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Multiphase aluminum equations of state via density functional theory
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We have performed density functional theory (DFT) based calculations for aluminum in extreme conditions of
both pressure and temperature, up to five times compressed ambient density, and over 1 000 000 K in temperature.
In order to cover such a domain, DFT methods including phonon calculations, quantum molecular dynamics,
and orbital-free DFT are employed. The results are then used to construct a SESAME equation of state for the
aluminum 1100 alloy, encompassing the fcc, hcp, and bcc solid phases as well as the liquid regime. We provide
extensive comparison with experiment, and based on this we also provide a slightly modified equation of state
for the aluminum 6061 alloy.
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I. INTRODUCTION

The importance of aluminum as a material subject of
scientific investigation as well as an essential and ubiquitous
material of application of all sorts cannot be overstated. As
such a thorough understanding of aluminum’s thermodynamic
properties is of primary interest and has been explored through
numerous experimental and theoretical studies. In particular
experimental approaches continue to press into the regime
of extreme conditions of pressure and temperature, where
aluminum is both examined to generate fundamental results
and used as a standard [1–3]. Yet experimental results in
the so-called warm dense matter (WDM) regime, which can
be roughly characterized as having densities ranging from
ambient solid density to several times compression and with
temperature from a few thousand to a few million Kelvin, do
continue to be difficult to obtain and sparse. Equally, theoretic
approaches for WDM suffer from the difficulties of describing
fluids composed of moderately to strongly coupled partially
ionized ions and quantum degenerate electrons [4].

In this paper we examine the thermodynamic properties
of aluminum through density functional theory (DFT) based
methods. This includes calculation of the cold curve and
the pressure induced phase transitions along it. Through
analysis of the phonon spectrum the response of the solid
phases to temperature is examined. For the liquid and WDM
regime we perform quantum molecular dynamics (QMD)
simulations incorporating both orbital-based (Kohn-Sham)
and orbital-free DFT. This combination of methods allows
us to accurately characterize aluminum from melt to the
ideal gas limit. Finally, these results are used, in conjunction
with the best available experimental data, to generate new
tabular multiphase equations of state (EOS) for the nearly
pure aluminum 1100 alloy and the aluminum 6061 alloy
which is commonly used in shock experiments. The 6061
alloy is less dense than aluminum 1100 and demonstrates
a slightly stronger shock response [5]. While previous EOS
for aluminum have been constructed [6–8], none provide the
high pressure solid phases, or have had access to the broad
range of high accuracy simulations we have performed to
constrain particularly the liquid state. However, several recent
EOS have been constructed for different materials which are
both multiphase and inclusive of the warm dense matter regime
and have also highly relied on simulation data [9–11].

II. DFT CALCULATIONS

A. Crystal phases: Cold curve and phonons

Calculations in orbital-based (Kohn-Sham) DFT were
performed using the VASP plane wave code [12], utilizing
the Perdew-Burke-Ernzerhof (PBE) [13] exchange-correlation
functional and a PAW pseudopotential [14] with three elec-
trons in the valence space. We also compared local density
approximation (LDA) exchange-correlation calculations for
the cold curve and found better agreement with the known zero
temperature density using PBE [15]. Total energy calculations
employ a plane wave cutoff energy of 300 eV, a k-point
mesh of density 60 Å−1, and the linear tetrahedron method
with Blöchl corrections [16]; the self-consistent cycles are
converged to 1 μeV. Force calculations rely on the same
parameters with the exception of converging the self-consistent
cycles to 0.01 μeV. The molecular dynamics (MD) simulations
employ a 4 × 4 × 4 k-point mesh, Fermi-Dirac smearing with
a 0.1 eV energy scale, convergence of the self-consistent cycles
to 10 μeV, and a time step of 5 fs.

We have calculated using Kohn-Sham DFT the cold curves
of close-packed fcc, hcp, bcc, and dhcp phases of aluminum.
At zero temperature fcc is the ground state up to a pressure of
176 GPa, where Al transitions to the hcp phase, and then at
a pressure of 373 GPa Al transitions to the bcc phase. These
results are consistent with earlier DFT calculations [17,18].
Table I lists the calculated parameters of the cold curves, i.e.,
the equilibrium density ρ, the bulk modulus, B, and its pressure
derivative B ′, along with the Debye temperature θD (evaluated
from the phonon spectra described below).

