r′)F (−)(ε2,r′), (87a)

U
(n,j )
f −h (ε,ω,r) = n2

i G
(+)(ε1)

∫
dr′[A(+)(ε1,r′)](j−2)/2

× [A(−)(ε2,r′)](n−j+1)/2F (+)(ε1,r − r′)

×F (+)(ε1,r′) ⊗ F (−)(ε2,r), (87b)

where the odd index n � 3 again stands for the number of
internal Green functions in the � diagram and j labels the
renormalized hopping amplitude where the cut is applied (with
an ordering going from right to left). The diagrams of Figs. 9(e)
and 9(g) correspond to the case of odd j , verifying j � n,
i.e., (n,j ) = (3,1) and (3,3), respectively. The diagrams of
Figs. 9(f) and 9(h) correspond to the case of even j , verifying
j � n + 1, i.e., (n,j ) = (3,2) and (3,4), respectively.

Summing over the allowed values of n and j we obtain the
contribution from all diagrams of Fig. 9, together with those
of higher order. The resulting irreducible component of the
intensity propagator in Fourier space is

Ũ (ε,ω,q) = ni

∫
dr

{
eiq·r F (+)(ε1,r) ⊗ F (−)(ε2,r)

[1 − A(+)(ε1,r)][1 − A(−)(ε2,r)]
+ A(+)(ε1,r) A(−)(ε2,r)

G(+)(ε1) G(−)(ε2)[1 − A(+)(ε1,r)][1 − A(−)(ε2,r)]

}

+ n2
i

∫∫
dr dr′eiq·r

{
1

[1 − A(+)(ε1,r′)][1 − A(−)(ε2,r′)]
− 1

}

× [G(−)(ε2)F (+)(ε1,r) ⊗ F (−)(ε2,r − r′)F (−)(ε2,r′) + G(+)(ε1)F (+)(ε1,r − r′)F (+)(ε1,r′) ⊗ F (−)(ε2,r)]. (88)

We notice that Ũ (ε,ω,0) takes the general form given by
Eq. (40).

C. Spin-relaxation rate

According to Eq. (50), the spin relaxation rate is determined
by ũ2(ε,0) = Ũ++,−−(ε,0,0). The second contribution to the
integrand in the term proportional to ni in Eq. (88) is a scalar,
and therefore does not contribute to ũ2(ε,0). For γ 
 V0a

3,
the first contribution can be expanded up to the lowest
nonvanishing order in γ yielding

F1,−1(+)(ε,r) F1,−1(−)(ε,r)

[1 − A(+)(ε,r)][1 − A(−)(ε,r)]

�
∣∣∣∣∣ F(+)

D (ε,r)

1 − [G(+)(ε)]2 [F(+)
0 (ε,r)]2

∣∣∣∣∣
2

, (89)

where F(±)
0 (ε,r) has been introduced through Eq. (79) and

F(±)
D (ε,r) is defined as the inverse Fourier transform of

F̃(±)
D (ε,k) = ±iC̃x(k) + C̃y(k)

[1 − ni G(±)(ε) Ṽ0(k)]2
. (90)

F(±)
D (ε,r) can be calculated analytically, as described in

Appendix C. Keeping also the lowest nonvanishing order in γ

for the contribution to the term proportional to n2
i in Eq. (88)

we have

ũ2(ε,0) = ni

∫
dr

∣∣∣∣∣ F(+)
D (ε,r)

1 − [G(+)(ε)]2[F(+)
0 (ε,r)]2

∣∣∣∣∣
2

+ n2
i

∫
dr

⎧⎨
⎩
∣∣∣∣∣ 1

1 − [G(+)(ε)]2[F(+)
0 (ε,r)]2

∣∣∣∣∣
2

− 1

⎫⎬
⎭

×
∫

dk
(2π )3

2Re{e−ik·r G(−)(ε) F̃ (+)
D (ε,k)

× [F̃(−)
0 (ε,k) F (−)

D (ε,r) + F̃(−)
D (ε,k)F(−)

0 (ε,r)]}.
(91)

Using the explicit forms of F(±)
0 (ε,r) and F(±)

