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Theory of driven nonequilibrium critical phenomena
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A system driven in the vicinity of its critical point by varying a relevant field in an arbitrary function of
time is a generic system that possesses a long relaxation time compared with the driving time scale and thus
represents a large class of nonequilibrium systems. For such a manifestly nonlinear nonequilibrium strongly
fluctuating system, we show that there exists universal nonequilibrium critical behavior that is incredibly well
described by its equilibrium critical properties. A dynamic renormalization-group theory is developed to account
for the behavior. The weak driving may give rise to several time scales depending on its form and thus rich
nonequilibrium phenomena of various regimes and their crossovers, negative susceptibilities, as well as a violation
of fluctuation-dissipation theorem and hysteresis. An initial condition that can be in either equilibrium or
nonequilibrium but has longer correlations than the driving scales also results in a unique regime and complicates
the situation. The implication of the results on measurement is also discussed. The theory may shed light on the
study of other nonequilibrium systems and even nonlinear science.
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I. INTRODUCTION

Although equilibrium statistical physics has achieved great
success, equilibrium systems are an exception rather than
the rule: nonequilibrium phenomena are far more abundant
and thus attract considerable attention [1–12]. Even though a
systematic framework similar to the equilibrium statistical me-
chanics is still elusive, unifying principles for some nonequi-
librium systems have emerged. For small systems, for instance,
the key role of fluctuations and various fluctuation theorems
for them have given birth to the stochastic thermodynamics
[13] and the thermodynamics of information [14]. However,
how about macroscopic systems?

Nonequilibrium systems are disparate and a systematic
classification is still absent. One way can be to classify them
according to the drives that bring them into nonequilibrium
states and are thus not necessarily periodic [15]. One category
is then to change some controlling parameters of a system
instantaneously to their new values. The system then enters
a nonequilibrium relaxation process. It can result in either
a new equilibrium state or a nonequilibrium steady state
[1–6,10–12,16] depending on whether a finite current flows
through the system. Another one is to change the parameters
infinitely slowly [8]. This is an adiabatical way that is usually
invoked in theoretical studies such as linear response to study
small deviations from equilibrium. The third category, on
which we focus here, is to change the parameters within a finite
time. Jarzynski’s work theorem for small systems was derived
for such processes [17]. For a macroscopic system, however,
such a driving does not necessarily take it into nonequilibrium
states.

Whether a driven system is in equilibrium or not depends
on its relaxation time and the time scale of the driving. If the
former is shorter than the latter, the system can follow the
variation of the external driving adiabatically and hence stays
in quasiequilibrium or adiabatic states. Only in the reverse
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case can a system fall genuinely out of equilibrium. The larger
the difference between the two time scales, the more strongly
the system deviates from its equilibrium states. A system in
a glassy state has a long relaxation time. A system close to
its critical point also possesses a divergent correlation time.
Moreover, the equilibrium properties of the latter system have a
well-established theoretical framework of the renormalization-
group (RG) theory [18–26]. Accordingly, driving a system
in the vicinity of its critical point within a finite time is
a prototype of genuine nonequilibrium systems and is well
fitted for studying whether universal nonequilibrium behavior
exists or not. For comparison, relaxing a critical system in
the first category has led to a critical initial slip [27] and
the corresponding method of short-time critical dynamics
has been applied extensively to estimate critical properties
[28–30].

Indeed, some aspects of such driven systems have already
been studied. On the one hand, the Kibble-Zurek (KZ)
mechanism [31–34], first proposed in cosmology and then
applied to condensed matter physics, provides a mechanism
for nonequilibrium topological defect formation after a system
is cooled through a continuous phase transition to a symmetry-
broken ordered phase. Upon combining the equilibrium scal-
ing near the critical point with the adiabatic-impulse-adiabatic
approximation, a universal KZ scaling for the defect density
has been proposed [33–36]. It has then been tested intensively
in many systems, ranging from classical [37–53] to quantum
[35,36,54–66]. A recent experiment on the Bose-Einstein
condensation found agreement with the KZ scaling [52],
though another one about the Mott insulator to superfluid
transition on optical lattices concluded further theories were
needed [66]. This is in line with the fact that most experimental
results require additional assumptions for an interpretation of
their consistency with the KZ scaling [67]. As defect counting
is not easy [68] and whether phase ordering plays a role or not
is yet to be clarified [69], it was proposed recently to detect the
scaling of other observables [68]. The two recent experiments,
for example, measured the domain size [52] and the correlation
length [66] instead of the defect density.
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On the other hand, finite-time scaling (FTS) [70,71] offers
a different perspective on the problem. From the analogy
between the space domain of a diverging correlation length
that may get longer than a system’s size and the time domain
of a diverging correlation time teq that may be longer than its
allowable relaxation time, FTS was proposed as a temporal
counterpart of the well-known finite-size scaling (FSS). A lin-
ear driving with a rate R1 was found to specify a readily tunable
driving time scale tR1 that is asymptotically proportional to
R

−z/r1
1 , where r1 is the RG eigenvalue of R1 and z the dynamic

critical exponent. Similar to FSS, in the FTS regime, tR1 � teq;
the system falls out of equilibrium and just lies in the impulse
regime of the KZ mechanism. This means that tR1 divides the
adiabatic and impulse regimes and governs the evolution of
the latter, thus improving its understanding [72]. FTS has been
successfully applied to classical [70–79] and quantum systems
[80–82] to determine their critical properties. In particular, a
positive specific-heat critical exponent α and thus violation
of the bound for the correlation-length critical exponent ν

[83] was found for a randomness-rounded first-order phase
transition [75], corroborated by subsequent studies [84,85],
and the critical behaviors of heating and cooling were observed
to be qualitatively different [72]. In addition, FTS has been
combined with the critical initial slip, extending the KZ
mechanism to beyond adiabaticity [86].

So far, most work for the KZ mechanism and the FTS
considers primarily a linear driving across the critical point.
For a driving that is not exactly linear in time t , it is linearized
near the critical point [35,58,87]. For a nonlinear driving,
a monomial form tn is usually considered with a nonunity
integer n [35,58,70,76,87]. An advantage of these forms is
that essentially only one parameter is involved and the driving
may appear simple. However, it is not easy to confirm a driving
to be linear in experiments. Questions rising naturally are then
how about a general driving of an arbitrary form within a finite
time. How can one generalize the understanding gained in FTS
to such a general case? Does such a case possess universal
behavior, and if yes, how to describe it?

Note that driving in a general form within a finite time
near a critical point is highly nontrivial. Within a finite
time, the system inevitably falls out of equilibrium due to
critical slowing down. Also, it is characterized by a set of
usually nonunity critical exponents and thus behaves strongly
nonlinearly there [88]. The theory of FTS [70,71,88], which
deals with both the nonequilibrium behavior in the FTS regime
and the equilibrium behavior in the adiabatic regime, is math-
ematically a stochastic nonlinear time-dependent Landau-
Ginzburg equation [23–26]. Upon a general driving, one of the
controlling parameters becomes an arbitrary function of time.
So, whether or not such a nonlinear partial differential equation
in nonequilibrium situations shows universal behavior is surely
not obvious even though the magnitude of the driving is
small.

In this paper, we study the behavior of a system that is
driven weakly close to its critical point within a finite time
in a form that does not generate resonances but otherwise is
arbitrary. We shall show that the system exhibits universal
nonequilibrium critical behavior as may be expected. What
is unexpected is that, incredibly, this driven critical behavior,
far off equilibrium as the fluctuation-dissipation theorem is

violated and the susceptibility can take on negative values due
to hysteresis, is well described by only the equilibrium static
and dynamic critical exponents, though the scaling functions
can still involve singularities that need the exponent of the
driving. A dynamic RG theory will be developed for the system
to account for its universal nonequilibrium critical behavior.
It shows that there exist various time scales determined by
the driving parameters themselves and their combinations.
As a result, the system can lie in different nonequilibrium
regimes controlled by different time scales, with crossovers
between them depending on the parameters. This generalizes
the theory of FTS in which a single time scale, arising
from a linear driving, governs the evolution of the system
in the nonequilibrium regime. An initial condition that has
longer correlations than the driving scales also gives rise to a
unique regime and complicates the situation. This is opposite
to the critical initial slip in which a nonequilibrium initial
state has shorter correlations than those of the equilibrium
state at the values of the initial driving parameters. Our
theory furnishes a corrected understanding of experimental
measurements in which an external driving is applied to a
system with long relaxation times. As the system studied is
a generic nonequilibrium one, the theory may shed light on
the study of other nonequilibrium systems. It may also be
instructive to nonlinear science as the driving may help to
probe scaling behavior there.

