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We study a one-dimensional XXZ spin chain in a random field on the metallic side of the many-body localization
transition by level statistics. For a fixed interaction, and intermediate disorder below the many-body localization
transition, we find that, asymptotically, the number variance grows faster than linear with a disorder-dependent
exponent. This is consistent with the existence of an anomalous Thouless energy in the spectrum. In noninteracting
disordered metals, this is an energy scale related to the typical time for a particle to diffuse across the sample.
In the interacting case, it seems related to a more intricate anomalous diffusion process. This interpretation is
not fully consistent with recent claims that for intermediate disorder, level statistics are described by a plasma
model with power-law decaying interactions whose number variance grows slower than linear. As disorder is
further increased, still on the metallic side, the Thouless energy is gradually washed out. In the range of sizes
we can explore, level statistics are scale invariant and approach Poisson statistics at the many-body localization
transition. Slightly below the many-body localization transition, spectral correlations, well described by critical
statistics, are quantitatively similar to those of a high-dimensional, noninteracting, disordered conductor at the
Anderson transition.
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I. INTRODUCTION

Spectral analysis is a powerful tool to probe the dynamics
of noninteracting quantum disordered systems [1,2]. For
instance, Poisson statistics is a signature of a disordered
insulator, a situation that occurs for any dimensionality for
short-range hopping and sufficiently strong disorder [3].
By contrast, for disorder weak enough in more than two
dimensions, the system is a disordered metal and the spectral
correlations are given by Wigner-Dyson (WD) statistics [4].
Deviations from WD statistics in disordered metals occur for
eigenvalue separations larger than the Thouless energy [5].
Instead of the slow logarithmic increase of the number
variance, typical of WD statistics, a much faster power-law
growth, with an exponent that only depends on the spatial
dimensionality [6], is observed beyond the Thouless energy.
Its origin lies in the diffusive character of the motion for
sufficiently short times.

As disorder increases, a metal-insulator transition takes
place in more than two dimensions. Around the mobility
edge, the dynamics is characterized by universal critical expo-
nents [7,8], anomalous diffusion [9], a scale-invariant dimen-
sionless conductance [10], and multifractal eigenstates [7,11].
Similar features are also found in other systems [12–18]
where the potential is effectively quasirandom but ultimately
deterministic. Spectral correlations are universal [19] but
different from WD or Poisson statistics. Despite some initial
controversy [5,19,20], it is now clear that level statistics at the
transition are characterized by the following features: (a) scale
invariance [19] so there are no corrections due to the Thouless
energy, (b) level repulsion as in a metal, (c) linear number
variance, as for an insulator, but with a slope less than one that
decreases with the space dimensionality [8,21–23], (d) the
decay of the level-spacing distribution for sufficiently large
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spectral separations is exponential, as for Poisson statistics,
though with a different typical decay [24].

Generalized random matrix models, based on soft-
confining potentials [25,26] or that are mapped onto the
Calogero-Sutherland model at finite temperature [27,28],
have been successfully used to model the level statistics
at the Anderson transition. In these models, correlations
between eigenvalues, usually called critical statistics [24], are
suppressed exponentially with a typical decay that labels its
universality class. Also, effective plasma models [13], where
the correlations between eigenvalues are restricted to a finite
number of eigenvalues, provide a qualitative description of
the spectral correlations at criticality. For spectral interactions
restricted only to nearest neighbors, level statistics are termed
semi-Poisson, though this name is sometimes used to refer to
the general case where the nearest k eigenvalues are correlated.
The upshot of this discussion is that level statistics, which
requires much less computational effort than observables in-
volving eigenfunctions, provide a rather complete description
of the relevant physics of these systems.

A natural question to ask is whether level statistics are
also helpful to characterize the dynamics of a disordered
system in the presence of interactions. Indeed, the description
of the interplay between disorder and interactions [29,30],
loosely referred to as many-body localization (MBL) [31],
has attracted enormous interest in recent years. We summarize
below the main properties of this novel state of quantum matter.
In Refs. [31,32], it was found, based on the approximate
analytical treatment, that for sufficiently strong disorder,
Anderson localization in the noninteracting problem is robust
to weak interactions. A direct consequence is that, neglecting
phonons, the dc conductivity is strictly zero for sufficiently
strong disorder and low temperatures. Rigorous mathematical
results have confirmed this prediction in some limiting
cases. For a vanishing density, localization persists [33] if
weak interactions are turned on. In the limit of mean-field
interactions, where the Hamiltonian is just the nonlinear
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Schrödinger equation, it was demonstrated rigorously [34]
that weak interactions in an otherwise Anderson insulator
induce, at most, a very slow logarithmiclike diffusion. A proof
of MBL in a one-dimensional spin chain has been recently
reported [35,36]. Numerical simulations in small volumes
suggest that the insulating side of the many-body localization
transition is characterized by a logarithmic [37,38], instead of
linear, growth of the entanglement entropy, zero dc conduc-
tivity, and a faster-than-linear growth of the ac conductivity in
the low-frequency limit [39].

On the metallic side, but close to the transition, a Griffith-
like phase [40–47] has been identified, characterized by
slow subdiffusion and also a sublinear power-law growth
of the entanglement entropy. Not much is known for sure
about the physics around the MBL transition. Numerical
calculations of the critical exponents [42] suggest a violation
of the Harris criterion; however, this result has been recently
challenged [48]. In any case, even if the violation does occur,
this is not necessarily incorrect in this context [49]. Due to
similarities with the physics of a single particle on a Bethe
lattice [31,50–52], it is plausible that level statistics around the
transition are close to Poisson statistics as for an insulator.