D (ε,r), it is
possible to analytically perform in Eq. (91) the k integral
as well as the angular part of the r integral (although the
resulting expressions, which we obtained using a symbolic
calculus computer program, are too long to be displayed).
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Numerically performing the remaining integral over r , the
resulting spin-relaxation rate is shown, as a function of the
energy ε, by the solid line in Fig. 3(b) for two chosen impurity
densities. The spin-relaxation time for electrons at the Fermi
energy τs(εF) is presented in Fig. 5 (solid line). Except for low
impurity densities, where we expect the RSCSCA to be most
relevant, the differences for the spin-relaxation results between
the LCSCA and the RSCSCA are quite small. Such finding
is important in order to sustain the validity of the former.
The fact that improving the loop-corrected self-consistent
approximation (valid in the limit of high densities) by the
consideration of terms that give the leading contributions at
low densities does not significantly alter the resulting spin
relaxation rate, confirms that the high density limit described
by the LCSCA is indeed applicable in the impurity density
interval of interest.

D. Spatial diffusion coefficient

Neglecting the effect of the spin-orbit coupling for the
spatial diffusion leads to

p(ε,r) = ni

∣∣G(+)(ε)
∣∣2
⎧⎨
⎩
∣∣∣∣∣ F(+)

0 (ε,r)

1 − [G(+)(ε)]2[F(+)
0 (ε,r)]2

∣∣∣∣∣
2

+ δ(r)
∫

dr′
∣∣∣∣∣ G(+)(ε)[F(+)

0 (ε,r′)]2

1 − [G(+)(ε)]2[F(+)
0 (ε,r′)]2

∣∣∣∣∣
2

+ ni

∫
dr′

⎡
⎣
∣∣∣∣∣ 1

1 − [G(+)(ε)]2[F(+)
0 (ε,r)]2

∣∣∣∣∣
2

− 1

⎤
⎦

×2Re[G(−)(ε)F(+)
0 (ε,r)F(−)

0 (ε,r′)F(−)
0 (ε,r − r′)]

⎫⎬
⎭,

(92)

from which the diffusion constant follows through
Eqs. (59, 61). The result is plotted in Fig. 3(c) as a function of
ε (solid lines). Like in the case of the spin relaxation rate, the
diffusion constant of the RSCSCA is very close to that of the
LCSCA. In contrast to the previous approximations, p(ε,r) is
not manifestly positive, and therefore it does not correspond to
a step-length probability distribution. Indeed, we find (in the
relevant regime of densities shown in Fig. 5) that the function
p(ε,r) takes negative values for some distances r, especially for
energies close to the band edges. Hence, the spatial dynamics
predicted by the RSCSCA cannot be interpreted, in general,
as a classical random walk.

IX. CONCLUSION

The self-consistent approximation for noninteracting elec-
trons in disordered systems [56,57,59] has been generalized
as to include the effect of spin-orbit interaction in a random
network model describing the impurity band of doped semi-
conductors with zinc-blende crystal structure. The model is
relevant for impurity densities larger than the critical one for
the metal-insulator transition, where electron conduction takes
place in the impurity band. The case of the Dresselhaus spin-

orbit coupling has been considered, since it has been proven
to be the source of the dominant spin-relaxation mechanism
in a wide class of materials [19,20], accounting for the
experimentally measured values [3–8]. However, the approach
presented in this paper can be generalized to other spin-orbit
coupling mechanisms, as well as to different crystal structures.

The inclusion of spin-orbit interaction in the Matsubara-
Toyozawa random network model leads to the introduction of
a hopping amplitude matrix, which for the case of zinc-blende
symmetry has very special transformation properties. In the
footsteps of Vollhardt and Wölfle [56,57], we have provided
the recipe for building diagrams of the irreducible component
of the intensity propagator from those of the irreducible self-
energy. Such a procedure leads to a Ward identity ensuring the
required conservation laws at each level of approximation in
the self-consistent scheme.

The link between one- and two-particle quantities allowed
us to obtain the density of states in the impurity band, as
well as the energy-dependent diffusion constant and spin-
relaxation time. Analytical and semianalytical expressions
of these quantities could be reached for the case of the
simpler self-consistent schemes. The spin-coherence and spin-
relaxation times coincide for the considered case of zinc-
blende symmetry. The spin-orbit corrections to the diffusion
constant are very small in the regime of weak spin-orbit
coupling. Similarly, the spin-orbit corrections to the density of
states are extremely weak, and can generically be ignored [26].

Describing the energy-dependent diffusion coefficient and
spin-relaxation time allows one to address not only the case
of uncompensated semiconductors (with a half-filled impurity
band), but also that of weak compensation. While in this work
we have concentrated our attention to the case of a weak optical
excitation, where the carrier density is fixed by the doping,
experiments with an elevated optical excitation condition [60]
can be analyzed using our results for the energy-dependent
spin relaxation.