We note that the driving form can be arbitrary except
that sometimes the driving itself may generate some kinds of
resonance depending on the systems considered. At present,
we can only detect this from the results a posteriori. In case
they do not fit the theory, some resonance may be in effect.
There exist a class of driven dissipative systems in which a
strong driving leads to new nonequilibrium phase transitions
[89–93], and a new critical exponent associated with the
nonequilibrium driving has been found [91,92]. These may
be regarded as a kind of resonances in which the driving acts
to create and maintain the new transitions, whereas in the
present case the driving serves as a probe of the transition; it
does not change radically the existing transition. We believe,
however, that the present approach can also apply to that case
to study the critical properties.

In the following, we shall first develop a dynamic RG theory
in Sec. II and study the effect of initial conditions in Sec. III.
We then apply the theory to several specific forms of driving
and discuss its implication to measurements in Secs. IV and
V, respectively. In order to test our result, we perform Monte
Carlo (MC) simulations using the model and method in Sec. VI
with the results being detailed in Sec. VII. Conclusions are
given in Sec. VIII.

II. DYNAMIC RG THEORY

In this section, a dynamic RG theory is first developed to
analyze the universal behavior of a system driven by a general
temporal form near its critical point. Then different timescales
are identified and crossovers are briefly discussed from the
scaling forms obtained. We only consider the cases in which
the system starts with an equilibrium initial condition far away
from the critical point. The effect of initial conditions is left to
Sec. III.
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A. Theory

The dynamic RG theory for a system with a driving was
initiated in a theory of first-order phase transitions [94]. It
was then applied back to critical phenomena [71,88]. Here
we shall generalize the theory to a driving of a general form
and identify the restriction on the driving with which different
behavior may emerge.

Any relevant parameter such as the temperature T or an
externally applied field can serve as a driving field. Without
loss of generality, we use the terminology of magnetism and
choose the external magnetic field H as the driving throughout.
For clarity, we shall often set the reduced temperature τ = T −
Tc = 0 and ignore the effect of finite system sizes L, where
Tc is the critical temperature. They can be taken into account
straightforwardly, though finite-time finite-size scaling may
emerge in cooling when L is considered [72].

Consider a φ4 free energy functional [19–22]

F[φ] =
∫

dr
[

1

2
τ̄ φ2 + 1

4!
gφ4 + 1

2
(∇φ)2 − Hφ

]
, (1)

where φ is a coarse-grained field variable, g a coupling
constant, and τ̄ the distance to the mean-field Tc at H = 0.
The dynamics is governed by the Langevin equation

∂φ

∂t
= −λ

δF
δφ

+ ζ, (2)

where λ is a kinetic coefficient and ζ is a Gaussian white
noise satisfying 〈ζ (r,t)〉 = 0 and 〈ζ (r,t)ζ (r′,t ′)〉 = 2λT δ(r −
r′)δ(t − t ′). The dynamic model, Eqs. (1) and (2), constitutes
the simplest equilibrium critical dynamics of Model A for the
nonconserved order parameter [23]. It is a nonlinear stochastic
partial differential equation that cannot be solved exactly
generally. Moreover, perturbation expansions near the critical
point are plagued with infrared divergences [19].

However, universal long-wavelength long-time properties
can be found by the RG theory without solving the equation.
This can be done systematically using field-theoretic tech-
niques [20,21]. It has been shown that the model of Eqs. (1)
and (2) is equivalent to a dynamical field theory described by
the dynamical functional [25,26,95]

I [φ,φ̃] =
∫

drdt

{
φ̃

[
φ̇ + λ(τ̄ − ∇2)φ

+ 1

3!
λgφ3 − λH

]
− λT φ̃2

}
, (3)

where φ̃ is a response field [96]. In the field-theoretic
framework, the universal critical behavior is determined by the
renormalization factors that remove the divergences arising at
long times and when the underlying lattice constant of the
original theory is sent to vanishing.

For a constant external field H and an equilibrium initial
condition, because of the supersymmetry of I [φ,φ̃] [20],
it is well known that only the following four independent
renormalization factors Z defined as

φ → φ0 = Z
1/2
φ φ, ϕ̃ → φ̃0 = Z

1/2
φ̃

φ̃,

g → g0 = Ndμ
εZ−2

φ Zuu, λ → λ0 = Z
1/2
φ Z

−1/2
φ̃

λ, (4)

τ̄ → τ̄0 = Z−1
φ Zτ τ + τ̄c, H → H0 = Z

−1/2
φ H,

are needed, where the subscripts 0 denote bare parameters, μ

is an arbitrary momentum scale, τ̄c the shifted critical point,
ε = 4 − d, and Nd = 2/[(4π )d/2(d/2)] with d being the
space dimensionality and  the Euler Gamma function. We
have directly renormalized the field H in Eq. (4). It results
from the expansion of response functions with H [20,21].
The four Z determine the fixed point and three independent
critical exponents including the dynamic one. However, when
the initial state is out of equilibrium with a short correlation in
the vicinity of the critical point, it was found that another new
Z factor is required to cancel the new divergence due to the
initial time. This leads to an independent critical initial-slip
exponent [27,95].

Now, for a driving with a time-dependent H , upon ignoring
the effects from the nonequilibrium initial conditions, which
have been studied [86], whether new exponents are needed
hinges on whether new intrinsic divergences are generated.
Since we only focus on a spatially homogeneous driving,
possible new divergences can only stem from the time domain.
When H blows up with t as in the linearly driving case, a
divergence at t → ∞ is always present. However, it is extrinsic
as it arises from the driving itself. A nontrivial divergence
must originate from a resonancelike interaction of the driving
with the system considered. This must then result in new
exponents [91,92]. Interesting as it is, this is not the case on
which we focus here as our aim here is to bring a system out
of equilibrium with weak drives. In this case, we can again
expand the response function with H at each instant as in the
time-independent case. Therefore the four Z suffice to remove
all the divergences and no new exponents are needed! We shall
meet a new singularity in some monomial driving, but that is
generated completely by the form of the field itself and no
critical exponents are needed there.

With the renormalization factors, the universal behavior can
be determined by the RG equation. It can be derived formally
from 〈φ〉 ≡ M(μ,λ,u,τ,H ) by the fact that the bare quantities
are independent of μ as [20,21,71,88][

μ∂μ + ςλ∂λ + β∂u + γτ τ∂τ + 1
2γφ(H∂H + 1)

]
M = 0,

(5)

where the Wilson functions are defined as

ς = μ∂μ ln λ, γφ = μ∂μ ln Zφ,

γτ = μ∂μ ln τ, β(u) = μ∂μu (6)

at constant bare parameters. At the fixed point u = u∗ at which
β(u∗) = 0, combining the solution of Eq. (5) with the result of
dimension analysis, one arrives at

M(t,H,τ ) = b−β/νM(tb−z,Hbβδ/ν,τb1/ν), (7)

where b is a length rescaling factor and the critical exponents
are given as usual by

η = γ ∗
φ , ν−1 = 2 − γ ∗

τ , z = 2 + ς∗,

β/ν = (d − 2 + η)/2, δ = (d + 2 − η)/(d − 2 + η) (8)

with the stars marking the values at the fixed point. Equation (7)
gives the scale transform of M and applies to both a constant
and a time-dependent H . It can give rise to various scaling
forms. For example, choosing a scale such that τb1/ν is a
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constant leads to

M(t,H,τ ) = τβfτ (tτ νz,Hτ−βδ), (9)

where fτ is a universal scaling function.
We now turn to the parameters that specify the time

dependence of the driving. Let H = H (t,B1, . . . ,Bp), where
Bi,i = 1, . . . ,Bp are p independent parameters. Using Bi

and t instead of H and t as variables because they are not
independent, we can write formally the RG equation as [71][

μ∂μ + ςt∂t + β∂u +
p∑

i=1

(γBi
Bi∂Bi

) + 1

2
γφ

]
M = 0, (10)

where γBi
= μ∂μ ln Bi are the Wilson function of Bi and we

have replaced λ with t directly and suppressed τ by considering
the critical theory only. As a result, a similar method then gives
rise to the solution

M(t,B1, . . . ,Bp) = b−β/νM(tb−z,B1b
rB1 , . . . ,BpbrBp ),

(11)

where the RG eigenvalue rBi
of Bi is given by

rBi
≡ dBi

− γ ∗
Bi

(12)

with dBi
being the naı̈ve dimension of Bi [71,88].

