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Experimental data on the phase sound speed of metallic glasses show anomalies in the terahertz range, reflecting
an underlying complex behavior of their phonon dispersion spectrum not yet explained. We determine the phonon
dispersion curve of metallic glasses by means of massive molecular dynamics simulations, allowing us to obtain
the low-q region behavior with unprecedented detail. Results confirm that the sound speed is constant below
the THz range, down to the macroscopic limit. On the contrary, a hardening of the sound speed, more notable
in the transverse case, is found in the THz range. This behavior is modeled in terms of a relaxation model. The
model gives quantitative agreement and allows us to determine a new threshold frequency ωh, at the end of the
boson-peak region. Above ωh the shear modulus increases dramatically, reflecting the end of the amorphous-like
acoustic propagation region characterized by the excess density of vibrational states.
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I. INTRODUCTION

The phonon spectrum reflects the mechanical properties of
a material at the atomic level. In the case of metallic glasses
(MGs), from the atomic perspective [1] their mechanical
properties can only be described from a statistical point of
view. Accordingly, the phonon spectrum of MGs gives a
privileged gauge of the interplay between cohesive atomic
forces and glass topology [2].

The access to the phonon spectrum of metallic glasses is
limited by experimental constraints. The main available exper-
imental technique, inelastic x-ray scattering (IXS), allows one
to test most of the pseudo-Brillouin zone but cannot access
the low-wave-number q region. Thus, there is a gap at the
mesoscopic scale, between the ultrasound range accessible
macroscopically and the terahertz range accessible by IXS. In
addition, experimental data of phonon dispersion and damping
is restricted to the longitudinal modes, while the effects of the
amorphous structure are expected to be more significant in the
transverse polarizations. Furthermore, IXS measurements in
MG offered contradictory results. Ichitsubo et al. [3] reported
a hardening on the sound speed, i.e., at low q the phase velocity
increases with increasing frequency, and proposed a model for
fragile metallic glasses in which nanometric islands of strongly
bonded regions are surrounded by a skeleton of weakly
bonded regions. This model predicts a positive deviation
from the linear behavior in the phonon dispersion relation
at q around the inverse of the size of the strongly bonded
regions. That means that the sound velocity of nanometer-
order wavelength should be higher than the corresponding
millimeter-order wavelength. However, later IXS experiments
were not conclusive [4,5] or even contradictory [6].

Theoretical models and experimental results in other types
of glasses have also predicted transitions between different
regimes of phonon dispersion and damping at the nanometer-
scale. Schober [7] stressed the importance of quasilocalized
vibrations (QLV) in the phonon spectrum of glasses. The
coupling of QLV would be the origin of the boson peak
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(BP), and thus the high-wave-number regime would display
hybridization between phonons and QLV. In this model the
positive dispersion, i.e., the change from “soft” (lower speed)
to “hard” (higher speed) phonon propagation, is observed at
the frequency corresponding to the BP maximum. The model
predicts also a change in the increase of the broadening of
the phonon branch from a ∝ω4 to a lower power law with
exponent depending on the parameter values used in the model.
A transition of the damping behavior from ∝q4 to ∝q2 was
observed in densified SiO2, in this case attributed to a change
from amorphous to crystal-like vibrational dynamics [8].
Positive deviation of the phonon dispersion was also observed
in disordered systems like liquids where it has been explained
using the mode coupling theory [9].