The simplest self-consistent scheme evaluates the local
Green function in terms of processes where the electron hops
to another impurity, and then back again. It yields a “semicircle
law” for the energy dependence of the density of states, the
diffusion coefficient, and the spin-relaxation rate. The value
of the latter at the Fermi energy is proportional to the square
root of the impurity density, which qualitatively reproduces
the phenomenological results of Ref. [20].

Taking into account round trips of the electron including
more than one impurity while neglecting multiple visits to
a given impurity (i.e., the so-called cross diagrams in the
perturbation expansion) leads in the spinless case to the
well-studied Matsubara-Toyozawa approach applied to their
random model (that we referred to as “loop-corrected self-
consistent approximation”). This approximation provides the
leading contribution in the limit of high impurity density.
Important corrections in the density of states and the diffusion
coefficient appear, with respect to the simplest self-consistent
approximation, as well as a reduction of the spin-relaxation
time by a factor of 2, improving the agreement with existing nu-
merical simulations [20]. The agreement with the experimental
results is qualitative, in view of the uncertainty with which
the value of the Dresselhaus spin-orbit coupling constant is
known [9,22,23,45–50].
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The treatment of cross diagrams in a simplified way (i.e.,
taking into account only pairs of impurities), referred to
as “repeated-scattering corrected self-consistent approxima-
tion”, improves the results of the previous approximation
by providing small corrections to the spin relaxation rate
and the diffusion constant. These diagrams give the leading
contribution in the limit of low impurity density [27], where
the repeated scattering off a given impurity becomes more
likely, and are therefore expected to yield the most important
corrections with respect to the above high-density limit. While
in a diagrammatic expansion it is always difficult to prove the
convergence, the fact that these corrections are small hence
confirms the validity of the loop-corrected approximation in
the regime of impurity densities (nc < ni < nh) that we are
interested in.

As a byproduct of our study aiming at the spin re-
laxation in doped semiconductors, the self-consistent ap-
proximation provides a useful and systematic path for un-
derstanding the spinless case of random network models.
Various theoretical schemes, developed in different contexts
[25–27,31,32,34,35,37,38,51] have been discussed in a unified
way under the light of a self-consistent scheme that links one-
and two-particle physical quantities and guarantees probability
conservation at each level of approximation. The interest in
studying these models is not only restricted to the description
of the impurity band in doped semiconductors, but it applies
to a variety of physical contexts, e.g., in order to characterize
diffusion of excitations mediated by resonant dipole-dipole
interactions in ultracold Rydberg gases [39,40].

Our work opens the perspective of treating other crystal
structures, like wurtzite, where experiments on spin coherence
in GaN [61,62] have not received so far a consistent theoretical
description. In addition, a more elaborate treatment of the
cross diagrams would allow to obtain reliable results for
densities approaching the critical one from the metallic side
of the transition. Some of the theoretical schemes used to
include electron-electron interactions in the random lattice
model [13,33,51] or the recently developed diagrammatic
methods for treating interactions between quantum particles
propagating in random potentials [63,64], could be adapted
within the self-consistent framework in order to approach the
transition within a reliable model.

ACKNOWLEDGMENTS

R.A.J. thanks P. Tamborenea, D. Vollhardt, and D. Wein-
mann for fruitful discussions; he also acknowledges financial
support from the French National Research Agency ANR
(Project Labex NIE) and the French-Argentinian collaborative
project PICS 06687. The research leading to these results
has received funding from the People Programme (Marie
Curie Actions) of the European Union’s Seventh Framework
Programme (FP7/2007- 2013) under REA Grant Agreement
No. [609305].