In order to include thermal effects, we have performed
calculations of the phonon spectra. Figure 1 compares for fcc
Al the experimental data with the results obtained from two
methods, the direct force method [19] and by extracting the
frequencies from MD simulations. Both methods rely on super-
cells consisting of 4 × 4 × 4 fcc unit cells of one and four ions,
respectively. The former involves displacing one ion and cal-
culating the Hellman-Feynman forces on all ions, from which
the force constants are evaluated and used to find the phonon
frequencies in the quasiharmonic approximation. The latter re-
lies on constant-energy MD simulations; the atomic positions
are used to evaluate the dynamic structure factor for wave
vectors commensurate with the supercell, and the results are
then fit to Gaussians to find the frequencies reported in Fig. 1.
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TABLE I. Parameters from the DFT calculations for aluminum

ρ (g/cm3) B (GPa) B ′ θD (K)

fcc 2.711 81 4.13 385
hcp 2.686 76 4.14 367
bcc 2.645 71 4.12 355

The phonon spectra were then used to evaluate the free
energies of the system for each crystal structure at a sequence
of volumes for a series of temperatures. This allowed us to
map out the phase boundaries by calculating the Gibbs free
energy. Here we found good agreement with the all-electron
calculations of Kudasov et al. [21]. One key feature of interest
is that the hcp phase does not extend to melt and there is an
fcc-hcp-bcc triple point at about 255 GPa and 2900 K.

B. Liquid phase: QMD

Kohn-Sham based QMD simulations have become the
gold standard for calculations of warm dense matter. The
success lies in the accurate treatment of the quantum nature
of the electrons, through the Mermin-Kohn-Sham DFT [22],
and the ionic, possibly strongly coupled, fluid motion, through
the molecular dynamics of the classically treated ions. Yet this
approach suffers a prohibitive scaling issue with increasing
temperature due to the increasing number of Kohn-Sham
orbitals that must be calculated to obtain the electron density.
An alternative approach, without such an issue, is provided by
orbital-free DFT where the electron density is found through
direct minimization of the total free energy. The issue here,
however, is the accuracy of the necessary approximation
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FIG. 1. Phonon spectrum of fcc aluminum at the experimental
density. Experimental data stems from Stedman and Nilsson [20].
Phonons calculated in the quasiharmonic approximation show overall
good agreement with experiment; discrepancies are not due to
shortcomings in the DFT itself but arise from temperature effects.
These effects are included in the frequencies extracted from molecular
dynamics (MD) simulations, which show excellent agreement with
experiment.

for the kinetic (plus entropic) free energy functional, Fs[n].
While the simple Thomas-Fermi approximation has been used
successfully at very high temperatures, there is significant loss
of accuracy at lower temperatures [23]. Recently we have
developed and applied an approach correcting the Thomas-
Fermi approximation, FTF, through an additional density
gradient term in which the leading coefficient λ is determined
by matching Kohn-Sham calculations of the pressure at lower
temperatures of 5–10 eV [24],

Fs[n] = FTF[n,T ] + λ

∫ |∇n(r)|2
8n(r)

dr . (1)

This then allows for extension through very high temperatures.
It is this approach we use in this work, for which the
development and implementation details may be found in
Ref. [24]. However, unlike in that work, here we found the
coefficient of the gradient term to be negligibly small, and
so we have effectively performed for aluminum Kohn-Sham
calculations up to temperature of 6 eV and Thomas-Fermi
calculations above that. The overlap of the Kohn-Sham and
orbital-free calculations can be seen along several isochores
in Fig. 2; here the differences are less than 2% in the
pressure, while one can see errors of 30% or more when using
Thomas-Fermi at lower temperatures [25].