To determine rBi
, note that the t dependence in Eq. (10)

results both explicitly from M itself and implicitly from H

for the driving. So, one has formally [71] ∂t = ∂t + (∂tH )∂H

and ∂Bi
= (∂Bi

H )∂H . Substituting them into Eq. (10) and
comparing the outcome with Eq. (5), we find, at the fixed
point,

ς∗(∂ln t ln H ) +
∑

i

γ ∗
Bi

(∂ln Bi
ln H ) = 1

2
γ ∗

φ . (13)

This is a single equation of all γ ∗
Bi

for a general H . Yet, it must
be valid at each instant. This solves all γ ∗

Bi
and hence r∗

Bi
via

Eq. (12) by comparing similar terms as can be seen from the
examples below. Note that all γ ∗

Bi
are determined by γ ∗

φ and
ς∗ or η and z from Eq. (8). So are all r∗

Bi
. In other words,

the usual static and dynamic critical exponents are sufficient
for the driven nonequilibrium critical phenomena as has been
pointed out. It will be seen later on that r∗

Bi
can also be found

from direct scale transforms among H , t , and Bi , similar to
the linear case [88] without explicitly solving Eq. (13).

B. Time scales and crossovers

We now discuss briefly the meaning associated with the
parameters of the driving.

From the scaling form (9), one can identify the equilibrium
correlation time teq and a time scale pertinent to the field tH as

teq ∼ |τ |−νz, tH ∼ |H |−νz/βδ, (14)

respectively. Both time scales diverge as expected at the exact
critical point τ = 0 and H = 0 but are tamed by a finite τ or
H .

Similarly, for each parameter, one finds from Eq. (11) that
there is an associated time scale tBi

asymptotically proportional

to B
−z/rBi

i , viz.,

tBi
∼ B

−z/rBi

i . (15)

This is a universal form near the critical point for all the
parameters once their correct rBi

is used, even for τ and H ,
in which case it returns to Eq. (14). We shall frequently use it
both explicitly and inexplicitly in the following. In the scaling
regime, the shortest long time scale controls the evolution of
the system. If tBi

is just such a time scale, the scaling form is
then

M = B
β/νrBi

i fBi

(
tB

z/rBi

i ,τB
−1/rBi

ν

i ,BjB
−rBj

/rBi

i , . . .
)

(16)

from Eq. (11), where j �= i, fBi
is the associated scaling

function, and the ellipsis stands for the parameters except Bi

and Bj . We have put back τ in Eq. (16). Equation (16) implies
that physical observables can be rescaled by Bi in the critical
regime. It can also be written as

M = t
−β/νz

Bi
ftBi

(t/tBi
,tBi

/teq,tBi
/tBj

, . . . ) (17)

using the time scales. In Eqs. (16) and (17), each argument
in the scaling functions must be vanishingly small to ensure
that fBi

and ftBi
are analytic there. This means that tBi

� teq

and tBi
� tBj

for all j �= i consistently. The former indicates
that the driving time scale tBi

is shorter than the equilibrium
correlation time teq and thus the system falls out of equilibrium.
So, Eqs. (16) and (17) are the generalizations of the FTS and
we shall also refer them as FTS forms.

If conditions change such that another time scale, tBj
say,

becomes the shortest, or tBi
/tBj

 1. In this case, it is now
the dominant time scale and governs the leading singularity.
Accordingly, fBi

is singular near the critical point and behaves

as (BjB
−rBj

/rBi

i )β/νrBj in order to cancel the original singularity.
This is a crossover from the regime governed by tBi

to that by
tBj

with the crossover condition tBi
∼ tBj

. For a general driving
with several parameters, such phenomena can be rich.

Moreover, we shall see in the following that there exist
time scales that are determined by more than one independent
parameter. One case is the first expansion coefficient in t for a
general driving. It can be a dominant time scale. By contrast,
some time scales may only be transient and never dominate.
Although finding the dominant time scale is sometimes not
easy, we shall see that the present theory still describes the
driven nonequilibrium critical phenomena well.

In addition, there exist crossovers to regimes that are
specified by other parameters than Bi [70,71]. For example,
when τ is large or teq dominates, there is a crossover to the
adiabatic or (quasi-)equilibrium regime that is governed by it
and is described by the scaling form (9) with all Bi present.
Similar results can be obtained by other relevant parameters
such as L. We shall not pursue them further in the following.
We note in passing that near the critical point, because the
correlation length ξ ∼ t

1/z
eq , each time scale considered then

relates to a corresponding length scale by a similar relation.

III. INITIAL CONDITIONS

In this section, we focus on the effect of initial conditions
on driving. Recall that the dynamic equation (2) is a first-order
stochastic differential equation. So, mathematically initial
conditions are necessary. An initial condition comprises of
two parts: a starting field Hin, which characterizes the distance
to the critical point, and an initial state that is specified by a
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distribution Pin of the order parameter φ, or equivalently, all
orders of the moments of Pin if exist. If a given initial state is
identical with the equilibrium state at Hin, the given state is
referred to as an equilibrium initial state. If it is not, it is in
general a nonequilibrium initial state. Such a nonequilibrium
state can well be the equilibrium state at another field value. It
can also be a genuine nonequilibrium state that is in a far-off
equilibrium condition and thus unlikely to be an equilibrium
state of the system at any of its particular field values. Such a
state can be created by driving the system considered to near
its critical point within the FTS regime of the driving. We
shall see that all the correlations of a system are then specified
remarkably by the driving time scale or driving length scale
rather than by the field value itself when all other variables are
fixed.

In the previous section, Hin is chosen far away from
the critical point and thus the initial state plays no role no
matter whether it is in equilibrium or not as the system can
equilibrate quickly there. By contrast, near the critical point,
a nonequilibrium initial state with correlations shorter than
the equilibrium ones at Hin results in the critical initial slip
[27] even when H is varied linearly [86]. Here, we consider
the effect of initial states that have longer correlations than
the driving ones and that can be in either equilibrium or
nonequilibrium relative to the equilibrium state at Hin.

In general, upon suppressing other scales, the FTS form
including the initial condition is

M = t
−β/νz

D fD

(
Ht

βδ/νz

D ,Hint
βδ/νz

D ,V (tD,Pin)
)
, (18)

where tD is the dominant time scale of the driving, Hint
βδ/νz

D

characterizes the rescaled initial distance to the critical
point, and V (tD,Pin) is a universal characteristic function
describing the rescaled initial distribution. For a general length
rescaling factor b, V (b,Pin) is a generalization of the critical
characteristic function, U (b,Min), for an initial state with an
arbitrary Min and vanishing correlations [82,97], for which V

returns to U . For sufficiently small Min, U (b,Min) = Minb
x0

with x0 being related to the critical initial slip exponent [82,97].
From Eq. (18), the FTS regime controlled by tD satisfies
|H |tβδ/νz

D � 1 and falls within |H | � Ĥ , where Ĥ ∼ t
−βδ/νz

D

represents the boundary of the FTS regime.
If |Hin|tβδ/νz

D  1, |Hin|  Ĥ and then locates in the
adiabatic regime. Accordingly, an initial state at Hin either
in equilibrium or in nonequilibrium decays exponentially to
the equilibrium one quickly with the driving and the initial
condition is irrelevant. One can then simply start a driving
just beyond the FTS regime with an equilibrium distribution
Peq(H ) at |H | � Ĥ .

If |Hin|tβδ/νz

D � 1 to the contrary, Hin then lies in the
FTS regime. As a result, the information of the initial state
distribution cannot be ignored. In this case, how the initial
condition affects the evolution depends onPin. In the following
two sections, we shall consider two simple cases that will be
needed in later sections.

A. Equilibrium initial conditions

When the initial state is an equilibrium state at Hin, the
critical initial slip does not matter. In this case, Pin = Peq(Hin)

and is determined solely by Hin because τ = 0, e.g., Min ∼
|Hin|1/δ for small |Hin|. So, V can be expressed by Hint

βδ/νz

D .
That Hin lies in the FTS regime implies tD < |Hin|−νz/βδ ∼
tHin , i.e., the correlation time of the equilibrium initial condition
is longer than the driving time tD . So is the correlation length
of the initial condition. In this case, Eq. (18) becomes

M = |Hin|1/δfHin (H/Hin,tD|Hin|νz/βδ), (19)

and the initial condition dominates within a time tHin even
though tD < tHin . The reason why the longer scale instead of
the shorter scale dominates is that here the former originating
from the initial condition already exist there and thus dominate
the short ones that are still setting up from the background of
the longer correlations. Once the short scale is done, the driving
tD takes over.