APPENDIX A: CHARGE AND SPIN DYNAMICS FROM
THE INTENSITY PROPAGATOR

In this Appendix, we proof Eq. (26) of the main text, closely
following chapter 4.1 of Ref. [58]. We first determine the

normalization constant A in Eq. (22):

1 = |A|2
∑

ν

|〈χν | mσ 〉|2 exp

[
− (εν − ε)2

2σ 2
ε

]

= |A|2
ni

∫ +∞

−∞
dε̃ ρ(ε̃) exp

[
− (ε̃ − ε)2

2σ 2
ε

]

= |A|2
ni

√
2πσε ρ(ε) , (A1)

where the density of states ρ(ε) is assumed to be slowly varying
in the scale of σε, and the normalization is assumed to hold
only on average. Then, we note that

〈m′σ ′|Ut |ψε,m,σ 〉 = iA

∫ +∞

−∞

dε̃

2π
g

σ ′σ (+)
m′m (ε̃) e

− (ε̃−ε)2

4σ2
ε e−iε̃t/� ,

(A2)
what can be deduced by using the definitions of the Green
function, Eq. (21), and of the initial state, Eq. (22). Inserting
this expression into Eq. (23), we get

P σ ′σ (ε,t,r) = �|A|2
∫ +∞

−∞

dε̃

2π

∫ +∞

−∞

dω

2π

σ ′σ ′,σσ (ε̃,ω,r)

× e−iωt e
− (ε̃1−ε)2

4σ2
ε e

− (ε̃2−ε)2

4σ2
ε , (A3)

with ε̃1,2 = ε̃ ± �ω/2. The integration over ε̃ can now be
performed by assuming that the impurity-averaged intensity
propagator 
σ ′σ ′,σσ (ε̃,ω,r) does not strongly depend on ε̃ (on
the scale given by σε), and can therefore be taken outside the
integral:

|A|2
∫ +∞

−∞
dε̃e

− (ε̃1−ε)2

4σ2
ε e

− (ε̃2−ε)2

4σ2
ε � |A|2

√
2πσε = ni

ρ(ε)
(A4)

for ω 
 σε. This concludes the derivation of Eq. (26).

APPENDIX B: TECHNICAL ASPECTS OF THE
SELF-CONSISTENT APPROXIMATION FOR THE

SPIN-DEPENDENT LOCATOR EXPANSION

The self-consistent diagrammatic theory developed by
Vollhardt and Wölfle [56,57] for the Edwards model [65]
describes, for the spinless case, the scaling behavior in the
vicinity of the metal-insulator transition, which is driven
by disorder in the continuum. The extension to the lattice
case has been carried out, within a locator expansion, by
Kroha, Kopp, and Wölfle [59]. The self-consistent treatment
of the particle-particle (cooperon) contributions, together with
the multiple-occupancy corrections, yielded for the Anderson
model a phase diagram as a function of energy and disorder
that is in quantitative agreement with the results of numerical
diagonalization of finite-size systems with different disorder
distributions (i.e., box-like, Gaussian and Lorentzian).

The Matsubara-Toyozawa model [the spinless version
of the system defined in Eqs. (5a)–(5c)]—which we also
refer to as “random network model”—can be thought of
as an Anderson model with binary disorder (since, at each
point in space, an impurity may be present or not). The
locator expansion has proven in this situation to yield results
equivalent to those obtained by using the Bloch states as the
basis for the perturbation, provided all irreducible diagrams
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are included and the multiple occupancy corrections are made
self-consistently [66]. This equivalence is however difficult
to exploit in order to compute specific physical quantities.
Our approach in this paper has been to restrict ourselves to
a selected class of diagrams present in the locator expansion,
verifying that the conservation laws are respected at each level
of approximation. Particle conservation imposes restrictions
to the changes in space and time of the electron density, and
taking these restrictions into account is one of the bases of the
self-consistent approach.

The introduction of spin-orbit interaction in the continuum
model allowed to address the spin relaxation in disordered
metals and heavily doped semiconductors by standard di-
agrammatic techniques built in momentum space [67–69].
The need to describe the impurity band forces us to take
a different starting point and adopt a discrete model of
randomly distributed impurities, where a locator expansion
can be implemented.

In this appendix, we show how some of the basic concepts of
the self-consistent approach translate into the spin-dependent
model (5a)–(5c). In particular, we give examples of reducible
and irreducible diagrams, we provide the recipe for construct-
ing irreducible U diagrams from irreducible � diagrams,
and we prove that such a prescription leads to the Ward
identity (38).

1. Reducible and irreducible diagrams

Diagrams contributing to G(±)(ε) that when “cut” at
an intermediate Green function G

(±)
00 (ε) [or G(±)(ε) if we

are working in a self-consistent approach) result in two
disconnected diagrams are defined as reducible. For instance,
the fifth-order diagram with three identical sites in Fig. 10
is reducible, since cutting it at the third dot, yields two
lower-order disconnected diagrams [both of them irreducible,
and the first one being identical to diagram Fig. 1(a)]. A similar
definition applies to the diagrams corresponding to �(±)(ε).