In the Kohn-Sham QMD we have used the plane wave
code Quantum-Espresso [26] to perform calculations with
periodic unit cells of 60 atoms. We employed the PBE
exchange-correlation functional and three-electron PAW pseu-
dopotentials [27] as in the crystal case (albeit using a different
code). For the temperatures and densities ranges we calculated,
it was sufficient to perform gamma point calculations. For
densities above 8.5 g/cm3 and temperatures at 6 eV and above
we used an 11-electron norm conserving pseudopotential [17],
which enabled extension to densities of 13.5 g/cm3. The plane
wave energy cutoffs were 30 Ry (1 Ry = 13.605 eV) for
the three-electron PAW and 100 Ry for the 11-electron norm
conserving pseudopotential.
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FIG. 2. Pressure isochores for liquid Al showing the transition
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shown as well for reference.
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FIG. 3. Pressure isotherms for liquid Al with temperatures of
8, 6, 4, 2, 0.86, 0.39 eV (upper panel) and 100, 50, 30, 20, 15, 10, 8,
6 eV (lower panel).

In the orbital-free calculations we used 72 atoms and the
density was optimized on a 643 grid. We used LDA exchange
correlation for convenience in the orbital-free calculations, as
the difference between PBE and LDA results are negligible
with respect to the uncertainty arising from the orbital-free
kinetic approximation, particularly at the elevated tempera-
tures above 6 eV. Additionally we used a local pseudopotential
based on average-atom Thomas-Fermi calculations [23], with
a cutoff radius rc = 0.6rWS, where rWS is the Wigner-Seitz
radius.

The results are shown in Fig. 3. In the upper panel the lower
temperature Kohn-Sham results (KSMD) are shown as well
as the overlapping calculations of the orbital-free molecular
dynamics (OFMD). In the lower panel the extension to high
temperature is shown, along with the agreement of the Kohn-
Sham results at low temperature. Additionally the solid curves
show the results of our EOS, which will be described below.

III. MULTIPHASE EOS

A. Construction

The overall EOS consists of the liquid phase as well as the
ambient solid fcc phase and the higher pressure crystal phases
hcp and bcc. We constructed each of the four phases separately
and then determined the phase boundaries by consideration

of the Gibbs free energy [28]. For each phase we used the
standard, but nonunique, decomposition of the total Helmholtz
free energy into the three terms,

F = F0(ρ) + Fi(ρ,T ) + Fe(ρ,T ), (2)

where F0 is the zero temperature energy curve, and Fi and
Fe are the thermal contributions of the ions and electrons,
respectively. Each component utilizes various models. The
calculated DFT cold curves, and phonon derived Debye
temperatures (this is all we are using the phonons for) are
inputs for the EOS. We can also derive other model parameters,
such as the Grüneisen parameter from our grid of KSMD
calculations for the liquid. With a candidate EOS, we can
compare the pressures from the EOS with those from QMD
results, as well as compare constraining experimental, and
other theoretical data, which then allows us to refine the
parametrization of our models.

First, we consider the liquid phase. Here, we used the
model of Johnson [29] to ascertain Fi from near melt, where
ion coupling is very strong, completely through the ideal gas
limit at very high temperature. The QMD data is essential to
determine then both F0 and to fix the parameters of the ion
model such that the transition to the ideal limit is physically
correct. Additionally, for Fe we use the Thomas-Fermi-Dirac
average atom model. This electron model is used for all phases
though it is only a significant contribution in the liquid phase.
As shown in Fig. 3 very good agreement is found between the
EOS and the QMD results.

In all of the solid phases we used a Debye model for
Fi . Here the DFT calculated cold curves, from Sec. II A, are
used to determine F0, while the phonon calculations determine
the Debye temperatures. This provides the solid-solid phases
transitions both along the cold curve and at finite temperature.
One caveat is that the DFT results are subject to error in the
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FIG. 4. Phase diagram for aluminum. The solid curves are the
principle hugoniot, melt curve, and principle isentrope, from top to
bottom.
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FIG. 5. Ambient pressure thermal expansion (a) in solid and liquid phase. The EOS agrees with the aluminum 1100 [31,32] and the liquid
data [33–38]. For comparison the pure aluminum [39] fcc phase thermal expansion is shown. Experimentally determined derivative properties
of the bulk modulus [39] (b), specific heat [40,41] (c) and the linear expansion coefficient [42] (d) show good agreement with the EOS.

exchange-correlation approximation that is not negligible at
low temperature. For example, our DFT (PBE) equilibrium
density is 2.711 g/cm3 whereas the experimentally determined
value is 2.734 g/cm3 [15]. Thus our EOS cold curve is shifted
some from the DFT results for the fcc phase to agree with
the experimental data, as will be shown in the next section.
In the other solid phases where no such experimental data
is available we have assumed this shift to be global. Further
details of the EOS models are given in the Appendix.