B. Nonequilibrium initial conditions: continuous
piecewise driving

We next study a specific genuine nonequilibrium initial
condition that has longer correlations than the driving scales,
though an equilibrium state with such correlations at other field
values than the initial one and thus a nonequilibrium state at
the initial field can also work. To this end, consider a process
with the following two steps. First, start from the adiabatic
regime |Hin| > |Ĥ | with a certain form of driving Hst1 , whose
dominant time scale is tD1 , and stop at H1 inside the FTS regime
of tD1 , i.e., |H1|tβδ/νz

D1
� 1. Because H1 is inside the FTS

regime, the distribution P1 is not the equilibrium distribution
at H1 but a nonequilibrium one. Its dominating shortest scale
is completely determined by tD1 and all other longer scales
do not equilibrate according to the theory. Second, just at H1,
change the form of driving to Hst2 . Therefore {H1,P1} serves
as the nonequilibrium initial condition of the second step.

If the dominant time scale of the second step tD2 � tD1 ,
then |H1|tβδ/νz

D2
� |H1|tβδ/νz

D1
� 1, so that H1 falls also inside

the FTS regime of tD2 . The condition of a longer initial scale
tD1 than tD2 , the scale to emerge, albeit both nonequilibrium,
eliminates the initial slip of the increase of M too. The scaling
form of the second step is thus

M = t
−β/νz

D1
fst2

(
Ht

βδ/νz

D1
,H1t

βδ/νz

D1
,tD2/tD1

)
, (20)

which is dominated by the initial state characterized by tD1

rather than by tD2 from the driving at work, where we have
dropped all other possible scales.

IV. SPECIFIC FORMS OF DRIVING

We now apply the results from the last two sections to
some specific examples of driving. First, we shall consider a
monomial driving in Sec. IV A, which is simple and heuristic.
Then, we turn to polynomial cases in Sec. IV B, whose results
are useful to analyze driving with more complicated forms.
Right after that, we shall use the polynomial results as a
method to discuss a sinusoidal driving in Sec. IV C. Finally,
the Gaussian approximation of the above examples will be
given in Sec. IV D as an appreciation of the various timescales
associated with a driving. We shall denote the parameters of the
driving for an nth order monomial by Rn and the amplitude and
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the frequency of a sinusoidal form by A and � to differentiate
them from the general parameters Bi .

A. Monomial driving

Consider a driving in a monomial form [58,70,76,87]

H (t,Rn) = Rnt
n. (21)

Without loss of generality, we assume Rn > 0 in order to
simplify the following expressions. Note that the critical point
lies exactly at t = 0 and H = 0.

Substituting Eq. (21) into Eq. (13), we have

γ ∗
Rn

= −nς∗ + γ ∗
φ /2. (22)

Using Eq. (8) and the naı̈ve dimension of Rn [71], dRn
= (d +

2)/2 + 2n, which is the difference between the dimensions of
H and tn, one finds

rn = dRn
− γ ∗

Rn
= βδ/ν + nz (23)

and thus tRn
∼ R

−z/rn
n from Eq. (15).

We can also reach Eq. (23) from the scale transforms of H

and t similar to the FTS for linearly varying field [70,71]. After
a scale transform, H ′ = Hbβδ/ν and t ′ = tb−z from Eq. (7).
The definition of rn in Eq. (11), viz., R′

n = Rnb
rn , and Eq. (21)

then result directly in Eq. (23), since Eq. (21) is also valid when
coarse grained, which can also be regarded as a definition of
R′

n.
From Eq. (23), for Rn to be relevant, rn > 0, i.e., n >

−βδ/νz. When n = 1, the FTS for a linearly varying field
is recovered [70,71].

Since Rn is the only parameter of H , there is only one
driving time scale and its FTS form reads

M = Rβ/νrn

n f t
n

(
tRz/rn

n

)
(24)

directly from Eq. (16), or,

M = Rβ/νrn

n f H
n

(
HR−βδ/νrn

n

)
, (25)

where we have simplified the subscripts.
There exists a unique singularity stemming from the

peculiar property of the scaling functions for a nonlinear
driving. Although tR

z/rn
n = (HR

−βδ/νrn
n )1/n, one usually does

not care for the exponent and freely applies either Eq. (24)
or Eq. (25) to describe the process, believing that no new
singularity will occur except for the confluent ones [98]. This
is not true for n > 1, however. To see this, note that in general,
a scaling function can be Taylor expanded near a critical point.
We find, however, that only the expansion of f t

n can describe
M near the critical point, whereas that of f H

n cannot. This is a
manifest of nonequilibrium. It may arise from the fact that the
evolution is with the time but not with the field and thus the
RG equation for t is better than that for H in this case. Yet,
substituting t = (H/Rn)1/n into the expansion of the former
works well for the latter. This indicates that f H

n is singular at
H = 0 for n > 1.

Moreover, the singularity of f H
n leads to a new leading

singularity for the susceptibility χ at H = 0, which is

χ = R
− γ

νrn
n

[
a

≷
1

n

(
HR

− βδ

νrn
n

)1/n−1 + . . .

]
, (26)

where γ = β(δ − 1), a1 is an expansion coefficient of f t
n

independent on both Rn and H , and the superscripts ≷
represent the expansions for t > 0 and t < 0, respectively.
When n > 1, χ diverges at the critical point H = 0 and Rn = 0
as H (n−1)/n, even in the FTS regime, though it collapses well
for different Rn in the plane of χR

γ/νrn
n versus HR

−βδ/νrn
n

as Eq. (26) indicates. Note that in equilibrium, χ ∼ H−γ /βδ

near H = 0 but changes to the present nonequilibrium one
once Rn is finite, in which case the transition occurs near
HR

−βδ/νrn
n ∼ 1 rather than at H = 0, showing hysteresis.

So, the singularity is all due to the driving as only n is
involved. In addition, the leading singularity of χ also turns
into R

−β(δ−n)/nνrn
n , whose exponent changes sign for n > δ.

We now briefly discuss the relation [72,80] with the KZ
theory [31–36]. The theory considers only cooling in classical
transitions and the parameters that play the role of temperature
in quantum transitions. It comprises of the KZ mechanism
and the KZ scaling that are different but interwoven. The
former is a mechanism to produce topological defects. Its
essence is a finite frozen correlation length ξ̂ , with which
two regions of about 2ξ̂ apart are causally independent and
their boundary can then be a topological defect. To estimate
ξ̂ , one divides the cooling process into two adiabatic regimes
and a nonadiabatic impulse regime in between that contains
the critical point. By assuming evolutionless in the impulse
regime, its boundary with the adiabatic regime then gives rise
to the maximally possible correlation length and thus ξ̂ . When
“the remaining time until the transition” [33] t̂ = τ̂ /R = teq

for a linear cooling with a rate R, one thus finds t̂ ∼ R−νz/(1+νz)

and ξ̂ ∼ |τ̂ |−νz ∼ R−ν/(1+νz) and thus follows the KZ scaling
for the density of the topological defects. Within the present
theory, one considers a specific variable, the correlation length
ξ , whose FTS form in the absence of H is [80,86]

ξ = R−1/rfξ (τR−1/rν) = ξ̂fξ (τR−1/rν), (27)

similar to Eq. (25) with a similar r = z + 1/ν [70,71,88]
and a numerical factor has been ignored between the two
scaling functions fξ . One sees that ξ is ξ̂ , the driving length
corresponding to the time scale t̂ , only (except the critical
point τ = 0) at the boundary (up to a constant multiplier)
corresponding to t̂ and τ̂ at which the FTS regime crosses over
to the adiabatic regime in which

ξ = |τ |−νf ′
ξ (R|τ |−rν), (28)

similar to Eq. (9). One sees therefore that the defect density
is only one special, but possibly difficult to be quantified [68],
observable and the boundary is only one special locus within
the present theory, which describes all observables in the whole
cooling process including the impulse regime.