The discussion of the irreducibility requires the indexation
of the impurities within the diagrams. Considering the locator
expansion (30) in its self-consistent version, we notice that
each diagram contributing to the self-energy �(±)(ε) can be
characterized by a set of indices i = {i1, . . . ,in}, where n is
the number of local Green functions occurring in the diagram
(equivalently, n + 1 is the order of the diagram), and ij labels
the impurity corresponding to the j th Green function (ordered
from right to left). Identical impurities (which are connected
by a dotted line in the corresponding diagram) carry the same
label. We note l the number of impurities different from the
initial and final one (l � n). For the initial impurity (which

FIG. 10. Example of a reducible diagram contributing to the
average local Green function. The solid horizontal lines represent
the hopping matrixV, the circles stand for the Green functions, and
dotted lines indicate identical sites.

2 2

(a)

(b)

30 0 011

3

3 2

2

1 0

0 1 0

FIG. 11. (a) Example of a two-point reducible diagram. Since
the central part (marked by the red rectangle) can be seen as part of
the average local Green function at impurity 2 [see Fig. 1(a)], this
diagram is effectively contained in the diagram displayed in Fig. 12(a)
below, and must therefore not be counted again when evaluating � in
the self-consistent approach. (b) Applying the recipe for constructing
U diagrams from the � diagram of (a)—with cut at the impurity
3—yields a reducible intensity diagram, which can be expressed as
the product of Green functions and two irreducible insertions (marked
by the two red rectangles).

is identical to the last impurity), we choose the label 0, and
1,2, . . . ,l for the remaining impurities (i.e., we always have
i1 = 1). As examples of the chosen notation, the diagram
shown in Fig. 11(a) corresponds to i = {i1,i2,i3,i4,i5,i6} =
{1,2,3,2,0,1}, with n = 6 and l = 3, while that of Fig. 12(a)
corresponds to i = {i1,i2,i3,i4} = {1,2,0,1}, with n = 4 and
l = 2.

The two-point irreducibility presented in Sec. V A in order
to avoid double counting of diagrams can be addressed with
the suggested notation. Figure 11(a) presents an example
of a diagram that does not contribute to the self-consistent
�, since cutting it in the two places where impurity 2
appears leads to two lower-order unconnected diagrams (the
central one, marked by the red rectangle, corresponding to the
self-energy contribution of Fig. 1(b) after removing the dots
at impurity 2). Thus such a reducible diagram is accounted
for in the expansion of the Green function, provided that

(a)

000 121

(b) 0

0 01

12

2

FIG. 12. (a) Example of a diagram �i for the local self-energy,
characterized by the labels i = {1,2,0,1} of the intermediate impu-
rities (from right to left), see Eq. (B1). (b) Corresponding diagram
Ui,2 contributing to the intensity operator, obtained according to the
construction recipe described in the text by cutting the � diagram (a)
at impurity 2.
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U1 U2

FIG. 13. Example of a reducible component of the intensity
propagator expressed as the product of Green functions representing
the same impurity and two irreducible insertions U1 and U2.

in the retained approximation for the self-energy the two
lower-order diagrams were included. The diagram of Fig. 12(a)
is irreducible, since we do not obtain disconnected diagrams
either by cutting it at any of its intermediate impurities, neither
by cutting it at the two places where the site 1 (repeated in the
sequence of visited impurities) appears.

The irreducibility of a diagram contributing to the in-
tensity propagator is defined by the property of not being
able to be factorized into two components U1 and U2

with an intermediate pair of Green functions represent-
ing the same impurity. Figure 13 shows a counterexample
with an insertion of the intensity propagator, which is not
irreducible.

2. Recipe for constructing diagrams contributing to the
irreducible component of the intensity propagator

In the self-consistent approach of Vollhardt and
Wölfle [56,57] applied to the Edwards model, the irreducible
component of the intensity propagator is generated in a
systematic way by taking functional derivatives of the self-
energy with respect to each of the Green functions appearing
in the corresponding diagram. In a diagrammatic formulation
this recipe amounts to a “cut and fold” procedure, which we
implement in the locator expansion by defining the following
steps:

(i) Cut the retarded � diagram at each of its local Green
functions.

(ii) Take the right-hand part (with respect to this cut) of the
self-energy diagram as the upper line of the intensity diagram
(at energy ε1).

