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Generalized Dyson model: Nature of the zero mode and its implication in dynamics
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We study the role of the anomalous E = 0 state in dynamical properties of noninteracting fermionic chains
with chiral symmetry and correlated bond disorder in one dimension. These models possess a diverging density
of states at zero energy leading to a divergent localization length at the band center. By analytically calculating
the localization length for a finite system, we show that correlations in the disorder modify the spatial decay of the
E = 0 state from being quasilocalized to extended. We numerically simulate charge and entanglement propagation
and provide evidence that states close to E = 0 dominate the dynamical properties. Remarkably, we find that
correlations lead to subdiffusive charge propagation, whereas the growth of entanglement is logarithmically slow.
A logarithmic scaling of entanglement saturation with system size is also observed, which indicates a behavior
akin to quantum critical glasses.
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I. INTRODUCTION

In one-dimensional disordered systems, the presence of a
chiral symmetry (sublattice) can lead to some energy eigen-
states behaving differently than all other localized eigenstates.
For instance, a bond disordered model, which we refer to as
the Dyson I model [1,2], has a diverging density of states at
E = 0, which is accompanied with a divergent localization
length [3–5]. Although the localization length is diverging, the
state is quasilocalized because the localization length scales
subextensively with system size [6,7]. Another mechanism
in disordered systems that can modify the nature of its
eigenstates is the presence of correlations in disorder. Even
with on-site disorder, where all single-particle eigenstates are
exponentially localized in one dimension [8,9], correlations in
the disorder can either partially or completely destroy local-
ization [10–17]. Moreover, the study of correlated disorder
has several practical applications, particularly in transport
properties of disordered conducting polymers and biological
molecules [18,19].

The combination of symmetries and disorder correlations
can have interesting effects in the physics of Anderson
localization. For instance, bond dimerization (referred to as
Dyson II model [20] hereafter), i.e., random bonds appearing
in identical pairs (J2l−1=J2l ; Jl is the bond strength), changes
the nature of the E = 0 state from being quasilocalized to
extended. Despite this, the role of local disorder correlations
with regard to the nature of the E = 0 state and the consequent
effect on nonequilibrium dynamical properties has not been
explored extensively so far. In this article, we construct and
study a random bond model with tunable correlated bond
disorder, such that the spatial extension of the E = 0 state can
be modified almost continuously from being exponentially
localized to extended. The construction also allows us to
recover the known Dyson I and II models in appropriate limits.
We further examine the effect of the nature of the E = 0
state on the transport properties via charge and entanglement
propagation.

Recently, dynamical properties of isolated disordered sys-
tems have attracted much attention due to advancement of
controlled experimental techniques as well as the discovery of
dynamical quantum phase transitions. In particular, dynamical
properties are used to characterize different localized phases.

For example, in both the Anderson localized and the many-
body localized (MBL) phase [21,22] charge transport is absent.
However, while in the former the bipartite entanglement S(t)
does not grow with time, in the latter it grows logarithmically
[23,24]. Furthermore, it has been shown that, while in the er-
godic phase of the MBL system charge and entanglement show
subdiffusive and subballistic behavior, respectively [25,26], in
a diffusive nonintegrable spin chain S(t) grows ballistically
with time [27]. It is then natural to conclude that charge
and entanglement propagation can have different dynamical
behaviors, which further motivates us to contrast them in
the presence of both disorder correlation and symmetries.
Interestingly, the generalized Dyson model shows subdiffusive
density propagation and logarithmic entanglement growth,
a phenomenon that has not been observed previously in
disordered systems.

The rest of the paper is organized as follows. In the Sec. II,
we introduce the generalized model and analytically derive the
localization length of the E = 0 state, and describe the phase
diagram with regard to the localization properties. We describe
the dynamical properties in Sec. III, with Sec. III A containing
the numerical results for the Dyson II limit while the results
for other parameter values are presented in Sec. III B. Finally,
the results are summarized in Sec. IV.