Moreover, when a system is driven from near—rather
than far off—its critical point with a nonequilibrium initial
condition, the adiabaticity to reckon the KZ scaling in the KZ
theory breaks from the beginning as no initial adiabatic stage
exists at all. We have shown, however, that the KZ mechanism
and the KZ scaling still work when FTS is combined with the
critical initial slip [86].

If we include other parameters such τ and L in Eq. (24),
we can have crossovers to other regimes. However, as pointed
out in Sec. II B, we shall not consider them further.
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The monomial driving with n �= 1 can improve the adia-
baticity of a transition [99], but requires a better experimental
control since it has to be nonlinear exactly at the critical point
[35]. In the following, we shall see that polynomial forms can
be a better approximation.

B. Polynomial driving

Suppose a quadratic driving has small deviations δt and
δh from the zero point, which usually can not be avoided in
experiment. Then

H = R2(t + δt)2 + δh. (29)

For such a driving, we can expand it about the critical point at
H = 0, which lead to a polynomial driving

H = R2t
′2 + R1t

′, (30)

where t ′ = t − to, H (to) = 0, and R1 is the coefficient of the
linear term. Moreover, generally such a driving crosses or
approaches H = 0 several times. In the following, we shall
study a driving that crosses H = 0 only once and multiple
times separately.

1. Single trans-critical driving

We first discuss the case in which a driving crosses H = 0
only once. The dominant time scale in such a polynomial
driving turns out to be quite simple; it is just among all the tRi

.
So, all we need is to compare and find the smallest of them.
To be concrete, consider

H (R1,R3,t) = R1t + R3t
3 (31)

with positive R1 and R3 without loss of generality to ensure
t = 0 is the only real solution at the critical point H = 0.
Equation (13) gives

R1t

(
ς∗ + λ∗

R1
− γ ∗

2

)
+ R3t

3

(
3ς∗ + λ∗

R3
− γ ∗

2

)
= 0.

(32)

Consequently, Eqs. (22) and (23) for n = 1 and 3 are the
solutions to λ∗

R1
and λ∗

R3
and hence r1 and r3, respectively.

These results are natural from the direct method of scale
transforms as both monomial terms scale with the magnetic
field.

As there are two parameters, one has two time scales and
two different FTS regimes. Their scaling forms are

M = R
β/νr1
1 fR1

(
tR

z/r1
1 ,R3R

−r3/r1
1

)
(33)

or

M = R
β/νr3
3 fR3

(
tR

z/r3
3 ,R1R

−r1/r3
3

)
(34)

from Eq. (16). The first form describes the regime when
R3R

−r3/r1
1 � 1, or, tR1 � tR3 , i.e., tR1 dominates in the critical

region. By contrast, when R3R
−r3/r1
1  1, or, tR1  tR3 , the

scaling function fR1 ∼ (R3R
−r3/r1
1 )β/νr3 and crosses over to

Eq. (34) dominated by tR3 . In general, the power ni of each
term in the polynomial driving need not be an integer, as in the
monomial case, but it must satisfy ni > −βδ/νz to keep Rni

relevant.

2. Multi-trans-critical driving

Here we focus on the case in which the process crosses the
critical point H = 0 several times. Consider

H = R3t
3 − R1t (35)

with R3 > 0 and R1 > 0 for simplicity. The driving changes
direction twice at tv± = ±√

R1/3R3 and crosses the critical
point at three instants: t0 = 0 and t± = ±√

R1/R3, see
Fig. 1(a). Accordingly, we can divide the process into three
parts, 1, t = (−∞,tv− ], 2, t = (tv− ,tv+ ], and 3, t = (tv+ , + ∞),
such that H crosses H = 0 only once in each part. Figure 1(b)
shows the three divergent peaks and the two valleys of tH ,
Eq. (14). If the dominant driving time scale tD  tHv± , the
time scale at the valleys, the system can equilibrate near tv±
and thus the three parts can be treated separately. Conversely,
when tD � tHv± , it stays in the FTS regime even at the valleys
and thus the initial conditions are important.

To be specific, we now expand the driving field about each
H = 0. Let us start from t < 0 outside the FTS regime. The
initial condition then plays no role for the first part. Near t−,
let t ′ = t − t−,

H = R3t
′3 − 3

√
R1R3t

′2 + 2R1t
′. (36)

A quadratic term R2 ≡ 3
√

R1R3 emerges. As tR2/tR1 ∼
(R1R

−r1/r3
3 )r3/2r2 and tR3/tR2 ∼ (R1R

−r1/r3
3 )1/2, if R1R

−r1/r3
3 

1, tR1 � tR2 � tR3 and R1 dominates; if R1R
−r1/r3
3 � 1 to the

contrary, the relation among the three time scales reverses and

FIG. 1. (a) Generic H = R3t
3 − R1t curve. (b) Schematic picture of its tH and other time scales vs t . (c) Schematic picture of tH and other

time scales vs t for the sinusoidal driving H = A sin �t . The red dash-dot lines correspond to the case in which the initial state is dominant,
while the blue dash lines to the case in which equilibrium can be achieved. See the text for details.
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R3 rules the game. Therefore the new generated term does not
overwhelm the existing ones.

For t0 = 0, no expansion is necessary but the initial
condition can be important. When R1R

−r1/r3
3  1, R1 again

dominates. So, tR1/tHv± ∼ (R1R
−r1/r3
3 )νzr3/2βδr1  1 and thus

tR1  tHv± . Therefore tv− locates outside the FTS regime and
part 2 can be treated separately. The FTS form in this case is
given by Eq. (33). When R1R

−r1/r3
3 � 1 and R3 dominates, in

contrast, the initial state is important. From the discussion of
t−, the initial state is also dominated by tR3 . So the FTS form
in this case should be described by a form similar to Eq. (20).
However, as tv− is also determined by R1 and R3, tv−R

z/r3
3

can be reduced to R1R
−r1/r3
3 . Accordingly, the scaling form

now resembles Eq. (34), with the R3 factor stemming from
the initial state from t−. Similar analysis can be applied to the
third part t+.

We can also understand roughly the effects of the initial
condition from t0, t±, and tv± themselves. For R1R

−r1/r3
3  1,

they are far apart and so there is sufficient time for the system
to equilibrate. As a result, the initial condition is irrelevant.
While for R1R

−r1/r3
3 � 1, they are close to each other and the

initial condition has to be taken into account.

C. Sinusoidal driving

Sinusoidal driving is widely used in experimental and
theoretical studies [15]. The periodicity of the drive changes
the Hamiltonian of the system from the Floquet formalism
[100,101], which is the time domain analog of the Bloch
theorem. For strong driving at high frequencies, this can
result in coherent destruction of tunneling for driven quantum
tunneling [15] and similar phenomena in driven quantum phase
transitions [102–112]. The changed Hamiltonian can even lead
to Floquet topological insulators [113]. Sinusoidal driving has
also been applied to classical continuous [114] and first-order
phase transitions [115–120]. A dynamic phase transition was
reported in the kinetic Ising model under a time-dependant
oscillating field [115]. This may be another example of
the resonance interaction. In addition, sinusoidal functions
are fundamental in Fourier analysis, so it is instructive to
study sinusoidal driving. Here we shall study the low-energy
universal critical properties of classical continuous phase
transitions under a sinusoidal driving by the theory developed
in Sec. II without considering the Floquet formalism. The
results are expected to apply to quantum phase transitions as
well for low frequencies and crossing the critical point only
once, since the KZ scaling has been found to be applicable in
this case [105,106,109]. Whether or not the interference found
in the quantum case for multiple crossing has any effect in the
classical case is left for future study.

Consider

H (A,�,t) = A sin �t, (37)

where A is the amplitude and � is the angular frequency of
the driving. The RG result, Eq. (13), reads

(ς∗ + λ∗
�)A�t cos �t +

(
λ∗

A − γ ∗

2

)
A sin �t = 0, (38)

which indicates that λ∗
� = −ς∗ and λ∗

A = γ ∗/2 and thus r�

and rA are simply z and βδ/ν, respectively. This is obvious
because A must transform as H and � as t−1 from Eq. (37).
Accordingly,

tA ∼ A−νz/βδ, t� ∼ �−1, (39)

from Eq. (15).
The scaling forms for � and A dominating are, respectively,

M(t,A,�) = �β/νzf�(�t,A�−βδ/νz), (40)

M(H,A,�) = A1/δfA(HA−1,�A−νz/βδ), (41)

since t� � tA or A�−βδ/νz � 1 for the former and vice versa
for the latter. We can of course choose H and t as their
respective parameters.