(iii) Fold the rest of the diagram (at the left of the cut)
into the lower line of the intensity diagram (at energy ε2)
by taking its complex conjugate and reversing the spatial
coordinate.

(iii) Add the contributions obtained for each cut.
The retarded self-energy contribution corresponding to the

diagram defined by the set i writes

�(+)
i (ε) = nl

i [G(+)(ε)]n
∫

dr1 . . . drlV
(
r0 − rin

)
×V(rin − rin−1

)
. . .V(ri2 − r1)V(r1 − r0) . (B1)

The application of the “cut and fold” procedure to �
(+)
i (ε)

at each intermediate Green function corresponding to the site
j generates the irreducible contribution

Ui(ε,ω,r) =
n∑

j=1

Ui,j (ε,ω,r) . (B2)

Two cases have to be distinguished. If the place where the
self-energy was cut corresponds to the initial impurity (ij = 0),

then

Ui,j (ε,ω,r) = nl
i δ(r)[G(+)(ε1)]j−1[G(−)(ε2)]n−j

∫
dr1 . . . drl

×V(r0 − rij−1

)
. . .V

(
ri2 − r1

)
V(r1 − r0)

⊗V∗(r0−rij+1

)
. . .V∗(rin−1 − rin

)
V∗(rin − r0).

(B3)

While if the cut is done at an impurity, which is different from
the initial one (ij 	= 0), we have

Ui,j
(
ε,ω,rij − r0

)
= nl

i [G(+)(ε1)]j−1[G(−)(ε2)]n−j

×
∫

dr1 . . . drij −1drij +1 . . . drl

×V(rij − rij−1

)
. . .V

(
ri2 − r1

)
V(r1 − r0)

⊗V∗(rij − rij+1

)
. . .V∗(rin−1 − rin

)
V∗(rin − r0

)
. (B4)

As an example, Fig. 12(b) displays the U -diagram obtained
from the � diagram shown in Fig. 12(a) by cutting at the
impurity 2. If we try to apply the recipe to a self-energy
diagram, which is not two-point irreducible we obtain a
reducible intensity diagram. For instance, cutting the diagram
of Fig. 11(a) at the impurity 3 (inside the red rectangle) leads
to the intensity diagram of Fig. 11(b), which is not irreducible
in the sense defined in Appendix B 1. It is not difficult to
see that this example can be generalized as follows: any
two-point reducible � diagram generates a reducible intensity
diagram, and vice versa, any reducible intensity diagram is
generated by a � diagram reducible diagram. Therefore all
irreducible U diagrams (and only them) are generated by
two-point irreducible � diagrams.

3. Proof of the Ward identity

The above-described construction of the irreducible com-
ponent of the intensity propagator ensures the fulfillment of
the Ward identity presented in Eq. (38). In order to prove such
a relationship, we transform (B2) to momentum space and take
q = 0 for each term k in the sum, obtaining

Ũ
σ1σ2,σ3σ4
i,j (ε,ω,0)

= nl
i [G

(+)(ε1)]j−1[G(−)(ε2)]n−j

∫
dr1 . . . drl

× [V(r0 − rij−1

)
. . .V

(
ri2 − r1

)
V(r1 − r0)

]σ1σ3

× [V∗(r0 − rij+1

)
. . .V∗(rin−1 − rin

)
V∗(rin − r0

)]σ2σ4
.

(B5)

The above expression holds for both of the cases (ij = 0 and
ij 	= 0). Taking σ2 = σ1 and summing over the repeated spin
index we have∑

σ1

Ũ
σ1σ1,σ3σ4
i,j (ε,ω,0)

= nl
i [G

(+)(ε1)]j−1[G(−)(ε2)]n−j

∫
dr1 . . . drl

× [V(r0 − rin

)
. . .V

(
ri2 − r1

)
V(r1 − r0)

]σ4σ3
, (B6)
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where we have used the property (19a). Notice that the integrals
appearing in Eq. (B6) are exactly those of Eq. (B1).