II. MODEL AND LOCALIZATION LENGTH

The nearest-neighbor random hopping model is defined as

H = −
∑

l

[J2l−1c
†
2l−1c2l + J2lc

†
2lc2l+1 + H.c.], (1)

where c
†
l (cl) is the fermionic creation (annihilation) operator

at site l and Jls are positive random hopping amplitudes.
The Hamiltonian (1) with uncorrelated disorder has a diverg-
ing mean density of states �(E) ∼ 1/E log3(E) as E → 0
[1,28,29], which also leads to a logarithmic divergence in the
localization length with energy [4,20]. Several independent
correlation lengths also diverge for the E = 0 state [30,31],
indicating that the state serves as a disorder-induced quantum
critical point. In dynamical properties, the quasilocal nature
of the state manifests itself in extremely slow propagation of
charge [32] and entanglement growth ∼ log[log(t)] [33–35].

2469-9950/2016/94(14)/144202(6) 144202-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.144202


GIUSEPPE DE TOMASI, STHITADHI ROY, AND SOUMYA BERA PHYSICAL REVIEW B 94, 144202 (2016)

We start by investigating the localization length of the
model (1) using the transfer matrix technique. To this end,
we define ξL(E) as the localization length of a finite system
of size L at energy E. We choose L odd with open boundary
condition as it guarantees the existence of an E = 0 state due
to sublattice symmetry [36]. Generically, ξL(E = 0) can be
expressed using the recursion relations between single-particle
wave function amplitudes as

ξ−1
L (E = 0) = 1

L
log

∣∣∣∣ψL−1

ψ0

∣∣∣∣ = 1

L

L−1
2∑

l=1

log

(
J2l

J2l−1

)
, (2)

where the overline denotes the disorder average. For un-
correlated disorder, e.g., the Dyson I model, the average
of the summation in Eq. (2) is zero. However, in a typical
configuration the sum is divergent with system size L, which
indicates that one needs to investigate the full probability
distribution of the sequence under the sum rather than just
the mean. Using the central limit theorem, it can be shown that
the fluctuations grow as

√
L and therefore ξL(E = 0) ∼ √

L

[16,17]. On the contrary, in the presence of dimerization,
J2l−1=J2l , the Dyson II model, the sum in Eq. (2) is zero
for each configuration. Consequently ψL−1 = ψ0 implying
that the E = 0 state is extended in all samples [20]. With
the motivation of interpolating between these two limits of
quasilocalized (Dyson I) and extended (Dyson II) E = 0 states,
we choose the random couplings as

J2l−1 = B
(1)
2l−1 exp

[
−η2l−1B

(2)
2l−1

(2l − 1)α

]
,

J2l = B
(1)
2l−1 exp

[
η2lB

(2)
2l

(2l)α

]
, (3)

where B
(1)
l , B

(2)
l are random variables drawn from Gamma

distributions with unit mean and variance 1/W(1,2) defined as

PW (x) = WW

�(W )
xW−1e−Wx, x � 0, (4)

FIG. 1. Phase diagram with regard to the asymptotic behavior of
the E = 0 state. The regimes denoted by “Localized” (“Extended”)
have localized (extended) E = 0 state. For α = 0, p = 1/2 limit we
recover the (uncorrelated) Dyson model and also for α > 1, the
dimerized Dyson II model is restored. See text for further details
of the localization length in Eq. (6) and Eq. (8).

where �(W ) is the Gamma function. ηl’s are independent
random variables with the probability density function ρ(η) =
pδ(η − 1) + (1 − p)δ(η + 1) with p ∈ [ 1

2 ,1], and α � 0. Jl’s
are short-range-correlated random variables and inhomoge-
neous in space. The inhomogeneity is predominantly in the
edge of the sample, while in the bulk it is suppressed. With
this choice of Jl’s, Eq. (2) reduces to

log

∣∣∣∣ψL−1

ψ0

∣∣∣∣ =
L−1∑
l=1

ηlB
(2)
l

lα
. (5)

In Eq. (5), α and p determine the asymptotic behavior of
ξL(E = 0) as the thermodynamic limit is approached and also
allows us to change the extension of the E = 0 state almost
continuously.

For p �= 1/2 and α � 0, averaging over the disorder and
approximating the sum in Eq. (5) as an integral in the large-L
limit, we get

ξL(E = 0) ∼
⎧⎨
⎩

(2p − 1)−1Lα, 0 � α < 1,

(2p − 1)−1L/ log L, α = 1,

(2p − 1)−1L, α > 1,

(6)

which immediately identifies four distinct regimes. For α = 0,
ξL(E = 0) is finite, which leads to an exponentially localized
state. In the range 0 < α < 1, the localization length diverges
algebraically but slower than the system size, which we refer
to as a quasilocalized state (see also Fig. 1). The logarithmic
correction to ξL(E = 0) at α = 1 produces a polynomial
spatial decay of the wave function. In the limit α → ∞,
the correlation reveals itself via the dimerization of bonds,
J2l−1 = J2l , which is the Dyson II model with an extended
E = 0 state.

