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First-principles approach to thin superconducting slabs and heterostructures
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We present a fully first-principles method for superconducting thin films. The layer dependent phonon spectrum
is calculated to determine the layer dependence of the electron-phonon coupling for such systems, which is coupled
to the Kohn–Sham–Bogoliubov–de Gennes equations, and it is solved in a parameter-free way. The theory is
then applied to different surface facets of niobium slabs and to niobium-gold heterostructures. We investigate the
dependence of the transition temperature on the thickness of the slabs and the inverse proximity effect observed
in thin superconducting heterostructures.
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I. INTRODUCTION

Thin film superconductivity has been a subject of great
scientific interest since the 1950’s [1–5]. The development of
nanotechnology has led to renewed interest in this topic [6–14]
due to possible technological applications in superconducting
nanodevices. Theoretically, it is entirely possible that in thin
(few nanometers thick) slabs a large electron-phonon coupling
can lead to superconductivity well above the bulk transition
temperature. For such superconducting heterostructures an
inverse proximity effect was also observed [6]: A nonsuper-
conducting metal overlayer on a superconducting thin film
increases the critical temperature Tc. This is in strong contrast
to the case of thick (compared to the coherence length)
superconducting films, where the metallic overlayer decreases
Tc [15–17]. In this Rapid Communication, the main focus is
how the material specific, intrinsic superconducting properties
(which are essential for technological applications) change as a
function of thickness. In the case of thin superconducting films,
the electron-phonon interaction may change significantly
compared to bulk, which can lead to many new and interesting
effects. To properly describe such a situation, a fully ab initio
approach is needed, which takes into account the changes in the
electronic structure and in the phonon spectrum. However, the
simultaneous treatment of vibrational and electronic degrees
of freedom on the same level leads to complications which
are very difficult to overcome. Here we propose a simplified
treatment, where both spectra are calculated separately on a
first-principles level and the results are combined. The theory
is applied to different surface facets of niobium slabs and to
niobium-gold heterostructures.

II. METHODS

The density functional theory (DFT) for superconductors
yields the Kohn–Sham–Bogoliubov–de Gennes (KSBdG)
equations [18–20] by introducing the χ (�r) = 〈�↓(�r)�↑(�r)〉
anomalous density as an additional density, analogous to
the magnetization in spin-polarized DFT theory. In the case
of multilayer systems, the self-consistent solution of these
equations can be obtained in terms of the screened Korringa-
Kohn-Rostoker (SKKR) method (see Ref. [21]), where the
retarded Green’s function {Gab,+

IJ,LL′(ε,�r,�k||)} is the fundamental

quantity of interest. Here, a,b refer to the electron-hole
components, I,J are the layer indices, and L = (l,m) is
a composite angular momentum index. Physical quantities,
such as the ρI (�r) charge and χI (�r) anomalous densities, can
be calculated from the layer diagonal Green’s function, as
described in Ref. [21].

For self-consistent calculations one can use the
parametrization for the exchange energy introduced by Su-
vasini et al. [22],

Exc,I [ρI ,χI ] = E0
xc,I [ρI ] −

∫
χ∗

I (�r)�IχI (�r)d�r, (1)

where E0
xc,I [ρI ] is the usual exchange-correlation energy for

electrons in the normal state and �I describes the strength
of the electron-phonon interaction for layer I . Each layer
is assumed to be chemically homogeneous, but any two
distinct layers can, in principle, describe different material
constituents.

The approximation Eq. (1) to the exchange-correlation
potential takes into account the electron-phonon interaction
via a single layer dependent parameter. This parameter can
be estimated from the λI electron-phonon coupling constant
as �I = λI/DI (EF ), where DI (EF ) is the density of states
(DOS) at the Fermi energy for layer I . Furthermore, the
electron-phonon coupling constant can be calculated as [23]

λI = DI (EF )
〈
g2

I

〉
MI

〈
ω2

I

〉 , (2)

where MI is the atomic mass, and DI (EF )〈g2
I 〉 is the

McMillan-Hopfield parameter. One can immediately recall
that various theories [24–26] have been worked out in the
literature to calculate the terms in the above expression. A
purely electronic calculation leads to the McMillan-Hopfield
parameter via the Gaspari-Győrffy formula [24], which is
based on the following assumptions: (i) The atomic potentials
are spherically symmetric, (ii) every special influence of
the shape of the Fermi surface is neglected, and (iii) small
displacements in the atomic potential can be approximated by
a rigid shift. The other important parameter used to evaluate
Eq. (2) is the average of the square of the phonon frequency,
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〈ω2
I 〉, which can be calculated based on the formula [23]

〈
ω2

I

〉 ≈
∫

dωωFI (ω)∫
dω 1

ω
FI (ω)

, (3)

where FI (ω) is the phonon DOS for layer I . Even at this point
one can notice that a larger McMillan-Hopfield parameter,
the softening of 〈ω2

I 〉, will result in a larger electron-phonon
coupling.