Molecular dynamics (MD) simulations may help to fill
the gap, but low wave numbers are only accessible in very
large boxes. Furthermore, most of the available results were
obtained by using Lennard-Jones (LJ) or soft-sphere (SS)
potentials [10–12]. Marruzzo et al. [12] simulated a binary
mixture of 107 particles with a SS potential and showed
that the spatial fluctuations of the elastic constants on a
microscopic length scale are responsible for the BP and the
other elastic anomalies in the high frequency vibrational
dynamics of glasses. In agreement with experimental [13]
and numerical [10] results, a negative dispersion of the sound
velocity and a steep increase (∝ ω4) in the width of the
excitation in the BP region was detected. Later, Mizuno
et al. [14,15] used a model with SS interatomic interactions
in which they can introduce several degrees of disorder and,
thus, study within the same framework a fully crystalline
structure and a fully amorphous one. They computed the
sound velocities and, as in previous works, they found a
softening of the transverse sound velocity. Furthermore, they
computed the bulk and shear moduli from the sound velocity
data and they found that the bulk modulus is constant and
equal to the macroscopic value below the BP frequency but
decreases at higher frequencies. Therefore, this result is at odds
with the assumption of a frequency-independent bulk modulus
proposed in Refs. [10,12]. Mizuno et al. argue that the details of
the interaction potential can play a nontrivial role and cause this
discrepancy. The importance of these details is also pointed out
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by Monaco et al. [10], who question what role anharmonicity
plays in glasses, as the LJ potential of monoatomic glasses has
been proven to be well described within the framework of the
harmonic approximation [16]. As real glasses are anharmonic
systems, the question that immediately arises is whether the
LJ or the SS potentials are the proper potentials to study the
dynamics of real glasses. And the contradiction remains, as
until now no numerical simulation predicts the hardening of
the sound speed observed experimentally.

Liquid dynamics at low particle densities (high tem-
peratures) scales with density and temperature, showing
a universal behavior weakly dependent on the particular
type of interatomic potential and totally independent of the
long-range attractive potential tail [17]. This density scaling
dynamics is indeed observed between systems sharing the
same type of bonding in different families of glass formers.
Contrarily, Berthier et al. [18] showed that this universal
density scaling is violated in the dense supercooled liquid and
glassy regimes. There, the long-range details of the potential,
like anharmonicity, have important effects on the dynamics of
the system. The topological structure of glasses is dominated
by the maximization of atomic packing and, therefore, the
long-range interaction has small influence on it, but the details
of the potential tail deeply affect the mechanical heterogeneity
of glasses and, accordingly, their vibrational behavior [19]. The
mesoscale mechanical heterogeneity (soft-stiff fluctuations)
widely observed in simulations [20] and already detected
experimentally in metallic glasses [21] is then expected to be
highly dependent on the details of the particular interatomic
potential of the system.

Here we report massive molecular dynamics simulations
of metallic glasses dynamics using the embedded atom
method. As the details of the potential are expected to have
a major influence in the expected results, the simulations
are compared to those of crystalline materials of similar
compositions. Hardening of the sound speed is observed in
the analyzed compositions, and a model accounting for its
origin is presented.

II. MOLECULAR DYNAMICS SIMULATIONS

Simulations of two amorphous systems, namely
Zr50Cu40Al10 and Pd82Si18, and a crystalline system, ZrCuAl,
were performed. The embedded atom method (EAM), orig-
inally developed by Daw and Baskes [22], is a many-body
potential where the total energy is given by

E = 1

2

∑
i,j,i �=j

φij (rij ) +
∑

i

Fi(ρi),

where φij represents the pair energy between atoms i and j

separated by a distance rij , and Fi is the embedding energy
associated with an atom i placed into a local site with electron
density ρi . The electron density is calculated using

ρi =
∑
j,j �=i

fj (rij ),

where fj is the contribution to the electron charge density
from atom j at the location of atom i. In order to describe the
interaction between the elements in the alloy, the pair energy

FIG. 1. Box geometry.

φab between each possible pair must be supplied in addition
to the electron density ρ and the embedding energy F for
each of the elements. EAM has been successfully used in
the study of metallic glasses, though it has been shown that
specific potentials must be used to obtain reliable results in
the amorphous state. Here we use the potentials developed for
the glass state by Cheng [23] and Sheng [24] specifically for
amorphous ZrCuAl and PdSi metallic glasses, respectively.