Regarding level statistics, a detailed analysis of the spectral
correlations of a one-dimensional XXZ chain with a random
field in the strong-disorder limit revealed [53] a transition
from Poisson to WD statistics as the system crosses the MBL
transition by tuning interactions. In a more recent paper [54],
the metallic side of the many-body localization transition
in a similar chain was also investigated by level statistics.
It was found, for intermediate disorder still far from the
transition, that level statistics are well described by an effective
eigenvalue plasma model with power-law interactions [55],
leading to a slower-than-linear growth of the number variance.
Close to the MBL transition, but still on the metallic side, it was
reported that spectral correlations, described by semi-Poisson
statistics, are similar to those of a disordered conductor at the
Anderson transition.

Here we revisit the study of level statistics in the critical
region around the MBL transition and for intermediate disorder
deep in the metallic phase. As in the noninteracting limit, we
aim to characterize the quantum dynamics by a technically
simpler and basis-invariant spectral analysis.

For sufficiently weak disorder, we identify the Thouless
energy [6], typical of a disordered metal in a finite-size
box, in the spectrum. However, unlike the noninteracting
case, in this case it is related to subdiffusive and disorder-
dependent dynamics. For eigenvalue separations smaller than
the Thouless energy, the number variance grows logarithmi-
cally as in WD statistics. For larger separations, the growth
is power law and faster than linear, with an exponent that
decreases with disorder. This suggests that the dynamics
not too close to the transition is controlled by a process
of anomalous diffusion. The level-spacing distribution shows
size-dependent deviations from WD statistics, also consistent
with the existence of an anomalous Thouless energy. We note
that in Ref. [54], the growth of the number variance was
found to be slower than linear. This difference is important for
the physical interpretation of the results. A faster-than-linear
power-law growth of the number variance is a signature
of the Thouless energy, namely, a feature of a noncritical

metal. By contrast, a slower-than-linear growth, at least in
the noninteracting case, is a feature associated to criticality
that can only occur in a system with a scale-invariant spectrum
close to the Anderson transition. As we will explain in detail,
our discrepancy with Ref. [54] is rooted in the different
spectral windows employed to compute the number variance.
While in Ref. [54] only spectral windows containing up to 20
eigenvalues were considered, here we study energy intervals
with up to 300 eigenvalues. We believe that this is necessary
for a more accurate account of power-law growth.

As the MBL transition is approached from the metallic
size, the Thouless energy becomes harder to observe. Level
statistics undergo a smooth crossover towards Poisson statis-
tics. Slightly below the transition, spectral correlations, scale
invariant and well described by critical statistics, are strikingly
similar to those of a high-dimensional noninteracting disor-
dered system at the Anderson transition. Unlike Ref. [54],
we do not observe any signature of semi-Poisson statistics, as
defined in Ref. [13], close to the MBL transition. However,
we agree with Ref. [54] that in this region, level statistics
are critical as in a noninteracting disordered system at the
Anderson transition.

We start by introducing the model and giving some details
of the numerical analysis.

II. THE MODEL AND THE NUMERICAL ANALYSIS

We study the one-dimensional (1D) XXZ Heisenberg model
in a random magnetic field,

H =
L−1∑
i=0

Ŝi · Ŝi+1 + wiŜ
z
i , (1)

where Ŝx,y,z = 1
2 σ̂ x,y,z, σ̂ denotes the Pauli matrices, and wi

is a random magnetic field with a uniform distribution [−h,h].
We consider L = 12,14, . . . ,18 spins. The dimension of the
Hilbert space is therefore 2L. We employ periodic boundary
conditions in order to minimize finite-size effects.

We note it is important that the symmetry of the eigenstates
considered is the same. Following previous literature, we
focus on the subset of eigenvalues associated to eigenstates
of the operator Ŝz = ∑

i Ŝ
z
i . To keep a maximum number of

eigenvalues, only the channel Sz = 0 is considered, where Sz

is the eigenvalue of Ŝz.
Eigenvalues were computed with a routine of the library

EIGEN [56]. EIGEN was chosen because its computation time
for diagonalization is shorter than LAPACK for equal accuracy.

The whole spectrum was calculated, as EIGEN does not
implement partial diagonalization. The maximum size L = 18
we could explore numerically was mostly dictated by the 128
GB RAM available. Table I provides detailed information on
the number of disorder realizations and the total number of
eigenvalues for each value of the disorder h.

For disorder below the critical value hc, extended and
localized states must not be mixed in the analysis of the
spectrum. Moreover, the mobility edge is smeared out due to
finite-size effects. We check that for all the considered disorder
strengths and sizes, it is safe to take one-eighth of the spectrum
around the center, namely, 12.5% of the full spectrum.
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TABLE I. Number of disorder realizations and eigenvalues
calculated for each system size L and disorder h considered.