Our phonon calculations are based on relaxed slab geome-
tries, and interlayer relaxations are assumed for all interlayer
distances perpendicular to the surface facets with a fixed
in-plane lattice parameter. The first-principles calculation of
the dynamical properties of lattices requires knowledge of the
interatomic forces. We determine the force constant matrix
for bulk, slabs, and heterostructures in the framework of
density functional perturbation theory [27] as implemented
in the Vienna ab initio simulation package (VASP) [28] and
employing PHONOPY [29] to compute the dynamical matrix
and layer resolved phonon DOS. Once the layer dependent
phonon spectrum has been obtained, the layer dependent
electron-phonon coupling constants can be calculated based
on Eq. (2) and, consequently, the KSBdG equations can
be solved self-consistently for finite temperatures with the
SKKR method. These self-consistent calculations are carried
out within the atomic sphere approximation with an angular
momentum cutoff of lmax = 2. In order to determine the
superconducting transition temperature, one needs to find
the critical temperature where the spectrum of the KSBdG
Hamiltonian does not give a gap.

In what follows, we choose niobium as the test bed and
primary target of our numerical investigations. To verify the
theory, we first calculated the electron-phonon coupling and
the critical temperature for bulk Nb, and obtained λ = 0.86
and Tc = 11.3 K. Based on the Gaspari-Győrffy theory and
using the augmented plane wave method, for Nb, λ = 0.88
was obtained by Klein and Papaconstantopoulos [30]. In
Ref. [20] a multicomponent DFT for the combined system
of electrons and nuclei with different hybrid functionals led
to critical temperatures in the range of 8.4–9.5 K, while the
known experimental bulk values for Nb are [30] λ(expt) = 0.82
and T

(expt)
c = 9.2 K. It can be seen that our results are

rather similar to the results of other authors regarding the
electron-phonon interaction and the critical temperature is
slightly overestimated as compared to experiments, which is,
despite the simplicity of the used exchange-correlation energy,
still not far from the experimental value. It is worth mentioning
here that in the case of niobium, phonon retardation effects
play an important role, therefore, it should be treated in the
strong-coupling limit. In our theory, the anomalous density
χI (�r) influences the effective potential Veff,I (�r) via the density
ρI (�r), which is the analogy of the self-energy correction to the
Eliashberg equations [31] and therefore may be regarded as a
strong-coupling effect.

III. RESULTS

Now we are ready to apply the method to niobium slabs,
and niobium-gold heterostructures. It should be noted that
throughout this Rapid Communication we neglect the effect
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FIG. 1. Layer resolved phonon DOS of a 15 layer Nb slab for
bcc(100) (left panel) and bcc(110) (right panel). The first layer is the
surface layer, the second layer is the subsurface layer, . . . , and the
eighth layer is the bulklike center of the slab.

of a substrate which could, in principle, modify the results
quantitatively, but should not alter the basic physics and would
just lead to numerical complications in the calculation of the
phonon spectrum. In the case of a Nb slab, the calculations
were performed for three, six, nine, 12, and 15 layers of Nb. We
choose two facets for our studies: the open (100) surface facet,
because it is the most stable surface facet, and a contrasting
close-packed one, namely, the (110) facet, which has a slightly
higher surface energy.