For p = 1/2, the sign ηl appears with equal probability.
Therefore, ξ−1

L (E = 0) defined in Eq. (2) goes to zero upon
taking disorder average. Hence, in order to understand the
asymptotic behavior of ξ−1

L (E = 0), we analyze the fluctua-
tions of the sequence {log |ψL−1/ψ0|}, similar to the Dyson I
model as follows. Let AL be the random variable defined after
averaging over B

(2)
l s in Eq. (5),

AL =
[

log

∣∣∣∣ψL−1

ψ0

∣∣∣∣
]

=
L−1∑
l=1

ηl

lα
. (7)

AL is a sum of independent but not identically distributed
random variables with zero mean and variance σ 2

l = 1/l2α .
The Lyapunov central limit theorem [37] then dictates that
the probability distribution of AL approaches to a Gaussian
distribution with zero mean and variance, σ 2

AL
= ∑L−1

l=1 l−2α ,
in the limit L → ∞. The asymptotic behavior of σ 2

AL
can then

be used to extract the behavior of the localization length,

ξL(E = 0) ∝ LσAL
∼

⎧⎨
⎩

Lα+1/2, 0 � α < 1/2,

L/
√

log L, α = 1/2,

L, α > 1/2.

(8)

Three qualitatively different regimes can be identified. For
0 � α < 1/2, the localization length diverges algebraically,
but slower than the system size. At the α = 0, p = 1/2 point,
we recover the Dyson I model, where the localization length
diverges as ∼√

L solely due to fluctuations. Finally, for
α > 1/2, the state is extended with system size. The behavior
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FIG. 2. (a) The disorder-averaged wave packet at different times for the Dyson II model. The central core decays quickly and saturates after
initial dynamics, whereas the tail of the distribution keeps spreading with time. Inset shows the return probability for L = 4097. (b) The growth
of 〈X2(t)〉 with time for L = {513, . . . ,4097} in log-log scale. For finite systems it saturates to a value which grows linearly with the system
size. Inset shows 〈X2(t)〉�E with E = 0 present (�) in �E which grows subdiffusively and absent (♦) which saturates, hence confirming
that the dynamics is governed by the states close to E = 0 (L = 4097). (c) The entanglement entropy shows a logarithmic growth in time
S(t) ∼ logt and the saturation, S∞, grows logarithmically with L as shown in the inset.

of ξL(E = 0) as a function of α and p is summarized in
Fig. 1. Importantly, the phase diagram is stable against any
local perturbations that do not break the original symmetry of
the H, because it does not qualitatively change the structure of
Eq. (2).

III. DYNAMICAL PROPERTIES

Having established that the model (1) with the ran-
dom couplings (3) hosts several different natures of ex-
tended/quasilocalized state at E = 0, we now investigate
its effects on dynamical properties. First, we study charge
propagation via wave packet dynamics in the single-particle
framework [38–41]. The initial wave packet is localized
at a single point l0 in the middle of the chain, ψ(l,t =
0) = δl,l0 . With time it spreads out and its amplitude at the
initial site l0 decays. We monitor the decay of the initial
density via the return probability 〈Rl0 (t)〉 = |ψ(l0,t)|2 and
quantify the spreading of the charge by the disordered av-
erage mean-square displacement 〈X2(t)〉 = ∑

l l
2|ψ(l,t)|2 −

[
∑

l l|ψ(l,t)|2]2. Furthermore, the growth of bipartite entan-
glement entropy S(t)= − Tr{ρL(t) log[ρL(t)]} between two
halves of the system L and R is investigated using standard
free fermion techniques [42], where ρL(t)=TrR[|ψ(t)〉〈ψ(t)|]
and |ψ(t=0)〉 is a random product state at half filling. Under
time evolution, L and R subsystems exchange information
leading to the growth of S(t), which is zero at t = 0. In our
simulations, we use open boundary conditions with W1 = 0.4
and W2 = 10, and checked (not shown) that with periodic
boundary condition, even number of sites, and also with other
values of W(1,2) there are no qualitative difference in the
conclusions.