L Disorder realizations No. eigenvalues

12 10000 9240000
14 1000 3432000
16 (h � 2) 212 2728440
16 (h = 2) 100 1287000
18 (2 � h � 4) 65 3160300
18 (h = 0.75,1.25,1.75) 24 1166880
18 (h = 0.5,1,1.5) 18 875160

A. Unfolding

The averaged spectral density is highly nonuniversal and,
in general, does not give direct information on the quantum
dynamics. It is therefore common that in level statistics studies,
the average spectral density is extracted from the numerical
spectra. This procedure, termed unfolding [57], consists of a
local rescaling of the spectrum so that the local density of
states is one (details in Appendix A). More specifically, the
numerical spectral density, generically a fluctuating quantity,
is fitted by a smooth function. This smooth spectral density is
then used to rescale the spectrum. In that way, it is also possible
to compare eigenvalues from different parts of the spectrum
as distances in the spectrum are measured in units of the local
mean level spacing.

Unfolding is a rather delicate task as it requires one to
carry out a careful separation between smooth and fluctuating
parts of the spectral density. To remove unfolding artifacts,
we employ two local and two global fitting methods (see
Appendix A for a detailed comparison). In general, local
fittings are more accurate for neighboring eigenvalues but
tend to destroy long-range correlations that control long-range
spectral observables such as the number variance. By contrast,
global fittings are less accurate in extracting the smooth part
of the density, but conserve long-range correlations. After a
careful comparison between the different methods, we have
opted for an average cubic global fitting for all the results
presented in the paper. It agrees with a local fitting for
short-range spectral correlations and, unlike the global simple
cubic unfolding, the average spectral density is still very
close to that predicted by a local unfolding. Moreover, we
have checked that this unfolding quantitatively reproduces
previous results [6] on long-range spectral correlations in
a noninteracting three-dimensional tight-binding disordered
system.

B. Critical disorder hc and critical exponent ν

As a first step in the study of spectral correlations, we
employ the adjacent gap ratio (2) [42,58],

ri = min(δi,δi+1)

max(δi,δi+1)
,

(2)
δi = Ei − Ei−1,

where it is assumed that the spectrum is ordered Ei−1 < Ei <

Ei+1, in order to determine the critical disorder hc at which
the MBL transition occurs.

FIG. 1. Average adjacent gap ratio 〈r〉 for the centered half of
the spectrum for L = 18 and different values of disorder where ε =

E−Emin
Emax−Emin

, where Emin and Emax are the minimum and maximum
eigenvalues in the spectrum. The center of the spectrum is close to
WD statistics for h � 2.5, while for h � 3.5 it is closer to the Poisson
statistics prediction. The MBL transition h = hc at the center of the
spectrum occurs between these two values.

The average adjacent gap ratio for a Poisson distribution
is 〈r〉P = 2 ln(2) − 1 ≈ 0.386. For the WD distribution, cor-
responding to a disordered metal, it is 〈r〉W ≈ 0.530. We note
that throughout the paper, we define disordered metal not as a
state of matter with finite conductivity, but rather as a state of
matter in which some degree of level repulsion persists.

At the Anderson or MBL transition h ≡ hc, it lies in be-
tween these two values, even in the thermodynamic limit [58].
This observable has two advantages: it is local, so it is
less affected by size effects, and it is a ratio between local
quantities, so it is independent of the unfolding procedure.
In Fig. 1, we depict results for the adjacent gap ratio for the
centered half of the spectrum and different disorder strength.
As was expected, for sufficiently weak disorder h � 2.5
and close to center, the adjacent gap ratio is close to the
WD prediction, while in the strong disorder limit h � 3.5,
it is already very close to the Poisson value typical of an
insulator. The MBL transition around the center of the band
must therefore occur for intermediate values of disorder,
2.25 < hc < 4.0.

We note that because of finite-size effects, the mobility edge
at hc is not sharp; there exists a size-dependent region around
it with critical properties. In order to estimate hc and ν (see
more details in Appendix B), it is therefore necessary to carry
out (see Fig. 2) a finite-size scaling analysis of the adjacent
gap ratio.

At the MBL transition, the localization length diverges and
the spectral correlations are scale invariant, which is used to
determine hc (crossing point in the left panel). Sufficiently
close to the MBL transition, level statistics are controlled
by scaling laws. It is therefore expected that after a proper
rescaling, the adjacent gap ratio for different sizes will collapse
in a single curve. The scaling for which this occurs allows us to
estimate the critical exponent ν (right panel) that controls both
deviations from spectral scale invariance and the divergence
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FIG. 2. Finite-size scaling analysis of the adjacent gap ratio 〈r〉
after ensemble average. Left: Disorder dependence of the averaged
adjacent gap ratio 〈r〉 (2) for different sizes. The crossing point
h = hc corresponds to the mobility edge of the MBL transition.
Right panel: Rescaled adjacent gap ratio so that all curves for
different sizes collapse in a single curve. The best fit corresponds
to hc = 3.35 ± 0.05 and ν = 0.86 ± 0.13, where ν is the critical
exponent that controls deviations from spectral scale invariance and
also the divergence of the localization length (see Appendix B for
more details).

of the localization length at the transition. The results of
this analysis are hc ≈ 3.35 ± 0.05 and ν ≈ 0.86 ± 0.13. The
error bars were estimated by using a random fitting range
(see details in Appendix B) and a random starting value for
the minimum finder. The error in hc and ν is the standard
deviation after averaging over 10 000 realizations. While the
resulting error estimation for ν seems reasonable, the one
for hc is not realistic given other systematic uncertainties.
These results are in line with those of Ref. [42], hc ≈ 3.6
and ν = 0.8 ± 0.3, that considered larger sizes and had better
statistics. The slightly smaller hc in our case is likely due to the
fact that we are considering a larger spectral window (12%) to
compute it. In [42], it was explicitly found that hc decreases as
one moves from the center of the spectrum. We note that ν ≈ 1
is also the critical exponent that controls the divergence of the
localization length of a noninteracting particle in a disordered
Cayley tree at the Anderson transition. Interestingly, there are
striking similarities [31] between these two problems.