The results obtained for the McMillan-Hopfield parameter,
the average phonon frequency and the electron-phonon inter-
action, are presented in a graphical form with a stacked bar
chart in Fig. 2. Since the slabs are symmetric with respect to
the center of the sample, we plot the results only from the
surface layer to the middle of the sample. In Fig. 1 the phonon
DOS is shown for both Nb(100) and Nb(110) slabs consisting
of 15 atomic layers. It can be observed that as one approaches
the middle of the sample, the phonon DOS converges towards
the bulk DOS. A faster convergence was obtained in the case
of the electron DOS. It can be seen that on the surface of
the bcc(100) slab, the phonon DOS is dominated by low
frequency states, therefore, the 〈ω2

I 〉 becomes significantly
smaller just on the first surface layer (see Fig. 2). This effect
can also be observed for the bcc(110) slab but it is not as
pronounced, and is mostly compensated by the subsurface
layer where the phonon DOS is dominated by high frequency
states. As a consequence, for the bcc(100) surface facet, the
McMillan-Hopfield parameter increases on approaching the
surface, which is in sharp contrast to the bcc(110) surface facet
where the McMillan-Hopfield parameter fluctuates around its
bulk value for all layers. At the (100) surface, both the electron
and the phonon parts enlarge the electron-phonon coupling
significantly beyond the bulk value. At the subsurface layer,
the electron-phonon coupling becomes smaller because of the
larger 〈ω2

I 〉, and as we approach the middle of the sample its
value converges to the bulk value. In the case of the bcc(110)
slab, the electron-phonon coupling changes similarly to the
bcc(100) slab, however, an important difference is that on the
surface the electron-phonon coupling is not as large.

Once we know the electron-phonon interaction parameters
for all layers, we can proceed and solve the KSBdG equations
self-consistently for various temperatures. In the case of
T = 0 K, we find that the superconducting gap has a layer
dependence, which follows the layer dependence of the
λI electron-phonon coupling parameter. However, when the
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FIG. 2. ηI = DI (EF )〈g2
I 〉/MI , 〈ω2

I 〉, λI —normalized with the
Nb bulk value—are shown in the stacked bar charts (the actual value is
always added to the sum of the other data sets), respectively, in each
bar, for different lengths of Nb(100) (top panel), Nb(110) (middle
panel), and Nb/Au (bottom panel) slabs, where one, two, and three
layers of Au were added on three Nb layers.

KSBdG equations are solved for finite temperatures, it is found
that in all layers the superconducting gaps disappear at the
same critical temperature. This means that a layer, which has
a larger electron-phonon coupling parameter, strengthens the
superconducting properties of the other layers with smaller
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FIG. 3. The critical temperature (Tc), effective electron-phonon
coupling (λeff), and Coulomb repulsion (μ∗) as a function of the
thickness of Nb(100) (blue line, solid symbol) and Nb(110) (red line,
open symbol) slabs (left panels), and Nb/Au slabs (right panels).

electron-phonon coupling via the proximity effect [32]. For-
mally, this is very similar to the case of MgB2’s two-band
system [33], where the two superconducting gaps have the
same critical temperature only if there is an interband coupling.

In Fig. 3 (top left panel) it can be seen that the critical
temperature of the Nb(100) slab is well above the bulk critical
temperature (with a maximum at the six layer thick Nb slab),
which is clearly due to the larger electron-phonon coupling
on the surface. Not surprisingly, the Nb(110) slab’s critical
temperature is always lower than in the case of the Nb(100)
slab. In order to gain a deeper understanding of the changes
in the critical temperature as a function of thickness, it is
interesting to look at other properties of the superconducting
slabs, such as μ∗, the effective Coulomb repulsion. The μ∗
is a fundamental quantity in the theory of superconductivity,
related to the correlation effects due to the Coulomb repulsion.
Usually, it is treated as an adjustable parameter, but based
on the previous results, it is possible to estimate it in thin
film systems. For a strong-coupling superconductor such as
Nb, Tc can be calculated from the McMillan formula [23],
which depends on the Debye temperature 
D , the effective
electron-phonon coupling λeff, and the μ∗. If the values of λI

are known, it is possible to calculate λeff as [34]

λeff =
∑

I λIDI (EF )∑
I DI (EF )

, (4)

where I is a layer index. 
D can be obtained from the
phonon spectrum. Thus μ∗ can be calculated by equating the
previously obtained value of Tc to the McMillan formula. The
results are shown in Fig. 3 (left panels), where one can see that
the effective Coulomb repulsion is decreasing as a function of
the niobium thickness. This is probably due to the fact that
for thicker slabs the electrons have more degrees of freedom.
It is also worth mentioning that, as it can be seen in Fig. 3,
the superconducting transition temperature has a rather similar
dependence on the thickness of the slab as the above defined
λeff.