A. Dyson II (α→∞)

Since the dynamical properties of these localized systems
are expected to be dominated by the properties of the states
close to E = 0, it is expected that the dynamics would be
qualitatively different depending on which regime of the
phase diagram they belong to. We first focus on the Dyson
II model with dimerized hopping. In Fig. 2(a) we show the

probability distribution of the time-dependent wave function at
different times. At long times only the tail of the wave function
keeps spreading, while the return probability saturates after an
algebraic decay as seen in the inset. Finite 〈Rl0 (t)〉 at long
times implies a finite density of exponentially localized states
in the energy spectrum [43].

Figure 2(b) shows the expansion of the width of the wave
packet. The linear behavior of the width with time in log-log
scale suggests 〈X2(t)〉 ∼ tβ , where the nonuniversal exponent
β depends on the disorder strength, e.g., β ≈ 0.35 for W1 =
0.4, which implies subdiffusion. For finite systems, the growth
saturates, with the saturation value growing linearly with
the system size reflecting the spatial extension of the E = 0
state (6).

Note that due to the diverging nature of the density of states,
the dynamics is always going to be dominated by a finite
number of states in the vicinity of E = 0. We ascertain this by
projecting the initial wave packet onto eigenstates within an
energy window �E that includes E = 0 and also away from it
as |ψ0〉�E = P̂�E |ψ(l0,t=0)〉, where P̂�E = ∑

E∈�E |E〉〈E|
and |E〉 is the eigenstate. We contrast the two situations by
measuring the spread of the wave packet as 〈X2(t)〉�E =
〈ψ0|�EX̂2(t)|ψ0〉�E − 〈ψ0|�EX̂2(0)|ψ0〉�E . As seen in the
inset of Fig. 2(b) the spectral decomposed wave packet with
the E = 0 state shows a subdiffusive propagation (�), whereas
the wave packet that has been projected away from the band
center quickly saturates (♦) as one would expect for localized
states.

Figure 2(c) shows the growth of disorder-averaged bipartite
entanglement S(t) starting from a product state. We observe
a logarithmic growth of S(t) in time, which is slower than
the charge transport. For W1 = 0.4 the prefactor of log(t) is
≈ ln(2)/3. In the inset of Fig. 2(c) the saturation value of S(t)
at t → ∞ (S∞) is plotted in a log-linear scale, which shows
logarithmic scaling with system size with a slope ≈ ln(2).
The logarithmic scaling of S∞ is similar to entanglement
scaling of critical states. Unlike in an interacting localized
phase, where entanglement is generated via dephasing due
to interaction [23,24], here it is due to the extended nature
of the E = 0 state, which implies that the saturation time of
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(a) (b)

FIG. 3. (a) 〈X2∞〉 for different values of α in a log-log scale to
highlight the scaling ∝ Lα as expected from the localization length
calculation (6). (b) The return probability 〈Rl0,∞〉 (9) for different α

shows saturation with system size L. Dashed lines are given as guides
to the eye.

S(t) is proportional to the localization length of the extended
state.

Note that there is no qualitative change in our results
at higher values of W1. Specifically for W1 > 1, when the
Gamma distribution (4) becomes nonsingular at zero, 〈X2(t)〉
and S(t) still show a subdiffusive and logarithmic growth in
time, respectively, as shown in the Appendix.

B. 0 � α � 1, p = 1

For any finite α, charge propagation is subdiffusive. The
difference for different α is seen in the scaling of the saturation
values of 〈Rl0,∞〉 and 〈X2∞〉 with L, as the localization lengths
depend on α. Figure 3(a) shows the t → ∞ value of the width
of the wave packet in a log-log plot as a function of system size.
The leading behavior is given by Lα as one would expect from
the extended nature of the E = 0 eigenstate described in Eq.
(6). Crudely approximating the E = 0 eigenstate, |φ0〉, as a box

function of width ξL(E = 0), one finds 〈φ0|X̂2|φ0〉 ∝ ξL(E =
0). Similarly, in Fig. 3(b) we show the return probability at
t → ∞, defined as