III. RESULTS

We now have all the ingredients to compute the spectral
correlations of the Hamiltonian (1). More specifically, we
study the level-spacing distribution (5), i.e., a short-range
spectral correlator, and the number variance (3), i.e., a long-
range spectral correlator, that provide valuable insights on
the quantum dynamics in the long- and short-time limits,
respectively. We start with the latter as this is the one more
suited to investigate the existence of the Thouless energy in
the system, which is one of the main goals of the paper.

A. Long-range spectral correlations: The number variance

We start by investigating long-range spectral correlations
that provide information on shorter time dynamics which is

FIG. 3. Number variance �2(N ) (3) for a fixed size L = 18 and
different disorder strength h across the MBL transition. For small N

and weak disorder, we clearly observe a logarithmic growth typical
of a disordered metal. For larger N , the observed faster-than-linear
power-law growth is a signature of the Thouless energy in the system.
The saturation observed for even larger N is a consequence of the
finite number of levels used to compute �2(N ). For stronger disorder
(h > 2.5), the number variance seem to approach Poisson statistics
for all N , as in an Anderson insulator, even on the metallic side of
the transition h < hc ≈ 3.4. In Sec. IV, we compare deviations from
Poisson with the predictions of critical statistics.

more sensitive to the existence of the Thouless energy in the
system. For that purpose, we employ the number variance
defined as the variance of the number of levels N (ε) lying in a
band of energy ε (in units of the mean level spacing),

�2(ε) = 〈N2(ε)〉 − 〈N (ε)〉2. (3)

Since in the unfolded spectrum the average spectral density is
1, 〈N (ε)〉 = ε, the energy parameter ε can be replaced by the
average number of levels 〈N〉, denoted by N for simplicity.

For a Poisson distribution typical of an insulator, different
parts of the spectrum are not correlated, so the number
variance is linear with slope one, �2(N ) = N . By contrast, in
a disordered metal or in a random matrix [59], level repulsion
causes, for N � 1, a slow logarithmic increase of the number
variance,

�2(N ) ≈ 2

π2
ln(N ). (4)

This slow growth of the number variance, in comparison with
that for Poisson statistics, illustrates another spectral signature
of disordered metals: spectral rigidity.

In Fig. 3, we depict results for the number variance for
L = 18 as a function of the disorder strength h. For sufficiently
weak disorder h � hc, and small N , we clearly observe the
logarithmic growth expected in a disordered metal. However,
as the eigenvalue separation N increases further, the number
variance undergoes a slow crossover to a much faster power-
law growth, �2(N ) ∼ Nα α(h) � 1 (see Fig. 4). This is a clear
signature of the Thouless energy [6] in the system.

As was mentioned in Sec. I, the Thouless energy in the
noninteracting limit is an energy scale related to the time
that the particle takes to cross the sample. Assuming normal
diffusion, still in the noninteracting limit, the growth of the
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FIG. 4. Power-law exponent α that controls the asymptotic
growth of the number variance �2(N ) ∼ Nα across the transition.
We used a fitting function a + bNα , with a,b,α fitting parameters.
For intermediate disorder (h � 2.5), the faster-than-linear (α > 1)
growth signals the existence of the Thouless energy. This does not
agree with the results of [54] (see Fig. 11 for more details). As the
MBL is approached, hc ≈ 3.35, the growth becomes linear with small
deviations likely due to finite-size effects. These results, especially
the faster-than-linear growth for (h � 2.5), are robust to changes in
the fitting interval [Ni,Nf ] provided that roughly Nf − Ni � 100
and Ni � 1, Nf � 300.

number variance is expected to grow as Nd/2 independently
on disorder, where d > 2 is the space dimensionality. These
arguments cannot easily be carried over to the interaction case,
though, on physical grounds, we also expect that anomalous
diffusion, which characterizes the disorder-dependent Griffith
phase, will lead to an anomalous growth of the number variance
for sufficiently large N , corresponding to small times of the
quantum evolution. It has been argued [31,52] that the MBL
problem shares similarities with a single particle in a d → ∞
lattice. If this analogy is applicable here, it would correspond
to an exponential growth of the number variance for energies
larger than the Thouless energy.

Indeed (see Fig. 4), we observe that for not too weak
disorder, the growth of the number variance is faster than
linear, but seems to be slower than exponential. We note that it
is not possible to completely rule out an exponential growth.
It is well known [6] that in the noninteracting problem, the
asymptotic form of the growth ∼ Nd/2 is only achieved for
energies much larger than the Thouless energy which cannot
be reached in the present numerical simulation. Moreover,
size effects induced by both the finite lattice size and the finite
number of eigenvalues used to compute the number variance
will suppress the growth. The leading correction due to the
latter, expected to be ∼ −N2/n where n is the number of
eigenvalues in a single realization of disorder, is expected to
become relevant for N > 200 (L = 18).

The existence of the Thouless energy is further confirmed in
Fig. 5, which depicts the number variance for a fixed disorder
and different sizes. The threshold for the observation of the
power law on the metallic side increases with system size,
while the exponent does not seem to depend on L.