However, there exists yet another way to study the driving.
We can expand the driving near the critical point at t = 0 and
H = 0 and utilize the theory for the polynomial in Sec. IV B.
When the first-order term dominates, we find the scaling form

M = (A�)β/νr1fA�(H (A�)−βδ/νr1 ,�A−νz/βδ), (42)

because all the rescaled higher-order terms can simply be
reduced to A−1�βδ/νz. To be consistent, tA� ∼ (A�)−z/r1 �
tH and �A−νz/βδ � 1. One sees therefore that there is a
new dominating timescale tA� determined by two parameters,
whose combination cannot be identified directly from the field
itself!

In order to reveal the relationship among Eqs. (40) to (42),
we notice that, using Eq. (39),

tA�

tA
∼ (A�− βδ

νz )
νz2

βδr1 ,
tA�

t�
∼ (�A

− νz
βδ )

βδ

νz . (43)

Therefore, for �A−νz/βδ � 1, tA � tA� � t�, while for
�A−νz/βδ  1, t� � tA� � tA. This appears to indicate that
tA would dominate the former regime and t� the latter. In other
words, no regime dominated by tA� would emerge. In fact, it
is tA� that dominates the former regime and the initial state
that governs the latter. tA is only transient and never dominant.

To see this, note that tA is just the minima of tH from
Fig. 1(c). Accordingly, it is only a transient time scale in the
sense that it only appears at the instant when H assumes its
maxima or minima and thus cannot be a constantly existing
dominating time scale. Therefore, for �A−νz/βδ � 1, although
tA�  tA from Eq. (43), corresponding to the blue dashed
line in Fig. 1(c), tA� is the dominant scale. In addition, the
system can equilibrate at the valleys and the hysteresis loops
are saturate. If �A−νz/βδ  1 to the contrary, although t� is
the shortest, the system always stays in the FTS regime and the
initial condition dominates; only after the initial state decays
away can t� take over and dominate. Moreover, the higher
order terms of the field expansion are larger than the linear
term, or the time scales corresponding to the higher order
terms are shorter than that of the linear term, and the expansion
method is invalid.

As the initial state dominates for �A−νz/βδ  1, the
hysteresis loops become unsaturate. If we start the process
in equilibrium at Hin = −A and Pin = Peq(−A), the scaling
in this regime is described by

M = A1/δfHin=−A(HA−1,�−1Aνz/βδ), (44)
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where the subscript differentiates it from Eq. (41), as Eq. (44)
is a special case of Eq. (19) for a specific initial condition used.
It is valid for a small A and a large �, in opposite to Eq. (41),
which never dominates.

D. Gaussian approximation

As an appreciation of the various timescales associated
with a driving and a verification of the above results, in this
section, we consider the Gaussian approximation of the model
(1) and (2).

In this approximation, the model simplifies to

∂〈φ(k,t)〉
∂t

= −λ[(τ + k2)〈φ(k,t)〉 − H (t)δ(k)] (45)

in the wave number k space, where δ here is the Dirac delta
function. The solution is

M(t) = Mine
−τλ(t−tin) − g(tin)e−τλ(t−tin) + g(t), (46)

where Min is the initial uniform magnetization. The first two
terms in Eq. (46) are the contributions of initial state. They
decay exponentially. The third term is the effect of driving and
depends on its detail. If t − tin � 0, the last two terms nearly
cancel out and the first term dominates. This means the time
is too short for the effect of driving to be significant and the
result mainly reflects the property of Min. By contrast, when
t − tin  0, only the driving term survives.

For the polynomial form of driving (31) but with all t

replaced by λt in order to yield a correct time unit, one finds

g(λt) = R3(λt)3/τ − 3R3(λt)2/τ 2

+ (R1/τ + 6R3/τ
3)λt − (R1/τ

2 + 6R3/τ
4).

(47)

The critical exponents of the Gaussian model [19–21]

ν = 1

2
, z = 2, β = d − 2

4
, and δ = d + 2

d − 2
(48)

give rise to

r1 = (d + 6)/2, r3 = (d + 14)/2, (49)

from Eq. (23). As a result, for the parameters chosen,

teq = (λτ )−1, λtR1 = R− 4
d+6 , λtR3 = R− 4

d+14 . (50)

These then turn Eq. (46) into

M = t
−(d−2)/4
R3

fG3
(
teq/tR3 ,t/tR3 ,tR1/tR3

)
, (51)

where fG3(X,Y,Z) = XY 3 − 3X2Y 2 + (Z−2X + 6X3)Y −
(Z−2X2 + 6X4). Equation (51) has the same form as Eq. (17)
and verifies it. We can of course rescale all time scales by tR1 .

In the case of sinusoidal driving,

g(λt) = A sin(�λt − θ )√
�2 + τ 2

= Ateq sin(t/t� − θ )√
1 + t2

eq/t2
�

, (52)

where θ = arctan(�/τ ). When �/τ = teq/t� � 1, the period
is significantly longer than the correlation time. So, t� is not
relevant and M will saturate at some time in the process. In
the region t � 0, Eq. (52) can be approximated to be M �
(A�)β/νr1 (teq/tA�)(t/tA�), consistent with Eq. (42) in which
tA� dominates using Eqs. (48) and (49).

When �/τ  1, the situation reverses and the system can
not equilibrate during the whole process, which corresponds
to the unsaturated case. In this case, θ � π/2, Eq. (52)
approximates to M � A/� = A1/δ(�−1Aνz/βδ) in agreement
with Eq. (44) near t � 0 using Eq. (48). One sees that no
regime is controlled by tA, consistent with the theory.

FIG. 2. Effects of (a) equilibrium initial conditions and (b) nonequilibrium initial conditions of the stepwise linear driving with t1R
z/r1
st1 = 0.5.

On the right-hand side of each panel, the black curves are flat showing the irrelevance of the initial state; while the red curves have slopes of
−0.0674(3) in (a) and −0.0294(3) in (b), consistent with the theoretic value −1/δ = −0.0666 and −β/νr1 = −0.0309, respectively. On the
left-hand side, the black curves depend on the initial conditions and the red curves tend to be flat, showing clearly the existence of the initial
state dominated regime. Correspondingly, the slopes of the black curves become 0.0538(1) for the leftmost three data in (a) and 0.0311(2) in
(b), close to the theoretical values 1/δ and β/νr1, respectively. The thick blue curve in (a) is a fit to the expansion of the scaling function in
Eq. (19) to order 2. Note the different scales of the right and the left vertical axes. Thin lines connecting symbols are only a guide to the eye.
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V. IMPLICATION TO MEASUREMENT

We discuss a possible implication of our results to experi-
ments here. Experimentally, one often applies a weak driving
field to study the property of a system [114,121]. For example,
in Ref. [121], the authors measured the linear conductivity
between 3 Hz to 3 MHz, and found a dynamic scaling near
the vortex-glass transition. In [114], the correlations of order
parameters are related to light scattering intensities. In both
cases, the amplitude of the driving is ignored in the scaling
function by assuming that the amplitude is small. In theories,
the linear response [8], for example, one also applies a weak
external field to compute the response of a system. However,
the field is sent to zero after the computation. In experiments,
however, the field is always there no matter how small it is.
This usually incurs only a small perturbation. However, near
the critical point where correlations are long ranged, it may
be problematic. Recall that in Eqs. (40) to (42), there exists
an additional term containing both A and �. Upon omitting
this term, the method to obtain critical properties from data
collapses, as was done in [121], is thus presumably flawed. A
naı̈ve way to overcome this from the theory is to vary A with
� in a such way that �A−νz/βδ is fixed.

The problem can also be seen more fundamentally from the
fluctuation-dissipation theorem (FDT) [8], which is

χ ≡ (∂M/∂H )T = C/T ≡ Ld〈(φ − 〈φ〉)2〉/T (53)

here. It enables one to measure the equilibrium correlation
C via the response of a system to its external probes, the
susceptibility χ . We shall see in the following unambiguously
nonequilibrium behavior and violation of FDT for a weak
driving near a critical point. Therefore one cannot obtain
accurate correlation functions by measuring the responses and
vice versa near the critical point even for a vanishingly small
A! Nonequilibrium still, we shall find that the scaling law holds
between the critical exponents of χ and C. Accordingly, one
can still employ C or χ to estimate the critical exponents as in
equilibrium with due attention to the effect of the amplitude.