B. Results

To begin we consider, in Fig. 4, the overall phase diagram
to 500 GPa and to temperatures well above melt. This
encompasses the DFT predicted zero temperature phases
transitions of fcc→hcp at 176 GPa and hcp→bcc at 373 GPa.
Additionally the Debye temperature calculated from the DFT
based phonon analysis, along with the Grüneisen parameter
determined from the thermal expansion data of the fcc phase,
fix the phase boundaries including the fcc-bcc-liquid triple
point at 195 GPa and 5650 K, and the fcc-hcp-bcc triple point
at 255 GPa and 2900 K. It has been shown elsewhere that the
bcc phase is stable up to 3.2 TPa [30]. Also shown on the plot
for reference are the principle hugoniot, the melt curve, and
the principle isentrope.

Next, with some finer analysis we examine the ambient
isobaric properties of aluminum. In Fig. 5(a) we show the
thermal expansion from the EOS compared to the available
experimental results for the aluminum 1100 solid and liquid
aluminum. Additionally the expansion of pure aluminum is
shown, which illustrates that the essential difference in the
expansion is a shift in the density of 0.1 g/cm3 from 2.712
for aluminum 1100 to 2.70 for pure aluminum at 298 K.
This then suggests that for some derivative properties, such as
the expansion coefficient, that benchmarking of the aluminum
1100 EOS to the available experimental data of pure aluminum
is valid. Figures 5(b)–5(d) shows the bulk modulus BS , the
specific heat capacity Cp, and the linear thermal expansion
coefficient α for the fcc phase at 1 atm pressure. The EOS is in
very good agreement with the experimental data which is for
both single crystal aluminum and otherwise pure aluminum.
It is of note that these EOS results are highly dependent on
the Debye temperature, for which we haven taken the value
of 385 K directly from the DFT calculation. Given the good
agreement then we are confident in using the DFT derived
Debye temperatures for the the higher pressure hcp and bcc
phases as well.

Next we consider the shock compression and high pressure
melting. Figure 6 shows the shock Hugoniot experimental data
for aluminum 1100 with our EOS. In Fig. 6(a) it is of note

144101-4



MULTIPHASE ALUMINUM EQUATIONS OF STATE VIA . . . PHYSICAL REVIEW B 94, 144101 (2016)

 5

 5.5

 6

 6.5

 7

 7.5

 0  1  2  3  4  5  6

 U
s-

u p
 (

km
/s

)

up (km/s)(a)

EOS
Nellis

Marsh
shock melt

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0  50  100  150  200  250  300

C
b 

(k
m

/s
)

P (GPa)(b)

EOS
Experiments

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0  50  100  150  200

T
 (

K
)

P (GPa)(c)

EOS melt
EOS Hugoniot

QMD
Experiments

shock melt  0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 3  4  5  6  7  8  9  10

P
re

ss
ur

e 
(G

P
a)

Density (g/cm3)
(d)

Experiments
shock melt

KSMD
OFMD

EOS

FIG. 6. EOS comparisons with shock data: (a) Shock Hugoniot velocity data for aluminum 1100 [5,43]; (b) sound velocity along the
aluminum 1100 Hugoniot [44–46]; (c) melt curve data [47,48] for pure aluminum, including QMD based results [49]; (d) high pressure shock
data [43,54–75] along with our KSMD and OFMD results.

that we plot Us − up on the y axis for further clarity than the
standard Us vs up plot [50], where Us is the shock velocity and
up the particle velocity. We have marked the shock melt which
is at up = 4.3 km/s and one can see the complete transition
to the liquid phase by the change in slope at up = 5.3 km/s.
In Fig. 6(b) we have plotted the sound velocity Cb, along
the Hugoniot, where the dotted line represents the melting
region with the fcc phase given by the solid curve to the left
and the liquid phase given by the solid curve to the right.
Then in Fig. 6(c) the temperature along the Hugoniot is shown
together with the melt curve. The melt curve is seen to be in
very good agreement with both ab initio QMD results [49,51]
and experimental results, including the shock melt at 125 GPa
and 4700 K [52]. The entropy increase at melt and ambient
pressure is slightly higher at 1.68 kB/atom compared with the
calculated value of about 1.38 [53].