Simulations were performed on cubic and high-aspect-ratio
rectangular boxes of dimensions lx : ly : lz with lx � ly = lz.
In this way, the wave numbers accessible on the x direction
(long edge) are much lower than in the y and z directions
(short edges), allowing us to explore the phonon dispersion and
damping in the low-wave-number region without an excessive
increase in the number of simulated atoms. Figure 1 shows the
geometry of a 10:1:1 box.

The Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) code [25] was used, with a time step of 0.001
ps and periodic boundary conditions. The parameters of the
simulated systems are given in Table I. In the glassy systems
the liquid was equilibrated in the isothermal-isobaric (NPT)
ensemble at 2000 K for 2 ns, and then it was quenched at
the desired quenching rate down to 300 K. The glasses were
subsequently equilibrated during 2 ns in NPT conditions before
computing the static and dynamic structure factors, which
were computed in the canonical (NVT) ensemble for 1 ns.
The values obtained along different directions and boxes are
in excellent agreement, indicating that the box shape is not
influencing the phonon dynamics.

TABLE I. Parameters of the simulated systems.

Box size Quenching rate

(Å
3
) Atoms (K s−1)

Pd82Si18 glass
∼80 × 80 × 80, 3.2 × 104 1013, 1012

∼800 × 80 × 80, 3.2 × 105 1013, 1012

∼8000 × 80 × 80, 3.2 × 106 1013

Zr50Cu40Al10 glass
∼80 × 80 × 80, 3.2 × 104 1013, 1012, 1010

∼800 × 80 × 80, 3.2 × 105 1013, 1012

ZrCuAl crystalline
∼800 × 80 × 80, 3.2 × 104 –
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The density of states g(ω) was computed as the Fourier
transform of the velocity self-correlation function, defined as

Cv(t) = 〈�vi(0) · �vi(t)〉. (1)

The static structure factor S(q) was computed as the Fourier
transform of the pair distribution function g(r):

g(r) = 1

N

∑
i �=j

〈δ(r − |�ri − �rj |)〉. (2)

The dynamic structure factor was computed as the self-
correlation of the particle current functions jα(�q,t),

Sα(�q,ω) = �q · �q
2πω2N

∫
dt〈jα(�q,t) · jα(−�q,0)〉eIωt , (3)

where α = L,T stands for longitudinal and transverse exci-
tations, respectively, �q is the wave vector, ω is the excitation
frequency, N is the number of particles, and

jL(�q,t) =
∑

[�vi(t) · q̂]q̂eI �q·�ri (t)

(4)
jT (�q,t) =

∑
[�vi(t) − (�vi(t) · q̂)q̂]eI �q·�ri (t),

�ri(t) and �vi(t) being the position and velocity of particle i at
time t , respectively.

In order to study the dispersion curve and the damping
of the acoustic waves the dynamic structure factor Sα(�q,ω),
computed for each wave number �q as a function of the
frequency ω, was fitted to a damped harmonic oscillator
response [26],

I ∝ ω2�q[
	2

q − ω2
]2 + ω2�2

q

, (5)

where 	q is the eigenfrequency and �q accounts for the
broadening of the phonon excitations at wave vectors of
modulus q.

III. RESULTS

Figure 2 shows the static structure factor of the simulated
glasses. Despite the very different compositions, S(q) shows
very similar features in the two glasses. The effect of the
quenching rate in the amorphous structure is almost not
perceived in both cases.