VI. MODEL AND METHOD

To verify our results, we study the classical d = 2 Ising
model with nearest-neighbor interaction

H = −J
∑
〈i,j〉

sisj − H
∑

i

si , (54)

where J > 0 is a coupling constant and si = ±1 is the spin at
site i. Periodic boundary conditions are applied throughout.
The critical temperature and critical exponents are known
exactly: Tc = 2J/ln(1 + √

2), β = 1/8, δ = 15, and ν = 1,
while the dynamic exponent is chosen as z = 2.1667 [122].
We shall mainly study the order parameter defined as M =
〈∑i si〉/N for the N spins as usual, since topological defects,
domain walls between regions of up and down spins, are
difficult to count especially at finite temperatures at which
thermal fluctuations are violent. Moreover, as pointed out in
Sec. IV A, they must follow similar scaling.

We use MC with a single site METROPOLIS algorithm [123].
To minimize the finite size effect, the minimum lattice size
chosen is 512 × 512. The sample sizes are between 500 to

FIG. 3. Magnetization of the three-step piecewise linear driving.
t1R

z/r1
st1 = 0.5 and Rst1/Rst2 = 0.2. These choices yield H1R

−βδ/νr1
st2 =

0.2370 < 1 and so H1 lies inside the FTS regime of Rst2 . The numbers
list the values of t1. The two vertical dashed lines demarcate the three
steps. Inset: Original curves before rescaled.

3000, resulting in small relative errors to be seen in the error
bars displayed. To reduce variables in the scaling functions, all
simulations are performed at T = Tc, and M0 ≡ |M(H = 0)|
is frequently used.

VII. NUMERICAL RESULTS

A. Initial condition

Figure 2(a) shows M0 of a linear driving starting from
an equilibrium initial condition at different |Hin|R−βδ/νz

1 for
Hin < 0. One sees clearly a crossover from an R1 dominated
regime described by Eq. (18) in the absence of V to an initial-
state dominated regime described by Eq. (19) with tD = tR1 .
Although there is a 19% relative error in the slope of the
initial-state dominated regime due to the few data, the good

FIG. 4. Hysteresis loops for H = R2t
2 (left column) and H =

R3t
3 (right column) for various listed R2 and R3, respectively. The

original loops (top) collapse well after rescaled (bottom), verifying
Eq. (25).
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FIG. 5. M vs t (top) and M vs H (bottom) for H = Rnt
n with

n = 2 (left) and n = 3 (right), respectively. The data are chosen to
satisfy |t |Rz/rn

n < 1 near the critical point and are fitted to polynomials
up to order 3 for t > 0 and t < 0, respectively. The goodnesses of the
fits in (a) and (b) confirms the analyticity of f t

n in Eq. (24).

fit to Eq. (19) both confirms the scaling and demonstrates
the analyticity of the scaling function. These results show
convincingly the effects of the initial condition and the validity
of the theory.

Figure 3 shows the results of the piecewise driving for the
nonequilibrium initial condition. A three-step linear driving
is simulated. It starts at Hin < −Ĥ of the first driving. For

simplicity, we choose Rst3 = Rst1 and stop the second step at
H2 = −H1 > 0. We also set H1 = −Rst1 t1. As a result, the
four free parameters of the initial conditions, t1, t2, Rst1/Rst2 ,
and Rst2/Rst3 , are reduced to t1 and Rst1/Rst2 . In Fig. 3, H1 is
chosen to fall inside the FTS regime of the second driving, but
then H2 lies outside. Also tRst1

> tRst2
. Accordingly, the second

stage is described by Eq. (19), while the other two by Eq. (25),
though all three stages are rescaled by Rst1 . The good collapses
show the good applicability of FTS to this case.

The nonequilibrium initial conditions dominated regime
and its crossover for the driving are displayed in Fig. 2(b).
Here, we vary the value of Rst1/Rst2 , which also changes
H1R

−βδ/νr1
st2 . It is clear that the initial state is dominant for

Rst1/Rst2 � 1, but irrelevant to the opposite. A crossover
appears near Rst1/Rst2 ∼ 1. The results show remarkably that,
first, the single driving scale does determine all correlations
of the system in the FTS regime, and second, in the nonequi-
librium initial state dominated regime, all correlations of the
initial state still evolve in a concerted way as if the previous
driving were still in effect.

B. Monomial

In Fig. 4, we verify Eq. (25) for n = 2 and 3. Although the
forms of the driving are qualitatively different as n = 2 is even
but n = 3 is odd, they both obey the theory.

In Fig. 5, we investigate the behavior of fn in Eqs. (24)
and (25) near H = 0 and t = 0 for n = 2 and 3. One sees that
the polynomial fits are very good in (a) and (b) but deviate
significantly from the data in (c) and (d). In the latter case,
we have found that fits to polynomials up to order 9 and far

FIG. 6. (a) χ and C/T vs H at equilibrium and (b) to (f) their rescaled for the driving H = Rnt
n with (b) n = 0.5, (c) 1, (d) 2, (e) 3, and

(f) 29, respectively. Note that subscripts are absent in R and r of the axis titles. In (b) to (f), the red and blue curves, marked with C/T , are the
rescaled curves CR−γ /νr/T , while the green and black curves, marked with χ , are the rescaled curves χR−γ /νr . The solid and dashed curves
represent the different rates listed. In (b) and (d), the solid and dashed curves correspond to t < 0, while the dash-dotted curves to t > 0 as
indicated. Note that χ is negative for t close to 0+. As predicted by Eq. (26), χ vanishes, is finite, and diverges at H = 0 for n < 1 (b), n = 1
(c), and n > 1 (d) to (f), respectively. The collapses of C/T are not as good as χ due to large fluctuations. The two curves in (a) are averaged
over 10 000 000 MC steps.
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FIG. 7. Hysteresis loops for H = R1t + R3t
3 with R1R

−r1/r3
3 =

0.1. The legend lists R1 used. (a) is original data and (b) is rescaled
by R1. The collapses get somehow poor when the absolute values of
horizontal axis are large, possibly due to corrections to scaling.

smaller ranges are also poor and thus invalid the analyticity
of f H

n in Eq. (25). This indicates that fn behaves analytically
with respect to t but not to H near the critical point.

Figure 6 shows the rescaled curves of χ and C/T for
two different rates. The extra singularity of χ at H = 0 as
exemplified in Eq. (26) is seen as spikes in (e) and (f). However,
C exhibits no such peaks. Note that χ is negative in (b) and
(d) for t close to 0+. In equilibrium, however, χ is related
via the FDT (53) to C, which is non-negative. So the negative
χ implies that the system cannot follow the driving and is
definitely out of equilibrium. It can also be seen that χ and
C/T separate significantly near the peaks for all forms of
driving shown. This violation of the FDT is again manifestly a
nonequilibrium effect, which maximizes near the peaks where
the transition takes place. Yet, the good collapses of both χ and
C indicate that the scaling law between the critical exponents
holds even there. One might regard the scaling with the driving
field in the absence of a new leading exponent as a kind of
adiabaticity in which one replaces the field directly by its time
dependent form and the system would just evolve according
to it. The present results demonstrate that this is not all.

FIG. 9. Different regimes and their crossover for H = R3t
3 −

R1t near t0. Black and red curves are the same data rescaled by
R1 and R3, respectively. When R1R

−r1/r3
3  1, the process can be

treated as a pure R1 driving. As a result, the black curve is flat,
whereas the slope of the red curve is 0.0310(5), in agreement with
the theoretical value of β/νr1. When R1R

−r1/r3
3 � 1, the red curve

becomes flat, while the black curve has a slope −0.0320(2), consistent
again with −β/νr1 from Eqs. (33) and (34). Lines connecting symbols
are only a guide to the eye. Insets: Generic M vs H curves in the two
corresponding regimes. Black solid, blue dashed, and red dash-dotted
curves represent the 1, 2, and 3 parts of the process, respectively. In
(a), the blue curve begins at H > 0 and M < 0, which is evidently
nonequilibrium. In (b), the curves of the first (black) and the third
(red) parts nearly coincide.

C. Polynomial

Figure 7 depicts the hysteresis loops of the polynomial
driving Eq. (31). According to Eq. (33), for fixed R1R

−r1/r3
3 , all

rescaled curves collapsed well onto each other as shown. The
loops can also be rescaled according to Eq. (34) as R1R

−r1/r3
3

is fixed. Therefore both R1 and R3 can describe the scaling
well.