Extending now to shock compressions significantly above
the shock melt, we consider various experiments of nearly
pure aluminum. Those experiments are compared with the
Hugoniot calculated from the EOS in Fig. 6(d). Additionally
we show the points calculated along the Hugoniot directly
from our QMD simulations, which are in agreement with pre-
vious all-electron [76] and pseudopotential [77] calculations.
These points are determined by the Rankine-Hugoniot jump

conditions

Ef − Ei = (Pf + Pi)(Vi − Vf )/2 , (3)

(Pf − Pi) = ρiUsup , (4)

ρf = ρiUs/(Us − up) , (5)

for the internal energy E, pressure P , and volume V between
the initial and final states. The conditions also connect the
experimental shock Us and particle up velocities with the
thermodynamic states, which relates Fig. 6(a) to Fig. 6(d).
For the initial state Kohn-Sham DFT is used to calculate the
energy and pressure at the experimental initial density of 2.712
g/cm3 and in the fcc phase. Then QMD is performed to find
the temperature and density conditions with results that satisfy
the jump conditions.

In transitioning from the orbital-based Kohn-Sham cal-
culations to the orbital-free DFT calculations the change in
pseudopotential used requires accounting for a shift in the
zero of energy. There are two corrections involved so that
we may compare energies directly between the orbital-free
and Kohn-Sham results. First is the major correction between
the Kohn-Sham PAW pseudopotential and the orbital-free
pseudopotential. We have matched pressures at 6 eV, for a
given density and temperature, and have then immediately the
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FIG. 7. Shock release data for 6061 aluminum [79,80]. Adiabats calculated from the EOS for the experimental release points show
agreement within the experimental errors of the measured final states.

energy shift at that point given by the difference in energies.
This is taken as the principle shift in energy for a given
isochore. However, as we increase temperature the orbital-free
pseudopotential does change, and so we perform additional
snapshot calculations at given ion positions with both the 6 eV
pseudopotential and the pseudopotential for the temperature
we are actually at and compute the difference in energies which
provides a much smaller secondary correction.

In the compressed region away from the Hugoniot we can
compare with both double shock data as well as shock release
data. In Fig. 7 we have plotted the shock and release data
from the Z-machine experiments. The material used in the
experiments is 6061 aluminum, and it is that specific EOS
which is plotted here, however for calculations in this regime
the difference between the 1100 and 6061 EOS are negligible.
The experiments first determine the shocked state along the
aluminum Hugoniot then through impedance matching the
isentropic release point is determined by observing the shock
continuing through a secondary standard material. In these
experiments the impedance match materials are a plastic ma-
terial, polymethylpentene (TPX) in Fig. 7(a), and silica aerogel
of different densities, which provide a range from relatively
shallow release [Fig. 7(a)] to a deep release [Figs. 7(c) and
7(d)]. Across all these results the EOS adiabats calculated
from the shock release point are in very good agreement, that
is within the approximate 1% experimental uncertainty, with

the measured values. This shows our constraint of the EOS to
the QMD simulations in the liquid regime yields high accuracy
away from the Hugoniot.

The double shock data of Nellis for aluminum 1100 is
shown in Fig. 8. Here the curves represent the principle shock
Hugoniot (dotted) and reshock (dashed) from the pressures
along the Hugoniot of 163, 102, and 65 GPa. The slope
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with the EOS results.

change occurring in the second shock marks the transition
from fcc to bcc. In the highest pressure case, however, the
initial shocked state is along the melt curve and the second
shock curve follows the melt curve with the slope change, at
about up = 4.9, marking the triple point.

In the expanded fluid region we make use of recent
experiments performed on aluminum foils. The results are
shown in Fig. 9 where pressure is plotted against the internal
energy. At the highest densities the EOS shows higher pressure
than the experiment for the given energies, but by no more than
0.5 GPa. This region near 1 g/cm3 and above represents the
transition region of the EOS cold curve from a Lennard-Jones
model to a Rose-Vinet model. The agreement does become
better with lower density, and this allows us to predict the value
of the aluminum critical point [82] at a density of 0.375 g/cm3

and a temperature of 8400 K, which is close to the value
given in Ref. [83]. We find the value of the critical point by
identifying the inflection point,(

∂P

∂V

)
T

=
(

∂2P

∂V 2

)
T

= 0 , (6)

through inspection of the EOS isotherms. Below the critical
point the constructed EOS does develop van der Walls loops
due to the Lennard-Jones model used in that region, and so we
perform a Maxwell construction to remove them.