As disorder approaches hc, the Thouless energy gradually
disappears. Even for small N , we do not observe WD statistics.
On the metallic side, but close to hc, the number variance
is linear �2(N ) ≈ χN with a slope χ � 1 that increases as
h → hc.

These results contrast with those of Ref. [54] where it
was found that for intermediate disorder, level statistics are
described by a plasma model, with power-law interactions,
leading to a sublinear growth of the number variance for
intermediate disorder.

B. Short-range spectral correlations: The level-spacing
distribution

The level-spacing distribution P (s) provides useful infor-
mation about short-range spectral correlations related with the
system evolution for long times of the order of the Heisenberg
time, a time scale related to the inverse of the mean level
spacing 
. More specifically, it is the probability to find two
eigenvalues separated at a distance s in units of 
 with no

FIG. 5. Size dependence of �2(N ) (3) for different disorder strength h. Deviations from logarithmic growth start to occur for larger N as
size increases. This is another indication that the power-law growth of �2(N ) for larger N is a signature of the existence of the Thouless energy
in this system. For h > 2.5, the number variance is almost linear, �2(N ) ≈ χN , and scale invariant. It seems to be close to Poisson statistics
as h → hc. No Thouless energy is observed in this region.
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FIG. 6. Level-spacing distribution P (s) (5) for L = 18 as a function of the disorder. A crossover from WD to Poisson statistics is clearly
observed as disorder increases.

other eigenvalues in between:

P (s) =
∑

i

〈δ(s − εi + εi+1)〉, εi = Ei/
. (5)

In an insulator, it is given by Poisson statistics,

PP (s) = e−s . (6)

By contrast, in a disordered metal for L → ∞, it is given by
the WD spacing distribution [59], which is well approximated
by

PW (s) ≈ π

2
s exp

(
−π

4
s2

)
. (7)

Unlike Poisson statistics, PW (s) ∼ s for s → 0. This level
repulsion is characteristic of extended states.

In Fig. 6, we depict results of P (s) as a function of disorder
h for L = 18, the largest size that we can reach numerically.
As was expected, it is close to Poisson statistics for sufficiently
large h > hc, while for small h < hc it is close to WD statistics.
In the critical region h ≈ hc, it is closer to Poisson statistics,
but level repulsion is still observed for small energy separations
s � 1. Moreover, small deviations are also observed for s �

1. Much larger sizes would be necessary to determine whether
these deviations are a finite-size effect or a genuine feature
of the scale-invariant P (s) that describes the MBL transition.
Taking into account the small size that is possible to explore
numerically, and the proximity of P (s) to Poisson statistics as
h → hc, we tend to believe that this is just a size effect. Even if
this is the case, it would be interesting to characterize it more
quantitatively. We will do that in Sec. IV.

At the moment, we explore the limits of this
(pseudo)criticality by studying the size dependence of P (s)
for a given disorder h. The results, depicted in Fig. 7, are fully
consistent with the previous finite-size scaling analysis of the
adjacent gap ratio. Deep in the metallic region, h < 2.5, P (s)
is size dependent and becomes closer to WD for larger sizes,
namely, it is more metallic. The point from which deviations
from WD start to appear increases with system size. Although
the statistics is not good enough to make definite claims, this
is an early signature of the Thouless energy in this system. By
contrast, in the insulating region h > hc (not shown), P (s) is
well described by Poisson statistics for all the sizes considered.

The level-spacing distribution P (s) in the metallic side,
but close to the transition 2.5 � h < 3.25, seems to be

FIG. 7. Size dependence of P (s) for different disorder strength h in the metallic phase. Well in the metallic phase, the scaling is consistent
with that of a disordered metal with a Thouless energy in the spectrum. As the system approaches the MBL transition hc ≈ 3.4, P (s) becomes
scale invariant. P (s) is closer to Poisson statistics, but the decay is slightly faster.
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FIG. 8. Power-law exponent β, which controls the strength of
level repulsion, P (s) ∼ sβ for s � 1, around the MBL transition as a
function of the system size L. The exponent β decreases as disorder
h and L increases. For L = 18 and h ∼ H ∼ hc, it is already much
smaller than one. This is a strong indication that at the MBL transition,
level statistics are close to Poisson statistics β ≈ 0. Larger volumes
are needed to fully confirm this prediction.

scale invariant. This is a signature of criticality, namely, the
localization length is already larger than the system size and
the system behaves as if it is already at the MBL transition.
Although it is close to Poisson, we still clearly observe level
repulsion for s � 1 and deviations from Poisson statistics for
larger energy separations. For h = 2.5, it seems that the decay
is slightly faster than exponential, though we refrain from
making a more quantitative statement because the range of
spectral distances s < 9 available is too small.

A similar nonexponential decay was observed in early
numerical studies [57,60,61] of P (s) close to the Anderson
transition in the noninteracting limit. In that case, it turned out
that this was only a numerical artifact due to the small size of
the system and the limited range of spectral distances (s) that
could be explored numerically. Although further studies are
required to clarify this issue, it is possible this might also be the
case here. There is indeed already some evidence [33,58] that,
right at the mobility edge of the MBL transition, level statistics
are likely to be Poisson. This is also consistent with our results.
In Fig. 8, we plot the exponent β, which controls the strength of
level repulsion P (s) ∼ sβ, s � 1, for a function of the system
size L around the MBL transition. A value that approaches zero
in the thermodynamic limit is a signature of Poisson statistics,
while it is close to one for a metal. We get values of β much
closer to zero that moreover decrease with system size. This is
a strong indication that at the MBL transition, there is no level
repulsion and level statistics is Poisson.