Figure 3 shows a typical example of SL(�q,ω) in the studied
MGs. While SL(�q,ω) is single peaked in Zr50Cu40Al10, it
shows a secondary resonance in Pd82Si18 at higher frequencies.
ST (�q,ω) shows the same behavior. To understand the origin
of this second resonance, SL(�q,ω) is plotted for two values
of q in this case. The low-frequency resonance behaves
as the expected acoustic branch; the resonance frequency
increases with the wave number and its intensity decreases
as q increases. On the contrary, the high-frequency resonance
has an almost constant shape, independent of q. Its low
intensity makes it difficult to detect at low q although it is
always present. The partial dynamic structure factors, also
shown in the figure, show that only Si atoms contribute to
the high-frequency resonance. This indicates that rather than
an optical phonon branch, this resonance is associated to
Einstein oscillators created by a sort of caging effect of the
Si atoms. Note that the corresponding Einstein temperature

FIG. 2. Static structure factor S(q) of the simulated glasses,
quenched at different quenching rates. S(q) of the same glass
quenched at different quenching rates are shifted vertically to allow
comparison.

is about 550 K, while the glass is being simulated at 300 K.
Einstein oscillators were already reported in MGs [27] but with
much lower energies. In these cases, they were associated to
phonon localized modes, while here they seem to correspond to
individual atomic movements. However, Hosokawa reported
recently unexpected vibrational modes in Pd40Ni40P20 in the
same range of energies [28], which may have a similar origin.
This effect is most probably due to the large mass difference
between Pd and Si, as mPd/mSi ∼ 3.8.

Figure 4 shows the phase sound speeds cL (longitudinal)
and cT (transverse) computed in Pd82Si18 and Zr50Cu40Al10

vitrified at a quenching rate (QR) of 1012 K s−1. Similar plots
for the remaining quenching rates are given in the supplemental
material [29]. Both cL and cT show a constant value in the
macroscopic limit, as shown in the figure inset. This is
the only possible physically meaningful result; otherwise,

FIG. 3. Dynamic structure factor S(�q,ω) of the studied MG
quenched at 1012 K s−1 for two particular values of q, and partial
structure factors of Pd and Si in Pd82Si18 at q ∼ 6 nm−1 (see text).

144205-3



CRESPO, BRUNA, VALLES, AND PINEDA PHYSICAL REVIEW B 94, 144205 (2016)

FIG. 4. Longitudinal (cL) and transverse (cT ) phase sound speeds
of the simulated glasses in linear and semilogarithmic scale (inset)
to show the behavior in the q → 0 (macroscopic) limit. Solid lines
correspond to the model developed in Sec. IV.

the macroscopic sound speed should show some kind of
anomaly. At increasing wave numbers, q > 1 nm−1, a
hardening on both speeds is noticed. The maximum on the

hardening appears at larger wave numbers for transverse
than for longitudinal excitations. This fact contrast with
pseudopotential simulations of MG [30,31] and in monoatomic
LJ glasses [10], where a direct correlation between the longi-
tudinal and transverse sound speed was found by assuming a
frequency independent bulk modulus.

Figure 5 shows the frequency dependence of sound atten-
uation coefficients for longitudinal and transverse excitations.
The broadening of the transverse acoustic excitation shows a
linear dependence on ω at high frequencies, while it changes
to a quadratic dependence when approaching the macroscopic
limit (ω → 0), as expected for propagating waves in an
amorphous homogeneous media. Similar dependencies are
expected in longitudinal excitations, but they are not clear in
Pd82Si18. This is probably due to the effect of the above-cited
Einstein oscillators, which affect the high-frequency behavior
of the acoustic excitations. It is worth mentioning that, due to
the small size of the box, the data for the quenching rate of
1010 K s−1 do not allow us to determine the ω2/ω crossover
in this case. It has been largely discussed that the dependence
should change again to ω4 at very low ω due to Rayleigh
scattering, as found in LJ glasses [10] and other glasses like
glycerol and some network glasses [32]. In our case, the
dispersion on the data increases noticeably below 3 THz in
longitudinal excitations and may admit an ω4 dependence, but
at very low frequencies this behavior is lost. This dispersion is
due to the very long simulation times needed to compute the
eigenfrequencies corresponding to very low wave numbers and
does not allows us to confirm or discard the ω4 dependence. In
the case of transverse excitations, the characteristic frequencies
are always lower than for longitudinal excitations, and the
required simulation times are even longer. Accordingly, the
dispersion of the data that may correspond to an ω4 dependence
appears at lower frequencies than for longitudinal excitations.