FIG. 8. Different FTS regimes and their crossover for (a) H = R1t + R3t
3 and (b) H = R3t

3 − R1t near t−. Black and red curves are the
same data rescaled by R1 [2R1 in (b)] and R3, respectively. Each rescaled curve consists of a leading R1 section (where R1R

−r1/r3
3  1), a

leading R3 section (where R1R
−r1/r3
3 � 1) with different slopes and a crossover between them (where R1R

−r1/r3
3 ∼ 1). The slope of the black

(red) curve in the R3 (R1) dominated regime is −0.0305(1) [0.0309(1)] in (a) and −0.0309(1) [0.0299(4)] in (b), consistent with theoretical
absolute value of β/νr1. No error bars appear in (b) as M0 is obtained by interpolating the averaged magnetization curves at the first H = 0.
However, they cannot be appreciably larger than those displayed in Fig. 9 below. Lines connecting symbols are only a guide to the eye.
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FIG. 10. Hysteresis loops of the sinusoidal driving H = A sin �t . (a) For A−1�βδ/νz = 0.1 < 1, M saturates at large H . (b) For A−1�βδ/νz =
10 > 1, M does not saturate. (c) The hysteresis loops in (b) rescaled by �. The legend in (c) lists � used in (b) and (c).

To investigate the different regimes and their crossover,
we again pick the data at H = 0, so that the scaling function
in Eqs. (33) and (34) are only affected by R1R

−r1/r3
3 . The

results of the rescaling are shown in Fig. 8(a). On the one
hand, each curve becomes flat when rescaled by the right
rescaling parameter at its corresponding regime, implying
that the effect of the other parameter can be ignored in that
regime. On the other hand, it gets incline in the regime where
the other parameter dominates with a slope determined by
the exponent to ensure the leading behavior of that parameter.
The good agreement with the theory shown confirms the latter.
A similar result appears for the driving (35) near t−, Fig. 8(b).
This indicates that the newly emerged second-order term never
dominates, though it gives rise to a larger region of crossover
by comparing Figs. 8(a) and 8(b).

Near t0 = 0, the graph now appears somehow different
as shown in Fig. 9, whose insets demonstrate manifestly
the dramatic effect of nonequilibrium initial conditions. For
R1R

−r1/r3
3 � 1, the system does not have enough time to relax

to equilibrium near tv− . Consequently, the early part affects the
later one in contrast to the opposite regime in which all three
curves start and end in equilibrium and can thus be treated
separately. M0 is thus still negative as seen in inset (a) and

results in the dip as absolute values are used. This indicates that
the initial state controls the evolution in this regime. Because
the dominant time scale of the first part is tR3 , the initial
state is again dominated by R3. This is why the two original
parameters can describe the scaling well using Eqs. (33) and
(34). Nonetheless, separating the process and considering the
initial conditions reveal far rich phenomena and physics.

D. Sinusoidal

Here, all simulations are performed with the initial con-
dition Hin = −A and Pin = Peq(−A). We first show the
hysteresis loops for the saturated and unsaturated cases in
Fig. 10. Note that in the unsaturated case, the loops are not
close and the range of M is relatively small. This is because
equilibrium can not be achieved during the whole process
and the initial condition is important. One sees that even
though they are not dominated by �, the hysteresis loops
can be rescaled well by it according to Eq. (40). Similarly, as
A−1�βδ/νz is fixed, the loops can also be rescaled by A as well
according to Eq. (41).

Figure 11 is the verification of the scaling forms (42), (40),
and (44). One sees that there exists no regime in which t�
dominates, even in the regime �−1Aνz/βδ � 1 in which it is

FIG. 11. Different regimes and their crossover for H = A sin �t . Rescaled of the same data (a) by A� (black squares) and A (red circles) and
(b) by A� (black squares) and � (magenta triangles). The black curves are identical in (a) and (b). The magenta curve is not flat in any regime,
implying that � does not dominate. The black curves are flat at �−1Aνz/βδ  1, indicating the dominance of tA� in this regime. Correspondingly,
the slopes of red and magenta curves are −0.0312(2) and 0.0559(4), in agreement with the theoretic values of −β/νr1 and β/νz = 0.0577
according to Eqs. (42) and (44) and Eqs. (40) and (44), respectively. For �−1Aνz/βδ � 1, the red curve becomes flat and the slopes of the black
and magenta curves are 0.0289(5) and 0.0269(2), consistent with the theoretic values of β/νr1 and (1/z − 1/r1)β/ν = 0.0268, respectively,
showing the importance of the initial condition. Lines connecting symbols are only a guide to the eye.
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the shortest time scale. In this regime, the initial condition is
dominant and the hysteresis loops are unsaturate as Fig. 10(b)
shows. Accordingly, the leading scaling with A here stems
from the initial condition rather than from tA. After the initial
condition decays away, t� may take over. In the opposite
regime in which tA is shortest from Eq. (43), it is tA� instead of
tA that dominates, as seen in Fig. 11. In other words, tA never
dominates, because it is a transient scale. All these confirm
well our theory of the sinusoidal driving.

VIII. CONCLUSION

We have studied a generic class of nonequilibrium systems
represented by a critical system that possesses a long relaxation
time and is weakly driven within a finite time in a form
that does not cause resonances but otherwise is arbitrary. An
RG theory has been developed to account for such driven
nonequilibrium critical phenomena. From the theory, the
driving generates finite time scales that can well be shorter
than the equilibrium correlation time and thus driving the
system far off equilibrium. This can create topological defects
of the KZ mechanism. Moreover, the finite time scales can
control different regimes and thus crossovers among them
can take place when conditions change. These nonequilibrium
phenomena are well described in the theory with just the
usual static and dynamic critical exponents. Yet, this does
not mean that a kind of adiabaticity in which the field is
replaced directly with its time dependent form is all the story,
because nonequilibrium behaviors such as violation of the
fluctuation-dissipation theorem, hysteresis, and even negative
values of the susceptibility appear. Still, the scaling law among
the critical exponents holds between the response and the
correlation, either of which can thus be employed to estimate
the critical exponents as in equilibrium.

We have identified a unique type of initial conditions that
dominates the evolution under the driving. Opposite to the
nonequilibrium initial conditions that lead to the critical initial
slip, this type of initial conditions has longer correlations than
the driving ones and thus the critical initial slip does not
emerge and can be in either equilibrium or nonequilibrium. An
example of the latter is one arising from a driving that changes
continuously to a subsequent one with a shorter dominant time
scale. Under the latter driving, all correlations of the system
are still governed remarkably by the time scales of the former
driving in the initial-state-controlled regime.

Applications of the theory to some specific forms of driving
have discovered results that have not been found before.
Besides the negative susceptibility, a monomial driving with
n > 1 involves a singularity that originates from the difference
in the scaling functions between their different forms of
rescaled arguments and that is characterized completely by
n. A polynomial driving can exhibit initial state dominated
regimes when it crosses or approaches the critical point several
times in addition to the different regimes and their crossovers
determined by the driving parameters. A sinusoidal driving
and other forms of general drivings are dominated by their
first expansion coefficient in time, often the linear one, when
their overall amplitudes are sufficiently large. Some time scales
determined by their parameters may only be transient or may
be dominated by the initial state and thus do not control any
regime before the initial state decays away. The presence
of the amplitude-involving rescaled arguments, no matter
whether as a small variable in the scaling functions or more
seriously as a parameter that gives rise to crossovers, cautions
experimental measurements in which an external driving such
as the sinusoidal one is applied to a system with long relaxation
times.

We remark that the result of no new critical exponents
except the equilibrium ones is built on their origin in the field-
theoretic RG theory, viz., no new divergences are generated
from the driving. It is thus unlikely to be false at least to
the precision of the present numerical results. For the critical
initial slip of an initial increase of the order parameter and
its associated exponent, they ought to play no role as we have
purposely chosen the initial states that have longer correlations
than the driving one. However, they may well enter for a
general initial condition. In this case, they may not be as
prominent as that exhibits in the conventional correlationless
nonequilibrium initial state and may thus complicate the
analysis. Although we have only studied the standard φ4 theory
for the Ising universality class, the theory should apply to other
universality classes as well. As the system studied is a generic
nonlinear nonequilibrium one, the theory may shed light on
the study of other nonequilibrium systems. It may also be
instructive to nonlinear science as the driving may help to
probe scaling behavior there.
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