It has been recently reported [54] that sufficiently close to
the MBL transition, the spectral correlations are scale invariant
and described by semi-Poisson statistics [13], P (s) ∝ se−As

with A > 2. Our results agree qualitatively with this picture
for disorder below the transition. Level statistics in this region
have indeed features typical of a disordered metal at the metal-
insulator transition, but there is no quantitative agreement with
semi-Poisson statistics as defined in [13]. More specifically,
we find (see Fig. 9) a much weaker level repulsion and A � 2.
We postpone a quantitative comparison with the predictions of
Ref. [54] to Sec. IV.

FIG. 9. Level-spacing distribution P (s) (5) close to the MBL
transition hc ≈ 3.35. Level statistics are not close to semi-Poisson
statistics for any value of h. The best fit for h = 3.25 (red line), very
similar to Poisson statistics, agrees with that of the disordered system
at the Anderson transition in the d � 1 limit.

IV. COMPARISON BETWEEN NUMERICAL RESULTS
AND THEORETICAL MODELS

In this section, we carry out a quantitative comparison
between numerical spectral correlations and analytical results
expected to describe a disordered system at the metal-insulator
transition. We also explicitly compare our results with the
predictions of Ref. [54].

We start by analyzing more quantitatively the number
variance close to the MBL transition. From previous results
(see Fig. 3), it seems clear that correlations for h � hc

share many of the features of an Anderson transition in the
noninteracting limit: scale invariance, at least in the range of
volumes that can be explored numerically, level repulsion, as
in WD statistics, and linear number variance, as in Poisson
statistics but with a slope less than one that depends on
disorder. The so-called critical statistics [24–28] have all these
features. It can be understood as a plasma model that depends
on an extra parameter that controls the range of the eigenvalue
interactions. Interactions for sufficiently close eigenvalues are
logarithmic, as in random matrix theory, while in the opposite
limit, correlations are suppressed exponentially [15].

We have fitted the numerical number variance with the
prediction for critical statistics [19,24–28,62,63]. A free
parameter k labels the universality class which in the case of the
Anderson transition depends only on the spatial dimensionality
d of the system. There are slightly different representations of
critical statistics leading to very similar spectral correlations.
Here we use the one based on the mapping onto a Calogero-
Sutherland model at finite temperature [28]. The final result
for the number variance is

�2(N ) = N + 2
∫ N

0
ds(N − s)R2,c(s), (8)

with

R2,c(x) = −K̄2(x) −
[

d

dx
K̄(x)

] ∫ ∞

x

K̄(t)dt, (9)
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K̄(x) =
√

k

∫ ∞

0

cos(πx
√

kt)

2
√

t

dt

1 + (e1/k − 1)−1et

∼ πk

2

sin(πx)

sinh(π2kx/2)
, (10)

where, strictly speaking, the hyperbolic kernel only applies in
the k < 1 limit though the phenomenology is almost identical
to that of the integral kernel.

For all values of k, the number variance is asymptotically
linear with a slope 0 < χ (k) < 1. For h ≈ hc, we have found
good agreement (see left plot of Fig. 10) between the numerical
results and the theoretical prediction of critical statistics.

Due to the limitation in the sizes that can be explored
numerically, it is unclear to us whether this is a genuine feature
of the MBL transition or simply a size effect. It seems the latter
as, at h = hc, level statistics are very close to Poisson χ = 1,
while in the noninteracting metal-insulator transition, the slope
is markedly smaller than one, except in the d → ∞ limit [8].
The downward trend that we observe for large N is likely a
size effect related to the fact that we are computing the number
variance for a finite number n of eigenvalues so we expect [64]
a leading correction ∼ −N2/n.

In order to further confirm that critical statistics describes
level statistics close to the MBL transition, at least for finite
lattices, we have computed 
3(N ) statistics,


3(N ) = 2

N4

∫ N

0
(N3 − 2N2r + r3)�2(r)dr. (11)

This spectral correlator minimizes size effects since it projects
out ∼ −N2/n the leading size corrections [64]. Moreover,
it shares many of the number variance features: logarithmic
asymptotic growth for random matrix ensembles and 
3(N ) ≈
χN/15 for Poisson statistics with χ = 1 and critical statistics
χ < 1. The results, depicted in Fig. 10, clearly show a much
better agreement between the numerical spectral correlations
and the predictions of critical statistics. Indeed, the linear

behavior, a signature of critical statistics, is still observed even
for comparatively large spectral intervals.

Heuristically, we could interpret these results as a progres-
sive increase of the effective dimensionality of the system, and
therefore a slope χ closer to Poisson, as the MBL transition is
approached. In other words, the picture that the MBL transition
is similar to the noninteracting transition in d → ∞ could be
generalized to the metallic phase close to the transition where
the dynamics, at least for small sizes, is similar to that of the
critical region in a disordered noninteracting metal at large but
finite dimension. That is also consistent with the fact [8] that
the slope of the number variance at the Anderson transition
χ ∼ 1 − 2/d tends to Poisson statistics in the d → ∞ limit.
Indeed, intriguing similarities between two similar problems,
i.e., the MBL problem and the problem of a single particle in a
Cayley tree that resembles a regular lattice in the d → ∞ limit,
have already been suggested in the literature [31]. Moreover,
rigorous results in the mathematical [33] literature suggest
that provided that the MBL problem can be approximately
mapped to a Bethe lattice, Poisson statistics will describe level
statistics at the MBL transition. Numerical simulations in small
lattices [54,58] have confirmed that level statistics is close to
Poisson at the MBL transition. Therefore, it is reasonable to
expect that slightly below disorder, the MBL problem must
be related to the properties of a high-, but finite-dimensional
disordered conductor.