Figure 6 shows the reduced density of states (DOS) of
the simulated glasses. The intensity of the boson peak is

FIG. 5. Phonon disperson plots of longitudinal (left) and transverse (right) excitations.
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FIG. 6. Reduced density of states of the simulated glasses
showing the intensity of the boson peak in each case.

very similar in Zr50Cu40Al10 regardless the quenching rate
and decreases very slightly in Pd82Si18 as the quenching rate
decreases. A decrease of the excess density of states is expected
in more stable glasses and it is closely related to a change in
the shear modulus [33]. In this sense, the slight decrease in
the DOS of Pd82Si18 is consequent with the small increase of
shear modulus detected in this case.

The two most salient features of the dispersion relation
are that there is no signature of softening in the low-q
region, in fact, the cL,T (q → 0) behavior is strikingly flat, and
that the hardening transition appears at different wavelengths
for longitudinal and transverse polarizations. However, when
plotted as a function of frequency (Fig. 7), for Pd82Si18, the
behavior of both phase sound speeds shows a common trend:
Both increase up to a frequency ∼16 THz (a hardening effect)
and then drop. This decrease is related to the bending of

FIG. 7. Phase sound speed of Pd82Si18 quenched at 1012 K s−1

vs. frequency. The red solid lines show the behavior of two
simple sinusoidal dispersion relations for the transverse sound speed
obtained with different values of the shear modulus. The blue line
shows the behavior of a viscoelastic-like transition.

FIG. 8. Phase sound speeds computed in crystalline ZrCuAl at
300 K. Solid lines show the fit to simple sinusoidal relations of
dispersion for the longitudinal and transverse excitations.

the dispersion curve when approaching the pseudo-Brillouin
zone boundary, at ≈15 nm−1. Note that the Debye frequency
ωD ∼ 23 THz in both glasses. Remarkably, the values of the
wave numbers at which the sound speeds show their maxima,
indicated in Fig. 7, differ considerably for longitudinal and
transverse excitations. These facts suggest that the anomalies
in the phase sound speed are due to a frequency effect rather
than to any spatial feature.

It order to ensure that these results are actual features of
the glass dynamics, not due to the EAM potential used in
the simulations, crystalline ZrCuAl (Fd3m space group) was
also simulated at 300 K using the same potential. Figure 8
shows the longitudinal and transverse phase sound speeds in
this case, plotted up to 5 nm−1; above this wavelength the
acoustic and optic branches merge and it is not possible to
determine precisely the sound speed. Both sound speeds are
much higher than in the Zr50Cu40Al10 glass; in particular, the
transverse sound speed is almost doubled. Furthermore, both
sound speeds are well fitted to simple sinusoidal relations of
dispersion such as

ωL,T (q) = AL,T sin

(
qa

2

)
, (6)

where L and T stand for longitudinal and transverse, ωL,T (q)
are the eigenfrequencies of L and T excitations with wave
vector q, and a is the lattice parameter. Thus, the crystalline
structure shows no signs of hardening, and an explanation for
the anomalies observed should be related to the glass structure.

IV. MODEL OF THE DISPERSON RELATION

Phonon dispersion curves in binary metallic glasses were
computed by using pseudopotential methods [30,34], obtain-
ing simple dispersion relations close to the classical sinusoidal
form

ωL,T (q) = AL,T sin

(
πq

QL,T

)
, (7)
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where QL is somewhat less than the position of the first
diffraction peak (i.e., the wave vector at the boundary of the
pseudo-Brillouin zone) and QT > QL. The longitudinal and
transverse amplitudes are given by

AL = QL

π

√
K + 4

3G

ρ
, AT = QT

π

√
G

ρ
, (8)

K and G being the bulk and shear modulus and ρ the density
of the material. However, these computations did not predict
any hardening of the phase sound speed.