We now consider the sequence ĩ where the impurities are
visited in the reversed order, i.e., ĩj = in+1−j . The correspond-
ing self-energy �(+)

ĩ
(ε) has the same structure of (B1), up to

the reverse of the impurity sequence. Therefore

�(−)
ĩ

(ε) = [�(+)
ĩ

(ε)]∗ = nl
i [G(−)(ε)]n

∫
dr1 . . . drlV∗(r0−r1)

×V∗(r1−ri2 ) . . .V∗(rin−1−rin)V∗(rin − r0). (B7)

The diagonal character of the self-energy ensures that �T
ĩ

=
� ĩ . Using again Eq. (19a), we have

�(−)
ĩ

(ε) = nl
i [G

(−)(ε)]n
∫

dr1 . . . drlV
(
r0−rin

)
×V(rin − rin−1

)
. . .V

(
ri2 − r1

)
V(r1−r0) . (B8)

The identity

[G(+)(ε1)]n − [G(−)(ε2)]n

= [G(+)(ε1) − G(−)(ε2)]

×
n∑

k=1

[G(+)(ε1)]k−1[G(−)(ε2)]n−k , (B9)

together with Eqs. ((B1),(B6),(B7)), yield

�σ4σ3(+)
i (ε1) − �

σ4σ3(−)
ĩ (ε2)

= [G(+)(ε1) − G(−)(ε2)]
n∑

j=1

∑
σ1

Ũ
σ1σ2,σ3σ4
i,j (ε,ω,0) .

(B10)

Thus Eq. (38) holds for each contribution to the self-energy
described by a reciprocity-invariant sum of diagrams. The
latter are defined by the condition that for each individual
contributing sequence diagram i, its reversed counterpart ĩ is
also included. The condition ĩ = i (like for instance in the
case of self-energy in Fig. 1(b) constitutes a special case of a
reciprocity-invariant diagram. All the three approximations
considered in this work are based on reciprocity-invariant
diagrams. The equivalence between (38) and (B10) is en-
sured by the fact that G and � are scalar and the sum
over σ2 carried over in the former equation simply sets
σ2 = σ1.

APPENDIX C: EXPLICIT EXPRESSIONS OF F(±)
0 (ε,r) AND F(±)

D (ε,r)

Identifying the poles of F̃(±)
0 (ε,k) in Eq. (79), we write

F̃(±)
0 (ε,k) = − 32πV0

a3(k2 − [k(±)
1 (ε)]2)(k2 − [k(±)

2 (ε)]2)(k2 − [k(±)
3 (ε)]2)

, (C1)

where k = |k| and

k
(±)
j (ε) =

√
−1 + e±2(j−1)iπ/3(−32πa3ni V0 G(±)(ε))1/3

a
, j = 1,2,3 . (C2)

We note that Im[k(+)
1,2 (ε)] > 0 and Im[k(+)

3 (ε)] < 0, whereas the opposite signs hold for k
(−)
j (ε). The inverse Fourier transform can

be written as

F(±)
0 (ε,r) =

∫
dk

(2π )3
e−ik·r F̃(±)

0 (ε,k) = 1

4π2r

∫ ∞

−∞
dkk sin(kr) F̃(±)

0 (ε,k). (C3)

The integral over k can now be performed using residual calculus. The result simplifies if it is multiplied by

G(±)(ε) = ± ia3([k(±)
1 (ε)]2 − [k(±)

2 (ε)]2)([k(±)
1 (ε)]2 − [k(±)

3 (ε)]2)([k(±)
2 (ε)]2 − [k(±)

3 (ε)]2)

96
√

3niπV0

, (C4)

and it then reads

F(±)
0 (ε,r)G(±)(ε) = ±i

(e±ik
(±)
1 (ε)r − e±ik

(±)
2 (ε)r )[k(±)

3 (ε)]2 + (e±ik
(±)
2 (ε)r − e∓ik

(±)
3 (ε)r )[k(±)

1 (ε)]2 + (e∓ik
(±)
3 (ε)r − e±ik

(±)
1 (ε)r )[k(±)

2 (ε)]2

12
√

3πnir
.

(C5)

From the definition (90) we must calculate F(±)
D (ε,r) as an inverse Fourier transform. Performing the angular part of the

integration over k, we obtain

F(±)
D (ε,r) = 16γ [(x ± iy)xy − (y ± ix)z2]

πa9r7

∫ ∞

−∞
dk

k(1 + a2k2)2(3(5 − 2k2r2) sin(kr) − kr(15 − k2r2) cos(kr))

{k2 − [k(±)
1 (ε)]2}2{k2 − [k(±)

2 (ε)]2}2{k2 − [k(±)
3 (ε)]2}2

. (C6)

This integral can again be performed using residual calculus. However, since the denominator now contains second-order poles,
the result is considerably more complicated than Eq. (C5), and we refrain from displaying it here.
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