C. 6061 aluminum

With the exception of Fig. 7 all the EOS results up to
this point have been for 1100 aluminum. In fact, though,
in that compressed liquid region there is no distinguishable
difference between 1100 and 6061, and further for most of
the results there is very little difference. In this section we
highlight where there are some noticeable differences. Firstly,
there is the change in ambient density of 2.712 to 2.70 g/cm3.
We note that this density change brings the thermal expansion
for aluminum 6061 into agreement with the pure aluminum
data shown in Fig. 5(a). Shown in the upper panel of Fig. 10
is the shock Hugoniot in terms of Us and up which is a bit
different than for 1100 aluminum. Of note is a difference in
the up = 0 intercept which translates to a difference in the cold
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FIG. 10. Shock [5,74] and isentrope [84,85] results for 6061
aluminum.

curve bulk modulus of 78.5 GPa for 6061 and 81 GPa for 1100.
In compensating fashion the bulk modulus pressure derivative
is increased from 4.7 to 4.8 for fcc aluminum 6061. Other than
those two changes to the fcc phase, the only change is a 0.012
g/cm3 shift in the cold curve applied to all of the phases. In the
lower panel is a comparison of the principle isentrope between
the EOS, QMD calculations [84], and experimental data [85]
for 6061. Excellent agreement is seen up to 5.1 g/cm3 where
the phase change from fcc to hcp occurs. Though no evidence
of the phase change is seen in this experimentally derived
isentrope, earlier experimental compression results suggest it
[86], as do recent shock adiabat results [87]. By contrast, the
aluminum 1100 isentrope and Hugoniot (which are not shown)
lie at a slightly lower pressures by 1–2%, when evaluated from
the same initial conditions.

IV. CONCLUSION

We have performed density functional based calculations
for aluminum. These calculations encompass the cold curve
including the zero temperature pressure induced phase tran-
sitions from fcc to hcp at 176 GPa and from hcp to bcc at
373 GPa. Additionally we completed highly accurate phonon
calculations based on equilibrium force calculations as well
as low temperature QMD, from which values of the Debye
temperature and the Grüneissen parameter for the individual
solid phases have been extracted. Additionally QMD has been
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performed in the liquid region from 0.4–100 eV, by employing
both Kohn-Sham and orbital-free density functional theory.
Here we extended the Kohn-Sham calculation to 8 eV and
found overlap between the Kohn-Sham and Thomas-Fermi
orbital-free calculations at 6 eV.

We then used our results to construct a multiphase
aluminum EOS, specifically for aluminum alloys 1100 and
6061. Along with the DFT results, we made use of the most
accurate and modern experimental data available for aluminum
including for fcc phase and liquid regime, and for single
crystal aluminum as well as for 1100 and 6061. While DFT
is in general a highly accurate theoretical approach, some
deficiencies do exist, such as in the lattice constant calculation
of aluminum due to the exchange-correlation functional.
Therefore we have used to the greatest extent possible the
DFT results as constraint to the EOS construction, and then
appealed to the experimental data, where it provides a clear
correction, for adjustment of the EOS. We would suggest such
an approach is completely natural when the goal is the most
accurate EOS, and is most helpful here in the cases of the high
pressure hpc and bcc phases for which nearly no experimental
data is available, yet we may modify the EOS from the
pure DFT results relative to the fcc modification to provide
overall improvement. Future experiments, such as reshock
and isentropic compression, may validate this by accurately
identifying the conditions of the crystal phase transitions.
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APPENDIX

Here we provide further details of the EOS models and their
parameters used to generate the multiphase tabular SESAME
EOS. First we recall that for each of the aluminum phases the
total free energy is given by a combination of the cold curve F0

and thermal contributions of the ions Fi and the electrons Fe.
As noted in the main text, the final contribution is from

a Thomas-Fermi-Dirac average atom (AA) calculation [88],
where the actual contribution Fe is given by the difference
between an AA calculation at a given density and temperature
and an AA calculation at the same density and zero tempera-
ture. This must be tabulated at all density and temperature grid
points of the EOS.