The red lines in Fig. 7 show the expected behavior of simple
sinusoidal relations of dispersion corresponding to two values
of the shear modulus G. The lower one is drawn for the value
of G corresponding to the macroscopic value of cT ; we will
call it soft. The discrepancy with the simulated data is striking.
On the contrary, the high-frequency region is well fitted by a
simple sinusoidal relation of dispersion computed for a much
higher value of the shear modulus than for q → 0; this will
be referred to as hard. In order to model the transition from
soft to hard dispersion relations, we propose a simple Maxwell
model of a viscoelastic transition. In the Maxwell model the
bulk and shear modulus depend on the frequency,

K(ω) = K0 + (K∞ − K0)
ω2τ 2

1 + ω2τ 2
,

(9)

G(ω) = G0 + (G∞ − G0)
ω2τ 2

1 + ω2τ 2
,

where K0,∞ and G0,∞ are the bulk and shear modulus at
macroscopic (ω → 0) and infinite frequencies, respectively.
The blue line in Fig. 7 is a qualitative fit of such a viscoelastic
transition to the low-frequency region of the transverse phase
sound speed. The parameter τ corresponds to the characteristic
relaxation time of the Maxwell model, and it allows us to define
a corresponding threshold frequency ωh = τ−1.

The resulting relations of dispersion can be solved an-
alytically. The phase speed of longitudinal and transverse
oscillations is then

cL,T (qL,T ) = ωL,T (qL,T )

qL,T

. (10)

The dark solid lines in Fig. 4 show the fit of cL and cT by
using Eqs. (7)–(9). The fit was performed simultaneously on
both speeds, the fitting parameters being K0,∞, G0,∞, QL,T ,
and τ . Table II shows the results of the fits. The fitted value of

TABLE II. Fit parameters and magnitudes determined from MD
simulation.

QR K0 K∞ G0 G∞
QT

QL
QL QLexp ωh ω�,L ω�,T

(K s−1) (GPa) (nm−1) (THz)

Pd82Si18

1013 160 160 20 44 1.55 24.7 28.6 15 10 10
1012 160 163 27 45 1.59 24.7 28.6 15 10 10

Zr50Cu40Al10

1013 104 104 20 30 1.41 25.6 26.5 11 13 10
1012 105 105 20 30 1.45 25.7 26.5 11 14 10
1010 103 103 21 31 1.38 25.8 26.5 9

QL for all materials and quenching rates is somewhat lower
than QLexp, the q value of the first peak of the static structure
factor S(q) shown in Fig. 2, as expected. The magnitude of the
hardening due to the frequency-dependent elastic modulus is
noted by comparison with the expected phase speed obtained
without the frequency correction (cyan solid line in Fig. 4).
While the bulk modulus remains constant at all frequencies, the
shear modulus increases in the infinite frequency limit by 50%
in Zr50Cu40Al10 and is more than doubled in Pd82Si18. This fact
explains why the effect is pronounced in the transverse phase
sound speed, while it is much more subtle in the longitudinal
sound speed. The frequency ωh, associated to the relaxation
time τ , lays just above the boson peak for both materials,
shown in Fig. 6.

The frequencies ω�,(L,T ) of the ω2/ω crossover, determined
from Fig. 5, are also shown in Table II. A remarkable
correspondence can be seen between the transverse crossover
frequency ω�,T and the determined relaxation frequency ωh

in Zr50Cu40Al10, pointing to a link between the hardening
process and the dynamics of transverse excitations. On the
contrary, ωh > ω�,T in Pd82Si18, but, as previously indicated,
the behavior of high-frequency excitations is strongly affected
by the presence of Einstein oscillators in this case.