The more important and more studied systems are the
superconducting thin film heterostructures. Due to the scarcity
of experimental studies of such systems, we choose to
investigate the Nb/Au heterostructure, mostly because the
thick film version was already investigated in Refs. [15–17].
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FIG. 4. Layer resolved phonon DOS for the following heteros-
tuctures: one Au layer (left panel) and two Au layers (right panel) on
three Nb layers.

Here, one, two, and three layers of gold were added to
three layers of Nb. We assumed bcc epitaxial growth for
the gold overlayers, and thus the bcc(100) lattice structure is
investigated. The layer resolved phonon DOS is shown for one
and two gold overlayers in Fig. 4. It can be seen that in the case
of a single gold overlayer the phonon spectrum is dominated
by low frequencies both in the case of the Au overlayer and the
surface niobium layer (which is on the other side of the slab),
therefore, the 〈ω2

I 〉 becomes smaller on these layers. This effect
tends to increase the electron-phonon coupling. However, the
McMillan-Hopfield parameter is also smaller for the gold
layers, as it can be seen in Fig. 2 (bottom panel), since the
electronic DOS at the Fermi level is smaller and also the mass
of a gold atom is almost twice as large as the mass of a niobium
atom. Together these latter factors would act to reduce the
electron-phonon coupling in the gold layers. All these factors
are not present or not as pronounced when the gold coverage
increases to two or more layers. However, for the three layer
Nb/one layer Au heterostructure, the electron-phonon coupling
in the surface Nb layer is much larger than any one layer in
any other presently investigated heterostructures or slabs. The
net result is an overall increased electron-phonon coupling and
(as we will see further down) an increased Tc in the case of a
single Au covered Nb thin film. The results for the different
heterostructures are summarized in Fig. 2 (bottom panel).

Again, knowing the electron-phonon interaction param-
eters, similar calculations were performed as in the case
of the niobium slab to obtain the critical temperature, the
effective electron-phonon coupling, and the effective Coulomb
repulsion as a function of the thickness of the gold coverage.
In Fig. 3 (right panel) we can observe the inverse proximity
effect similarly as it was found experimentally in the Pb/Ag
heterostructure in Ref. [6] or in a similar Nb/Au/Nb junction
in Ref. [35]. The superconducting transition temperature Tc

increases by adding only one gold overlayer to a niobium slab,
however, adding two layers of gold decreases the Tc. This result
is now well understood based on the previous result regarding

the electron-phonon interaction. Bourgeois et al. [6] suggested
that there is a competition between the Coulomb effects and
the classical proximity effect. Indeed, in Fig. 3 (right panel) it
can be seen that with increasing the number of gold overlayers,
the effective Coulomb repulsion decreases, which can cause
an increase in the critical temperature. Nevertheless, based
on Fig. 3 (right panel), we would rather conclude that the
main effect which creates the inverse proximity effect is due
to the enhanced electron-phonon coupling in the overlayer.
The behavior of the electron-phonon interaction appears to
primarily influence Tc in other thicknesses as well, overriding
the changes coming from the Coulomb repulsion.

IV. SUMMARY

In this Rapid Communication a first-principles approach
was presented to investigate superconducting slabs and S/N
heterostructures. In essence, the scheme of calculation pre-
sented here requires the solution of two separate problems:
solving the KSBdG equations and constructing exchange
functionals. In Ref. [21] the SKKR method was generalized
for the superconducting state and now a simple scheme was
constructed to obtain a simple approximation for the exchange
functional. The method was applied to niobium and niobium-
gold slabs. In the case of freestanding Nb bcc(100) slabs we
have found that the McMillan-Hopfield parameter is larger, and
the 〈ω2

I 〉 frequency is smaller on the surface of the Nb, which
results in large electron-phonon coupling for the surface. As a
consequence, the critical temperature is above the bulk value.
For the Nb(110) slab the McMillan-Hopfield parameters are
almost constant, and the 〈ω2

I 〉 frequencies show a behavior
similar to that of the Nb(100) surface facet. Therefore, the
critical temperature is oscillating around the bulk value. While
presently there is no first-principles way to directly calculate
the effective Coulomb repulsion parameter (μ∗), a procedure
was developed to estimate this parameter via the McMillan
formula. We also studied the properties of thin Nb/Au
heterostructures where we could observe the inverse proximity
effect for which a first-principles based explanation was found.
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