Next the cold curve F0 is in all cases given at low density,
up to the ambient solid density, by a Lennard-Jones model and
at high density, above 3.5 times the ambient density, by the
Thomas-Fermi-Dirac approximation. The matching at those
densities is as prescribed in Ref. [89]. The modified Lennard-
Jones model depends directly on two other parameters: the
cohesive energy which was taken for solid phases at the
experimental value of 78.1 kcal/mol [90], and slightly lower
for the liquid phase at 70 kcal/mol, and an exponent in the

TABLE II. Parameters from the EOS for aluminum 1100.

ρ (g/cm3) B (GPa) B ′ θD (K)

fcc 2.773 81 4.70 385
hcp 2.749 76 4.73 367
bcc 2.707 71 4.69 355

functional form which is 0.7 for the solid phases and 0.65
for the liquid phase. In the interim the solid phases are
given by a Rose-Vinet model with the bulk modulus and its
derivative as given in Table II, with a slight increase of the
equilibrium density from the DFT values to correct for the
exchange-correlation approximation error (as mentioned in
Sec. III A). Also B ′ is increased to provide better agreement
between the EOS and DFT curves at higher pressure than
given by the equilibrium B ′ of Table I. The liquid regime uses
a Birch-Murnaghan expansion in η = [(ρ/ρ0)2/3 − 1]/2,

P (ρ) = Bη

(
ρ

ρ0

)5/3[
3 + 9

2
(B ′ − 4)η + C

9
η2

]
, (A1)

with B = 80 GPa, B ′ = 4.05, C = −28. These liquid cold
curve parameters were derived from extrapolation of the QMD
pressure isotherms to zero temperature. It is of note that the
liquid cold curve is not physically intuitive as is the solid
cold curve, but it represents the underlying changes in energy
and pressure due to compression alone, absent of the thermal
electron and ion contributions as described by our energy
decomposition of Eq. (2).

Finally for the thermal ion contribution Fi , a Debye model
was employed in the solid phases. The Debye temperature
was taken from the DFT phonon calculation as given in
Table I, and a Grüneisen parameter γref of 2.13 was used
for the fcc phase; this was primarily determined by matching
the experimental thermal expansion [7]. This value was also
used for the bcc phase, while the hcp phase was slightly
larger at 2.25. In the liquid phase a smaller γ = V (dP/dE)V
of 1.8 was derived from the QMD calculations by fitting
the pressure energy curves and extrapolating the results to
zero temperature at the ambient density of 2.71 g/cm3. The
model of Johnson, in particular version 2 from Ref. [29],
was then found to reproduce the QMD isotherm data well,
with a small energy shift relative to that of the fcc phase that
then correctly determined the melt temperature at 930 K and
ambient pressure. Here we use Johnson’s suggested value for
a = 1.25/M5/3 = θ2/Tmρ2/3, which relates the Debye θ and
melt TM , temperatures in eV along with the density ρ, in
g/cm3, where M = 26.9815 is the atomic mass. Additionally
we make use of a model for γ to second order in ρ,

γ (ρ � ρ0) =γ∞ + ρ0

ρ
(2γref − 2γ∞ + γ ′

R)

+
(

ρ0

ρ

)2

(γ∞ − γref − γ ′
R) , (A2)

γ (ρ < ρ0) =γ0 + ρ

ρ0
(2γref − 2γ0 − γ ′

L)

+
(

ρ

ρ0

)2

(γ0 − γref + γ ′
L). (A3)
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Here γref are the numbers quoted above, while γ0 = 1 and
γ∞ = 2/3 are the values at ρ = 0 and ρ = ∞. γ ′

L and γ ′
R

are the left and right logarithmic density derivatives of γ at ρ0.
Both are equal to −3 for all the solid phases and to −2.5 for the
liquid. Finally, there is an input of the initial melt temperature
and density, which we take at 650 K and 2.48 g/cm3, both

below the actual melt condition. This choice provides the
best agreement with the QMD and shock Hugoniot data. It
does produce a melt curve within the full Johnson model
that lies lower in temperature than our melt curve, which
is determined by comparison of Gibbs free energies of the
separately constructed phases.
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