〈Rl0 (t)〉=|ψ(l0,t)|2 t=∞−−→
∑

n

|φn(l0)|4, (9)

which is the inverse participation ratio of the single-particle
eigenstates. Two things are of note: (i) for 0 � α � 1,
it converges with L, which emphasizes that most of the
eigenstates are localized, (ii) for α = 0, the 〈Rl0,∞〉 converges
at a different value than other α’s. This can be understood from
the following decomposition of inverse participation ratio (9),∑

n |φn(l0)|4 = ∑
n<|�E| |φn(l0)|4 + ∑

n>|�E| |φn(l0)|4, where
�E is the window of energies enclosing delocalized states
around E = 0. Only for α �= 0 the first term in the sum is
negligible because of the extended nature of the states within
the interval �E; however for α = 0, �E = 0 as all states are
localized (6). Therefore, it is expected that α = 0 converges at
a higher value as seen in Fig. 3(b) compared to other α.

Figure 4(a) shows the time evolution of S(t) for different
values of α after a global quench. The data show a logarithmic
growth of entanglement similar to Dyson II. Note that the
slope at which S(t) grows is almost independent of α, while

(a)

(b) (c)

FIG. 4. (a) Dynamics of entanglement for different values of α

and p = 1 in a log-linear scale after a quench from a product state.
The logarithmic growth of S(t) is visible for all values of α shown
here. (b) The saturation value of S(t) at long time behaves as log(L)
for all α �= 0. (c) The entanglement saturation S∞ shows a linear
growth with α (L = 4097) (10).

the effect of α is clearly visible in the saturation. To highlight
the dependence of the saturation with system size we plot
S∞ as a function of L in Fig. 4(b) in log-linear scale. For
α > 0 we see a logarithmic increase of S∞ with a slope ∝α.
This is further confirmed in Fig. 4(c), where the saturation
of entanglement is plotted as a function of α. The behavior

FIG. 5. Top: The subdiffusive growth of 〈X2(t)〉 for the Dyson
II model in log-log scale for two different values of W1 and for two
different system sizes L = 2049,4097. Bottom: Logarithmic growth
of S(t) for the Dyson II model for W1 = 1.2 and L = 1025,2049.
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suggests the following form of S(t) with time and system size,

S(t) ∼ log(t), S∞ ∼ log[ξL,α(E = 0)], (10)

where ξL,α(E = 0) is the localization length and is ∝ Lα (6).
For α = 0, p > 1/2 the state is exponentially localized and
therefore neither charge or entanglement propagate.

IV. CONCLUSION

In summary, we have constructed a generalized correlated
one-dimensional random bond disorder model and studied
its nonequilibrium dynamics. Even though the localization
length of the E = 0 state is divergent, the state can be
quasilocalized or extended and its spatial extent depends on
the correlations in disorder. We have shown that the dynamical
properties are dominated by the states close to E = 0. In all
the parameter regimes studied we find subdiffusive transport,
while logarithmically slow growth of entanglement. The
saturation value of the wave packet and entanglement depends
on the finite-size localization length of the E = 0 state. In
particular, S∞ grows logarithmically with the localization
length of the E = 0 state. The scaling behavior is similar to the
scaling of S in the excited state of uncorrelated random spin
chain in the same universality class [44,45], except that in our

generalized model disorder correlation enters in the S∞ scaling
via the finite-size localization length of the E = 0 state.
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APPENDIX: RESULTS FOR DIFFERENT DISORDER
STRENGTHS

In this appendix we show additional results for different
values of W1 for the Dyson II model. They further substantiate
our conclusions about subdiffusive wave packet dynamics, and
logarithmically slow entanglement growth in the generalized
model. Figure 5 (top) shows the growth of 〈X2(t)〉 for the
Dyson II model for W1 = 0.8 and W1 = 1.2. For both these
values of W1, 〈X2(t)〉 grows algebraically with time, 〈X2(t)〉 ∼
tβ(W1), with β(W1 = 1.2) ≈ 0.78 and β(W1 = 0.8) ≈ 0.59,
showing the subdiffusive dynamics. Figure 5 (bottom) shows
that the growth of S(t) for the Dyson II model with W1 = 1.2.
It is still clearly visible that the entanglement growth in time
is logarithmic, S(t) ∼ log(t). Note that, for W1 = 1.2, the
Gamma distribution is no longer singular at zero, yet we see
subdiffusive wave packet dynamics and logarithmic entangle-
ment growth, ensuring that this behavior is indeed generic.
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