We now explicitly compare the number variance for
intermediate disorder 1.5 < h < 2.5 with the prediction of
Ref. [54]: a plasma model with power-law interactions [55]
leading to a growth of the number variance slower than
linear. The results, depicted in Fig. 11, clearly show that for
a sufficiently large N , the growth of the numerical number
variance is faster than linear, a signature of the Thouless energy
of the system. Moreover, the numerical level statistics are not
scale invariant so it cannot, in principle, be described by a
scale-invariant plasma model. It seems more likely that the
numerical spectral correlations are similar instead to that of a
plasma model [65] with short-range logarithmic correlations
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FIG. 10. Left: Close to hc, the number variance is well described by critical statistics. It is linear with a slope 1/2 < χ � 1, different from
semi-Poisson statistics (χ = 1/2,1/3, . . .). Right: 
3(N ) (11) for different disorder strength. Close to hc, level statistics is well described by
critical statistics 
3(N ) ≈ χN/15. It is linear with a slope 1/2 < χ � 1, different from semi-Poisson statistics (χ = 1/2,1/3, . . .).
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FIG. 11. �2(N ) (3) for different intermediate disorder strength
well in the metallic phase. The growth of the number variance is faster
than linear, in agreement with the existence of a Thouless energy in
the system. In all cases, the fitting interval is [20,200]. The best fitting
is not very sensitive on the fitting interval provided that the lower limit
is N � 1 and the upper limit 100 < N < 300. If the interval is too
small, [3,20] (red circles), the best fitting is very sensitive to the fitting
interval. Moreover, the predicted slower-than-linear growth (red dots)
seems to be an artifact of the fitting procedure. The numerical results
(purple line) and the modified fitting (orange squares) clearly point
to a much faster growth. We believe that this is the reason for the
disagreement with the results of Ref. [54]. For comparison, we also
show results for the Gaussian orthogonal ensemble (GOE) where
spectral rigidity (4) is observed at all scales.

and long-range, size-dependent, power-law correlations. We
believe that the discrepancy with our results has to do with
the fact that the fitting carried out in [54] only involved small
N � 20. In order to observe the faster-than-linear growth, it is
necessary to explore a substantially larger interval.

Finally, we comment on the recent claim [54] that very
close to the MBL transition, but still on the metallic side,
spectral correlations are similar to that of a disordered system
at the Anderson transition and are well described by semi-
Poisson statistics [13]. As was mentioned previously, semi-
Poisson statistics [13] describes the spectral correlations of an
eigenvalue plasma model where interactions are restricted to
nearest neighbors only. The number variance and level-spacing
distribution have a particularly simple form,

�2(N ) = N/2 + 1 − e−4N

8
, P (s) = 4se−2s . (12)

This intermediate statistics describes well the spectral cor-
relations of pseudointegrable billiards and some qualitative
features of the Anderson transition. We agree with [54] that
level statistics close to the MBL transition is similar to that of a
system at the metal-insulator transition, but we do not observe
any quantitative signature of semi-Poisson statistics in the
numerical spectral correlations. The number variance, depicted
in Fig. 10 for L = 18 for different h ≈ hc, is linear, but quite
close to Poisson statistics �2(N ) = N . The slope increases
with h and is above the semi-Poisson statistics prediction
χ � 1/2 for h > 2.6. Therefore, close to hc, level statistics

are never well described by semi-Poisson statistics. Results
for P (s) (see Fig. 9) confirm that level statistics are much
closer to Poisson, and better described by critical statistics,
than to semi-Poisson statistics in the region close to the MBL
transition. Taking into account that no explicit comparison with
semi-Poisson statistics [13] was carried out in [54], we believe
that the source of disagreement is not the numerical results
of [54] close to the MBL transition, but is the terminology
used. It seems that semi-Poisson statistics in [54] is not used
in the strict sense of the plasma model of [13], but rather
in a broader sense to refer to level statistics at the Anderson
transition.

V. CONCLUSIONS

We have investigated the interplay of interactions and
disorder by level statistics in a one-dimensional XXZ spin
chain in a random field. In agreement with previous works, we
have found a transition from a metallic phase to a many-body
localized phase at a finite disorder h ≈ 3.4. The critical
exponent ν ≈ 1 that controls the MBL transition, here obtained
by level statistics, is not far from that of a noninteracting
particle in a Cayley tree that mimics a conventional lattice in
the d → ∞ limit. Deep in the metallic phase, we have found
clear evidence of the existence of the Thouless energy in this
system. As expected in a metal, for eigenvalues separated less
than the Thouless energy, level statistics are well described
by WD statistics. For larger separations, the number variance
shows a growth faster than linear, consistent with quantum
dynamics governed by a process of anomalous diffusion.
Additional research would be necessary to exactly determine
the precise relation between this anomalous Thouless energy
and the subdiffusive phase that occurs on the metallic but not
far from the MBL transition. As the system approaches the
MBL transition, the spectrum becomes approximately scale
invariant and no Thouless energy is observed. The number
variance and the level-spacing distribution gradually become
closer to Poisson statistics. This result is consistent with a
metal-insulator transition in the limit of infinite spatial dimen-
sions. Slightly below the MBL transition, level statistics are
well described by critical statistics. Spectral correlations in this
limit are similar to that of a high-dimensional, noninteracting
disordered system at the Anderson transition. It is likely that
eigenstates in this regime are sparse multifractal with typical
exponents that are sensitive to disorder.
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APPENDIX A: UNFOLDING

This Appendix presents in more detail the unfolding theory
and defines the unfolding methods which have been considered
in Sec. II A and compared in Fig. 12.