V. DISCUSSION AND CONCLUSIONS

The above results confirm that there is a substantial
change in the phonon propagation mode in metallic glasses
in the terahertz range, connected to a strong increase on the
shear modulus. The frequency of the transition appears at
the end of the boson peak. The QLV model developed by
Schober [7] predicts the increase of the slope in the phonon
dispersion relation at a frequency related to the boson peak.
Below this frequency, coupled QLV dominate the phonon
spectrum and are responsible for the boson peak, while above
it quasilocalized vibrations become uncoupled. The model
predicts also a ω4 dependence of the sound-speed attenuation
for the low-frequency region which was insinuated here,
though it could not be completely confirmed. On the whole, our
results are consistent with the QLV picture, though a further
structural characterization is needed to assure the validity of
the QLV description.

The ability of a simple Maxwell model to describe this
soft/hard transition can be interpreted in terms of the presence
of a relaxation process; vibrations faster than the characteristic
relaxation see a stiffer structure. The presence of elastic
relaxations or nonaffine rearrangements, with characteristic
times of the order of the picosecond, is a known characteristic
of amorphous structures [35]. They have been estimated to
create a reduction of around 10% (Bulk) and 30% (Shear)
of the elastic constants with respect to the “Born terms”
calculated considering only affine deformations [20,36]. In
this picture, our results would indicate that the interaction of
the nonaffine rearrangements with the propagating vibration
modes would be not only responsible of the change in elastic
constants but also responsible for the ω2 damping behavior.
This coincides with the view suggested by Baldi et al. [8] of
a transition between glasslike modes, at low wave numbers,
and crystal-like modes, at high wave numbers. The different
frequency dependencies of the sound attenuation coefficients
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are also the signatures of the different phonon modes, in a
similar way than what was found in amorphous silica and
polycrystalline quartz. If the transition between the “hard” and
“soft” elastic regimes at the THz frequencies indicates an onset
of glassy dynamics, this may be related to the onset of the fast
secondary relaxation processes originating the high-frequency
loss detected experimentally in glass susceptibility [37,38].

Not less important, our results in the macroscopic limit
(q → 0) solve the controversy about the behavior of the sound
speed in glasses. Both the longitudinal and transverse sound
speeds have constant values up to the nm length scale. In fact,
the glass behaves as a continuum both in the macroscopic
region and in the boson peak region. It is above the boson peak
frequency when the changes in the phonon propagation mode
become determinant.

Several questions still remain open. The first is why
simulations using EAM offer results that differ from those
performed using LJ and SS potentials. As the shear modulus
is responsible for the frequency of transverse excitations, the
specific description of the shear forces plays a dominant role
in their behavior. Being a two-body potential, LJ systems
have shear interactions that differ substantially from realistic
metallic systems, and this may explain the observed differ-
ences. The second question is that anomalies of the phonon
spectra of metallic glasses have been generally associated to
the existence of compositional and structural inhomogeneities.
However, a single relaxation frequency ωh governs both
longitudinal and transverse relations of dispersion, close to
the frequency ω�,(L,T ), at which the phonon damping behavior

also changes. This behavior, summed to the fact that no signs
of any well-defined length scale were found in our simulations,
prevents us to relate the transition between different phonon
modes to spatial inhomogeneities. Finally, it would be very
interesting to identify the quasilocalized vibrations in the
molecular dynamics simulations or correlate them with some
structural features in order to confirm the validity of Schober’s
model.

In summary, numerical simulation of the phonon spectra of
metallic glasses confirms a change in the phonon regime in
the terahertz range. Below this frequency range, both in the
macroscopic range and in the boson peak region, the glass
behaves as a continuum and the sound speed is constant. In
the terahertz range the phonon dynamics is governed by a
substantial increase of the shear modulus. The experimentally
reported hardening of the sound speed in the nanometer range
may be due to the uncoupling of quasilocalized vibrations
marking the end of the boson peak. This “viscoelastic-like”
transition is well described by a single relaxation frequency.
The dispersion of the IXS results obtained in metallic glasses
may be a consequence of different relaxation frequencies in
the different amorphous structures.
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