To use level statistics, it is necessary to unfold the part of
the spectrum considered. Indeed, to compare statistics from
different parts of the spectrum, their densities of state must
be equal. Unfolding consists of stretching the spectrum to

144201-9
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FIG. 12. Comparison between the impact of local (crosses) and global (squares) unfoldings (definitions in Appendix A) on the level
statistics for L = 18. The density of states ρ shows local methods are more accurate, but they destroy correlations in the number variance
�2(N ). Local and global methods agree on the spacing distribution P (s) and on short-range correlations.

normalize the density of state to unity. This is done by a fit of
the staircase function η [57], defined for increasingly sorted
eigenvalues E1, . . . ,EN as

η(E) =
∫ E

−∞
S(E′)dE′ =

N∑
n=1

�(E − En),

S(E) =
N∑

n=1

δ(E − En). (A1)

The staircase function is decomposed in a smooth part η̄(E)
and fluctuations δη(E):

η(E) = η̄(E) + δη(E). (A2)

The slope of the smooth part gives the local density of state.
Unfolding corresponds to mapping the eigenvalues onto the
smooth part,

En → εn = η̄(En). (A3)
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This change of variable has transformed the staircase function
into

η̂(ε) = ε + δη̂(ε), (A4)

where it is seen that the density of states is unity over the whole
spectrum.

The difficulty lies in the definition of the smooth part.
There are as many ways of unfolding as there are fitting
or smoothing methods. However, the unfolding methods
are divided between the local and the global methods. A
local unfolding calculates η̄(E) from the values of η in
a range [E + 
E,E − 
E], thus deleting any correlations
between levels separated by more than 2
E. As a result,
the correlation function and any related observable—such
as the number variance—are irrelevant for high energies.
On the contrary, a global unfolding using all values of η

preserves these correlations, but it is more difficult to check its
validity.

Four different methods have been tested and compared.
The simplest uses a global polynomial regression with degree
3. Higher degrees can lead to overfitting. Degree 1 (linear
regression) gives the average spacing from the invert of the
resulting slope. The other implemented global unfolding is
the most complex. It assumes η̄(E) is defined as the average
staircase function (averaged over all disorder realizations). As
a consequence, a polynomial regression of degree 3 is used to
fit an estimate of the average staircase function, the result of
the average over all disorder realization calculated so far. The
complexity comes from this averaging. Because eigenvalues
are sorted in the staircase function, its shape varies a lot
with different disorder realizations, which makes it difficult
to average correctly with a small number of realizations (a few
dozen in our case for L = 18). It can be seen experimentally
that these staircase functions can be rescaled into a single
shape with a change of variable E → k(E − E0), where k

depends on the disorder realization. After this transformation,
the averaging is more efficient.

The first local unfolding method is a simple noncontinuous
linear by part fitting. The spectrum is divided in blocks of 100
consecutive eigenvalues, and each block is fitted independently
with a linear regression. The second local method is called

linear smoothing. For each eigenvalue, the block of 100
levels around the eigenvalue of interest is fitted with a linear
regression. Only the eigenvalue of interest is mapped with this
fit. As a result, there is a different fit for mapping each level.

The comparison of these four methods (Fig. 12) shows
that local methods average the density of state ρ to unity
in a finer way than global methods. Moreover, the simple
cubic method gives a “bad” density of state, proof that it
does not unfold correctly. Nevertheless, global unfoldings keep
the correlations at any range, and seem to agree with local
unfolding on short-range correlations and spacing distribution.
Because long-range correlations are needed in this work, we
assumed that the global averaging unfolding method is correct.

APPENDIX B: SCALING ANALYSIS

The critical disorder hc and critical exponent ν = 1/μ have
been estimated using a scaling analysis on the adjacent gap
ratio. The idea is to extrapolate the ratio from different system
sizes to an infinite volume. For L = 12,14,16,18 and h =
2,2.25,2.5, . . . ,4, a global value RL(h) has been calculated
from the average adjacent gap ratio over the 4% center of the
spectrum. Each RL have then been rescaled with the change
of variable h → (h − hc)Lμ, so that the different RL form a
single curb [42]. In practice, hc and μ are found by minimizing
the cost function,

S(hc,μ) = 1

hmax − hmin

∫ hmax

hmin

VarL{RL[(h − hc)Lμ]}dh,

(B1)

where VarL is the variance over the different values of L. RL

are interpolated using cubic splines. In order to estimate the
error in hc and ν, we carry out the fitting in the random interval
where hmin is extracted from a box distribution between 2
and 3, and hmax between 3.75 and 4. The starting values of
hc and μ are taken from a box distribution [2.75,3.75] and
[0.5,2], respectively. The error in ν and hc results from the
standard deviation after averaging over the above different
fitting intervals.
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